An efficient algorithm for on-line searching of minima in Monge path-decomposable tridimensional arrays ${ }^{\star}$

Alfredo García ${ }^{*}$, Pedro Jodrá ${ }^{1}$, Javier Tejel ${ }^{2}$
Dpto. Métodos Estadísticos, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain

Received 5 March 1998; received in revised form 10 August 1998
Communicated by T. Lengauer

Abstract

We consider the problem of computing the recurrence $E[i]=\min _{j=1, \ldots, m} \min _{1 \leqslant k \leqslant i}[b(i, j)+c(j, k)+E[k-1]\}, i=$ $1, \ldots, n$, where $E[0]$ is known and $B=\{b(i, j)\}$ and $C=\{c(j, k)\}$ are known weight Monge matrices of size $n \times m$ and $m \times n$, respectively. We provide an $\Theta(m+n)$-algorithm for calculating the $E[i]$ values. This algorithm allows us to linearly solve the two following problems: Finding the minimum Hamiltonian curve from point p_{1} to point p_{m} for N points on a convex polygon, and solving the traveling salesman problem for N points on a convex polygon and a segment line inside it, improving the previous $\Theta(N \log N)$-algorithms for both these problems. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Monge matrices; Dynamic programming; Computational geometry; Computational complexity; Traveling salesman problem

1. Introduction

Let $W=\{w(i, k)\}$ be an $n \times n^{\prime}$ weight matrix, where each $w(i, k)$ can be calculated in constant time. Given an integer constant $c_{1} \geqslant 1$ and the values $F[k]$, for $k=1, \ldots, c_{1}$, the so-called one-dimensional dynamic programming problem consists in solving the on-line recurrence:
$E[i]=\min _{1 \leqslant k \leqslant c_{i}}\{w(i, k)+F[k]\}, \quad i=1, \ldots, n$,
where c_{i} and $F[k]$, for $k=c_{i-1}+1, \ldots, c_{i}$, can be computed from $E[i-1]$ in constant time, and the

[^0]integer constants c_{1}, \ldots, c_{n} verify $1 \leqslant c_{1} \leqslant \cdots \leqslant c_{n} \leqslant$ n^{\prime}.

Problems of this type, usually with the weight matrix verifying some additional property, arise in many fields: biology [8], economics [3], operation research [9,7], computational geometry [1], etc.

Solving (1) is equivalent to the problem of on-line searching of the minimum of each row of the partial matrix A with entries $\{a(i, k)=w(i, k)+F(k)\}$, defined when $k \leqslant c_{i}$. A partial matrix of this shape is called a generalized lower triangular matrix, and it is concave totally monotone if $a(i, k)>a\left(i, k^{\prime}\right)$ implies $a\left(i^{\prime}, k\right)>a\left(i^{\prime}, k^{\prime}\right)$, for $1 \leqslant i<i^{\prime} \leqslant n, 1 \leqslant$ $k<k^{\prime} \leqslant n^{\prime}$, when these four entries are defined. If we denote by $k(i)$ the smallest column index where the minimum of row i is found, the main property of concave totally monotone matrices is that $k(1) \leqslant$ $k(2) \leqslant \cdots \leqslant k(n)$ (monotonicity), and this property is also verified by the minima of any submatrix (total
monotonicity). For concave totally monotone matrices there are several $\Theta\left(n+n^{\prime}\right)$-algorithms which solve the on-line row minima search problem. We will use the one by Larmore and Schieber, described in [8], and we will call it the LARSCH algorithm.

