
Journal of Algorithms 42, 277–303 (2002)
doi:10.1006/jagm.2002.1213, available online at http://www.idealibrary.com on

Optimal Prefix-Free Codes for Unequal Letter Costs:
Dynamic Programming with the Monge Property

Phil Bradford

Max Planck Institut für Informatik, 66123 Saarbruecken, Germany

Mordecai J. Golin1

Hong Kong UST, Clear Water Bay, Kowloon, Hong Kong
E-mail: golin@cs.ust.hk

Lawrence L. Larmore2

Department of Computer Science, University of Nevada, Las Vegas,
Nevada 89154-4019

E-mail: larmore@cs.unlv.edu

and

Wojciech Rytter

Instytut Informatyki, Uniwersytet Warszawski, Banacha 2, 02-097 Warszawa, Poland;
and Department of Computer Science, University of Liverpool, United Kingdom

Received March 14, 2000

In this paper we discuss the problem of finding optimal prefix-free codes for
unequal letter costs, a variation of the classical Huffman coding problem. Our
problem consists of finding a minimal cost prefix-free code in which the encod-
ing alphabet consists of unequal cost (length) letters, with lengths α and β. The
most efficient algorithm known previously requires O�n2+max�α�β�� time to construct
such a minimal-cost set of n codewords, provided α and β are integers. In this paper

1 This research partially supported by HK RGC CERG Grants 652/95E, 6082/97E, and
6137/98E and HKUST DAG 98/99.EG23. To whom correspondence should be addressed.

2 Research supported by NSF Grant CCR-9503441.

277

0196-6774/02 $35.00
 2002 Elsevier Science (USA)

All rights reserved.

278 bradford et al.

we provide an O�nmax�α�β�� time algorithm. Our improvement comes from the use
of a more sophisticated modeling of the problem, combined with the observation
that the problem possesses a “Monge property” and that the SMAWK algorithm
on monotone matrices can therefore be applied. 2002 Elsevier Science (USA)

Key Words: dynamic programming; Huffman codes; lopsided trees; Monge matrix;
monotone matrix; prefix-free codes.

1. INTRODUCTION

Finding optimal prefix-free codes for unequal letter costs (and the asso-
ciated problem of constructing optimal lopsided trees) is an old classical
problem. It consists of finding a minimal cost prefix-free code in which the
encoding alphabet consists of unequal cost (length) letters, of lengths α
and β�α ≤ β. The code is represented by a lopsided tree in the same way
that a Huffman tree represents a solution for the Huffman coding prob-
lem. Despite this similarity, the case of unequal letter costs seems much
harder to solve than the classical Huffman problem; no polynomial time
algorithm is known for general letter costs, despite a rich literature on the
problem. (See e.g., [1] for a survey.) However, there are known polynomial
time algorithms when α and β are integer constants [8].
The problem of finding the minimum cost tree in this case was first

studied in 1961 by Karp [10] who solved the problem of finding opti-
mal prefix-free codes for (possibly nonbinary) encoding alphabets with
unequal integral cost letters by reduction to integer linear programming.
This yielded an algorithm with time complexity exponential in n, where n
is the number of leaves in the code tree. Since then there has been much
work on variations of the problem, such as bounding the cost of the opti-
mal tree (Altenkamp and Mehlhorn [2], Kapoor and Reingold [9], and
Savari [18]), restriction to the special case when all of the weights are
equal (Cot [6], Perl et al. [17], and Choi and Golin [5]), and approximating
the optimal solution (Gilbert [7]). However, it is still not known whether
the basic problem is polynomial-time solvable, or is ��-hard.
The only published technique other than Karp’s for solving the gen-

eral problem is due to Golin and Rote [8]. For r-letter encoding alpha-
bets in which the respective costs of the letters are integers satisfying c1 ≤
c2 ≤ · · · ≤ cr , they describe an O�ncr+2�-time dynamic programming algo-
rithm that constructs the tree in a top-down fashion; in our binary encoding
case this becomes O�nβ+2�-time and is currently the most efficient known
algorithm for small β. In this paper, we introduce a different dynamic
programming approach, obtaining a bottom-up algorithm, and saving a
quadratic factor in time complexity. A straightforward algorithmic realiza-
tion of this approach would also run in O�nβ+2�-time, but we describe two
techniques which decrease the time complexity, each by a factor of ��n�.

prefix codes for unequal letter costs 279

The first technique transforms the search space into a larger, but more
tractable, one. The second uses monotone-matrix concepts, i.e., the Monge
property [16] and the SMAWK algorithm [3].
Before proceeding we point out that there are two well understood spe-

cial cases of the general arbitrary-costs arbitrary-weights problem: the Varn
problem, see [20], in which all the leaf weights are the same, and the
Huffman problem, in which all the letter-costs are the same. In the Varn
case there is an O�n� top down node-splitting algorithm; in the Huffman
case there is an O�n� bottom-up merging algorithm. Both of these algo-
rithms take advantage of the special combinatorial structure their input
restrictions imply to utilize (different) greedy techniques to build their opti-
mal trees. In the general arbitrary-weights, arbitrary-letter-costs case that
this paper addresses, both of these greedy algorithms can easily be shown
to fail.
We also point out that unlike in Golin and Rote [8] our method is limited

to binary code trees. The technique that we employ does not seem easily
generalizable to general r-ary trees since the new representations of binary
trees that we use and the special combinatorial properties they permit us
to exploit do not seem to extend to the r-ary case.
Our approach requires a better understanding of the combinatorics of

lopsided trees, which, in turn, requires introducing some definitions. Let
α�β be positive integers, α ≤ β. A binary lopsided α�β tree (or just a
lopsided tree, if α and β are understood) is a binary tree in which every
nonleaf node u of the tree has two children, where the length of the edge
connecting u to its left child is α, and the length of the edge connecting u
to its right child is β. Figure 1 shows two 2, 5 lopsided trees.
Let T be a lopsided tree and v ∈ T some node. Then

depth�T� v� = sum of the lengths of the edges connecting root�T � to v

depth�T � = max�depth�T� v� 	 v ∈ T
�
For example, tree T in Fig. 1 has depth 10 while tree T ′ has depth 9.

FIG. 1. Two lopsided 2, 5 trees. The trees are labeled with P = �2� 5� 5� 8
.

280 bradford et al.

