
Journal of Algorithms 41, 338–359 (2001)
doi:10.1006/jagm.2001.1191, available online at http://www.idealibrary.com on

On the Common Substring Alignment Problem1

Gad M. Landau2

Department of Computer Science, Haifa University, Haifa 31905, Israel, and
Department of Computer and Information Science, Polytechnic University,

Six MetroTech Center, Brooklyn, New York 11201-3840
Email: landau@poly.edu

and

Michal Ziv-Ukelson3

Department of Computer Science, Haifa University, Haifa 31905, Israel, and
IBM T. J. W. Research Center, Yorktown Heights, New York 10598

Email: ukelson@ibm.watson.com

Received October 28, 1999

The Common Substring Alignment Problem is defined as follows: Given a set of
one or more strings S1� S2 � � � Sc and a target string T , Y is a common substring
of all strings Si, that is, Si = BiYFi. The goal is to compute the similarity of all
strings Si with T , without computing the part of Y again and again. Using the
classical dynamic programming tables, each appearance of Y in a source string
would require the computation of all the values in a dynamic programming table
of size O�n�� where � is the size of Y . Here we describe an algorithm which is
composed of an encoding stage and an alignment stage. During the first stage, a
data structure is constructed which encodes the comparison of Y with T . Then,
during the alignment stage, for each comparison of a source Si with T , the pre-
compiled data structure is used to speed up the part of Y . We show how to reduce
the O�n�� alignment work, for each appearance of the common substring Y in a
source string, to O�n�-at the cost of O�n�� encoding work, which is executed only
once. 2001 Elsevier Science

1 This paper continues work from [19]. The efficiency of the solutions, as well as the range
of scoring schemes to which they apply, have been further enhanced in this paper.

2 Partially supported by NSF grants CCR-9610238 and CCR-0104307, by NATO Science
Programme grant PST.CLG.977017, and by the Israel Science Foundation grants 173/98 and
282/01, by the FIRST Foundation of the Israel Academy of Science and Humanities, and by
IBM Faculty Partnership Award.

3 Partially supported by the Israel Science Foundation grants 173/98 and 282/01, and by the
FIRST Foundation of the Isreal Academy of Science and Humanities.

338

0196-6774/01 $35.00
 2001 Elsevier Science
All rights reserved

the common substring alignment problem 339

Key Words: design and analysis of algorithms; dynamic programming; sequence
comparison; repeated substrings; shared substrings; Monge arrays; candidate lists.

1. INTRODUCTION

The Common Substring Alignment Problem is defined as follows: Given a
set of one or more strings S1� S2 � � � Sc and a target string T , Y is a common
substring of all strings Si, that is, Si = BiYFi, and Y may be repeated several
times in any of the source strings (see Fig. 1). The goal is to compute the
similarity of all strings Si with T , without computing the part of Y again
and again. We know the locations where the common subsequence Y starts
and ends in each source sequence Si. The part of the target T with which
Y will align, however, will vary according to each Bi and Fi combination.

More generally, the sequence sub-component Y could be shared by dif-
ferent source sequences competing over similarity with a common target, or
could appear repeatedly in the same source string. Also, in a given applica-
tion, we could of course be dealing with more than one repeated or shared
sub-component.

In this paper, we will describe an algorithm which is composed of an
encoding stage and an alignment stage. During the first stage, a data struc-
ture is constructed which encodes the comparison of Y with T . Then,
during the second stage, for each comparison of a source Si with T , the
pre-compiled data structure is used to speed up the alignment of each
appearance of the common substring Y .

A clear distinction should be made between the off-line pre-processing
work and the on-line encoding stage. In the applications for which our
algorithm is intended, the source sequence database is prepared off-line,
while the target can be viewed as an “unknown” sequence which is received
on-line. The source strings can be pre-processed off-line and parsed into
their optimal common substring representation. Therefore, we know well
beforehand where, in each Si, Y begins and ends.

However, the comparison of Y and T cannot be computed until the
target is received. Therefore, the encoding stage as well as the alignment
stage are both on-line stages, and the trade-off between the two must be

T = “DCBADBDC” Y = “DCBD”

S1 = “E DCBD DCBD” B1 = “E” F1 = “DCBD”

S2 = “CBA DCBD C” B2 = “CBA” F2 = “C”

FIG. 1. An example of two different source strings �S1� S2� sharing a common substring Y .
Note that Y is repeated twice in S1.

340 landau and ziv-ukelson

cleverly minimized to maximize the efficiency gain by the suggested two-
stage scenario.

Note that even though both stages are on-line, they do not bear an equal
weight on the time complexity of the algorithm. The efficiency gain is based
on the fact that the first stage is executed only once per target, and then
the encoding results are used, during the second stage, to speed up the
alignment of each appearance of the common subcomponent in any of the
source strings.

We will show how to reduce the O�n�� run-time work for each appear-
ance of a repeated substring Y in a source sequence to O�n�, at the cost of
a single execution of the O�n�� time encoding work, where n is the target
size and � is the size of Y .

For source sequences with two or more common factors, the time com-
plexity of the encoding stage is further reduced to O�nD�, where D is the
number of nodes in the dictionary trie for the common factors.

The remainder of this paper is organized as follows. In section 2 we
present some applications which can be cast as Common Substring Align-
ment problems. Section 3 contains a background overview, including a
description of the scoring schemes to which the algorithm applies. The
notation, as well as a general description of our approach to solving the
Common Substring Alignment problem, is given in Section 4. In Section 5
we describe the first algorithm, which encodes a common substring in
O�n2 + n�� work and then uses an O�n� time complexity recursive algo-
rithm for the alignment stage. In Section 6 we present a more efficient
O�n�� time encoding stage algorithm, and an algorithm which utilizes the
results of the efficient encoding for a non-recursive, linear time alignment
stage.

