
Informqtion
~~~~r~msl 

Information Processing Letters 68 (1998) 3-9 

An efficient algorithm for on-line searching of minima in 
Monge path-decomposable tridimensional arrays * 

Alfred0 Garcia *, Pedro Jodr6 ‘, Javier Tejel * 
Dpto. Mktodos Estadkticos, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zmagoza, Spain 

Received 5 March 1998; received in revised form 10 August 1998 
Communicated by T. Lengauer 

Abstract 

We consider the problem of computing the recurrence E[i] = minj,l,,,.,, minl~k~iIb(i, j) + c(j, k) + EW - 111, i = 
1 ,..., n, where E[O] is known and B = {b(i, j)) and C = (c(j, k)] are known weight Monge matrices of size n x rn and m x n, 
respectively. We provide an O(m + n)-algorithm for calculating the E[i] values. This algorithm allows us to linearly solve 
the two following problems: Finding the minimum Hamiltonian curve from point p1 to point pm for N points on a convex 
polygon, and solving the traveling salesman problem for N points on a convex polygon and a segment line inside it, improving 

the previous O(N log N)-algorithms for both these problems. 0 1998 Elsevier Science B.V. All rights reserved. 

Keywords: Monge matrices: Dynamic programming; Computational geometry: Computational complexity: Traveling salesman problem 

1. Introduction 

Let W = {w(i,k)] be an n x n’ weight matrix, 

where each w (i, k) can be calculated in constant 

time. Given an integer constant cl 2 1 and the values 

F[k], fork = 1,. . . , cl, the so-called one-dimensional 

dynamic programming problem consists in solving the 

on-line recurrence: 

E[i]=lc~~c,{w(i,k)+F[k]}, i=l,..., n, (1) 
\ \I 

where ci and F[k], for k = ci_1 + 1,. . . , ci, can be 
computed from E[i - l] in constant time, and the 

integer constants cl, . . _ , c, verify 1 < cl < . . . < c, < 
n’. 

Problems of this type, usually with the weight 
matrix verifying some additional property, arise in 
many fields: biology [8], economics [3], operation 
research [9,7], computational geometry [l], etc. 

* Partially supported by University of Zaragoza, Spain. Project 
UZ96-CIENT-09. 

* Corresponding author. Email: olaverri@posta.uuizar.es. 

’ Email: pjodra@posta.unizares. 

’ Email: jtejel@posta.unlzar.es. 

Solving (1) is equivalent to the problem of on-line 
searching of the minimum of each row of the partial 
matrix A with entries {a(i,k) = w(i,k) + F(k)}, 
defined when k < ci. A partial matrix of this shape 
is called a generalized lower triangular matrix, and 
it is concave totally monotone if a(i, k) > a(i, k’) 
implies a(i’, k) > a(i’, k’), for 1 < i -c i’ < n, 1 < 
k -c k’ 6 n’, when these four entries are defined. If 
we denote by k(i) the smallest column index where 
the minimum of row i is found, the main property 
of concave totally monotone matrices is that k(1) < 

k(2) < . . . < k(n) (monotonicity), and this property 
is also verified by the minima of any submatrix (total 

0020-0190/98/$ - see front matter 0 1998 Elsevier Science B.V. All rights reserved. 

PII: SOO20-0190(98)00137-9 



4 A. Garcfa er al. /Information Prvcessing L&rem 68 (1998) 3-9 

monotonicity). For concave totally monotone matrices 
there are several O(n + n’)-algorithms which solve the 
on-line row minima search problem. We will use the 
one by Larmore and Schieber, described in [8], and 
we will call it the LARSCH algorithm. 

The most frequent case of concave totally monotone 
matrices is that of Monge matrices. A full n x n’ 
matrix A is Monge if 

a(i, j) +a(i + 1, j + 1) < a(i, j + 1) +a(i + 1, j) 

forl<i<nandl<j<n’. 

For a review on Monge properties and applications see 
[4]. The following properties of Monge matrices can 
be easily checked: 

(i) the transpose of a Monge matrix is Monge, 
(ii) the sum of two Monge matrices is a Monge 

matrix, 
(iii) if A with elements (a(i, j)) is Monge, u E Iw” 

and v E W”‘, also B with elements (b(i, j) = 
u(i, j) + Ui + vi) is Monge, and 

(iv) any generalized lower triangular submatrix of a 
Monge matrix is concave totally monotone. 