Let P = �p1� p2� � � � � pn� be a sequence of nonnegative weights. Let T
be a lopsided tree with n leaves labeled v1� v2� � � � � vn. The weighted external
path length of T with respect to P is

cost�T� P� = ∑
i

pi · depth�T� vi��

Given P , our problem is to construct a lopsided tree T that minimizes
cost�T� P�. Returning to Fig. 1 we find that, for P = �2� 5� 5� 8
 tree T has

cost�T� P� = 2 · 10+ 5 · 7+ 5 · 7+ 8 · 4 = 122

while tree T ′ has

cost�T ′� P� = 2 · 9+ 5 · 7+ 5 · 6+ 8 · 5 = 123�

With a little more work it is not hard to see that tree T is a minimal cost
lopsided 2, 5 tree for P . As was pointed out quite early [10] (see [8] for
a more recent detailed description) this problem is equivalent to finding a
minimal cost prefix-free code in which the encoding alphabet consists of
two unequal cost (length) letters, of lengths α and β. If α = β the problem
reduces directly to the standard Huffman coding problem.
Note that, given any particular tree T , the cost actually depends upon

the enumeration of the leaves of T , the cost being minimized when leaves
of greater depth always have smaller or equal weight. We therefore will
assume that the leaves of T are enumerated in nonincreasing order of
their depth, i.e., depth�T� v1� ≥ depth�T� v2� ≥ · · · ≥ depth�T� vn�, and that
p1 ≤ p2 ≤ · · · ≤ pn. This assumption will be used implicitly throughout the
paper.
In the next section we will introduce some sequences that are related to

trees and introduce some properties that permit us to restate our problem
as a problem about sequences rather than trees. In Sections 4 and 5, we
prove most of those properties. In Section 6, we discuss how to use the
Monge property to reduce the running time of the algorithm. In Section 7
we prove a key lemma stated in Section 5. Section 8 concludes.

2. THREE TYPES OF SEQUENCES RELATED TO
LOPSIDED TREES

Let n and P be fixed. Throughout the paper, we describe a tree only by
how many leaves it has at each level. This description is justified by the fact
that cost�T� P� = cost�T ′� P�, if T and T ′ have the same number of leaves
at every level. In what follows we say that node v is on level i of T if v is i
levels from the bottom of T , i.e., if i = depth�T � − depth�T� v�.

prefix codes for unequal letter costs 281

FIG. 2. A 2–5 tree T with depth�T � = 20 and its characteristic sequence seq�T � =
�2� 4� 6� 7� 9� 9� 10� 10� 12� 13� 14� 15� 16� 16� 17� 17� 17� 17� 17�.

We consider three classes of sequences:

1. for a given tree T , the numbers-of-leaves sequence ��T � = �δ0�T �,
δ1�T �� � � � � δd−1�T ��, where δi�T � is the number of leaves which are below
or at a given level i.

2. for a given tree T , its characteristic sequence, denoted by seq�T �,
which is the sequence BT = �b0� b1� � � � � bd−1� in which bi is the number of
right children at or below level i, for all 0 ≤ i < d = depth�T �. See Fig. 2.

3. monotonic sequences B = b0� b1� � � � � bd−1 of nonnegative integers
which end in the β-tuple �n− 1� n− 1� � � � � n− 1�. A sequence is monotonic
if b0 ≤ b1 ≤ · · · ≤ bd−1. Denote the set of such monotonic sequences ending
in β-tuple �n− 1� n− 1� � � � � n− 1� by �n. If T is a tree, we shall see below
that seq�T � ∈ �n, but if B ∈ �n, there may be no tree for which B is a
characteristic sequence. We say a sequence B ∈ �n is legal if B = seq�T �
for some tree T .

We now provide some intuition as to how these definitions arise. ��T �
is introduced because δi�T � − δi−1�T � is the number of leaves on level i,
and, as mentioned above, these values can be used to calculate cost�T� P�.
In the next section we will see that ��T � can be reconstructed from seq�T �.
Monotonic sequences are a generalization of characteristic sequences.

For any tree T , seq�T � is monotonic by definition. If T is a tree with n

282 bradford et al.

leaves then T must have n− 1 internal nodes and thus n− 1 right children.
The top β levels of T (not counting the root) cannot contain any right
children.
Thus, seq�T � terminates in a β tuple �n − 1� n − 1� � � � � n − 1� and �n

contains the set of all legal sequences.
In Section 4 we will introduce a quantity, cost�B�P�, defined for mono-

tonic sequences. This cost will have two important properties. The first
property is that this new cost function is effectively a generalization of the
cost function on trees defined above; the second property is that minimum
cost is always achieved on a sequence which is the characteristic sequence
of some tree. Formally, the first property is

P1. Consistency of the cost function. cost�seq�T �� P� = cost�T� P�.
Thus, the problem of finding a minimum cost lopsided tree is totally

equivalent to that of finding a minimum cost legal sequence in �n. The
reason for introducing all of the notation is the next important property,
which will be proven in Lemma 3.

P2. Key-property. For each B ∈ �n, not necessarily a legal one, and
weight set P , �P� = n, a lopsided tree BuildTree�B� can be constructed such
that cost�BuildTree�B�� P� ≤ cost�B�P�. Furthermore BuildTree�B� can be
constructed in O�n2� time.

Intuitively (we go into greater detail in Section 5) BuildTree�B� is defined
so that if B = seq�T � for some min-cost tree T , then T = BuildTree�B�.
Property (P1) then implies that cost�BuildTree�B�� P� = cost�T� P� =
cost�B�P�. Defining BuildTree�B� so that it has this property is not hard.
The difficult part is proving that all B ∈ �n, even if they are legal and
do not correspond to a minimum-cost tree or, worse, even if they are not
legal, satisfy cost�BuildTree�B�� P� ≤ cost�B�P�. As we shall see in the
next section, this inequality is important because it immediately leads to
an algorithmic approach to solving our problem.

3. GENERAL STRUCTURE OF THE ALGORITHM

If B is a min-cost monotonic sequence and T = BuildTree�B�, then by
(P1) and (P2) we have

cost�seq�T �� P� = cost�T� P� ≤ cost�B�P��
The minimality of B then implies that cost�seq�T �� P� = cost�B�P� and thus
seq�T � is also a min-cost sequence in �n. Legal sequences are a subset of
�n so this immediately implies that seq�T �, by definition a legal sequence,
is a min-cost legal sequence and, from (P1), that T is a min-cost lopsided
tree.

prefix codes for unequal letter costs 283

FIG. 3. Relations between lopsided trees, monotonic sequences, and graphs.

