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Abstract 

An algorithm is given for finding the minimum weight extension of a prefix code. The algorithm runs in 0(n3), where n is 
the number of codewords to be added, and works for arbitrary alphabets. For binary alphabets the running time is reduced to 
O(n*), by using the fact that a certain cost matrix satisfies the quadrangle inequality. The quadrangle inequality is shown not 
to hold for alphabets of size larger than two. Similar algorithms are presented for finding alphabetic and length-limited code 
extensions. 0 1998 Elsevier Science B.V. 
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1. Introduction 

Huffman’s classical algorithm [6] constructs a pre- 
fix code with minimum weighted length over a given 
alphabet. A related problem, introduced in [2], is that 
of optimally extending a prefix code: given a pre- 
fix code, C, and n positive weights, WI, , w,, , find 
codewords cf. . . .,cn such that C U {cl, . . . . c,) re- 

mains a prefix code, and, subject to this condition, 
C:=, wi Ici 1 is minimum. (Here, and throughout the 
paper, we use 10.9 to denote the length of w.) It 
is well known that the extension problem has so- 
lution whenever C satisfies Kraft’s strict inequality, 

c w&z m p/WI < 1, where m denotes the size of the al- 
phabet. 

The extension problem has the same objective 
function as Huffman’s problem, but the two differ 
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in the range of choices available for codewords ci. 
We say that w extends C if C U {w) is a prefix-free 

set. An extension root of C is a length-minimal word 
that extends C; clearly, each codeword c; must have 
an extension root as prefix. Calude and Tomescu [2] 

observe that Huffman’s algorithm can be used to find 
an optimum extension when all extension roots of 

C have the same length, in particular when C has 
only one extension root. In this paper we present 
an algorithm that finds an optimum extension for an 
arbitrary extendable prefix code. 

Starting with Gilbert and Moore 141, dynamic pro- 
gramming has been successfully applied to several 
prefix coding problems (see, for example, [3,7,8,12]). 
Particularly efficient algorithms are obtained with a 
speed-up technique devised by Knuth [8]; the speed- 
up is based on the fact that a certain cost matrix sat- 
isfies the quadrangle inequality (an upper-triangular 
matrix W satisfies quadrangle inequality if w(i, j) + 
w(i’. ,j’) < w(i, j’) + w(i’, j) for all i < i’ < j < 
j’). We use dynamic programming to solve the code- 



extension problem in O(n’) time, and, in the binary 

case, we use the quadrangle inequality to speed up the 

computation by a factor of n. However, the speed-up 
is achieved not by using Knuth’s technique, but the 

matrix searching algorithm of Aggarwal et al. [ 11. We 

show that this speed-up idea cannot be extended to al- 

phabets of size larger than two, in particular the quad- 

rangle inequality is shown not to hold for nonbinary 

alphabets. A similar discrepancy between the binary 

and nonbinary case has been reported in [5] with re- 

spect to the construction of minimum multiway search 

trees. 

In analogy with restrictions studied for prefix cod- 

ing, we consider two other versions of the code- 

extension problem. In the alphabeticul extension prob- 
lem the new codewords have to be lexicographically 

ordered, while for the length-limited version a fixed 

upper bound is imposed on the length of the new code- 

words. We use dynamic programming to solve these 

restricted versions, and apply the same speed-up tech- 
nique to the binary case. 

2. Definitions 

Although we introduced the extension problem as a 

coding problem, by a straightforward correspondence 
it can be formulated in terms of positional m-ary 

forests. Following a common practice, from now on 

we will use this graph theoretical terminology. 

Let m 3 2 be an integer. The notion of m-ary tree is 
the natural extension of positional binary trees defined 

in 191: an m-ary tree is a set of nodes that is either 

empty, or consists of a root node and an ordered list 

of m disjoint m-ary trees, called the first, second, . . . , 
respectively the mth subtree of the root. The “parent” 

and “child” relations between nodes are defined in the 

expected way, and the ordering that exists between 

subtrees of a node induces an ordering between its 
children. An m-ay forest is an ordered collection m- 
ary trees. A leaf is defined as a node with no children. 
Notice that the ordering of the trees in the forest 
together with the ordering of the nodes within each 
tree defines a total left-to-right ordering on the leaves 
of a forest. 

An m-ary tree with mot qfdepth r is a pair (T, r). 
where T is an m-ary tree and r is a nonnegative 
integer. The depth of a node u of (T, r) is defined by 

d,, = r* 
if L’ is the root of 7, 

1 + &irentw t otherwise. 

An m-ayv forest with root depths q.. ) rk is an 

ordered collection of m-ary trees with roots of the 

specified depths. 