The most frequent case of concave totally monotone matrices is that of Monge matrices. A full $n \times n^{\prime}$ matrix A is Monge if

$$
\begin{aligned}
& a(i, j)+a(i+1, j+1) \leqslant a(i, j+1)+a(i+1, j) \\
& \quad \text { for } 1 \leqslant i<n \text { and } 1 \leqslant j<n^{\prime} .
\end{aligned}
$$

For a review on Monge properties and applications see [4]. The following properties of Monge matrices can be easily checked:
(i) the transpose of a Monge matrix is Monge,
(ii) the sum of two Monge matrices is a Monge matrix,
(iii) if A with elements $\{a(i, j)\}$ is Monge, $u \in \mathbb{R}^{n}$ and $v \in \mathbb{R}^{n^{\prime}}$, also B with elements $\{b(i, j)=$ $\left.a(i, j)+u_{i}+v_{j}\right\}$ is Monge, and
(iv) any generalized lower triangular submatrix of a Monge matrix is concave totally monotone.
The main result in this paper is a linear time algorithm solving the extension of problem (1) when the weight matrix is given by

$$
w(i, k)=\min _{j=1, \ldots, m}\{b(i, j)+c(j, k)\}
$$

where $B=\{b(i, j)\}$ and $C=\{c(j, k)\}$ are known Monge matrices of size $n \times m$ and $m \times n^{\prime}$, respectively. In the applications described later, c_{i} will be i, n^{\prime} will be n and $F[k]$ will be $E[k-1]$. For this reason, we explain the algorithm only for this particular case, although it can be modified for solving the more general formulation. Then, the problem is that of calculating

$$
\begin{align*}
& E[i]=\min _{j=1, \ldots, m} \min _{k=1, \ldots, i}\{b(i, j)+c(j, k)+E[k-1]\} \\
& i=1, \ldots, n \tag{2}
\end{align*}
$$

where $E[0]$ is given. In [2], a tridimensional array that can be expressed as $b(i, j)+c(j, k)$ is called a Monge path-decomposable tridimensional array. So, our problem is the on-line calculating of the minima of a partial (because $k \leqslant i$) Monge path-decomposable tridimensional array.

2. On-line algorithm

In order to solve (2), we use mainly the $m \times n$ Monge matrix

$$
\bar{C}=\{\bar{c}(j, k)=c(j, k)+E[k-1]\} .
$$

Given i, let \bar{C}^{i} be the $m \times i$ submatrix formed by the first i columns of \bar{C} and let A^{i} be the matrix obtained by adding $b(i, j)$ to each row j of \bar{C}^{i}. $E[i]$ is the global minimum of A^{i} and we will denote by $J(i)$ and $K(i)$ the row and column of A^{i} where this minimum is, i.e., $E[i]=a^{i}(J(i), K(i))=$ $b(i, J(i))+\bar{c}(J(i), K(i))$. For each i, we want to calculate ($J(i), K(i))$ and the key idea of our algorithm is that only $\mathrm{O}(m+n)$ candidate positions (j, k) need to be considered for calculating ($J(i), K(i)), \forall i$. In addition, all the matrices involved in the algorithm are concave totally motonones.

Let $k^{i}(j), j=1, \ldots, m$, be the column with the minimum of row j of A^{i}, and let $j^{i}(k), k=1, \ldots, i$, be the row with the minimum of column k of A^{i}. Notice that $k^{i}(j)$ is also the position of the minimum of the row j of \bar{C}^{i} because row j of A^{i} is obtained from the same row of \bar{C}^{i} by adding the constant $b(i, j)$. When a row has more than one minimum, we will always take the one in the leftmost column. Similarly for columns, we will take the one in the topmost row and as a global minimum, we will take the one in the leftmost column and topmost row. The following lemma gives some additional properties about these row and column minima.

Lemma 1.

(1) $k^{i}(j) \leqslant k^{i}(j+1), j=1, \ldots, m-1$.
(2) $j^{i}(k) \leqslant j^{i}(k+1), k=1, \ldots, i-1$.
(3) $k^{i}(j) \leqslant k^{i+1}(j), i=1, \ldots, n-1$.
(4) $j^{i}(k) \leqslant j^{i+1}(k), i=k, \ldots, n-1$.

