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Abstract 

Proving that a function satisfies the quadrangle inequality is a powerful and elegant way to show that a dynamic 
programming algorithm to compute that function can be sped up by a factor of the input size. In this paper we 
consider two problems that do no fit in the usual general cases of functions that satisfy the quadrangle inequality 
but for which the proof of the quadrangle inequality still carries through: the multi-peg Tower of Hanoi problem 
with weighted disks and the problem of constructing a Rectilinear Steiner Minimal Arborescence (RSMA) on a 
slide. We prove the quadrangle inequality holds for a generalized function that unifies the two problems. This 
speeds up algorithms for these problems from 0(n3p) to O(n2p) and from O(n3) to 0(n2) respectively. 
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Introduction 

Yao [ 31 considered the following recurrence: 

i,i) = 0, 

+ i$~jMi,k - 1) + c(kj)). . 

She proved that if the weight function w satisfies 
the quadrangle inequality 

w(i,k) + w(j,l) < w(j,k) + w(i,l), 

for all i < j < k G I 

and is also monotone on the lattice of intervals, 
that is, 

w(i, j) < w(i’, j’), if i’ < i < j < j’ 
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then the obvious dynamic programming algo- 
rithm could be sped up from 0(n3) to 0 (n*). 
She showed first that under these conditions 
function c also satisfies the quadrangle inequal- 
ity, and then that this fact can be used to reduce 
the number of subproblems the dynamic pro- 
gramming algorithm needs to check in searching 
for a minimum solution, giving the speed up. 

We consider two problems that are of a differ- 
ent form than the one above, but for which the 
proof still carries through. The first problem is 
the well-known Towers of Hanoi problem, with 
the addition of auxiliary pegs and weighted disks 
[ 11. The problem is to find the minimum cost 
solution that moves all the disks from the left- 
most peg to the rightmost without ever putting 
a smaller disk on top of a larger one. The cost 
of moving a disk from one peg to another (pro- 
vided it is free to move) is the weight of the disk. 
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Fig. 1. Rectilinear Steiner arborescence on a slide. 

One possible solution to this problem is to 
calculate the following function (it is unknown 
if this actually provides the minimum solution). 
Here T (i, j,p ) represents the cost of moving 
disks i, i + 1 , . . . , j from one peg to another with 
p auxiliary pegs. The weight of disk i is w (i). 

I 

w(i), if i = j andp > 0, 

im~mj(2T(i,s,p) 

. T(i,j,p) = + T(s + l,j,p - 1)), 

ifi< jandp>O, 

undefined, otherwise. 

An 0 ( n3p ) time dynamic programming algo- 
rithm is straightforward. In [ I] it was conjec- 
tured this could be reduced to 0 ( n2p), and in 
this paper we show this conjecture is true. 

The second problem is to construct a min- 
imum length rectilinear directed tree with all 
edges going up or to the right to interconnect 
a slide of points [2]. A slide is a set of points 
(xi, yi) where for i < j, xi < xj and yi > yj, see 
Fig. 1. 

Since each subtree must be minimal, a dy- 
namic programming solution gives the min- 
imal length tree. Let L( i, j) be the length 
of the RSMA interconnecting points (xi, yi), 
(Xi+l,Yi+l),~~-3 (Xi, Yj). Then the length of an 
RSMA is given by 

L(i,j) = m$ij(L(i,s) + L(s + 1,j) 

+ X,+1 -Xi + Ys -Yj)- 

Here an O( n3) dynamic programming algo- 
rithm is given in [ 2 1. We show this can be re- 
duced to 0(n2). 

2. A generalized problem 

In both problems we want to compute a func- 
tion that gives us the total cost of the minimum 
cost solution. Let F (i, j, r) be the minimum cost 
of solving a problem on inputs i, i + 1,. . . , j 
with resource Y. We will compute F (i, j, Y) by 
splitting it into two subproblems F (i, s, . . . ) and 
F(s + l,k,.. . ) at i < s < j. We call the value 
s where the problem is divided a splitting point. 
Let w(i) be the cost of F(i,i,r) for r 3 0. At 
each division of the problem into subproblems, 
we assume the resource does not increase; this is 
given by the two functions f (r ) and g (r ), where 
r 3 f(r) and r 3 g(r). The function h(i,s, j) 
is the cost of dividing the problem F (i, j, Y) at 
splitting point s. Finally, a and b are two positive 
integral coefficients that weigh the cost of the 
subproblems before and after the splitting point. 
Our generalized function will then be defined as 
follows. 

(w(i), ifi = jandr 2 0, 

F(i,j,r) = 
+ bF(s + l,j,g(r)) 

I iff(r) 2 0 and g(r) 2 0, 

undefined, otherwise. 

The general conditions on h are similar to the 
quadrangle inequality, for example when k = 1 
below; they can also be interpreted geometrically 
as a six-point “hexagonal inequality” that follows 
from the quadrangle inequality. The conditions 
are, for i < j < t < k < 1 and i 4 s < I, 

if t 6 s, then 

h(i,t,k) -h(j,t,k) 
+ h(j,s,l) -h(i,s,l) d 0, and 

h(j,s,l) -h(i,s,l) G 0; 
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ifs < t, then 

k(j,GZ) - k(j,t,k) 
+ h(i,s,k) - h(i,s,Z) G 0, and 

h(i,s,k) - h(i,s,l) < 0. 