2. APPLICATIONS

There are various applications which can be cast as Common Substring
Alignment problems. The applications differ by the pattern in which the
common sub-components are repeated or shared by the source strings and
therefore may vary in the potential combinatorial gain by applying Common
Substring Alignment algorithms to their solution.

2.1. Template Matching Applications

In Template Matching Applications, the data are viewed as a set of many
competing source sequences to be compared with a common target. The
template source sequences are usually known well in advance, and the tar-
get is given on-line. The objective is to classify the target by finding the

the common substring alignment problem 341

source string whose alignment with the target gives the highest similarity
score. Very often, the competing source strings are variations of a similar
signal, or different combinations of a common set of subcomponents. Com-
mon Substring Alignment can be used to speed up the comparison of each
common subcomponent, rather than comparing it again and again for each
template source string containing the common subcomponent.

Intelligent Tutoring

In the Intelligent Tutoring application [8], the alphabet for each sequence
is all possible computer interface artifacts (keyboard and mouse input
combinations). The student is given the task, and the resulting events are
recorded as the student tries to solve the problem. The new stream of
user input events is then compared with various templates, which repre-
sent different solutions to the given exercise. The result of the comparison
between the student’s input sequence and the most similar template solu-
tion can be used to provide the proper feedback to the student. For many
problems, the various template solutions are variations of a common theme
and share common substrings of artifacts.

Electronic Commerce

Another example of a potential application domain for the problem is in
Electronic Commerce [5, 6, 20]. In an attempt to improve both merchandise
and marketing aspects of the system, logging can be employed to record the
sequences of site traversal actions of potential customers from the minute
they enter the commerce site until they exit. Accumulated server logs can
be mined [5] to provide the system with a prototype set of sequences of
site traversal actions known to have led to purchase. A new site traversal
sequence which did not result in purchase will be compared against all
prototypes in an attempt to find the most similar sequence of actions which
did lead to a purchase. The resulting alignment between the two can then be
used to study what went wrong with the potential purchase. (For example,
a shopping cart may have been filled, and then the customer left without
completing the purchase order, due to difficulties with a specific part of
the purchase form. In such a case improving the user interface of that part
of the form may result in better sales.) Various subsets of the prototype-
set sequences may share long similar subcomponents representing common
protocols, such as typical shopping cart routes, or sequences of actions
required to fill a purchase form.

Network Security

Another potential application is in Intrusion Detection Systems (IDSs)
[28]. An “attack” is a sequence of audit trail log entries leading to a

342 landau and ziv-ukelson

break-in. System security would like to spy on users who attempt to access
a site, to detect aggressive users and block their entrance before they break
in. An audit trial sequence is labeled as a potential threat if it is simi-
lar enough to one of the known attacks. Audit trail sequences of known
attacks may share long subsequences of common security breach protocols.

2.2. Alignment of Repetitive Sequences

Here, each repeated factor is, in essence, a common substring which we
would like to compare against the target only once during an encoding
stage, rather than comparing it again and again for each appearance of the
repeated factor in the source string, during the matching stage.

Especially interesting are those applications where the repetitions are
such that one common subcomponent can be derived from another com-
mon subcomponent via minor modifications. For example, each repeated
factor may be obtained from a smaller repeated factor plus one character,
such as in the application of approximate string matching over L-Z com-
pressed text [17]. Another example is in genomic data [31], such as DNA
sequences, where repetitions can be grouped into families of similar sub-
components. DNA has a small alphabet, and repetitions belonging to one
family form hierarchies of subsequences which evolved from a common
core and from one another. Therefore, common subcomponents belonging
to one family tend to form a compact keyword trie.

The fact that the factors form a compact trie allows for an even more
efficient encoding, where a prefix common to one or more factors can be
encoded once, instead of redoing the encoding work for each factor sharing
the prefix.

2.3. Subcomponent Concatenation with Preserved Order

In application belonging to this category, the source string is segmented
into many subparts, and the target string is matched against different con-
catenations of these source substrings. The concatenations preserve the
ordering of the subsegments in the source string. Gene Prediction via
Spliced Alignment is an example of an application from this category.

Gene Prediction via Spliced Alignment

Recognition of genes in eukaryotic DNA is seriously complicated by noisy
regions (introns) that interrupt the coding regions (exons) of genes. Gene
prediction via spliced alignment [11, 23, 29] incorporates similarity analy-
sis into gene prediction by attempting to find a set of potential exons in
a genomic sequence whose concatenation is highly similar to one of the
already known gene sequences in the database.

the common substring alignment problem 343

The task of gene prediction is generally divided into two stages. The first
task is that of finding candidate exons in a long DNA sequence believed to
contain a gene. A candidate exon is a sequence fragment whose left bound-
ary is an acceptor site or a start codon, and the right boundary is a donor
site or a stop codon. The nucleotide sequence in Fig. 2 contains marked
sites where a candidate exon may begin and end. Uppercase A–E mark
identified sites where an exon is likely to begin (start/acceptor sites), and
lowercase f–j mark sites where exons are likely to end (stop/donor sites).
Candidate exons are A-f, A-g, A-h, A-i, A-j, B-f, B-g, B-h, B-i, B-j, C-g, etc.
This set of derived candidate exons should include all true exons but could
contain any number of false exons, depending on the filtration degree used
in the preprocessing stage. The second task is that of selecting the best
subset of nonoverlapping candidate exons to cover the sequence of the
predicted gene. (Two of the many possible assemblies of candidate exons
as candidate genes are shown in the figure: S1 = �A − f� C − h�E − i�
and S2 = �B − g�D − j�.) Each candidate gene (a concatenation of non-
intersecting candidate exons which satisfy some natural consistency condi-
tions [26]) is compared against the target sequence, which is a known gene
from a homologous species. An interesting combinatorial approach, using
Network Alignment, which explores all possible exon assemblies in polyno-
mial time, is described in [11].