Proof. Given i, A^{i} and its transpose are Monge matrices, hence (1) and (2) hold by monotonicity. On the other hand, as \bar{C}^{i+1} is obtained from \bar{C}^{i} by adding column $i+1$ of $\bar{C}, k^{i+1}(j)$ is either $k^{i}(j)$ or $i+1$, hence (3). Finally, given $k \leqslant i$, column k of A^{i+1} is obtained from column k of A^{i} by adding $b(i+1, j)-b(i, j)$ to each entry. As B is Monge, $b(i+1, j+1)-b(i, j+1) \leqslant b(i+1, j)-b(i, j)$, for $j=1, \ldots, m-1$, so, what is added is a decreasing

Fig. 1. Matrices \bar{C}^{\prime} and H.
amount in each row. Therefore, the minimum of the column k of A^{i+1} has to be in or after $j^{i}(k)$.

The global minimum of A^{i} is always the minimum in its row and in its column, so we have $K(i)=k^{i}(j)$ for an index $j \leqslant m$, and $J(i)=j^{i}(k)$ for an index $k \leqslant i$. Hence, by previous lemma $J(i) \leqslant j^{i}(i)$. These values $j^{i}(i), i=1, \ldots, n$, can be precalculated as follows: let D be the $n \times m$ Monge matrix defined as $d(i, j)=b(i, j)+c(j, i)$ and let $d(i)$ be the column where row i of D has its minimum. Column i of A^{i} is obtained by adding the constant $E[i-1]$ to each element of row i of D, so $d(i)=j^{i}(i)$.

Lemma 2. $K(i) \leqslant i$ and $d(K(i)) \leqslant J(i) \leqslant d(i)$ for $i=1, \ldots, n$.

Proof. Obviously, $K(i) \leqslant i$ because A^{i} is an $m \times i$ matrix. In addition, $J(i)=j^{i}(k)$ for a $k \leqslant i$, hence by Lemma 1, part (2),
$J(i) \leqslant j^{i}(i)=d(i)$.
Similarly, as $K(i) \leqslant i$, using (4) of Lemma 1 we have: $d(K(i))=j^{K(i)}(K(i)) \leqslant j^{i}(K(i))=J(i)$.

In Fig. 1 the lemma is illustrated. Let \bar{C}^{\prime} be the partial matrix formed by the elements $\bar{c}(j, k)$ such that $d(k) \leqslant j \leqslant d(n)$, for $1 \leqslant k \leqslant n$. Given i, the previous
lemma implies that the position $(J(i), K(i))$ is in R_{i} (shaded region in Fig. 1) defined as
$R_{i}=\{(j, k) \ni d(k) \leqslant j \leqslant d(i), 1 \leqslant k \leqslant i\}$.
Now, let H be the partial matrix of \bar{C} defined as $h(j, k)=c(j, k)+E[k-1]$ if $d(k)<j \leqslant d(n)$, for $1 \leqslant k \leqslant n$ (submatrix delimited by the thick line in Fig. 1). Notice that each row j of $H, j=d(1)+$ $1, \ldots, d(n)$, is defined until the column $\max \{k \ni$ $d(k)<j\}$ and that H is concave totally monotone. Let $h(j)$ be the position where the minimum of row j of H is achieved. Then, the following lemma shows that it suffices to consider $\mathrm{O}(m+n)$ candidates for the positions of all the global minima.

Lemma 3. Either $J(i)=d(K(i))$ or $K(i)=h(J(i))$ for $i=1, \ldots, n$.

Proof. Given i, we know that $K(i)$ is the column where the minimum of row $J(i)$ of \bar{C}^{i} is found and, by Lemma 2 , that $(J(i), K(i)) \in R_{i}$. Then, either the minimum of row $J(i)$ is in H, and hence $K(i)=$ $h(J(i))$, or $K(i) \leqslant i$ is a column such that $J(i)=$ $d(K(i))$.