FortheRSMAproblemh(i,s,j) = x,+1 -xi + 
ys - yj; in this case it is easy to verify these con- 
ditions are met. 

A straightforward dynamic programming al- 
gorithm can calculate F (1, n, Y) in O(n3r) time. 
Using the quadrangle inequality, Lemma 1, we 
show this can be improved to 0 ( n2r) time. 

3. Proof of the quadrangle inequality 

Lemma 1. (The Quadrangle Inequality) Zf i 6 
j < k < 1 then 

F(i,k,r) + F(j,l,r) < F(i,I,r) + F(j,k,r). 

Proof. The proof is by induction on 1 - i. If l- 
i = 0 then i = j = k = 1 and the lemma is 
trivially true. 

Assume the lemma is true for 1 - i < N and 
assume 1 - i = N > 0. Note that since 1 - i > 
1, f (r) and g (r) must be at least 0 otherwise 
F (i, 1, r) is not defined. 

The function F (i, 1, r) attains a minimum at 
some splitting point, say s. Then 

F(i,l,r) = aF(i,s,f(r)) 

+ bF(s + l,l,g(r)) + h(i,s,l). 

If j < k then for some t we also have 

F(j,k,r) 

= aF(j,t,f(r)) + bF(t + l,k,g(r)) 

+ h(j,t,k). 

Weknowi<s<landifj<kthenj<t< 
k. There are four cases to consider: 

Case 1: j < k and s 2 t. Since F (i, k,r) and 
F (j, 1, r) are minimal over all splitting points, 
we have 

F(i,k,r) + F(j,l,r) 
d aF(i,t,f(r)) + bF(t + l,k,g(r)) 

+ h(i,t,k) + aF(j,s,f(r)) 

+ WCs + l,l,g(r)) + h(j,s,l). 

Now since i < j < t < s < 1 we can use the 
induction hypothesis, 

F(i,t,f(r)) + F(j,s,f(r)) 

< F(i,s,f(r)) + F(j,t,f(r)), 

to get 

J’(i,k,r) + F(j,Z,r) 

< aF(j,t,f(r)) + bF(t + l,k,g(r)) 

+ h(i,t,k) + aF(i,s,f(r)) 

+ bF(s + l,Z,g(r)) + h(j,s,Z) 

= F(j,k,r) + h(i,t,k) -h(j,t,k) 

+ F(i,Z,r) + h(j,s,Z) -h(i,s,Z) 

= F(j,k,r) + F(i,Z,r) 

since s and t are minimal splitting points for 
F (i, 1, r) and F (j, k, r) and by our property on 
h. 

Case 2: j < k and s < t. This case is similar to 
Case 1, splitting F (i, k, r ) at s and F (j, 1, r ) at t 
and applying the induction hypothesis with s + 
1 < t + 1 < k d 1 to the terms with coefficient 
b. 

Case 3: j = k and s > j. Since r > f(r) 
it is easy to see that F(i,k,r) d F(i,k,f(r)). 
Also, i < j = k, so clearly F (j, k, f (r) ) < 
F (i, k, f (r ) ). Combining these inequalities and 
using a 2 1, we get 

F(i,k,r) < aF(i,k,f(r)) 

- (a - l)F(j,k,f(r)). 

Then since F (j, 1, r ) is minimal over all splitting 
points we get 

F(i,k,r) + F(j,Z,r) 

< aF(i,k,f(r)) - (a - l)F(j,k,f(r)) 

+ aF(j,s,f(r)) + bF(s + l,l,s(r)) 

+ h(j,s, 1). 
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Using the induction hypothesis on i < j = 
k < s, 

F(i,k,r) + F(j,l,r) 

=G aF(j,k,f(r)) - (a - l)F(j,k,f(r)) 

+ aF(i,s,f(r)) + bF(s + l,I,g(r)) 

+ h(j,s,l) 

= F(j,k,f(r)) + F(i,l,r) 

+ h(j,s,l) - h(i,s,l) 

2 F(j,k,r) + F(i,I,r). 

This last step follows by our conditions on h and 
the fact that F(j,k,f(r)) = w(j) = F(j,k,r) 
since j = k and r 2 f(r) 2 0. 

Case 4: j = k and s < j. This case is simi- 
lar to Case 3, splitting F (i, k, r) at s, using the 
inequality 

- (b - l)F(j,k,g(r)), 

and using the induction hypothesis with s + 1 < 
j=k<l. q 

Lemma 2. (The Monotone Property) Let 
M( i, j, r ) be the largest splitting point for 
F (i, j, r) that gives a minimum value of F. Then 

M(i,j,r) 6 M(i,j + 1,r) 

< M(i + 1, j + 1,r). 

Theorem 3. The value of F ( 1, n, r) can be com- 
puted in 0 ( n2r) time. 

These last two results follow as in Yao’s pa- 
per [ 3 1. This shows that for the Tower of Hanoi 
problem with p auxiliary pegs and n weighted 
disks we can compute a solution in 0 ( n2p ) time. 
For a slide of n points we can compute a Rec- 
tilinear Steiner Minimal Arborescence in 0 ( n2 ) 
time. 
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