Dominant portions of each of the competing candidate gene assemblies
are segments common to other candidates, since the candidate exons over-
lap in the genomic source sequence. (The two source strings in the figure,
S1 and S2, share the substrings B-f, C-g, D-h, and E-i.) Therefore, casting

N
A B C D E

f g h i j

A

f

C

h

E

i

B

g

D

j

S

S

B

f

C

g

D

h

E

i

Substrings
shared
By S and S

S

1

2

1 2

FIG. 2. A nucleotide sequence (line N) and two of its derived candidate genes (S1� S2).

344 landau and ziv-ukelson

this application as a “Common Substring Alignment” problem would enable
us to compare each of the shared segments only once against the target,
instead of having to match it again and again for each candidate gene in
which it is included.

3. BACKGROUND

When formalizing the relatedness between two sequences, one could
measure either their similarity or their distance. An example of a basic
similarity metric is LCS [14], which measures the subsequence of maxi-
mal length common to both sequences, where a subsequence is defined as
any series of elements which can be obtained from a given sequence by
deleting some of its elements. The Edit Distance metric [21], on the other
hand, measures the minimal number of substitutions, insertions, and dele-
tions required to transform one sequence into another. Each mismatched
aligned pair and unaligned symbol is called a difference and scores 1. All
pairs of equal aligned characters score 0. One seeks an alignment which
minimizes the score or number of differences, and this minimal score is
called the distance between S and T . The distance and similarity perspec-
tives are complementary, and any distance problem can be translated into
a similarity problem.

From now on we will describe the solutions in terms of distance minimiza-
tion. (For the sake of simplicity, we will restrict our examples to the Edit
Distance measure [21].) However, the solutions can easily be translated to
a score maximization problem, to apply to string comparison metrics which
measure similarity rather than distance.

The Operation Weight Edit Distance problem [13] is a generalization of
Edit Distance which allows an arbitrary weight to be associated with every
edit operation, as well as with a match. Thus, any insertion or deletion has
a weight denoted indel, a substitution has a weight s, and a match has a
weight m.

An even more general scoring scheme is that of Alphabet Weight Edit
Distance [13], in which the scoring scheme matrix δ contains for each char-
acter c a value δ�c�−� for deleting the character and a value δ�−� c� for
inserting the character. For a pair of characters a and b, δ�a� b� is the score
obtained by aligning character a against character b. Given two strings A�B
and the scoring scheme matrix δ, the objective is to compute the minimal
score for an alignment of A and B.

The distance between strings A and B can be computed via the dynamic
programming algorithm, using the given score matrix, as described in [25].
The dynamic programming solution to the string comparison computation
problem can be represented in terms of a weighted dynamic programming

the common substring alignment problem 345

graph [13] (see Fig. 3). A DP graph for A and B is a directed, acyclic,
weighted graph containing ��A� + 1���B� + 1� nodes, each labeled with a
distinct pair �x�w��0 ≤ x ≤ �A�� 0 ≤ w ≤ �B��. The nodes are organized in
a matrix of ��A� + 1� rows and ��B� + 1� columns. The DP graph contains
a directed edge with a weight of δ�−� bw+1� from each node �x�w� to each
of the nodes �x�w+ 1�, and a weight of δ�ax+1�−� from each node �x�w�
to �x + 1� w�. Node �x�w� will contain a diagonal edge with a weight of
δ�ax+1� bw+1� to node �x+ 1� w+ 1�, where δ is the scoring scheme matrix
for the problem. Upon completion, the value at vertex �i� j� of the DP
graph will be set to the score between the first i characters of A and the
first j characters of B. The optimal score between A and B, and the weights
for entire graph, can be obtained in O��A��B�� time.

Optimal paths in the DP graph (paths whose total weight is minimum)
represent optimal alignments of A and B. In particular, the score for com-
paring A and B is equivalent to the total weight of the optimal path con-
necting the leftmost vertex in the first row of the DP graph for A and B
with the rightmost vertex in the last row of the graph.

4. THE COMMON SUBSTRING ALIGNMENT APPROACH

The DP graph used for computing the distance between a source string
Si = BiYFi and a target string T can be viewed as a concatenation of three
sub-graphs, where the first graph represents the distance between Bi and T ,
the second graph represents the distance between Y and T , and the third
graph represents the distance between Fi and T (see Fig. 3).

In this partitioned solution, the weights of the vertices in the last row of
the first graph serve as input to initialize the weights of the vertices in the
first row of the second graph. The weights of the last row of the second
graph can be used to initialize the first row of the third graph.

The motivation for breaking the solution into three sub-graphs is that the
second sub-graph, representing the distance between Y and T , is identical
for all DP graphs comparing any of the strings Si with T . More specifically,
both the structure and the weights of the edges of all DP sub-graphs com-
paring Y with T are identical, but the weights to be assigned to the vertices
during the distance computation may vary according to the prefix Bi which
is specific to the source string. Therefore, an initial investment in the learn-
ing of this graph as an encoding stage, and in its representation in a more
informative data structure, may pay off later on.

4.1. Notation

Throughout this paper, we use the following notation.

