
Information Processing Letters 66 (1008) 3540

Optimum extensions of prefix codes *

Ion I. Mhdoiu ’

Colkge of Computing Georgia Institute qf Technolog.x Atlanta. GA 30332-0280, USA

Recewed 20 February 1997; revised 5 October 1997

Communicated by L. Hemaspaandra

Abstract

An algorithm is given for finding the minimum weight extension of a prefix code. The algorithm runs in 0(n3), where n is
the number of codewords to be added, and works for arbitrary alphabets. For binary alphabets the running time is reduced to
O(n*), by using the fact that a certain cost matrix satisfies the quadrangle inequality. The quadrangle inequality is shown not
to hold for alphabets of size larger than two. Similar algorithms are presented for finding alphabetic and length-limited code
extensions. 0 1998 Elsevier Science B.V.

Keywords: Algorithms: Prefix codes; Dynamic programming: Quadrangle inequality

1. Introduction

Huffman’s classical algorithm [6] constructs a pre-
fix code with minimum weighted length over a given
alphabet. A related problem, introduced in [2], is that
of optimally extending a prefix code: given a pre-
fix code, C, and n positive weights, WI, , w,, , find
codewords cf. . . .,cn such that C U {cl, c,) re-

mains a prefix code, and, subject to this condition,
C:=, wi Ici 1 is minimum. (Here, and throughout the
paper, we use 10.9 to denote the length of w.) It
is well known that the extension problem has so-
lution whenever C satisfies Kraft’s strict inequality,

c w&z m p/WI < 1, where m denotes the size of the al-
phabet.

The extension problem has the same objective
function as Huffman’s problem, but the two differ

Work supported in part hy NSF grant CCR-9627308.

’ On leave from Bucharest University, Faculty of Mathematics,
Str. Academiei 14, R-70109 Bucharest. Romania. Email: mandoiu

@cc.gatech.edu.

0020.0190/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved.
PII 50020-0190(98)00026-X

in the range of choices available for codewords ci.
We say that w extends C if C U {w) is a prefix-free

set. An extension root of C is a length-minimal word
that extends C; clearly, each codeword c; must have
an extension root as prefix. Calude and Tomescu [2]

observe that Huffman’s algorithm can be used to find
an optimum extension when all extension roots of

C have the same length, in particular when C has
only one extension root. In this paper we present
an algorithm that finds an optimum extension for an
arbitrary extendable prefix code.

Starting with Gilbert and Moore 141, dynamic pro-
gramming has been successfully applied to several
prefix coding problems (see, for example, [3,7,8,12]).
Particularly efficient algorithms are obtained with a
speed-up technique devised by Knuth [8]; the speed-
up is based on the fact that a certain cost matrix sat-
isfies the quadrangle inequality (an upper-triangular
matrix W satisfies quadrangle inequality if w(i, j) +
w(i’. ,j’) < w(i, j’) + w(i’, j) for all i < i’ < j <
j’). We use dynamic programming to solve the code-

extension problem in O(n’) time, and, in the binary

case, we use the quadrangle inequality to speed up the

computation by a factor of n. However, the speed-up
is achieved not by using Knuth’s technique, but the

matrix searching algorithm of Aggarwal et al. [11. We

show that this speed-up idea cannot be extended to al-

phabets of size larger than two, in particular the quad-

rangle inequality is shown not to hold for nonbinary

alphabets. A similar discrepancy between the binary

and nonbinary case has been reported in [5] with re-

spect to the construction of minimum multiway search

trees.

In analogy with restrictions studied for prefix cod-

ing, we consider two other versions of the code-

extension problem. In the alphabeticul extension prob-
lem the new codewords have to be lexicographically

ordered, while for the length-limited version a fixed

upper bound is imposed on the length of the new code-

words. We use dynamic programming to solve these

restricted versions, and apply the same speed-up tech-
nique to the binary case.

2. Definitions

Although we introduced the extension problem as a

coding problem, by a straightforward correspondence
it can be formulated in terms of positional m-ary

forests. Following a common practice, from now on

we will use this graph theoretical terminology.