In Fig. 1, the positions $(j, h(j))$ of H are marked with a black dot and the positions $(d(i), i)$ with a white one. Lemmas 2 and 3 imply that, given i, candidate positions for containing ($J(i), K(i)$) are only those
belonging to R_{i} and marked with a black or a white dot.

Now, let m^{\prime} be the number of these positions that can contain a global minimum in any step i. For the moment, we assume that all of them have been calculated, i.e., we know where a black or white dot appears in \bar{C}^{\prime}. We can enumerate these positions from 1 to m^{\prime} beginning with the first row and then in each row, from left to right. If (j, k) is the candidate position with number $p, 1 \leqslant p \leqslant m^{\prime}$, we define $\operatorname{row}(p)=j$ and $\operatorname{col}(p)=k$. Given $i, E[i]$ is achieved in one candidate position of R_{i}, so, if $l(i)$ is the number of candidate positions in R_{i}, then

$$
E[i]=\min _{1 \leqslant p \leqslant l(i)} b(i, \operatorname{row}(p))+\bar{c}(\operatorname{row}(p), \operatorname{col}(p)) .
$$

Therefore, if we define A^{\prime} as the $n \times m^{\prime}$ partial matrix with elements

$$
\begin{aligned}
a^{\prime}(i, p)= & b(i, \operatorname{row}(p))+c(\operatorname{row}(p), \operatorname{col}(p)) \\
& +E[\operatorname{col}(p)-1] \\
\text { for } i= & 1, \ldots, n, p=1, \ldots, l(i)
\end{aligned}
$$

then $E[i]$ is the minimum of row i of A^{\prime}.
Lemma 4. The $n \times m^{\prime}$ matrix A^{\prime} is concave totally monotone.

Proof. The values $l(i)$ are non decreasing, so A^{\prime} is a generalized lower triangular matrix. We only need to prove that $a^{\prime}(i, p)+a^{\prime}(i+1, p+1) \leqslant a^{\prime}(i+1, p)+$ $a^{\prime}(i, p+1)$ when these four entries are defined, which is equivalent to proving that $b(i, \operatorname{row}(p))+b(i+$ $1, \operatorname{row}(p+1)) \leqslant b(i+1, \operatorname{row}(p))+b(i, \operatorname{row}(p+1))$. This last inequality is true because $\operatorname{row}(p+1)$ is either $\operatorname{row}(p)$ or $\operatorname{row}(p)+1$, and B is Monge.

Now, we are ready to solve the initial problem (2). In step i, let us assume that $E[1], \ldots, E[i-1]$ and $h(d(1)+1), \ldots, h(d(i-1))$ have been calculated. Then, the first i columns of \bar{C} and H are defined. Hence, the rows $d(i-1)+1, \ldots, d(i)$ of H are also known and, if $d(i-1)<d(i)$, then we can calculate $h(d(i-1)+1), \ldots, h(d(i))$. In order to calculate $E[i]$, we need to know all the positions in R_{i} with black and white dots and the value of $a^{\prime}(i, p)$ in these positions. This obviously can be done because the first i columns of \bar{C} are defined and because $h(d(1)+1)$,

```
Algorithm MINIMA
begin
    activate LARSCH over each row of \(D\), obtaining
                                    \(d(i), i=1, \ldots, n\).
    initialize \(p=0 ; d(0)=d(1)\);
    for \(i\) from 1 to \(n\) do
    comment The \(i\) first columns of \(\bar{C}\) are defined.
    if \((d(i)>d(i-1)\) ) then
        comment The rows from \(d(i-1)+1\) to \(d(i)\)
                    of \(H\) are defined.
        for \(j\) from \(d(i-1)+1\) to \(d(i)\) do
            activate LARSCH over \(H\) for calculating \(h(j)\)
            \(p=p+1 ; \operatorname{row}(p)=j ; \operatorname{col}(p)=h(j) ;\)
        end for
    end if
    \(p=p+1 ; \operatorname{row}(p)=d(i) ; \operatorname{col}(p)=i ; l(i)=p ;\)
    comment The first \(l(i)\) columns of \(A^{\prime}\) are defined.
    comment The row \(i\) of \(A^{\prime}\) is complete.
    activate LARSCH over \(A^{\prime}\) for calculating \(E[i]\).
    end for
end
```

Fig. 2. The on-line algorithm.
$\ldots, h(d(i))$ are known at step i. The code in Fig. 2 shows a way of doing the calculations.