Our algorithm will therefore be to find a min-cost monotonic sequence
B ∈ �n and then build the min-cost tree T = BuildTree�B�. The nontrivial
aspect of our algorithm, and the fact which will save us our first ��n� factor
in our running time, is that the above properties permit us to search for
an optimum among all sequences in �n, not just the legal ones. Essentially
they permit us to search in a larger, but more tractable, search space.
In Section 6 we show how to actually find min-cost monotonic sequences.

We construct a particular edge-weighted graph Gn, with designated source
and sink, such that there is a one–one correspondence between the mono-
tonic sequences in �n and the source-sink paths in Gn. This correspondence
will have the further property that cost�B�P� will be exactly the weight
of the path corresponding to B. Finding a min-cost sequence is therefore
reduced to finding a min-cost source-sink path in Gn. We will also see that
this optimization problem satisfies a Monge property that will enable it to
be solved a factor of ��n� faster than it would normally require.
The relationship between lopsided trees, sequences, and paths is sketched

in Fig. 3. The general structure of the algorithm is given in Fig. 4.

4. DEFINING THE COST IN TERMS OF SEQUENCES

The main goal of this section is to define a cost�B�P� for all B ∈ �n that
has the property that the cost of a tree T and its associated characteristic

FIG. 4. Top level view of the optimal tree construction algorithm.

284 bradford et al.

sequence seq�T � will be the same. We start by defining values:

Definition 1.

Si =
{∑

j≤i
pj if 1 ≤ i ≤ n

∞ otherwise.

With this definition, it is straightforward to write the cost of T as a func-
tion of ��T � = �δ0�T �� δ1�T �� � � � � δd−1�T ��, where δi�T � is the number of
leaves which are below or at a given level i.

Lemma 1.

cost�T� P� = ∑
0≤k<depth�T �

Sδk�T ��

Proof.

Cost�T� P� = ∑
i≤n

pi · depth�vi�

= ∑
0≤j≤depth�T �

j
∑

�vi 	 depth�vi�=j

pi

= ∑
1≤j≤depth�T �

∑
�vi 	 depth�vi�≥j

pi

= ∑
1≤j≤depth�T �

∑
�vi 	 height�vi�≤n−j

pi

= ∑
0≤k<depth�T �

Sδk�T �

We now define a cost on monotonic sequences B and then, in the next
lemma, see that this cost is identical to the tree cost on T if the sequence
is the legal sequence B = seq�T �.
Definition 2. Let B = b0� b1� � � � � bd−1 be a monotonic sequence.

�∀k� 0 ≤ k < d�, set
Nk�B� = bk + bk−�β−α� − bk−β�

where bj = 0 for all j < 0. Now define

cost�B�P� = ∑
0≤k<d

SNk�B��

If B is the sequence for some tree T then Nk�B� = δk�T �, the number
of leaves on or below level k.

prefix codes for unequal letter costs 285

FIG. 5. The bottom forest F11 of the tree T from Fig. 2.

Lemma 2. Let T be a lopsided tree and B = seq�T � = b0� b1� � � � � bd−1.
Then

• (A) �∀ i� 0 ≤ i < d = depth�T ��,
δi�T � = Ni�seq�T �� = bi + bi−�β−α� − bi−β

• (B) cost�T� P� = cost�B�P�.
Proof. Let �k = forestk�T � be the forest consisting of all nodes at level

k and below (See Fig. 5). From our perspective its most useful property
will be the fact that a node u ∈ �k is a leaf in �k if and only if the same
node is a leaf in T .
Note that δk�T �, previously defined as the number of leaves on or below

level k in T , is therefore also the exact number of leaves in forestk�T �.
To prove (A), note that �i is a forest, hence

Ni�T � = �u ∈ Fi 	 u is a leaf in �i
 (1)

= Number of internal nodes in �i +Number of trees in �i (2)

The first summand in the last line is easily calculated. A node at height k
is internal in �i if and only if it is the parent of some right child at level
k− β. Thus

Number of internal nodes in �i = bi−β� (3)

The second summand is only slightly more complicated to calculate. The
number of trees in �i is exactly the same as the number of tree-roots in �i.
Now note that a node in �i is a tree-root in �i if and only if its parent

is not in �i. Thus a right child at height k in �i is a tree-root if and only if
i − β < k ≤ i and there are exactly bi − bi−β such nodes.

286 bradford et al.

Similarly a left child at height k is a tree-root if and only if i− α < k ≤ i.
This may occur if and only if the left child’s right sibling is at height k,

where i − β < k ≤ i − �β− α�. The number of such nodes is therefore

bi−�β−α� − bi−β�

We have therefore just seen that

Number of trees in �i = �bi − bi−β� + �bi−�β−α� − bi−β�� (4)

Combining (3) and (4) completes the proof of (A). (B) follows from
Lemma 1 and (A).

5. DESCRIPTION OF THE FUNCTION BuildTree

Each characteristic sequence describes the unique “shape” of a lopsided
tree. Although intuitive, the reconstruction of a tree from its characteris-
tic sequence can be rather technical. The main goal of this section is to
describe a procedure that reconstructs min-cost trees from their sequences
and show what happens when we try to reconstruct a sequence correspond-
ing to a non-min-cost tree or even a sequence that corresponds to no tree
at all.
Our construction is guided by the requirement that it be reversible for

min-cost trees, i.e., if B = seq�T � for some min-cost tree T , then T =
BuildTree�B�. If B = seq�T � for some non min-cost tree it will be possible
that T �= BuildTree�B�; if B is not legal then T = BuildTree�B� will still
exist but of course seq�T � �= B.
So, now, assume that B = seq�T � is a legal sequence for some min-cost

tree T . The weight p1 is associated with a leaf at level 0, and the left sibling
of this leaf is associated with some other weight pk. To define BuildTree�B�
so that it works backward to construct T it must determine how k can be
identified.
Observe that we may assume that this left sibling is a lowest leaf in the

tree which is a left-child, i.e., a lowest left node in T . Such a node appears
on level β− α (see tree T in Fig. 6). The number of leaves below this level
is bβ−α−1. Thus, since we list items consecutively with respect to increasing
levels, a lowest left-child leaf has index k = FirstLeft�B�, where