346 landau and ziv-ukelson

C

B

D

D

D C B A D B D C

4

0
0

1 2 3 4 5 6 7 8

1

2

3

0 1 2 3 4 5 6 8

3 3 3 2 1 2 3 4 5

I0 I1 I2 I3 I4 I5 I6 I7 I8

O7

B

A

C

D C B A D B D C
1 2 3 4 5 6 7 8

1

2

3

7 6 5 4 4 4 3 2 3

O0 O1 O2 O3 O4 O5 O6 O7 O8

C

0
0

1 2 3 4 5 6 7 8

1

b

f

G

|T| = n

|Y| = l

FIG. 3. The DP graph for computing the distance between T = “DCBADBDC” and S2 =
“CBADCBDC.” S2 contains the common substring Y = “DCBD.” This figure continues Fig. 1.

the common substring alignment problem 347

• � denotes the size of the subsequence Y which is common to all Si.

• n denotes the size of target string T .

• Cz
u denotes the substring of string C from index u up to index z,

where indices are numbered from 1 to �C�. (Cj
j+1 denotes the empty string.)

• G denotes the second sub-graph comparing Y and T , which is shared
by all DP graphs comparing a source string S with T .

• I denotes the series of weights of the vertices in the first row of G.

• O denotes the series of weights of the vertices of the last row of G.

4.2. Algorithm Framework

The Common Substring Alignment solutions described in this paper com-
ply with the following two-stage approach.

Encoding Stage

Given Y and T , encode G in a format which can be efficiently used by
the alignment stage.

Alignment Stage

Given the output of the encoding stage and input row I, compute the
output row O.

A similar approach was introduced by [16], as a procedure in an algo-
rithm for finding the best non-overlapping repeats in a sequence. They
presented an O�n2 log n� time complexity algorithm for the encoding stage,
followed by an O�n log n� alignment stage. A more space-efficient algorithm
is given in [4].

5. THE FIRST ALGORITHM

5.1. The Encoding Stage

The following DIST matrix will be computed (see Fig. 4.)

Definition 1. DIST
i� j�, for j = 0 � � � n� i = 0 � � � j, stores the weight of
the shortest path from the vertex in column i of the first row of the graph
G to the vertex in column j of the last row of the graph G.

A similar encoding of a graph has been used in [2–4, 16, 27].

348 landau and ziv-ukelson

I0 I1 I2 I3 I4 I5 I6 I7 I8

3 3 3 2 1 2 3 4 5 input row

DIST matrix

4 3 2 1 1 1 2 3 4 Edit
T j=0���9
1 � Y �

- 4 3 2 2 2 3 4 5 Edit
T j=0���9
2 � Y �

- - 4 3 3 3 4 3 4 Edit
T j=0���9
3 � Y �

- - - 4 4 3 3 2 3 Edit
T j=0���9
4 � Y �

- - - - 4 3 2 1 2 Edit
T j=0���9
5 � Y �

- - - - - 4 3 2 3 Edit
T j=0���9
6 � Y �

- - - - - - 4 3 2 Edit
T j=0���9
7 � Y �

- - - - - - - 4 3 Edit
T j=0���9
8 � Y �

- - - - - - - - 4 Edit
T j=0���9
9 � Y �

0 1 2 3 4 5 6 7 8 column numbers

OUT matrix:

7 6 5 4 4 4 5 6 7 OUT
0� j = 0 � � � 9�
- 7 6 5 5 5 6 7 8 OUT
1� j = 0 � � � 9�
- - 7 6 6 6 7 6 7 OUT
2� j = 0 � � � 9�
- - - 6 6 5 5 4 5 OUT
3� j = 0 � � � 9�
- - - - 5 4 3 2 3 OUT
4� j = 0 � � � 9�
- - - - - 6 5 4 5 OUT
5� j = 0 � � � 9�
- - - - - - 7 6 5 OUT
6� j = 0 � � � 9�
- - - - - - - 8 7 OUT
7� j = 0 � � � 9�
- - - - - - - - 9 OUT
8� j = 0 � � � 9�
0 1 2 3 4 5 6 7 8 iteration numbers

O0 O1 O2 O3 O4 O5 O6 O7 O8

7 6 5 4 4 4 3 2 3 output row

FIG. 4. The DIST and OUT matrices which correspond to the sequences T =
“DCBADBDC,” Y = “DCBD” and the input row I for Bi = “CBA.” The output row
O is the series of column minima of OUT
i� j� = Ii + DIST
i� j�. This figure continues the
example of Figs. 1 and 3.

DIST can be constructed in O�n2 + n�� time by using the algorithm of
[27]. For the LCS and Edit Distance metrics, DIST can also be constructed
in O�n2 + n�� time by employing [18]. Alternatively, one could use the
algorithm from [3] to construct DIST in O�n2 log n� time.

5.2. The Alignment Stage

Given input row I and sub-graph G, the weight of output row vertex Oj

can be computed as follows:

Oj =
j

min
r=0

�Ir +DIST
r� j���

the common substring alignment problem 349

This computation entails selecting a minimum among up to n sums for
each of the n output sources. (Figure 5 demonstrates an example of an
output entry computation.) The above formulation was first presented in
[16]. It is, in essence, a static version of the 1D dynamic programming
problem [12],

E
j� =
j

min
i=0

�D
i� +w�i� j���

in which all values of D
i� are specified before any value of E
j� is com-
puted, and the values of function w�i� j� are precomputed for all integers
j = 0 � � � n� i = 0 � � � j.
Oj is the minimum of column j of the following OUT matrix, which

merges the information from input row I and DIST (see Fig. 4).

Definition 2. OUT
i� j� = Ii +DIST
i� j� for j = 0 � � � n� i = 0 � � � j.

Aggarwal and Park [2] and Schmidt [27] observed that DIST matrices are
Monge arrays [24].