The main result in this paper is a linear time 
algorithm solving the extension of problem (1) when 
the weight matrix is given by 

W(i9 k) = j=y!y, {W, j) + c(j, k)}, 
I 1 

where B = {b(i, j)) and C = (c(j,k)} are known 
Monge matrices of size n x m and m x n’, respectively. 
In the applications described later, ci will be i, n’ 
will be n and F[k] will be E[k - I]. For this reason, 
we explain the algorithm only for this particular case, 
although it can be modified for solving the more 
general formulation. Then, the problem is that of 
calculating 

E[i]= min j=, , .., mk_yn (ML i> + c(i9 k) + EM - II], - . . . . . I 
i=l,...,n, (2) 

where E[O] is given. In [2], a tridimensional array 
that can be expressed as b(i, j) + c(j, k) is called a 
Monge path-decomposable tridimensional array. So, 
our problem is the on-line calculating of the minima 
of a partial (because k < i) Monge path-decomposable 
tridimensional array. 

2. On-line algorithm 

In order to solve (2), we use mainly the m x n 
Monge matrix 

c= {C(j, k) = c(j, k) + E[k - 11). 

Given i, let -6” be the m x i submatrix formed by 
the first i columns of c and let A’ be the matrix 
obtained by adding b(i, j) to each row j of cc’. 
E[i] is the global minimum of A’ and we will de- 
note by J(i) and K(i) the row and column of A’ 
where this minimum is, i.e., E[i] = u’(J(i), K(i)) = 
b(i, J(i)) + C(J(i), K(i)). For each i, we want to cal- 
culate (J(i), K(i)) and the key idea of our algorithm 
is that only O(m + n) candidate positions (j, k) need 
to be considered for calculating (J(i), K(i)), Vi. In 
addition, all the matrices involved in the algorithm are 
concave totally motonones. 

Let k’(j), j = l,..., m, be the column with the 
minimumofrow jofA’,andlet j’(k),k=l,...,i, 
be the row with the minimum of column k of A’. 
Notice that k’(j) is also the position of the minimum 

of the row j of ci because row j of A’ is obtained 

from the same row of ?? by adding the constant 
b(i, j). When a row has more than one minimum, 
we will always take the one in the leftmost column. 
Similarly for columns, we will take the one in the 
topmost row and as a global minimum, we will take 
the one in the leftmost column and topmost row. 
The following lemma gives some additional properties 
about these row and column minima. 

Lemma 1. 
(1) k’(j),<k’(j+l), j=l,..., m-l. 
(2) j’(k)<j’(k+l),k=l,..., i-l. 
(3) k’(j) Q k’+‘(j), i = 1,. . .,n - 1. 
(4) j’(k) 6 j’+‘(k), i = k, . . . , n - 1. 

Proof. Given i, A’ and its transpose are Monge 
matrices, hence (1) and (2) hold by monotonic@. 

On the other hand, as ?+’ is obtained from 2;’ by 
adding column i + 1 of c’, k’+*(j) is either k’(j) 
or i + 1, hence (3). Finally, given k < i, column k 
of A’+’ is obtained from column k of A’ by adding 
b(i + 1, j) - b(i, j) to each entry. As B is Monge, 
b(i+l,j+l)-b(i,j+l)<b(i+l,j)-b(i,j), 
forj=l,..., m - 1, so, what is added is a decreasing 



A. Garclb et al. /Information Processing L.etters 68 (1998) 3-9 

1 k n 

Fig. 1. Matrices r’ and H. 

amount in each row. Therefore, the minimum of the 
column k of A’+’ has to be in or after j’(k). q 

The global minimum of A’ is always the minimum 
in its row and in its column, so we have K(i) = k’ (j) 
for an index j < m, and J(i) = j’(k) for an index 
k Q i. Hence, by previous lemma J(i) < j’(i). These 
values j’(i), i = 1 , . . . , n, can be precalculated as 
follows: let D be the n x m Monge matrix defined as 
d(i, j) = b(i, j) + c(j, i) and let d(i) be the column 
where row i of D has its minimum. Column i of A’ 
is obtained by adding the constant E[i - l] to each 
element of row i of D, so d(i) = j’(i). 

Lemma 2. K(i) < i and d(K(i)) 6 J(i) < d(i) for 
i=l,...,n. 

Proof. Obviously, K(i) 6 i because A’ is an m x i 
matrix. In addition, J(i) = j’(k) for a k Q i, hence by 
Lemma 1, part (9, 

J(i) < j’(i) = d(i). 