FirstLeft�B� = bβ−α−1 + 1�

We state, without proof, the intuitive fact3 that, if T is an optimal tree
in which p1� pk label sibling leaves, then the tree T ′ that results by (i)

3This fact is not needed for later proofs; it is only given to help provide some intuition as
to why the algorithm is defined the way it is.

prefix codes for unequal letter costs 287

FIG. 6. The correspondence between trees T� T ′ and their sequences: T ′ = merge�T� 1� 3�
and seq�T � = B = �1� 2� 2� 3� 3� 4� 4� 4� 4� 4�; seq�T ′� = dec�B� = B′ = �0� 1� 1� 2� 2� 3� 3� 3,
3� 3�; FirstLeft�B� = bβ−α−1 + 1 = b5−2−1 + 1 = 3 and cost�T � = cost�T ′� + 2p4 + 5p1.

removing those leaves and (ii) labeling their parent (now a leaf) with p1 +
pk will also be an optimal tree for the leaf set P ′ = P ∪ �p1 + pk
 −
�p1� pk
. (See tree T ′ in Fig. 6.) Calculation shows that

cost�T� P� = cost�T ′� P ′� + β · p1 + α · pk� (5)

If the leaves with weights p1� pk are siblings in a tree T then denote
by T ′ = merge�T� 1� k� the tree in which those leaves are removed and
their parent is replaced by a leaf. (See Fig. 6.) For the sequence B =
�b0� b1� � � � bd� denote

dec�B� = B′ = �b0 − 1� b1 − 1� b2 − 1� � � � bd − 1��
Note that (after any leading zeros are deleted) this sequence is the charac-
teristic sequence of T ′ = merge�T� 1� k�.
Assume � is a sorted sequence of positive integers, x is a positive integer,

and insert��� x� is the sorted sequence obtained by inserting x into � in
the correct position. Now denote by delete�P�p1� pk� the sequence P with
elements p1 and pk deleted, and define

P ′ = package merge�P� 1� k� = insert�delete�P�p1� pk�� p1 + pk��
For example if P = �2� 3� 4� 5� 10
 then

P ′ = delete�P� 2� 4� = �3� 5� 10
�
insert�P ′� 6� = �3� 5� 6� 10
�

package merge�P� 1� 3� = �3� 5� 6� 10
�
The reason for introducing this notation is that P ′ will be the weights that
T ′ = merge�T� 1� k� will be labeled with.

288 bradford et al.

FIG. 7. Procedure BuildTree�B�.

The observations above lead us to the algorithm BuildTree�B� in Fig. 7,
which, for B ∈ �n and P with �P� = n, builds a lopsided tree with n leaves.
As an example of how the algorithm works suppose that α�β = 2� 5� B =

�1� 2� 2� 3� 3� 4� 4� 4� 4� 4� and P = �1� 1� 1� 1� 1
. Set B5 = B and P5 = P .
We will run BuildTree�B5� for P5 = �1� 1� 1� 1� 1
. For i = 4� 3� 2, let Bi

be dec�Bi+1� with leading zeros deleted, i.e., the two smaller sequences
on which BuildTree is recursively called, and let Pi be the P with which
Bi is called. The table in Fig. 8 collects the values generated by the algo-
rithm. Note that k = FirstLeft�B� = b�5−2�−1 + 1 = b2 + 1. The pk col-
umn contains the value of pk in the current Pi. Figure 9 shows the trees
Ti = BuildTree�Bi� (for Pi) that are generated. Note that T5, the tree that
is the final result, satisfies seq�T5� = B5, i.e.,

BuildTree�B5� = B5�

It is not difficult to show that T5 is a min-cost tree for P5. This is a
special case of a general rule; if B = seq�T �, where T is a min-cost tree for
P , then BuildTree�B� will construct a tree whose shape, i.e., the number of
nodes per level, is exactly the same as that of T . The proof of this fact is a

prefix codes for unequal letter costs 289

FIG. 8. The values generated by Buildtree�B5� on P5 and its recursive calls.

straightforward induction on n using the definition of FirstLeft�B� and the
fact that if T is minimal for P then T ′ is minimal for P ′. We do not include
it here because it is not needed for the algorithm.
We also note that the algorithm is well defined for all B ∈ �n and

�P� = n: the proof is by induction. It is obviously well defined for B ∈ �2
and �P� = 2. If n > 2 then k = FirstLeft�B� = bβ−α−1 + 1 ≤ n so pk

exists and P ′ = package merge�P� 1� k� is well defined so steps 1–5 are well
defined. Since B′ = dec�B� ∈ �n−1 and �P ′� = n − 1 this means that when
the algorithm recursively calls BuildTree�B′� using P ′ it receives a well-
defined result and step 6 is well defined as well. Finally, from the defini-
tion of P ′ = package merge�P� 1� k� we know that there exists some j with
p′

j = p1 + pk. Thus step 8 is also well defined.
To bound the running time note that the recursion only goes to a depth

of n− 1 and each step requires at most O�n� time so the entire procedure
only needs O�n2� time.

FIG. 9. Trees generated by BuildTree�B5� and its recursive calls. Tree Ti is labeled by Pi.

290 bradford et al.

FIG. 10. The values generated by Buildtree�B4� on P4 and its recursive calls.

As an example of the algorithm run on a legal sequence corresponding
to a non-minimal tree we refer back to tree T ′ in Fig. 1 which was not
min-cost for P = �2� 5� 5� 8
. Set B4 = seq�T ′�. We will run BuildTree�B4�
for P4 = P . For i = 3� 2, let Bi be dec�Bi+1� with leading zeros deleted, i.e.,
the two smaller sequences on which BuildTree is recursively called, and let
Pi be the P with which Bi is called. The table in Fig. 10 collects the values
generated by the algorithm. Figure 11 shows the trees Ti = BuildTree�Bi�
(for Pi� that are generated. Note that BuildTree�B4� generates tree T4 in
the diagram which is not T ′, i.e., BuildTree�seq�T ′�� �= T ′. Referring back
to Fig. 1 we see that T4 actually is the other tree, T , in that figure.
If B ∈ �n is not legal then BuildTree�B� will still build some tree but

it will not have any meaning for us. As an example suppose that α�β =
2� 5� B = �2� 2� 2� 2� 2� 2� and P = �1� 1� 1� with n = 3. Working through
the two possible cases of trees with three leaves we see that B does not
correspond to either of them so B is not legal. Referring to Fig. 12 we see
that Buildtree�2� 2� 2� 2� 2� 2� does construct a perfectly reasonable tree.
The most important property of the operation BuildTree is stated by

the following lemma (whose somewhat technical proof is postponed to
Section 7).