Let m 3 2 be an integer. The notion of m-ary tree is
the natural extension of positional binary trees defined

in 191: an m-ary tree is a set of nodes that is either

empty, or consists of a root node and an ordered list

of m disjoint m-ary trees, called the first, second, . . . ,
respectively the mth subtree of the root. The “parent”

and “child” relations between nodes are defined in the

expected way, and the ordering that exists between

subtrees of a node induces an ordering between its
children. An m-ay forest is an ordered collection m-
ary trees. A leaf is defined as a node with no children.
Notice that the ordering of the trees in the forest
together with the ordering of the nodes within each
tree defines a total left-to-right ordering on the leaves
of a forest.

An m-ary tree with mot qfdepth r is a pair (T, r).
where T is an m-ary tree and r is a nonnegative
integer. The depth of a node u of (T, r) is defined by

d,, = r*
if L’ is the root of 7,

1 + &irentw t otherwise.

An m-ayv forest with root depths q..) rk is an

ordered collection of m-ary trees with roots of the

specified depths.

In the following we will only consider trees and

forests with weights assigned to the leaves. An alpha-

betic nz-ary tree (forest) with leaf weights LUI , . . , w,,
has the II weights assigned to leaves in left-to-right

order. For a non-alphabetic m-ary tree (forest), the l-

to- 1 assignment of weights to leaves can be arbitrary.

An m-ary tree (forest) with weights u~t. . w,, has an

associated cost of c’J=, ut,idj. where dj denotes the

depth of the leaf to which wj is assigned.

The minimum forest problem is defined as follows:

given k nonnegative integers, rl , . . , I-L, and n positive

weights, WI, . . , w,, find a minimum cost forest

with root depths rl.. . , rk and leaves labeled by

wt.. . .1 w,,. Notice that, if k > n, by disposing of the

largest k - n root depths we do not increase the cost

of a minimum forest. Accordingly, we will assume that

k < n for ail instances of the minimum forest problem.

An instance of the code extension problem can

be easily translated into an instance of the minimum

forest problem, with root depths being determined

by the extension roots of the code to be extended.

Suppose, for example, that we must extend C =

(au, bbb} over the alphabet (a, b]. The extension roots

of C are ab, ha, and bba, so the optimum extension of

C with n codewords of weight w 1, , w,, corresponds

to a minimum binary forest with rl = labi, r? = Ibaj,

r3 = I bbn 1, and the same set of weights.

3. Minimum alphabetic forests

In the alphabetic version of the minimum forest

problem we want to find a minimum cost forest that
assigns the weights WI, w,, to its leaves in left-to-
right order. This ordering constraint imposes a simple

structure on the optimal solutions, making the problem
easily solvable by dynamic programming.

For every 1 < i < k and 0 < j 6 n, let C;(j) denote
the cost of a minimum alphabetic tn-ary forest with
root depths rl, . . , ri and leaf weights WI, . . . , wj .

Also, for every 1 < jt < j2 6 n, let T[jl. j,] be the

1. I. Mdndoiu / hformation Proc~essing Letters 66 (IYYN) 3540 31

cost of a minimum alphabetic m-ary tree with root of
depth 0 and leaf weights wj, , wj2. Clearly,

f=l

Moreover, for every 2 < i < k and 1 < j < n.

(2)

where Mi[D, j] represents the minimum cost of an m-

ary forest with root depths ~1. . . . , r; and leaf weights
wt. , wj that assigns weights Wh+t. . . wj to the

leaves of the ith subtree. Because the sub-forests of a

minimum alphabetic forest are themselves minimum,

Mi[b. j]=C;-t(h)+T[h+ 1, j]+ri k Wt.

I=& I

From (1) and (2) we get a straightforward algorithm

for computing all values C;(j). First, we compute

T[jt, jx] for every 1 < jt < j2 < n using ltai’s

algorithm [7]. This takes 0(n3 logm) time; ltai claims
that this can be improved to O(n* logm), but, as

remarked in [5], his claim is correct only for m = 2.
After computing all entries of T and the cumulative

weights C,‘,l,+I wtr it takes constant time to evaluate

each Mi[b, j]. Since the minimum in (2) can be
determined in O(n) time, it follows that we can

compute all entries Ci(j), as well as an optimum
forest, in O(n’ logm + n’k) time.

We will next show that the running time can be

reduced by a factor of n when constructing binary

forests, i.e., when m = 2. First, we compute all entries
of T in O(tr2) time using Knuth’s algorithm [8].