Lemma 5. The complexity of algorithm MINIMA is $\Theta(m+n)$.

Proof. The algorithm LARSCH is activated for calculating the minima of D, H, and $A^{\prime} . D$ is a $n \times m$ full matrix, H is a partial matrix of, at most, size ($m-1$) $\times(n-1)$ and A^{\prime} is a $n \times m^{\prime}$ partial matrix, but $m^{\prime}=n+d(n)-d(1) \leqslant n+m-1$. As each entry of these matrices can be calculated in constant time, all these minima are obtained in $\Theta(m+n)$ steps.

3. Applications

3.1. Finding the minimum Hamiltonian curve in a convex polygon

Given $N=m+n$ points on the plane forming a convex polygon P, we want to find the minimum Hamiltonian curve S, starting at point p_{1} and finishing at point p_{m}, where p_{1} and p_{m} are arbitrarily chosen. In [7], this problem is reformulated as one of dynamic

Fig. 3. The minimum Hamiltonian curve.
programming and an $\mathrm{O}(N \log N)$ time and $\mathrm{O}(N)$ space algorithm is given for solving it.

This reformulation is the following. Let $U_{P}=$ $\left\{p_{1}, \ldots, p_{m}\right\}$ be the set of points on P between p_{1} and p_{m} (both included), clockwise numbered, and $L_{P}=$ $\left\{q_{1}, \ldots, q_{n}\right\}$ the set of points on P between p_{1} and p_{m} (both excluded), counterclockwise numbered (see Fig. 3). Let $d(\cdot, \cdot)$ be the Euclidean distance between two points. Let $S(i)$ be the shortest Hamiltonian curve from p_{1} to p_{m} visiting all the points of U_{P} and only the first i points of L_{P} and let $E[i]$ be the length of $S(i)$.

If we define

$$
E[0]=\sum_{j=1}^{m-1} d\left(p_{j}, p_{j+1}\right)
$$

then the following scheme of dynamic programming holds (see [7]):

$$
\begin{aligned}
E[i]= & \min _{j=1, \ldots, m-1} \min _{1 \leqslant k \leqslant i}\left\{E[k-1]+d\left(p_{j}, q_{k}\right)\right. \\
& +\sum_{l=k}^{i-1} d\left(q_{l}, q_{l+1}\right)+d\left(q_{i}, p_{j+1}\right) \\
& \left.-d\left(p_{j}, p_{j+1}\right)\right\}, \quad i=1, \ldots, n .
\end{aligned}
$$

By defining:

- $s\left(q_{i}\right)=\sum_{k=1}^{i-1} d\left(q_{k}, q_{k+1}\right)$, for $1 \leqslant i \leqslant n$,
- $b(i, j)=s\left(q_{i}\right)+d\left(q_{i}, p_{j+1}\right)-d\left(p_{j}, p_{j+1}\right)$, for $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant m-1$,
- $c(j, k)=d\left(p_{j}, q_{k}\right)-s\left(q_{k}\right)$, for $1 \leqslant j \leqslant m-1$ and $1 \leqslant k \leqslant n$,
then the previous scheme is equivalent to:

$$
\begin{align*}
& E[i]=\min _{j=1, \ldots, m-1} \min _{k \leqslant i}\{b(i, j)+c(j, k)+E[k-1]\} \\
& i=1, \ldots, n . \tag{3}
\end{align*}
$$

Quantities $s(i), i=1, \ldots, n$, can be easily computed in $\mathrm{O}(n)$ time and stored in $\mathrm{O}(n)$ space and hence, given i and j, we can calculate $b(i, j)$ and $c(j, i)$ in constant time. In addition, matrices B and C are Monge and then, the on-line algorithm of the previous section can be applied directly.