In the following we will only consider trees and 

forests with weights assigned to the leaves. An alpha- 

betic nz-ary tree (forest) with leaf weights LUI , . . , w,, 
has the II weights assigned to leaves in left-to-right 

order. For a non-alphabetic m-ary tree (forest), the l- 

to- 1 assignment of weights to leaves can be arbitrary. 

An m-ary tree (forest) with weights u~t. . w,, has an 

associated cost of c’J=, ut,idj. where dj denotes the 

depth of the leaf to which wj is assigned. 

The minimum forest problem is defined as follows: 

given k nonnegative integers, rl , . . , I-L, and n positive 

weights, WI, . . , w,, find a minimum cost forest 

with root depths rl.. . , rk and leaves labeled by 

wt.. . .1 w,,. Notice that, if k > n, by disposing of the 

largest k - n root depths we do not increase the cost 

of a minimum forest. Accordingly, we will assume that 

k < n for ail instances of the minimum forest problem. 

An instance of the code extension problem can 

be easily translated into an instance of the minimum 

forest problem, with root depths being determined 

by the extension roots of the code to be extended. 

Suppose, for example, that we must extend C = 

(au, bbb} over the alphabet (a, b]. The extension roots 

of C are ab, ha, and bba, so the optimum extension of 

C with n codewords of weight w 1, , w,, corresponds 

to a minimum binary forest with rl = labi, r? = Ibaj, 

r3 = I bbn 1, and the same set of weights. 

3. Minimum alphabetic forests 

In the alphabetic version of the minimum forest 

problem we want to find a minimum cost forest that 
assigns the weights WI, . . . . w,, to its leaves in left-to- 
right order. This ordering constraint imposes a simple 

structure on the optimal solutions, making the problem 
easily solvable by dynamic programming. 

For every 1 < i < k and 0 < j 6 n, let C;(j) denote 
the cost of a minimum alphabetic tn-ary forest with 
root depths rl, . . , ri and leaf weights WI, . . . , wj . 

Also, for every 1 < jt < j2 6 n, let T[jl. j,] be the 
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cost of a minimum alphabetic m-ary tree with root of 
depth 0 and leaf weights wj, , . . . . wj2. Clearly, 

f=l 

Moreover, for every 2 < i < k and 1 < j < n. 

(2) 

where Mi[D, j] represents the minimum cost of an m- 

ary forest with root depths ~1. . . . , r; and leaf weights 
wt. , wj that assigns weights Wh+t. . . wj to the 

leaves of the ith subtree. Because the sub-forests of a 

minimum alphabetic forest are themselves minimum, 

Mi[b. j]=C;-t(h)+T[h+ 1, j]+ri k Wt. 

I=& I 

From (1) and (2) we get a straightforward algorithm 

for computing all values C;(j). First, we compute 

T[jt, jx] for every 1 < jt < j2 < n using ltai’s 

algorithm [7]. This takes 0(n3 logm) time; ltai claims 
that this can be improved to O(n* logm), but, as 

remarked in [5], his claim is correct only for m = 2. 
After computing all entries of T and the cumulative 

weights C,‘,l,+I wtr it takes constant time to evaluate 

each Mi[b, j]. Since the minimum in (2) can be 
determined in O(n) time, it follows that we can 

compute all entries Ci(j), as well as an optimum 
forest, in O(n’ logm + n’k) time. 

We will next show that the running time can be 

reduced by a factor of n when constructing binary 

forests, i.e., when m = 2. First, we compute all entries 
of T in O(tr2) time using Knuth’s algorithm [8]. 

Clearly, the cumulative weights C:=,+, wt can also 
be computed within the same time bound. Let us 

extendeachM,,iE(2,...,n),toafullnxnmatrix 
(with rows indexed from 0 to II - 1 and columns 

indexed from 1 to n) by setting M;[h. j] = cc for 

h 3 j. Computing Ci ( 1). , CL (n) for a fixed i E 

(2. , k) amounts by (2) to computing the minimum 

element in each column of Mi. Aggarwal et al. [ 1] 

describe an algorithm that, for an II x n matrix M 
satisfying a certain property called total monotony, 

computes all columnwise minimas in O(n) time. As 
we shall prove, matrices Mi are totally monotone 
when m = 2. Since after pre-processing an entry of 
M; is computed in constant time, by applying the 

algorithm of Aggarwal et al. to each Mi we obtain 
all C;(j)‘s in O(nk) time. So, a minimum alphabetic 

binary forest can be constructed in O(n* + nk) time. 

The fact that matrices Mi are totally monotone 

when m = 2 will follow from the fact that they satisfy 
the quadrangle inequality. We first prove that matrix 

T satisfies the quadrangle inequality. The next result 

has been first noticed by Garey [3, Corrollary 1] 

for non-alphabetic binary trees, and extended by 

Wessner [ 121 to alphabetic binary trees with weights 

on all nodes (not only on leaves) and limited depth. For 

the particular case when the weights of internal nodes 

are zero and the depth limit is n, Wessner’s result reads 
as follows: 

Lemma 1 (Cf. [ 12, Lemma 11). Assume that m = 2. 