Clearly, the cumulative weights C:=,+, wt can also
be computed within the same time bound. Let us

extendeachM,,iE(2,...,n),toafullnxnmatrix
(with rows indexed from 0 to II - 1 and columns

indexed from 1 to n) by setting M;[h. j] = cc for

h 3 j. Computing Ci (1). , CL (n) for a fixed i E

(2. , k) amounts by (2) to computing the minimum

element in each column of Mi. Aggarwal et al. [1]

describe an algorithm that, for an II x n matrix M
satisfying a certain property called total monotony,

computes all columnwise minimas in O(n) time. As
we shall prove, matrices Mi are totally monotone
when m = 2. Since after pre-processing an entry of
M; is computed in constant time, by applying the

algorithm of Aggarwal et al. to each Mi we obtain
all C;(j)‘s in O(nk) time. So, a minimum alphabetic

binary forest can be constructed in O(n* + nk) time.

The fact that matrices Mi are totally monotone

when m = 2 will follow from the fact that they satisfy
the quadrangle inequality. We first prove that matrix

T satisfies the quadrangle inequality. The next result

has been first noticed by Garey [3, Corrollary 1]

for non-alphabetic binary trees, and extended by

Wessner [121 to alphabetic binary trees with weights

on all nodes (not only on leaves) and limited depth. For

the particular case when the weights of internal nodes

are zero and the depth limit is n, Wessner’s result reads
as follows:

Lemma 1 (Cf. [12, Lemma 11). Assume that m = 2.

IfA(i, j) = T(i, j) - T(i, j - 1), then, fm mer?, j 3
i + 2, A(i, j) 3 A(i + 1, j).

Corollary 2. Assume that m = 2. Matrix T satisfies

the quadrangle inequalit;v, i.e., for every 1 < io < i] <

jo < jl < n,

T[io. jol + Uil. jll 6 T[io, jll + Uil, jol.

Proof. Let 1 < io < i 1 < jo < j] < n. Lemma 1

implies that A(io. j) > A(il. j) for every j 3 io + 2.

Hence,

Trio. jll - T[io. jol

= 5 A(io. j) 3 2 A(il, j)

j=j0+I j=jn+l

= Tlil. jll- T[ii, jo]. 0

Corollary 2 implies that each matrix Mi, i t (2,
. . . . k], satisfies the quadrangle inequality. Indeed, let
0 < bo < hr < jo < jr < n (recall that rows of M; are

indexedfromOton-l).SinceMi[b.j]=Ci_t(b)+

T]b+l,jl+riC:=h+lwt,wegetthat

~il~0.j0l+~i[~l~jll-~i[~o~.jll-~i[~l,j0l

=T[ho+1,jol+T[bl+l,jll

- ~~bo+l,j~l-T~b~+1,jol

< 0. (3)

For an n x n matrix M, let bM(j) be the smallest
index h such that M[b, j] is the minimum value in

38 1.1. Mrindoiu /Information Prowssing Letters 66 (I 9%‘) 3540

the jth column of M. Matrix M is called monotone the given weights we have T[2,5] = 6, T[3,6] = 6,

if by < by whenever ju < ji, and totully T[3,5] = 3, and T[2,6] = 8, so T[2,5] + T[3.6] >

monotone if every 2 x 2 submatrix is monotone. T]3,51+ TI2.61.

Lemma 3. Assume that m = 2. For every i E (2,

. . . , k], Mi is totally monotone.

Proof. Suppose that some Mi is not totally monotone,
and let 0 6 bo < bi 6 n - 1 and 1 < jo < jt < n be

the row, respectively the column indices determining

a nonmonotone 2 x 2 submatrix of Mi. Monotonicity

is trivially satisfied by a 2 x 2 submatrix of Mi that

contains infinite values, so it must be the case that b 1 <

jo. Since Mi[b~, jol < M[bo, jol and Mi[bo, jll <
Mi[bl, jll, we get that M[h, jol + Mi[bo, jll <
Mi [bo, jo] + Mi [bl , jt 1, in contradiction with (3). •I

Unfortunately, this speed-up idea does not extend to

nonbinary forests: as shown by the following example,
matrices Mj are not necessarily totally monotone

whenm 3 3.