3.2. The convex-polygon-and-line TSP

Now, we are interested in calculating the minimum tour that visits $N=m+n$ points, when m of them are on a convex polygon P and the other n are on a segment line $S L$ inside P. In [7], this problem is solved in $\mathrm{O}((m+n) \log n)$ time and $\mathrm{O}(n)$ space, improving the previous $\mathrm{O}\left(N^{2}\right)$-algorithm for this problem described in [6]. A simpler version of this problem, for points on three parallel lines, was studied by Cutler (see [5]) in relation to the problem of connecting nets in printed circuits and he solved it in $\mathrm{O}\left(N^{3}\right)$ time.

In [7], a similar reformulation to the previous one is given for solving the convex-polygon-andline TSP. Let $C P_{U}$ (the upper convex polygon) and $C P_{L}$ (the lower convex polygon) be the set of points $\left\{p_{0}, p_{1}, \ldots, p_{m_{1}+1}\right\}$ and the set of points $\left\{r_{0}, r_{1}, \ldots\right.$,

Fig. 4. The convex-polygon-and-line TSP.
$r_{m_{2}+1}$) clockwise and counterclockwise numbered, respectively (see Fig. 4). Notice that $p_{1} \in C P_{U}$ is redefined as $r_{0} \in C P_{L}$ because sometimes it must be considered as belonging to $C P_{L}$. The same happens with points $r_{1}, p_{m_{1}}$ and $r_{m_{2}} . V_{S L}=\left\{q_{1}, \ldots, q_{n}\right\}$ is the set of points on $S L$ numbered from left to right. Let $S(i)$ be the shortest tour that visits all the points of P and only the first i points of $S L$ and let $G[i]$ be its length.

Now, let $E[i]$ and $F[i]$, respectively, be the length of the shortest tour that visits all the points of P and only the first i points of $S L$, with the constraint that the last zone of $S L$, a zone [q_{k}, q_{i}], is linked with two points of $C P_{U}$ and with two points of $C P_{L}$. Let us define
$G[0]=\sum_{j=0}^{m_{1}} d\left(p_{j}, p_{j+1}\right)+\sum_{j=1}^{m_{2}-1} d\left(r_{j}, r_{j+1}\right)$
(the perimeter of P). Then, the following scheme of dynamic programming holds (see [7]):
$E[i]=\min _{j=0, \ldots, m_{1}} \min _{1 \leqslant k \leqslant i}\left\{\begin{array}{l}G[k-1]+d\left(q_{k}, p_{j}\right) \\ +d\left(q_{k}, q_{i}\right)+d\left(q_{i}, p_{j+1}\right) \\ -d\left(p_{j}, p_{j+1}\right)\end{array}\right\}$,

$$
i=1, \ldots, n
$$

$F[i]=\min _{j=0, \ldots, m_{2}} \min _{1 \leqslant k \leqslant i}\left\{\begin{array}{l}G[k-1]+d\left(q_{k}, r_{j}\right) \\ +d\left(q_{k}, q_{i}\right)+d\left(q_{i}, r_{j+1}\right) \\ -d\left(r_{j}, r_{j+1}\right)\end{array}\right\}$,

$$
i=1, \ldots, n
$$

$G[i]=\min \{E[i], F[i]\}, \quad i=1, \ldots, n$,
where $d(\cdot, \cdot)$ is the Euclidean distance between two points except that we define
$d\left(q_{k}, p_{0}\right)=d\left(q_{k}, r_{0}\right)=\infty \quad$ if $k \neq 1, \quad$ and $d\left(q_{k}, p_{m_{1}+1}\right)=d\left(q_{k}, r_{m_{2}+1}\right)=\infty \quad$ if $k \neq n$.