Similarly, as K(i) < i, using (4) of Lemma 1 we have: 

d(K(i)) = jKc’)(K(i)) < j’(K(i)) = J(i). •I 

In Fig. 1 the lemma is illustrated. Let c’ be the 
partial matrix formed by the elements Z( j, k) such that 
d(k) < j < d(n), for 1 < k < n. Given i, the previous 

lemma implies that the position (J(i), K(i)) is in Ri 
(shaded region in Fig. 1) defined as 

Ri = {(j, k) 3 d(k) < j 6 d(i), 1 < k 6 i}. 

Now, let H be the partial matrix of c defined as 
h(j, k) = c(j, k) + E[k - l] if d(k) < j < d(n), for 
1 < k < n (submatrix delimited by the thick line in 
Fig. 1). Notice that each row j of H, j = d(1) + 
1 , . . . ,d(n), is defined until the column max{k 3 
d(k) c j} and that H is concave totally monotone. 
Let h(j) be the position where the minimum of row 
j of H is achieved. Then, the following lemma shows 
that it suffices to consider O(m + n) candidates for the 
positions of all the global minima. 

Lemma 3. Either J(i) = d(K(i)) or K(i) = h(J(i)) 
fori=l,...,n. 

Proof. Given i, we know that K(i) is the column 

where the minimum of row J(i) of c’ is found and, 
by Lemma 2, that (J(i), K(i)) E Ri. Then, either the 
minimum of row J(i) is in H, and hence K(i) = 
h(J(i)), or K(i) 6 i is a column such that J(i) = 
d(K(i)). q 

In Fig. 1, the positions (j, h(j)) of H are marked 
with a black dot and the positions (d (i ) , i) with a white 
one. Lemmas 2 and 3 imply that, given i, candidate 
positions for containing (J(i), K(i)) are only those 



6 A. Garcia et al. /Information Processing Letters 68 (1998) 3-9 

belonging to Ri and marked with a black or a white Algorithm MINIMA 

dot. begin 
activate LARSCH over each row of D, obtaining 

d(i),i=l,..., 12. 
Now, let m’ be the number of these positions that 

can contain a global minimum in any step i. For 
the moment, we assume that all of them have been 
calculated, i.e., we know where a black or white dot 
appears in ?. We can enumerate these positions from 
1 to m’ beginning with the first row and then in 

each row, from left to right. If (j, k) is the candidate 
position with number p, 1 < p < m’, we define 

row(p) = j and cdl(p) = k. Given i, E[i] is achieved 
in one candidate position of Ri, so, if Z(i) is the 

number of candidate positions in Ri, then 

initialize p = 0; d(0) = d( 1); 
for i from 1 to IZ do 

comment The i first columns of C are defined. 
if (d(i) > d(i - 1)) then 

comment The rows from d(i - 1) + 1 to d(i) 
of H are defined. 

for j from d(i - 1) + 1 to d(i) do 
activate LARSCH over H for calculating h(j) 

p = p + 1; row(p) = j; coZ(p) = h(j); 
end for 

end if E[i] = I~ynici,b(i, row(p)) + ~(row(P), co&P)). 
\\ 

Therefore, if we define A’ as the n x m’ partial matrix 
with elements 

a’& p) = b(Z, row(p)) + c(mw(p), coZ(p)) 

+ E[coZ(p) - 11 
for i = 1 ( . . .) n, p = 1,. . . , Z(i), 

then E[i] is the minimum of row i of A’. 

Lemma 4. The n x m’ matrix A’ is concave totally 

monotone. 

Proof. The values Z(i) are non decreasing, so A’ is a 
generalized lower triangular matrix. We only need to 

prove that a’(& p) + a’@ + 1, p + 1) < a’@ + 1, p) + 

a’(i, p + 1) when these four entries are defined, which 
is equivalent to proving that b(i, row(p)) + b(i + 

1, row(p + 1)) 6 b(i + 1, row(p)) + b(i, row(p + 1)). 
This last inequality is true because row(p + 1) is either 

row(p) or row(p) + 1, and B is Monge. 0 

Now, we are ready to solve the initial problem (2). 
In step i, let us assume that E[l], . . . , E[i - l] and 

h@(l) + l), . . . , h(d(i - 1)) have been calculated. 
Then, the first i columns of c and H are defined. 
Hence, the rows d(i - 1) + 1,. . . , d(i) of H are also 
known and, if d(i - 1) < d(i), then we can calculate 
h(d(i - 1) + l),..., h(d(i)). In order to calculate 
E[i], we need to know all the positions in Ri with 
black and white dots and the value of a’(i, p) in these 
positions. This obviously can be done because the first 
i columns of c are defined and because h(d(1) + l), 

p = p + 1; row(p) = d(i); coZ(p) = i; Z(i) = p; 

comment The first Z(i) columns of A’ are defined. 
comment The row i of A’ is complete. 
activate LARSCH over A’ for calculating E [i]. 