Lemma 3. For all B ∈ �n,

cost�BuildTree�B�� P� ≤ cost�B�P��
As mentioned previously if B = seq�T � for some min-cost tree T , then

BuildTree�B� will have the same shape as T so, from Lemma 2,

cost�BuildTree�B�� P� = cost�T� P� = cost�B�P�
and the inequality in the lemma reduces to an equality.

FIG. 11. Trees generated by BuildTree�B4� and its recursive calls. Tree Ti is labeled by Pi.

prefix codes for unequal letter costs 291

FIG. 12. The values and trees generated by Buildtree�2� 2� 2� 2� 2� 2� on �1� 1� 1�. Note that
�2� 2� 2� 2� 2� 2� is not a legal sequence but Buildtree is still well defined on it.

The inequality in the lemma can be strict, though. For example, referring
back to the construction in Figs. 10 and 11 we have

cost�BuildTree�B4�� P4� = cost�T4� P4� = 122 < 123 = cost�B4� P4��

For an example starting with a nonlegal B, suppose again that α�β =
2� 5� B = �2� 2� 2� 2� 2� 2� and P = �1� 1� 1� with n = 3. Then N3�B� =
b3 + b0 = 2 + 2 = 4 > n so SN3�B� = ∞ and cost�B�P� = ∞. On
the other hand BuildTree�B� is a well-defined tree (see Fig. 12) with
cost�BuildTree�B�� P� < ∞ (actually, cost�BuildTree�B�� P� = 16�. Thus,
trivially

cost(BuildTree�B�� P� < cost�B�P��

A direct corollary of Lemma 3 is the correctness theorem.

Theorem 1 (correctness theorem). If B ∈ �n is of minimal cost then
BuildTree(B) is an optimal lopsided tree. The cost of the optimal tree equals
the cost of the optimal monotonic sequence.

Proof. Let B be a min-cost sequence, T = seq�B� and T ′ be a min-cost
tree. By Lemma 2, Lemma 3, and the fact that cost�T ′� P� ≤ cost�T� P� we
have

cost�seq�T ′�� P� ≤ cost�T ′� P� ≤ cost�T� P� ≤ cost�B�P��

From the minimality of B we have that cost�seq�T ′�� P� ≥ cost�B�P� so
cost�T� P� = cost�B�P� = cost�T ′� P� and T is an optimal lopsided tree
with the cost of T equaling the cost of B.

292 bradford et al.

6. THE SHORTEST PATH COMPUTATION AND
THE MONGE PROPERTY

In this section we first show how to find a minimum cost monotonic
sequence by performing a shortest path calculation in a special weighted
graph Gn. We then show that the structure of this graph is special enough
that the problem we are trying to solve has a Monge property, enabling us
to use the SMAWK algorithm to get a better running time.
We will use the weighted directed graph Gn = �Vn�En�, where

Vn = ��i0� i1� � � � � iβ−1� 	 0 ≤ i0 ≤ ii ≤ · · · ≤ iβ−1 ≤ n− 1
�
of all nonincreasing β-tuples of nonnegative integers in the range [0 � � � n−
1]. Two vertices u� v ∈ Vn will be connected by an edge in En if and only
they “overlap” in a �β− 1�-tuple:
Definition 3. Let u� v, u �= v be any two vertices in Vn such that u =

�i0� i1� i2� � � � � iβ−1�, v = �i1� i2� � � � � iβ−1� iβ� where
0 ≤ i0 ≤ i1 ≤ i2 ≤ · · · iβ−1 ≤ iβ ≤ n− 1�

Then �u� v� ∈ En. En contains no other edges.
Furthermore, for u� v as above with �u� v� ∈ En we define Weight and

EdgeCost by

Weight�u� v� = EdgeCost�i0� i1� � � � � iβ� = Siβ+iα−i0

Note that the structure of Gn is only dependent upon n and not upon P;
P is only used to define the Si and thus the edge weights.
A β-tuple i0� i1� � � � � iβ−1 is lexicographically smaller than another β-tuple

j0� j1� � � � � jβ−1 if ∃k < β − 1 such that (a) �∀ t� t < k�, it = jt and (b) ik <
jk. Observe that if �u� v� is an edge in En, then the fact that �∀ j� 0 < j ≤ β�,
ij−1 ≤ ij in �i0� i1� i2� � � � � iβ−1� iβ� guarantees that u is lexicographically
smaller (as a β-tuple) than v. In other words the lexicographic ordering on
the nodes is a topological ordering of the nodes of Vn; the existence of such
a topological ordering implies that Gn is acyclic. Note that the β-tuple of
zeros, (0� � � � 0), is a source. We refer to this node as the initial node (or the
source) of the graph. Note also that the β-tuple �n− 1� � � � � n− 1� is a sink,
which we call the final node (or the sink) of the graph.
As we shall now see there is a cost-preserving one-to-one correspondence

between source-sink paths in Gn and monotonic sequences in �n.
First suppose B = b0� b1� � � � � bd−1 is any monotonic sequence terminat-

ing in the β-tuple �n− 1� n− 1� � � � � n− 1�. Define u−1 = �0� 0� � � � � 0� and
∀k, 0 ≤ k ≤ d − 1 set

uk = �bk−β� bk+1−β� � � � � bk��

prefix codes for unequal letter costs 293

where bi = 0 when i < 0. Then u−1 is the initial node and ud−1 the final
node, thus

u−1 u0 u1 u2 � � � ud−1

is a path from the initial to the final node. This will be the path correspond-
ing to B.
Now note that for k ≥ 0