IfA(i, j) = T(i, j) - T(i, j - 1), then, fm mer?, j 3 
i + 2, A(i, j) 3 A(i + 1, j). 

Corollary 2. Assume that m = 2. Matrix T satisfies 

the quadrangle inequalit;v, i.e., for every 1 < io < i] < 

jo < jl < n, 

T[io. jol + Uil. jll 6 T[io, jll + Uil, jol. 

Proof. Let 1 < io < i 1 < jo < j] < n. Lemma 1 

implies that A(io. j) > A(il. j) for every j 3 io + 2. 

Hence, 

Trio. jll - T[io. jol 

= 5 A(io. j) 3 2 A(il, j) 

j=j0+I j=jn+l 

= Tlil. jll- T[ii, jo]. 0 

Corollary 2 implies that each matrix Mi, i t (2, 
. . . . k], satisfies the quadrangle inequality. Indeed, let 
0 < bo < hr < jo < jr < n (recall that rows of M; are 

indexedfromOton-l).SinceMi[b.j]=Ci_t(b)+ 

T]b+l,jl+riC:=h+lwt,wegetthat 

~il~0.j0l+~i[~l~jll-~i[~o~.jll-~i[~l,j0l 

=T[ho+1,jol+T[bl+l,jll 

- ~~bo+l,j~l-T~b~+1,jol 

< 0. (3) 

For an n x n matrix M, let bM(j) be the smallest 
index h such that M[b, j] is the minimum value in 
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the jth column of M. Matrix M is called monotone the given weights we have T[2,5] = 6, T[3,6] = 6, 

if by < by whenever ju < ji, and totully T[3,5] = 3, and T[2,6] = 8, so T[2,5] + T[3.6] > 

monotone if every 2 x 2 submatrix is monotone. T]3,51+ TI2.61. 

Lemma 3. Assume that m = 2. For every i E (2, 

. . . , k], Mi is totally monotone. 

Proof. Suppose that some Mi is not totally monotone, 
and let 0 6 bo < bi 6 n - 1 and 1 < jo < jt < n be 

the row, respectively the column indices determining 

a nonmonotone 2 x 2 submatrix of Mi. Monotonicity 

is trivially satisfied by a 2 x 2 submatrix of Mi that 

contains infinite values, so it must be the case that b 1 < 

jo. Since Mi[b~, jol < M[bo, jol and Mi[bo, jll < 
Mi[bl, jll, we get that M[h, jol + Mi[bo, jll < 
Mi [bo, jo] + Mi [bl , jt 1, in contradiction with (3). •I 

Unfortunately, this speed-up idea does not extend to 

nonbinary forests: as shown by the following example, 
matrices Mj are not necessarily totally monotone 

whenm 3 3. 

Example 4. Consider m = 3, k = 2, dl = d2 = 0, 

n = 6, and WI = .‘. = W6 = 1. As shown in Fig. 1, 

the 2 x 2 submatrix of M2 determined by rows 1 and 
2 and columns 5 and 6 is not monotone. Hence, M2 is 

not totally monotone. 

Example 4 also shows that matrix T need not satisfy 

the quadrangle inequality when m 3 3. Indeed, for 

Mz[1,5] = 6: n/r2[1,S] = 8 

ElKI 
A4~[2,5] = 5 MX[2,6] = 8 

Fig. 1. Matrix A42 is not totally monotone. 

4. Non-alphabetic forests 

As observed by Schwartz and Kallick [ 111, when 

w 1 3 w2 3 3 wn there exists a minimum binary 

tree in which the weights are assigned to leaves in 
left-to-right order, i.e., a minimum binary tree that 

is alphabetic. For minimum m-ary forests, a similar 

result follows from: 

Lemma 5. Let F be an m-ary forest with root depths 

r) < r2 6 ... < rk and leaves labeled by WI 3 w2 3 
. . 3 w,. Suppose that the weights are assigned to 

the leaves of F such that the node labeled by wi has 

depth smaller than or equal to the depth of the node 

labeled by wj whenever wi > wj. Then, there exists 

an alphabetic m-ary forest F* having the same root 

depths as F and leaves labeled by WI, . . . . w, such 

that cost(F*) = cost(F). 

Proof. We will use a simple re-arrangement argu- 

ment. Let ui denote the leaf of F labeled by wi, 

and let di be the depth of ui in F. If the weights 

w 1, . . . , wn are not already assigned in left-to-right or- 

der to the leaves of F, the set X = ((i, j) 1 i < j, ui is 

to the right of uj) must be nonempty. Let io = min(i 1 

!lj s.t. (i, j) E X) and ju = max(j 1 (io, j) E X). 