end for 
end 

Fig. 2. The on-line algorithm. 

. . . , h(d(i)) are known at step i. The code in Fig. 2 
shows a way of doing the calculations. 

Lemma 5. The complexity of algorithm MINIMA is 

O(m 4-n). 

Proof, The algorithm LARSCH is activated for cal- 
culating the minima of D, H, and A’. D is a n x m 

full matrix, H is a partial matrix of, at most, size 
(m-l)x(n-l)andA’isanxm’partialmatrix,but 
m’=n+d(n)-d(l)<n+m-l.Aseachentryof 
these matrices can be calculated in constant time, all 
these minima are obtained in O(m + n) steps. •! 

3. Applications 

3.1. Finding the minimum Hamiltonian curve in a 

convex polygon 

Given N = m + n points on the plane forming a 
convex polygon P, we want to find the minimum 
Hamiltonian curve S, starting at point p1 and finishing 
at point pm, where p1 and pm are arbitrarily chosen. 
In [7], this problem is reformulated as one of dynamic 



A. Garcia et al. /Infommtion Processing Letters 68 (1998) 3-9 

‘j ‘j+l 

Fig. 3. The minimum Hamiltonian curve. 

programming and an O(N log N) time and O(N) 
space algorithm is given for solving it. 

This reformulation is the following. Let Up = 

{Pl,..., p,] be the set of points on P between p1 and 

pm (both included), clockwise numbered, and Lp = 

h,..., qn} the set of points on P between p1 and 
pm (both excluded), counterclockwise numbered (see 
Fig. 3): Let d(., .) be the Euclidean distance between 
two points. Let S(i) be the shortest Hamiltonian curve 
from p1 to pm visiting all the points of Up and only 
the first i points of Lp and let E[i] be the length of 
S(i). 

If we define 
m-1 

EL01 = C d(~j, Pj+l), 

j=l 

then the following scheme of dynamic programming 
holds (see [7]): 

E[i] = min 
j=l,...,m-1 l<k<i 

.W- ll+d(pj,qd 

i-l 

+ Cd(ql, 41+1) + d(C?i, pj+l) 

l=k 

-d(pj,Pj+l) 

1 
, i = l,...,n. 

By defining: 

l S(qi) = Xi:\ d(qk, qkfi), for 1 6 i <n, 

l W, _O = SC@) + d(qi, Pj+l) - d(Pj, pj+l), for 

l<i<nandl<j<m-1, 

l C(j,k)=d(pj,qk)-s(qk),fOrl~j~m-land 

l<k<& 
then the previous scheme is equivalent to: 

E[i] = min j=l 9 .., m_l y$ {W 8 + c(j, 4 + -W - II}, 
\’ 

i = 1,. . .) n. (3) 

Quantities s(i), i = 1, . . . , n, can be easily computed 

in O(n) time and stored in O(n) space and hence, 

given i and j, we can calculate b(i, j) and c(j, i) 
in constant time. In addition, matrices B and C are 

Monge and then, the on-line algorithm of the previous 
section can be applied directly. 

3.2. The convex-polygon-and-line TSP 

Now, we are interested in calculating the minimum 

tour that visits N = m + n points, when m of them are 
on a convex polygon P and the other n are on a seg- 
ment line SL inside P. In [7], this problem is solved in 

O((m + n) log n) time and O(n) space, improving the 
previous O(N*)-algorithm for this problem described 
in [6]. A simpler version of this problem, for points on 
three parallel lines, was studied by Cutler (see [5]) in 
relation to the problem of connecting nets in printed 
circuits and he solved it in O(N3) time. 

In [7], a similar reformulation to the previous 
one is given for solving the convex-polygon-and- 
line TSP. Let CPU (the upper convex polygon) and 
CPL (the lower convex polygon) be the set of points 

(PO,P17...7 p,,+l]andthesetofpoints{ru,rt,..., 



A. Garcia et al. /Information Processing Letters 68 (I 998) 3-9 

Fig. 4. The convex-polygon-and-line TSP. 