Definition 3. A matrix M
0 � � �m� 0 � � � n� is Monge if either condition
1 or 2 below holds for all i = 0 � � �m� j = 0 � � � n:

1. M
i� j� −M
i� j − 1� ≤ M
i− 1� j� −M
i− 1� j − 1�.
2. M
i� j� −M
i� j − 1� ≥ M
i− 1� j� −M
i− 1� j − 1�.

C

B

D

D

D C B

4

0
0

1

1

2

3

0 1 2

3 3 3
I0 I1 I2

4 33

7 66

A
2

3

2
I3

2

4

D
3

4

1
I4

1

2

B
4

5

2
I5

2

4

D
5

6

3
I6

3

6

C
6

O

4
I7

4

8

7 8

87

5
I8

Edit [T7
x=1,Y]

Ix+ Edit [T
7
x=1,Y]

FIG. 5. The computation of output entry O7 for T = “DCBADBDC,” Bi = “CBA,“ and
Y = “DCBD.” The minimal output at O7, min7

x=0�Ix + Edit
T 7
x+1� Y �� = 2, is achieved by the

path originating at column 4 and receiving input I4. This figure continues the example of Figs.
1, 3, and 4.

350 landau and ziv-ukelson

It is easy to see that OUT matrices also follow the Monge properties.
An important property of Monge arrays is that of being totally monotone.

Definition 4. A matrix M
0 � � �m� 0 � � � n� is totally monotone if either
condition 1 or 2 below holds for all a� b = 0 � � �m c� d = 0 � � � n:

1. M
a� c� ≥ M
b� c� �⇒ M
a� d� ≥ M
b� d� for all a < b and c < d.
2. M
a� c� ≤ M
b� c� �⇒ M
a� d� ≤ M
b� d� for all a < b and c < d.

Note that the Monge property implies total monotonicity, but the con-
verse is not true.

Aggarwal et al. [1] gave a recursive algorithm, nicknamed SMAWK in
the literature, which can compute in O�n� time all row and column maxima
of an n × n totally monotone matrix, by querying only O�n� elements of
the array. Hence, one could use SMAWK to compute the output row O by
querying only O�n� elements of OUT. Clearly, if both the full DIST and all
entries of I are available, then accessing an element of OUT is O(1) work.

One obstacle which comes up during this implementation is that DIST is
not rectangular. Only the values in the upper triangle are defined. How-
ever, this can be resolved by setting the undefined values in the lower
triangle to ∞.

5.3. Time Analysis of the First Algorithm

DIST is constructed during the encoding stage in O�n2 + n�� time. The
alignment stage is done in O�n� time, for each appearance of the common
substring Y in a source sequence.

6. A MORE EFFICIENT, NON-RECURSIVE ALGORITHM

6.1. The Encoding Stage

A more efficient encoding can be achieved by utilizing the fact that the
number of relevant changes, from one column of both OUT and DIST
to the next, is constant. This property, also discussed in [27], allows for
a representation of DIST via an O�n� number of “relevant” points. The
importance of this property will become clearer in Section 6.2.

The DELTA matrix is defined as follows.

Definition 5. DELTA
i� j� = OUT
i� j� − OUT
i� j − 1� = DIST
i� j� −
DIST
i� j − 1� for j = 1 � � � n� i = 0 � � � j − 1.

The range of possible values for DELTA
i� j� depends on the scoring
scheme which is used for the string comparison and is actually the upper
bound for the value difference between two consecutive elements in the

the common substring alignment problem 351

dynamic programming table. (For an example of a DELTA matrix, see
Fig. 6.)

We will use the term ψ to denote the range bound for DELTA
i� j� values.
As an example, if the similarity metric used is LCS, the only possible values
for DELTA will be either 1 or 0, and ψ assumes a value of 1. For the Edit
Distance metric, on the other hand, ψ is 2, since DELTA can only assume
one of the three values −1� 0� 1 [30]. Our algorithm applies to all scoring
scheme metrics for which ψ is a constant.

Note that the following two observations apply to any column in DELTA.

Observation 1. Since DIST is a Monge array, each column in DELTA is
a series of monotonically non-increasing values.

Observation 2. Since the range of distinct values which DELTA may
assume is bounded by a constant (ψ), the number of “steps” (row indices
in which the series of column entries increases in value) in each column of
DELTA is constant.

As a result, DIST can be represented via an O�n� size set of relevant
“step” points collected from all columns of DELTA (see Fig. 6).

Definition 6. Let Borderline
α� j� for α = 0 � � � ψ� j = 0 � � � n denote a
row index of a “step” of size 1 in the series of monotonically non-increasing
values of column j of DELTA. (A step of size k is represented by k different
Borderline Points).

Clearly, DELTA has up to ψn Borderline Points.

DELTA matrix:

− −1 −1 −1 0 0 1 1 1 OUT
0� j�− OUT
0� j − 1�
- − −1 −1 0 0 1 1 1 OUT
1� j�− OUT
1� j − 1�
- - − −1 0 0 1 −1 1 OUT
2� j�− OUT
2� j − 1�
- - - − 0 −1 0 −1 1 OUT
3� j�− OUT
3� j − 1�
- - - - − −1 −1 −1 1 OUT
4� j�− OUT
4� j − 1�
- - - - - − −1 −1 1 OUT
5� j�− OUT
5� j − 1�
- - - - - - − −1 −1 OUT
6� j�− OUT
6� j − 1�
- - - - - - - − −1 OUT
7� j�− OUT
7� j − 1�
- - - - - - - - − OUT
8� j�− OUT
8� j − 1�
Borderline Points :

- - - - - 2 2 1 5 BorderlinePoint
1� j�
- - - - - - 3 1 5 BorderlinePoint
2� j�

FIG. 6. An example of a DELTA matrix and its Borderline Points. Note that for the Edit
Distance metric, which is used in this example, ψ = 2, and therefore the number of Borderline
Points for DELTA is bounded by 2n. This figure continues the example of Fig. 4.