Weight�uk−1� uk� = Sbk+bk−�β−α�−bk−β
�

Thus, the cost of the path is exactly cost�B�P� = ∑
0≤k<d Sbk+bk−�β−α�−bk−β

.
Note that if B1 and B2 are two different monotonic sequences starting with
�0� 0� � � � � 0� and terminating in �n − 1� n − 1� � � � � n − 1� then the paths
associated with them are different. Thus, this mapping from monotonic
sequences to paths is one–one.
Next suppose that

u−1 u0 u1 u2 � � � ud−1

is some path connecting the initial and final nodes. For 0 ≤ k ≤ d − 1
let bk be the βth element of the β-tuple uk, i.e., if uk = �i0� i1� � � � � iβ−1�
then bk = iβ−1. Then B = b0� b1� � � � � bd−1 is the sequence associated with
the path. It is not difficult to see that B is monotonic and terminates in
the final node, i.e., the β-tuple �n − 1� n − 1� � � � � n − 1� and that the path
corresponding to β is just the original path we started from.
Combining the above constructions we obtain a cost preserving bijection

between monotonic sequences in �n and paths in Gn connecting the initial
and final nodes. As an aside, note that given a path (sequence), its cor-
responding sequence (path) can be read off quite simply in O�d� = O�n�
time.
The path/sequence correspondence together with Lemma 2 implies that

given a tree T and B = seq�T �, the cost of the path corresponding to B
equals cost�T �.
Example. The tree T5 in Fig. 9 has B = seq�T � = �1� 2� 2� 3� 3� 4� 4� 4,

4� 4� and its corresponding path in the graph G5 is

�0� 0� 0� 0� 0� S1−→ �0� 0� 0� 0� 1� S2−→ �0� 0� 0� 1� 2�
S2−→ �0� 0� 1� 2� 2� S4−→ �0� 1� 2� 2� 3� S5−→ �1� 2� 2� 3� 3� S5−→ �2� 2� 3� 3� 4�
S5−→ �2� 3� 3� 4� 4� S5−→ �3� 3� 4� 4� 4� S5−→ �3� 4� 4� 4� 4� S5−→ �4� 4� 4� 4� 4��

where the notation �i0� i1� i2� i3� i4�
Si5+i2−i0→ �i1� i2� i3� i4� i5� denotes an edge

from �i0� i1� i2� i3� i4� to �i1� i2� i3� i4� i5� with cost Si5+i2−i0
.

294 bradford et al.

The cost of this path, and also of the tree T5 is

S1 + 2 · S2 + S4 + 6 · S5�
The above observations can be restated as

Observation 1. Assume T is a tree and B = seq�T �. Then cost�T � =
cost�B� equals the cost of the path in Gn corresponding to B.

Combining this with the correctness theorem (Theorem 1) gives

Observation 2. The cost of a shortest path from the initial node to the
final node is the same as the cost of a minimum cost tree. Furthermore,
given a minimum cost path, a minimum-cost tree can be reconstructed from
it in O�n2� time.

Note that Gn is acyclic and has O�nβ+1� edges. The standard dynamic-
programming shortest path algorithm would therefore find a shortest path
from the source to the sink, and hence a minimum cost tree, in O�nβ+1�
time. This improves upon the best known algorithm for finding min-cost
trees, which runs in O�nβ+2� time [8]. We now discuss how to improve by
another factor of ��n� to find such a path, and thus a min-cost tree, in
O�nβ� time.
Our algorithm cannot construct the entire graph since it is too large.

Instead we use the fact that the graph has a Monge property.
A 2-dimensional k × r matrix A is defined to be a Monge matrix [16] if

for all 1 ≤ i < k, 1 ≤ j < r,

A�i� j� +A�i + 1� j + 1� ≤ A�i� j + 1� + A�i + 1� j�� (6)

To use this definition we need to define appropriate matrices. For any
vertex u in the graph Gn, define cost�u� to be the least weight (cost) of any
path in Gn from the initial node to u.
Now let δ = �i1� i2� � � � � iβ−1� be any monotonic �β− 1�-tuple of integers

such that 0 ≤ i1 and iβ−1 ≤ n. For 0 ≤ i ≤ i1 and iβ−1 ≤ j ≤ n− 1, define

EdgeCostδ�i� j� = EdgeCost�i� i1� � � � � iβ−1� j� = Sj+iα−i�

Now define the matrix Aδ�i� j� for 0 ≤ i ≤ i1 and iβ−1 ≤ j ≤ n− 1 by

Aδ�i� j� = cost�i� i1� � � � � iβ−1� + EdgeCostδ�i� j��
The intuition behind these definitions is that EdgeCostδ�i� j� is the cost

of the edge between vertices �i� δ� and �δ� j� in Gn and Aδ�i� j� is the
cost of the path from the initial node of Gn to �δ� j� that first traverses
the shortest path from the initial node to �i� δ�, and then takes the edge
connecting �i� δ� to �δ� j�.

prefix codes for unequal letter costs 295

Theorem 2 (Monge-property theorem). Let δ = �i1� i2� � � � � iβ−1� be
any fixed monotonic �β − 1�-tuple of integers such that 0 ≤ i1 and iβ−1 ≤ n.
Then the matrix Aδ is a two-dimensional Monge matrix.

Proof. Let δ = �i1� i2� � � � � iβ−1�. We prove Eq. (6), where A = Aδ. If
the right-hand side of inequality (6) is infinite, we are done. Otherwise, by
the definitions of Aδ and the Sk we have

Aδ�i� j + 1� +Aδ�i + 1� j� −Aδ�i� j� −Aδ�i + 1� j + 1�
= EdgeCostδ�i� j + 1� + EdgeCostδ�i + 1� j� − EdgeCostδ�i� j�
− EdgeCostδ�i + 1� j + 1�

= Sj+1+iα−i + Sj+iα−�i+1� − Sj+iα−i − Sj+1+iα−�i+1�

= pj+1+iα−i − pj+iα−i

≥ 0�

which completes the proof.

A 2 × 2 matrix A is defined to be monotone if either A11 ≤ A12 or
A21 ≥ A22. An n × m matrix A is defined to be totally monotone if every
2 × 2 submatrix of A is monotone. It is known, see e.g., [4], that a two-
dimensional Monge matrix is always totally monotone.
The SMAWK algorithm [3] takes as its input a function which computes

the entries of an n × m totally monotone matrix A and gives as output a
nondecreasing function f , where 1 ≤ f �i� ≤ m for 1 ≤ i ≤ n, such that
Ai� f �i� is the minimum value of row i of A. The time complexity of the
SMAWK algorithm is O�n+m�, provided that each computation of an Aij

takes constant time. Note that since every Monge matrix is totally monotone
all of the matrices Aδ are totally monotone. This fact permits us to use the
SMAWK algorithm to prove:

Theorem 3 (Shortest-path theorem). For β > 1 a shortest path from a
source node to the sink node in G can be constructed in O�nβ� time.