r,,+ t ) clockwise and counterclockwise numbered, 
respectively (see Fig. 4). Notice that pt E CPU is 
redefined as rc E CPL because sometimes it must be 
considered as belonging to CPL. The same happens 
withpointsrt,p,, andr,,,,. V~~={q~....,q~)isthe 
set of points on SL. numbered from left to right. Let 
S(i) be the shortest tour that visits all the points of P 
and only the first i points of SL and let G[i] be its 
length. 

Now, let E[i] and F[i], respectively, be the length 
of the shortest tour that visits all the points of P and 
only the first i points of SL, with the constraint that 
the last zone of SL, a zone [qk, qi 1, is linked with two 
points of CPU and with two points of CPr.. Let us 
define 

j=O j=l 

(the perimeter of P). Then, the following scheme of 
dynamic programming holds (see [7]): 

G[k-ll+d(qk,pj) I 
E[i] = min min 

j=O....,ml l<k<i 

I 

+d(qk7qi)+d(qi,Pj+l) 1 

-d(Pj, Pj+l) 1 

i=l,...,n, 

I G[k- ll+d(qk,ri) I 
F[i]= min min 

j=O....,mz l<k<i I 
+d(qk,qi)+d(qi,rj+l) 9 

I 

I -Wj,rj+1) J 

i=l,...,n, 

G[i]=min{E[i],F[i]}, i=l,..., n, 

where d(., .> is the Euclidean distance between two 
points except that we define 

d(qk,po)=d(qk,ro)=oo ifk# 1, and 

d(qk, Pm,+l) =d(qk, r,,+l) = 00 ifk fn. 

If we define: 

l S(qi) = d(ql, 4i). for 1 6 i < n, 

l Hi, i) =s(qi)+d(qi, Pj+l)-d(pj, pj+l), for i = 

1 ,..., nand j=O ,..., ml, 
l c(j,k)=d(qk,pj)-s(qk),forj=O,...,mr and 

k= l,...,n, 
0 b’(i, j) =S(qi) +d(qi, rj+l) -d(ri, rj+l), for i = 

1 , . . . , n and j = 0, . . . , m2, 
l c’(j, k) = d(qk, rj) - s(qk), for j = 0,. . . , m2 and 

k= l,...,n 
then we have: 

E[i] = min 
j=O, ml l~~“G’k- ‘I 

2 .., , .I 

+b(i,j)+c(j,k)}, i=l,..., n, 

F[i] = min min {G[k-11 
jzO.....mz I<‘k<i 

(4) 

+b’(i, j) +c’(j, k)), i = 1,. ..,n, 

G[i]=min{E[i],F[i]}, i=l,..., n. 

Each element of the matrices B, B’, C and C’ can 
be calculated in constant time and these matrices are 
all Monge. Then, by interleaving the computation of 
E[i], F[i] and G[i], the algorithm of the previous 
section can be used to solve the convex-polygon-and- 
line TSP in O(N) time and O(N) space. 



A. Garcia et al. /Information Processing Leners 68 (1998) 3-9 9 

References 

[l] A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, R. Wrlber, Geo- 

metric applications of a matrix searching algorithm, Algorith- 

mica 2 (1987) 195-208. 
[2] A. Aggarwal, J.K. Park, Notes on searching in multidimensional 

monotone arrays, in: Proceedings 29th IEEE Symp. on Fotmda- 

tions of Computer Science, October 1988, pp. 497-512. 
[3] A. Aggarwal, J.K. Park, Improved algorithms for economic lot- 

size problems, Oper. Res. 41(1993) 549-571. 
[4] R.E. Burkard, B. Klinz, R. Rudolf, Perspectives of Monge 

properties in optimization, Discrete Appl. Math. 70 (1996) 95- 

161. 

[5] M. Cutler, Efficient special case algorithms for the N-line planar 

traveling salesman problem, Networks 10 (1980) 183-195. 

[6] V.G. Deineko, R. van Dal, G. Rote, The convex-huh-and-line 

traveling salesman problem: a solvable case, Jnform. Process. 

Lett. 51 (1994) 141-148. 

[7] A. Garcia, J. Tejel, Using total monotonicity for two optimiza- 

tion problems on the plane, Jnform. Process. Lett. 60 (1996) 13- 

17. 

[8] L.L. Larmore, B. Schieber, On-line dynamic programming with 

applications to the prediction of RNA secondary structure, 

J. Algorithms 12 (1991) 490-515. 

[9] J.K. Park, A special case of the n-vertex traveling-salesman 

problem that can be solved in O(n) time, Inform. Process. Lett. 

40 (1991) 247-254. 