If wiO = wj”, let F’ be the forest obtained from F 

by swapping wiO with wj,,. If wiO > wj,, F’ is defined 

as follows (see Fig. 2). First, note that the hypothesis 

implies that di, 6 dj,. Moreover, because uiO is to the 

right of uj,, the depth of the root of the tree containing 

uj, is no larger that the depth of the root of the tree 

containing ui(, , and so, no larger than di,. Thus, on the 

path from uj, to the root of the tree containing it there 
is a node, u, of depth dt,. Let F’ be the forest obtained 
from F by swapping wio with the subtree rooted at u. 

It is easy to see that in both cases cost(F’) = 
cost(F). Moreover, the transformation of F into F’ 

either leads to an increase in the value of io, or leaves 

io unchanged and decreases ju. So, by repeating the 
above transformation at most n2 times we obtain an 
alphabetic forest with the same cost as F. q 
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Fig. 2. The construction of F’ when w;~ > u~,io. 

5. Depth-limited forests 

c ‘U’io 1 : . . *... .a.. 
*:. . . *. 

.... .*.. 

i::‘.. wjo ..*........... I:?. 

Since any minimum m-ary forest satisfies the prop- 

erty that di < d,i whenever wi > wj, we obtain: 

Corollary 6. If r1 < r-2 6 . . . < rk and w 1 3 w2 3 
. 3 w,, then there exists a minimum m-ary forest 

in which the weights are assigned to leaves in left-to- 

right order: 

Corollary 6 shows that we can obtain a minimum 
m-ary forest by sorting the weights and root depths 

and then applying the algorithm for alphabetic forests. 
A minimum binary forest can be found in O(n’) time 

via this reduction, since in this case we assume that 

k < n. For arbitrary m the algorithm can be imple- 

mented to run in 0(n3) time. For this we need a 

small modification in the pre-processing step: instead 

of computing T by applying Itai’s algorithm, we com- 
pute each T[ji , j2] with a call to Huffman’s algorithm. 

Since Huffman’s algorithm can be implemented to 

run in O(rz) time when the weights are already sorted 
(see, for example, [lo]), the pre-processing step is now 

completed in 0(n3) time. 

In practical applications of prefix coding it is desir- 

able to impose an upper-bound on the length of the 

codewords. In the minimum depth-limitedforest prob- 
lem we optimize EYE, wjdj as before, but require 
that d,i 6 D for every 1 < j < n, where D is a given 

integer. Clearly, we may assume that each ri is at most 
D. Since an m-sty tree whose root has depth r 6 D 

can have at most mD-’ leaves of depth at most D, it 

follows that a solution to the problem exists if and only 

if 

k 

c 
mD-‘l > II / . 

i=l 

Again, the minimum depth-limited forest prob- 

lem has an alphabetic and a non-alphabetic version. 

Since, by Lemma 5, the non-alphabetic version re- 

duces to solving an alphabetic problem after sorting 

the weights and root depths, we discuss only the al- 
phabetic version here. 

Let Ted) [ ji , j,] be the cost of a minimum alphabetic 

m-ary tree with root of depth 0, weights wj,, . . . , wj,, 

and leaves of depth at most d. If we denote by C!D’(j) 

the cost of a minimum alphabetic m-ary forest with 

root depths rI , . . , t+i, weights WI, . . . , wj, and leaves 
of depth at most D, it follows that 

j 
C~n’(j)=T’D-‘l’[l,j]+rlCwt. 

t=l 

Moreover, for every 2 < i < k and 1 6 j < n, 

C!D’(j) = min (C!!;(j), ,$nj Ni]b. .A), (5) 
\ 

where 

Ni[b. j]=C!~,‘(b)+T(D-r’)[b+ 1, j] 

+r; f: wt. 
t=h+l 

Let L = maxi (D - ri). For arbitrary m, the values 
Tcd)[jt, j,], 0 < d < L, 1 < ji 6 j2 <n, can be 
evaluated in 0(n3Llogm) time with the algorithm 



suggested by Itai [7]. Thus, using (4) and (5), we 
obtain a minimum depth-limited alphabetic m-ary 

forest in 0(n3L logm + n*k) time. 

The running time can be reduced by a factor of 

n when m = 2. First, all values Tcd)[jt , j,] can be 

evaluated in O(n*L) time [7,12]. Moreover, Lemma 1 
holds for matrix Ted) if m = 2 (cf. [ 12, Lemma 11). 

Exactly as in Section 3, this implies that 7”“) satisfies 

the quadrangle inequality and matrices N;. 2 6 i < 

k, are totally monotone. So, by running the matrix 

searching algorithm of [l] on each N; we obtain a 

minimum depth-limited alphabetic binary forest in 
O(n*L + nk) time. 
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