Example 4. Consider m = 3, k = 2, dl = d2 = 0,

n = 6, and WI = .‘. = W6 = 1. As shown in Fig. 1,

the 2 x 2 submatrix of M2 determined by rows 1 and
2 and columns 5 and 6 is not monotone. Hence, M2 is

not totally monotone.

Example 4 also shows that matrix T need not satisfy

the quadrangle inequality when m 3 3. Indeed, for

Mz[1,5] = 6: n/r2[1,S] = 8

ElKI
A4~[2,5] = 5 MX[2,6] = 8

Fig. 1. Matrix A42 is not totally monotone.

4. Non-alphabetic forests

As observed by Schwartz and Kallick [111, when

w 1 3 w2 3 3 wn there exists a minimum binary

tree in which the weights are assigned to leaves in
left-to-right order, i.e., a minimum binary tree that

is alphabetic. For minimum m-ary forests, a similar

result follows from:

Lemma 5. Let F be an m-ary forest with root depths

r) < r2 6 ... < rk and leaves labeled by WI 3 w2 3
. . 3 w,. Suppose that the weights are assigned to

the leaves of F such that the node labeled by wi has

depth smaller than or equal to the depth of the node

labeled by wj whenever wi > wj. Then, there exists

an alphabetic m-ary forest F* having the same root

depths as F and leaves labeled by WI, w, such

that cost(F*) = cost(F).

Proof. We will use a simple re-arrangement argu-

ment. Let ui denote the leaf of F labeled by wi,

and let di be the depth of ui in F. If the weights

w 1, . . . , wn are not already assigned in left-to-right or-

der to the leaves of F, the set X = ((i, j) 1 i < j, ui is

to the right of uj) must be nonempty. Let io = min(i 1

!lj s.t. (i, j) E X) and ju = max(j 1 (io, j) E X).

If wiO = wj”, let F’ be the forest obtained from F

by swapping wiO with wj,,. If wiO > wj,, F’ is defined

as follows (see Fig. 2). First, note that the hypothesis

implies that di, 6 dj,. Moreover, because uiO is to the

right of uj,, the depth of the root of the tree containing

uj, is no larger that the depth of the root of the tree

containing ui(, , and so, no larger than di,. Thus, on the

path from uj, to the root of the tree containing it there
is a node, u, of depth dt,. Let F’ be the forest obtained
from F by swapping wio with the subtree rooted at u.

It is easy to see that in both cases cost(F’) =
cost(F). Moreover, the transformation of F into F’

either leads to an increase in the value of io, or leaves

io unchanged and decreases ju. So, by repeating the
above transformation at most n2 times we obtain an
alphabetic forest with the same cost as F. q

1.1. MCndoiu / Informafion Processing Letters 39

f

U
.* 1. 2 Go

. . .:. . .
*:.

.:. .*..

:::f . . uljo f:?.

66 (IYYXJ 3540

P

F F’

Fig. 2. The construction of F’ when w;~ > u~,io.

5. Depth-limited forests

c ‘U’io 1 : . . *... .a..
*:. . . *.

.... .*..

i::‘.. wjo ..*........... I:?.

Since any minimum m-ary forest satisfies the prop-

erty that di < d,i whenever wi > wj, we obtain:

Corollary 6. If r1 < r-2 6 . . . < rk and w 1 3 w2 3
. 3 w,, then there exists a minimum m-ary forest

in which the weights are assigned to leaves in left-to-

right order:

Corollary 6 shows that we can obtain a minimum
m-ary forest by sorting the weights and root depths

and then applying the algorithm for alphabetic forests.
A minimum binary forest can be found in O(n’) time

via this reduction, since in this case we assume that

k < n. For arbitrary m the algorithm can be imple-

mented to run in 0(n3) time. For this we need a

small modification in the pre-processing step: instead

of computing T by applying Itai’s algorithm, we com-
pute each T[ji , j2] with a call to Huffman’s algorithm.

Since Huffman’s algorithm can be implemented to

run in O(rz) time when the weights are already sorted
(see, for example, [lo]), the pre-processing step is now

completed in 0(n3) time.