Proof. Our approach is to calculate cost�u� for all monotonic β-tuples
u. In particular, this will calculate the cost of the shortest path to the final
node, which is the cost of the optimal tree.
For fixed monotone �β − 1�-tuple δ = �i1� i2� � � � � iβ−1�, note that �i� δ�

and �δ� j� are β-tuples, and thus vertices of Gn for any i ≤ i1. Furthermore
for any iβ−1 ≤ j ≤ n.

�∀j� j ≥ iβ−1�� cost�δ� j� = min�Aδ�i� j� 	 i ≤ i1
�
Also note that Aδ�i� j� can be calculated in constant time provided the
values of cost�i� δ� are known. This means that, given a fixed δ, if the

296 bradford et al.

values of cost�i� δ� are already known for all i, then the values of cost�δ� j�
for all j can be calculated in total time O�n� by the SMAWK algorithm.
We call this O�n� time step, processing δ.
Our algorithm to calculate cost�i0� i1� � � � � iβ−1� for all β-tuples is simply

to process all of the �β − 1� tuples in lexicographic order. Processing in
this order ensures that at the time we process δ the values of cost�i� δ� are
already known for all i.
Using the SMAWK algorithm, each of the O�nβ−1� �β − 1�-tuples can

be processed in linear time, so the entire algorithm uses O�nβ� time, as
stated.4

Note that in this proof we actually only show how to calculate the cost
of the shortest path. Transforming this calculation into construction of the
actual path uses standard dynamic programming backtracking techniques.
We leave the details to the reader.

Theorem 4 (main result). A minimum cost lopsided tree can be con-
structed in O�nβ� time.

Proof. If β = 1, use the basic Huffman encoding algorithm which runs
in O�n� time if the list of weights is already sorted. Otherwise, apply the
algorithm Optimal Tree Construction from the end of Section 3.
This tells us to first find a minimum-cost source-sink path π which The-

orem 3 tells us can be computed in O�nβ� time. It then tells us to construct
B ∈ �n corresponding to π. This can be done in O�n� time; the B so con-
structed is a minimum-cost one.
Finally, it tells us to apply the algorithm BuildTree(B) from Section 5.

This takes O�n2� time and Theorem 1 ensures us that this tree will be a
minimum-cost one.

7. PROOF OF LEMMA 3

The main goal of this section is to prove Lemma 3, i.e., to show that

cost�B�P� ≤ cost�BuildTree�B�� P�

for any monotonic sequence B ∈ �n. The proof is based upon three tech-
nical lemmas about sequences of integers.

4The constant implicit in the O�� is actually quite small since all of the work in the algorithm
is done by the SMAWK algorithm and the SMAWK algorithm has a very small constant in its
running time. See, e.g., [13], for a detailed discussion.

prefix codes for unequal letter costs 297

If � = x1� x2� � � � � xn is any sorted sequence of positive integers in non-
decreasing order, let Pref Sumt��� =

∑t
i=1 xi denote the sum of the first t

entries of �. The following two lemmas are straightforward:

Lemma 4 (insertion-sort lemma). If t ≤ length��� and � is a sorted
sequence then

1� Pref Sumt�insert��� x�� ≤ Pref Sumt���,
2� Pref Sumt�insert��� x�� ≤ Pref Sumt−1��� + x.

Proof. Immediate

Lemma 5. Recall from Section 5 that

package merge�P� 1� k� = insert�delete�P�p1� pk�� p1 + pk��

If j ≥ k and P ′ = package merge�P� 1� k� then

1� Pref Sumj−2�P ′� ≤ Pref Sumj�P� − p1 − pk,

2� Pref Sumj−1�P ′� ≤ Pref Sumj�P�.
Proof. Let � = delete�P�p1� pk�. Observe that for j ≥ k we have

Pref Sumj−2��� = Pref Sumj�P� − p1 − p2 (7)

To prove (1) apply point (1) of Lemma 4 and Eq. (7) to the sequence �,
where P ′ = insert��� x� with x = p1 + pk and t = j − 2.
To prove (2) apply point (2) of Lemma 4 with x = p1 +p2. From Eq. (7)

we have

Pref Sumj−1�P ′� = Pref Sumj−1�insert��� x�� ≤ Pref Sumj−2��� + x

= Pref Sumj�P��

This completes the proof.

Lemma 6 (key-lemma). Let k = FirstLeft�B� = bβ−α−1 + 1, P ′ =
package merge�P� 1� k� and B′ = dec�B�. Then

cost�B′� P ′� ≤ cost�B�P� − β · p1 − α · pk�

Proof. Recall that cost�B�P� = ∑
0≤k<d SNk�B� where Nk�B� = bk +

bk−�β−α� − bk−β and

Si =
{∑

j≤i
pj if 1 ≤ i ≤ n

∞ otherwise.

298 bradford et al.

Observe that

Ni�B′� =

Ni�B� − 1 if i < β− α
Ni�B� − 2 if β− α ≤ i < β
Ni�B� − 1 if β ≤ i < d

In what follows we assume that ∀ i, Ni�B� ≤ n since otherwise SNi�B� =∞, cost�B�P� = ∞ and the lemma is trivially true. Note that Ni�B� ≤ n
will also imply that Ni�B′� ≤ n− 1.
Now denote the ith term of the cost of B as

term�i� B� = SNi�B� = Pref SumNi�B��P�
and the ith term of the cost of B′ as

term�i� B′� = SNi�B′� = Pref SumNi�B′��P ′��
We now proceed with a case by case analysis.