If we define:

- $s\left(q_{i}\right)=d\left(q_{1}, q_{i}\right)$, for $1 \leqslant i \leqslant n$,
- $b(i, j)=s\left(q_{i}\right)+d\left(q_{i}, p_{j+1}\right)-d\left(p_{j}, p_{j+1}\right)$, for $i=$ $1, \ldots, n$ and $j=0, \ldots, m_{1}$,
- $c(j, k)=d\left(q_{k}, p_{j}\right)-s\left(q_{k}\right)$, for $j=0, \ldots, m_{1}$ and $k=1, \ldots, n$,
- $b^{\prime}(i, j)=s\left(q_{i}\right)+d\left(q_{i}, r_{j+1}\right)-d\left(r_{j}, r_{j+1}\right)$, for $i=$ $1, \ldots, n$ and $j=0, \ldots, m_{2}$,
- $c^{\prime}(j, k)=d\left(q_{k}, r_{j}\right)-s\left(q_{k}\right)$, for $j=0, \ldots, m_{2}$ and $k=1, \ldots, n$
then we have:

$$
\begin{align*}
E[i]= & \min _{j=0, \ldots, m_{1}} \min _{1 \leqslant k \leqslant i}\{G[k-1] \\
& +b(i, j)+c(j, k)\}, \quad i=1, \ldots, n, \\
F[i]= & \min _{j=0, \ldots, m_{2}} \min _{1 \leqslant k \leqslant i}\{G[k-1] \tag{4}\\
& \left.+b^{\prime}(i, j)+c^{\prime}(j, k)\right\}, \quad i=1, \ldots, n, \\
G[i]= & \min \{E[i], F[i]\}, \quad i=1, \ldots, n .
\end{align*}
$$

Each element of the matrices B, B^{\prime}, C and C^{\prime} can be calculated in constant time and these matrices are all Monge. Then, by interleaving the computation of $E[i], F[i]$ and $G[i]$, the algorithm of the previous section can be used to solve the convex-polygon-andline TSP in $\Theta(N)$ time and $\Theta(N)$ space.

References

[1] A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, R. Wilber, Geometric applications of a matrix searching algorithm, Algorithmica 2 (1987) 195-208.
[2] A. Aggarwal, J.K. Park, Notes on searching in multidimensional monotone arrays, in: Proceedings 29th IEEE Symp. on Foundations of Computer Science, October 1988, pp. 497-512.
[3] A. Aggarwal, J.K. Park, Improved algorithms for economic lotsize problems, Oper. Res. 41 (1993) 549-571.
[4] R.E. Burkard, B. Klinz, R. Rudolf, Perspectives of Monge properties in optimization, Discrete Appl. Math. 70 (1996) 95161.
[5] M. Cutler, Efficient special case algorithms for the N-line planar traveling salesman problem, Networks 10 (1980) 183-195.
[6] V.G. Deineko, R. van Dal, G. Rote, The convex-hull-and-line traveling salesman problem: a solvable case, Inform. Process. Lett. 51 (1994) 141-148.
[7] A. García, J. Tejel, Using total monotonicity for two optimization problems on the plane, Inform. Process. Lett. 60 (1996) 1317.
[8] L.L. Larmore, B. Schieber, On-line dynamic programming with applications to the prediction of RNA secondary structure, J. Algorithms 12 (1991) 490-515.
[9] J.K. Park, A special case of the n-vertex traveling-salesman problem that can be solved in $\mathrm{O}(n)$ time, Inform. Process. Lett. 40 (1991) 247-254.

[^0]: ${ }^{\text {* }}$ Partially supported by University of Zaragoza, Spain. Project UZ96-CIENT-09.

 * Corresponding author. Email: olaverri@posta.unizar.es.
 ${ }^{1}$ Email: pjodra@posta.unizar.es.
 ${ }^{2}$ Email: jtejel@posta.unizar.es.