352 landau and ziv-ukelson

Observation 3. For any two rows x1� x2 where x1 ≤ Borderline

α� j� < x2,

OUT
x2� j� −OUT
x2� j − 1� < OUT
x1� j� −OUT
x1� j − 1��
During the encoding stage, the O�n�� time complexity algorithm of [27,

Sect. 6] is used to compute the Borderline Points of DELTA.

6.2. The Alignment Stage

We will now present an algorithm which uses the pre-compiled Borderline
Points and input row I to compute output row O. The new algorithm will
employ the Candidate List concept [7, 10, 15, 22].

Definition 7. The Candidate List is a subset of the rows of OUT, which
includes only those rows which are candidates for containing future OUT
column minima. The Candidate List is updated from one iteration of the
alignment stage algorithm to the next. It is sorted in increasing OUT value
order and increasing row index order. At iteration j of the alignment stage
algorithm, the candidate of smallest row index in the list bears the minimal
value at column j of OUT.

A high-level outline of the alignment stage algorithm is given below.

Procedure Alignment Stage

input: The set of Borderline Points for the DELTA matrix, and input
row I

output: The output row O

for j: = 0 to �T � do

1. Append row j to the Candidate List.
2. Update the contents of the Candidate List.
3. Report output entry Oj .

The list contents are updated at each iteration by removing rows which
are no longer candidates for producing future column minima. We will
denote such rows as extinct, according to total monotonicity condition 1.

Definition 8. A row x1 is extinct if �∃x2 > x1�OUT
x2� j� ≤ OUT

x1� j��.

Hence, for any output value achieved during the computation of Oj , we
only need to keep one representative.

A candidate becomes extinct, by Definition 8, as a result of two possible
events.

the common substring alignment problem 353

Event 1. A Borderline
α� j�. Let x1� x2 denote two rows which appear
sequentially on the candidate list at iteration j, where x1 ≤ Borderline

α� j� < x2. The Candidate List is sorted, and, therefore, by Observation
3, a Borderline
α� j� could result in x2 reaching a value identical to that of
x1 at column j of OUT. As a result, row x1 will be removed from the list.

Event 2. At iteration j, row j is appended to the list. At this point, j
is the highest row index in the list, and therefore all of the elements with
an OUT value which is higher than or equal to that of candidate j will be
removed from the list.

Note that two technical challenges need to be met, to implement a list
manipulation engine, which updates the contents of the Candidate List in
linear time:

1. Computing the OUT value of a candidate.
2. Efficiently accessing the rows to be removed from the Candidate

List.

In the next two subsections we will show how to overcome these technical
challenges, while maintaining the linearity of the alignment stage algorithm.

Supplementing the Unavailable DIST Values

The values of OUT are needed for two purposes. One is the comparison
of two adjacent candidates. The other is for reporting the OUT value Oj .

We will keep track of the difference in OUT values between the members
of the Candidate List.

Definition 9. Let gap
x1� denote the difference in OUT values between
candidate x1 and the candidate which immediately follows x1 on the Can-
didate List.

Definition 10. Let Offsetj denote the difference in OUT values
between the candidate of lowest row index and the candidate of highest
row index on the Candidate List, at the end of iteration j of the alignment
stage algorithm.

Definition 11. Let DeleteY denote the total weight of deleting the
whole string Y . (For all 0 ≤ j ≤ n, DIST
j� j� = DeleteY .)

DeleteY can be computed once in the encoding stage in O��� time.
The candidate of highest row index on the list at iteration j is row j, and

OUT
j� j� = Ij+ DeleteY . Hence, the value of the candidate of lowest row
index on the list at iteration j, which bears the minimum for column j of
OUT, is

Oj = Ij + Delete Y − Offsetj �

354 landau and ziv-ukelson

It remains to show how to update the value of Offsetj from the value of
Offsetj−1. During the first iteration of the alignment stage algorithm, the
list contains only one candidate, and hence Offset0 is initialized to zero (see
Fig. 7). Given the information from iteration j − 1, the alignment stage
algorithm proceeds at iteration j as follows.

Event 1. A Borderline
α� j�. Let x1� x2 denote two rows which appear
sequentially on the Candidate List at iteration j, where x1 ≤ Borderline

α� j� < x2. gap
x1� is reduced by one, as a result of Borderline
α� j�. Cor-
respondingly, Offsetj is reduced by one as well.

• If gap
x1� > 0, row x1 remains on the list.

• If gap
x1� = 0, row x1 is removed from the list.

Event 2. Candidate j joins the list. At the end of iteration j − 1, row
j − 1 is the candidate of highest row index on the list. It was appended
at the end of iteration j − 1 and could not have been removed by any of

Input:

I0 I1 I2 I3 I4 I5 I6 I7 I8

3 3 3 2 1 2 3 4 5 input row

Borderline Points :

- - - - - 2 2 1 5 BorderlinePoint
1� j�
- - - - - - 3 1 5 BorderlinePoint
2� j�

Run-time variable trace:

Candidate List contents (row index/gap
row index�) at the end of each iteration:

0/0 0/1 0/1 0/1 0/1 4/2 4/2 4/2 4/2
1/0 1/1 1/1 4/0 5/0 5/2 5/2 6/2

2/0 3/0 6/0 6/2 7/2
7/0 8/0

Maintained Offsetj values:

0 1 2 2 1 2 4 6 6

Output:

O0 O1 O2 O3 O4 O5 O6 O7 O8

7 6 5 4 4 4 3 2 3 output row

FIG. 7. A trace of the contents of the Candidate List and maintained variables, during
iterations 0 to 8 of the Alignment Stage Algorithm, as generated while computing the distance
between T = “DCBADBDC” and Y = “DCBD,” given the input row I for Bi = “CBA”. Note
that DeleteY = 4. This figure continues the example from Figs. 4 and 6.

the common substring alignment problem 355

the events 1, 2 of iteration j − 1. Row j is appended to the end of the
Candidate List at iteration j, as the candidate of highest row index. As a
result, gap
j − 1� is set as follows:

gap
j − 1� = OUT
j� j� −OUT
j − 1� j�
= �Ij +DeleteY � − �Ij−1 +DIST
j − 1� j���

Correspondingly, Offsetj is increased by gap
j − 1�.
• If gap
j − 1� > 0, row j − 1 remains on the list.
• If gap
j − 1� ≤ 0, candidate j − 1 is removed from the list.