In practical applications of prefix coding it is desir-

able to impose an upper-bound on the length of the

codewords. In the minimum depth-limitedforest prob-
lem we optimize EYE, wjdj as before, but require
that d,i 6 D for every 1 < j < n, where D is a given

integer. Clearly, we may assume that each ri is at most
D. Since an m-sty tree whose root has depth r 6 D

can have at most mD-’ leaves of depth at most D, it

follows that a solution to the problem exists if and only

if

k

c
mD-‘l > II / .

i=l

Again, the minimum depth-limited forest prob-

lem has an alphabetic and a non-alphabetic version.

Since, by Lemma 5, the non-alphabetic version re-

duces to solving an alphabetic problem after sorting

the weights and root depths, we discuss only the al-
phabetic version here.

Let Ted) [ji , j,] be the cost of a minimum alphabetic

m-ary tree with root of depth 0, weights wj,, . . . , wj,,

and leaves of depth at most d. If we denote by C!D’(j)

the cost of a minimum alphabetic m-ary forest with

root depths rI , . . , t+i, weights WI, . . . , wj, and leaves
of depth at most D, it follows that

j
C~n’(j)=T’D-‘l’[l,j]+rlCwt.

t=l

Moreover, for every 2 < i < k and 1 6 j < n,

C!D’(j) = min (C!!;(j), ,$nj Ni]b. .A), (5)
\

where

Ni[b. j]=C!~,‘(b)+T(D-r’)[b+ 1, j]

+r; f: wt.
t=h+l

Let L = maxi (D - ri). For arbitrary m, the values
Tcd)[jt, j,], 0 < d < L, 1 < ji 6 j2 <n, can be
evaluated in 0(n3Llogm) time with the algorithm

suggested by Itai [7]. Thus, using (4) and (5), we
obtain a minimum depth-limited alphabetic m-ary

forest in 0(n3L logm + n*k) time.

The running time can be reduced by a factor of

n when m = 2. First, all values Tcd)[jt , j,] can be

evaluated in O(n*L) time [7,12]. Moreover, Lemma 1
holds for matrix Ted) if m = 2 (cf. [12, Lemma 11).

Exactly as in Section 3, this implies that 7”“) satisfies

the quadrangle inequality and matrices N;. 2 6 i <

k, are totally monotone. So, by running the matrix

searching algorithm of [l] on each N; we obtain a

minimum depth-limited alphabetic binary forest in
O(n*L + nk) time.

Acknowledgements

I wish to thank Ioan Tomescu and Vijay Vazirani for
encouraging my work on the problem and Lawrence

Larmore for stimulating discussions. Thanks also go

to the anonymous referees for helpful comments and

for suggesting reference [5].

References

[l] A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, R. Wil-

her, Geometric applications of a matrix-searching algorithm,

Algorithmica 2 (1987) 195-208.

121

[31

141

151

161

171

181

191

1101

1111

1121

C. Calude, 1. Tomescu. Optimum extendable prefix codes,

Tech. Rept. No. 114. Dept. of Computer Science, The Univer-

sity of Auckland. New Zealand, 1995.

M.R. Carey, Optimal binary search trees with restricted maxi-

mal depth, SIAM J. Comput. 3 (1974) 101-l IO.

EN. Gilbert, E.F. Moore, Variable-length binary encodings,

Bell Systems Tech. J. 38 (1959) 933-968.

L. Gotlieb. D. Wood, The construction of optimal multiway

search trees and the monotonicity principle. Internat. J. Com-

put. Math. Sec. A 9 (I98 I) 17-24.

D.A. Huffman, A method for the construction of minimum

redundancy codes, Proc. Inst. Radio Engineers 40 (1952)

1098-I 101.

A. Itai, Optimal alphabetic trees. SIAM J. Comput. 5 (1976)

9-18.

D.E. Knuth, Optimum binary search trees, Acta Inform. I
(1971) 14-25.

D.E. Knuth. The Art of Computer Programming, Vol. 1.

Addison-Wesley, Reading, MA, 1973.

L.L. Larmore, Height restricted optimal binary trees, SIAM J.

Comput. 16 (1987) I 115-l 123.

E.S. Schwartz, B. Kallick, Generating a canonical prefix

encoding, Comm. ACM 7 (1964) 166-169.

R.L. Wessner, Optimal alphabetic search trees with restricted

maximal height, Inform. Process. Lett. 4 (4) (1976) 90-94.