If gap
j − 1� < 0, we continue popping candidates off the list and
correcting gap values, until the candidate of highest row index preceding j
is reached, whose gap value remains positive.

When computing gap
j − 1�, the terms Ij , Ij−1 and DeleteY are avail-
able from the input to the efficient alignment stage. It remains to show
how to obtain DIST
j − 1� j�, under the constraint that the entries of
DIST are unavailable during the efficient alignment stage. DIST
j − 1� j� =
Edit�T j

j � Y �, and all values Edit�T j
j � Y � for j = 1 � � � n can be computed

during the encoding stage in a total of O�n + � × min�n�3�� time, where
3 denotes the size of the sequence alphabet.

A Candidate List Implementation Using a Disjoint Set Union Algorithm

Since not all rows of OUT appear in the Candidate List, finding the row
to be removed as a result of a Borderline Point is not trivial (see Event 1).
We propose to implement the Candidate List by employing the incremental
tree set union algorithm described in [9, p. 216], for the special case in which
the union tree is a path.

In this implementation, each row in the Candidate List will serve as the
appointed representative of its set, which includes all rows up to and exclud-
ing the next candidate of higher row index on the list (see Fig. 8). A new
candidate is appended as the representative of a one-row set to the end of
the list.

A Find(Borderline
α� j�� operation will query representative candidate x1,
and gap
x1� will then be reduced by one. If this results in gap
x1� reaching
a value of zero, x1 will be removed from the Candidate List, and its set will
be united with the set represented by the previous candidate of lower row
index on the list.

6.3. Time Analysis of the Efficient Algorithm

In the encoding stage the Borderline Points are computed in O�n�� time
using [27]. We can now state and prove the following time complexity bound
on the alignment stage algorithm.

356 landau and ziv-ukelson

-1 0 31iteration 3:

-1 0 4

-1 4

2

1 2 3

0 1 2 3

-1 4

0 1 2 3

5

iteration 4:

Event 2: Borderline[5,1]=2.
iteration 5:

Event 1: Row 4 joins the list.

Event 1: Row 5 joins the list.

FIG. 8. The Set Union implementation of the Candidate List, as traced through iterations
4 and 5 of the efficient alignment stage algorithm. The first candidate is a “fake” row of
value −1, which is intended to represent all rows which are smaller than the candidate of
lowest row index in the list. This figure follows the example of Fig. 7.

Theorem 1. The alignment stage of the efficient algorithm computes out-
put row O, from input row I and the Borderline Points for the comparison of
Y with T , in O�n� time.

Proof. The alignment stage algorithm iterates n times. The cost of list
access operations is as follows.

Event 1: Using the Disjoint Set Union algorithm from [9], the Candidate
List can be maintained to support operations of candidate access, due to a
Borderline Point, in O�1� amortized time.

Event 2: Since the list is sorted, the rows removed as a result of the addi-
tion of row j to the end of the list are sequential candidates and therefore
can be accessed in O�1� time.

Each candidate row is added once to the list and hence is removed from
the list at most once. As a separate category, we will count those candidates
which are examined without being removed. This can happen once per Bor-
derline Point (Event 1) and once per addition of a new candidate to the
list (Event 2). The number of Borderline Points is at most ψn, and n candi-
dates are added to the list throughout the execution of the alignment stage
algorithm. Therefore, the total complexity of the alignment stage algorithm
is O�n�.

the common substring alignment problem 357

Note that during the encoding stage, the borderline points for the com-
parison of the prefix Y

j
1 with T can be incrementally computed in O�n�

time from the borderline points for the comparison of Yj−1
1 with T , using

[27]. Hence, for source sequences with two or more common factors, the
time complexity of the encoding stage is further reduced to O�nD�, where
D is the number of nodes in the dictionary trie for the common factors.

7. CONCLUSIONS AND OPEN PROBLEMS

Two algorithms were described for the Common Substring Alignment
problem. The second algorithm, which requires an O�n�� time encoding
stage and has a non-recursive, linear alignment stage, is more applicable to
the typical Common Substring Alignment applications than the first algo-
rithm, which requires an O�n2 + n�� time encoding stage and has a recur-
sive, linear alignment stage.

The solutions presented in this paper are intended for those applications
where the source strings contain shared and repeated substrings. A special
challenge is presented when the target strings contain encoded repetitions
as well as the source strings.

Another challenge is to try to extend the solutions presented in this paper
to support affine or concave gap costs.

ACKNOWLEDGMENTS

The authors are grateful to the referees for their helpful comments.

REFERENCES

1. A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric applications of a
matrix-searching algorithm, Algorithmica 2 (1987), 195–208 .

2. A. Aggarawal and J. Park, Notes on searching in multidimensional monotone Arrays,
in “Proceedings of the 29th IEEE Symposium on Foundations of Computer Science,”
pp. 497–512, 1988.

3. A. Apostolico, M. Atallah, L. Larmore, and S. McFaddin, Efficient parallel algorithms for
string editing problems, SIAM J. Comput. 19 (1990), 968–998.

4. G. Benson, A space efficient algorithm for finding the best nonoverlapping alignment
score, Theoret. Comput. Sci. 145 (1995), 357–369.

5. A. G. Buechner and M. Mulvenna, Discovering internet marketing intelligence through
online analytical web usage mining, SIGMOD Record 27 (1998), 54–61.

6. M. S. Chen, J. S. Park and P. S. Yu, Data mining for path traversal patterns in a web
environment, in “The 16th International Conference on Distributed Computing Systems,”
pp. 385–392, 1996.

358 landau and ziv-ukelson

7. D. Eppstein, Z. Galil, and R. Giancarlo, Speeding up dynamic programming, in “Pro-
ceedings of the 29th IEEE Symposium on Foundations of Computer Science,” pp. 488–
296, 1988.

8. R. Farrell, P. Fairweather, and E. Breimer, A task-based architecture for application-
aware adjuncts, in “Proceedings of the 2000 International Conference on Intelligent User
Interfaces,” pp. 82–85, Assoc. Comput. Mach., 2000.

9. H. N. Gabow and R. E. Tarjan, A linear time algorithm for a special case of disjoint set
union, J. Comput. System Sci. 30 (1985), 209–221.

10. Z. Galil and R. Giancarlo, Speeding up dynamic programming with applications to molec-
ular biology, Theoret. Comput. Sci. 64 (1989), 107–118.

11. M. S. Gelfand, A. A. Mironov, and P. A. Pevzner, Gene recognition via spliced sequence
alignment, Proc. Natl. Acad. Sci. USA 93 (1996), 9061–9066.

12. R. Giancarlo, Dynamic Programming: Special cases, in “Pattern Matching Algorithms,”
(A. Apostolico and Z. Galil, Eds.), pp. 201–232, Oxford Univ. Press, London, 1997.

13. D. Gusfield, “Algorithms on Strings, Trees, and Sequences,” Cambridge Univ. Press,
Cambridge, UK, 1997.

14. D. S. Hirschberg, A linear space algorithm for computing maximal common subsequences,
Comm. ACM 18, No. 6 (1975), 341–343.

15. D. S. Hirshberg and L. L. Larmore, The least weight subsequence problem, SIAM J.
Comput. 16, No. 4 (1987), 628–638.

16. S. K. Kannan and E. W. Myers, An algorithm for locating non-overlapping regions of
maximum alignment score, SIAM J. Comput. 25, No. 3 (1996), 648–662.

17. J. Karkkainen, G. Navarro, and E. Ukkonen, Approximate string matching over Ziv–
Lempel compressed text, in “Proceedings of the 11th Annual Symposium on Combinato-
rial Pattern Matching,” pp. 195–209, 2000.

18. G. M. Landau, E. W. Myers, and J. P. Schmidt, Incremental string comparison, SIAM J.
Comput. 27, No. 2 (1998), 557–582.

19. G. M. Landau and M. Ziv-Ukelson, On the shared substring alignment problem, in “Pro-
ceedings of the Symposium on Discrete Algorithms,” pp. 804–814, 2000.

20. J. Lee, M. Podlaseck, E. Schonberg, and R. Hoch, Visualization and analysis of clickstream
data of online stores for understanding web merchandising, J. Data Mining Knowledge
Discovery 5, Nos. 1/2 (2001), 59–84.

21. V. I. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals,
Soviet Phys. Dokl. 10 (1966), 707–710.

22. W. Miller and E. W. Myers, Sequence comparison with concave weighting functions, Bull.
Math. Biol. 50 (1988), 97–100.

23. A. A. Mironov, M. A. Roytberg, P. A. Pevzner, and M. S. Gelfand, Performance-guarantee
gene predictions via spliced alignment, Genomics 51 A.N. GE985251 (1998), 332–339.

24. G. Monge, Deblai et Remblai, Mem. Acad. Sci. Paris (1781).
25. E. W. Myers, Seeing conserved signals: Using algorithms to detect similarities between

biosequences, in “Calculating the Secrets of Life,” Lander and Waterman, Eds, pp. 56–89,
National Academy Press, 1995.

26. M. A. Roytberg, T. V. Astakhova, and M. S. Gelfand, Combinatorial approaches to gene
recognition, Comput. Chem. 21, No. 4 (1997), 229–235.

27. J. P. Schmidt, All highest scoring paths in weighted grid graphs and their applica-
tion to finding all approximate repeats in strings, SIAM J. Comput. 27, No. 4 (1998),
972–992.

28. S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, T. Grance, L. T. Heberlein, C. Ho,
K. N. Levitt, B. Mukerjee, D. L. Mansur, K. L. Pon, and S. E. Smaha, A system for
distributed intrusion detection, in “COMPCON Spring 91, the 36th IEEE International
Computer Conference,” pp. 170–176, 1991.

the common substring alignment problem 359

29. S. H. Sze and P. A. Pevzner, Las Vegas algorithms for gene recognition: Suboptimal and
error-tolerant spliced alignment, J. Comp. Biol. 4, No. 3 (1997), 297–309.

30. E. Ukkonen, Finding approximate patterns in strings, J. Algorithms 6 (1985), 132–137.
31. M. Ziv-Ukelson, Y. Horesh, G. M. Landau, and R. Unger, Using repeats to speedup

DNA sequence alignment, private communication.

	1.INTRODUCTION
	FIG.1.

	2.APPLICATIONS
	FIG.2.

	3.BACKGROUND
	4.THE COMMON SUBSTRING ALIGNMENT APPROACH
	FIG.3.

	5.THE FIRST ALGORITHM
	FIG.4.
	FIG.5.

	6.A MORE EFFICIENT,NON-RECURSIVE ALGORITHM
	FIG.6.
	FIG.7.
	FIG.8.

	7.CONCLUSIONS AND OPEN PROBLEMS
	ACKNOWLEDGMENTS
	REFERENCES