Case 1. i < β− α.
In this case term�i� B� − term�i� B′� = p1. Summing over all i yields∑

0≤i<β−α

term�i� B′� = ∑
0≤i<β−α

term�i� B� − �β− α�p1� (8)

Case 2. β− α ≤ i < β.
In this case term�i� B� = Pref Sumj�P� and term�i� B′� = Pref Sumj−2

�P ′� for some j ≥ k = FirstLeft�B�, and, by Lemma 5, the difference
between these values is at least p1 + pk. Hence∑

β−α≤i<β

term�i� B′� ≤ ∑
β−α≤i<β

term�i� B� − α�p1 + pk�� (9)

Case 3. β ≤ i
In this case term�i� B� = Pref Sumj�P� and term�i� B′� = Pref Sumj−1

�P ′� for some j ≥ k = FirstLeft�B�. By Lemma 5, term�i� B′� ≤ term�i� B�.
Hence ∑

β≤i

term�i� B′� ≤ ∑
β≤i

term�i� B�� (10)

Combining (8), (9), and (10) we obtain the result.

We can now prove Lemma 3, i.e.,

∀B ∈ �n� cost�BuildTree�B�� P� ≤ cost�B�P�� (11)

The proof will be by induction on n. If n = 2 then B = �1� 1� � � � � 1� ∈ �2
is a d-tuple with d ≥ β and P = �p1� p2
 for some p1 ≤ p2. By definition,
S1 = p1 and S2 = p1 + p2.

prefix codes for unequal letter costs 299

Working through the calculations we find that

Nk�B� =

bk = 1 if 0 ≤ k < β− α
bk + bk−�β−α� = 2 if β− α ≤ k < β
bk + bk−�β−α� − βk−β = 1 if β ≤ k < d

so

cost�B�P� = ∑
0≤k<d

SNk�B�

= �β− α�p1 + α�p1 + p2� + �d − β�p1

= αp2 + dp1�

Recall that for n = 2, T = BuildTree�B� is a root with two children.
Therefore

cost�BuildTree�B�� P� = αp2 + βp1�

Thus

cost�BuildTree�B�P�� = αp2 + βp1 ≤ αp2 + dp1 = cost�B�P�
and (11) holds for n = 2.
So now suppose that (11) holds for n− 1; we will prove that it also holds

for n.
Let B ∈ �n, �P� = n. Set T = BuildTree�B�, k = FirstLeft�B�, �B = dec�B�

and P ′ = package merge�P� 1� k�. Let B′ be �B with all leading zeros (if any
exist) deleted and set T ′ = BuildTree�B′� (for P ′).
From the induction hypothesis we know that

cost�BuildTree�B′�� P ′� ≤ cost�B′� P ′� (12)

and from Lemma 6 we have that

cost��B�P ′� ≤ cost�B�P� − β · p1 − α · pk�

Leading zeros contribute nothing to the cost of a monotonic sequence,
though, so cost��B�P� = cost�B′� P� implying

cost�B′� P ′� ≤ cost�B�P� − β · p1 − α · pk� (13)

Let u1� u2� � � � � un−1 be the leaves of T ′ enumerated so that

depth�T� u1� ≥ depth�T� u2� ≥ · · · ≥ depth�T� un−1��
Let p′

1 ≤ p′
2 ≤ · · · ≤ p′

n−1 be the weights in P ′. By definition cost�T ′� P ′� =∑
i p

′
i · depth�T� ui�.

Let j be an index such that p′
j = p1 + pk. Recall that BuildTree�B� con-

structs T by starting with T ′, taking leaf uj and replacing it with an internal

300 bradford et al.

node with two children, both of which are leaves. Let vL be the left child
of uj and vR be the right one. Then the leaves of T are

�u1� u2� � � � � un−1� vL� vR
 − �uj
�
Label these leaves with the weights in P as follows: for i �= j label ui with
pi; label vL with pk and vR with p1. Then the external path length of T
associated with this labeling is

∑
i �=j

p′
i · depth�T� ui� + p1 · depth�T� vR� + pk · depth�T� vL�

= ∑
i �=j

p′
i · depth�T� ui� + p1 · �depth�T ′� uj� + β�

+ pk · �depth�T ′� uj� + α�
= ∑

i

p′
i · depth�T� ui� + p1β+ pkα

= cost�T ′� P ′� + p1β+ p1kα�

The last thing to notice is that, as discussed at the end of Section 1,
cost�T� P� is the minimum external path length of T under all possible per-
mutations of the assignments of the weights in P to the leaves of T . Thus
cost�T� P� is upperbounded by the external path length of T associated
with the given labeling and

cost�T� P� ≤ p1β+ p1α+ cost�T ′� P ′�� (14)

Combining (12), (13), and (14) gives

cost�T� P� ≤ p1β+ p1α+ cost�T ′� P ′�
≤ p1β+ p1α+ cost�B′� P ′�
≤ cost�B�P�

and we have shown that (11) is valid for n and thus completed the proof
of Lemma 3.

8. FINAL REMARKS

In this paper we revisited the problem of finding optimal prefix-free codes
for unequal integral letter costs α�β with α ≤ β. The best previous known
algorithm ran in O�nβ+2� time; the algorithm presented here runs in O�nβ�.
The reduction in running time was achieved in two ways. The first was by
noting that it is possible to transform the problem into one of searching for

prefix codes for unequal letter costs 301

optimal monotonic sequences (a slightly easier task) and then reconstruct-
ing optimal trees, and thus codes, from an optimal monotonic sequence.
The second was by showing that the monotonic sequence problem pos-
sesses a Monge property, permitting the use of the SMAWK algorithm.
Our construction does not work for the case of constant weights and

outdegree k > 2 (i.e., the case of general k-ary code). The reason for this
is that our representation of binary trees as monotonic sequences does
not seem to extend well to the k-ary tree case. (There are some possible
extensions but none that we have tried have good combinatorial properties
that lead to efficient algorithms.)
The big open question still remaining for this problem is exhibiting

whether or not it is NP-hard, when the weights of the edges are not
constant and the outdegree k is a part of the input.
Another interesting set of questions follows from the observation that our

algorithm, like that of [8], solves the min-cost tree problem by finding the
min-cost path in some graph. In both algorithms the graph structure only
depends upon the costs α�β, and n. It does not depend upon the weights of
the leaves; they only enter into the algorithm as defining the weights of the
edges. The question is whether we can use this graph structure to develop
new algorithms for various special min-cost tree problems.
Suppose, for example, that we know the min-cost tree for a set of

weights P = �p1� p2� � � � � pn� and then change pn to p′
n. This will change

a restricted number of edge weights in the graph. To find the min-cost tree
for P ′ = �p1� p2� � � � � pn−1� p′

n� we would need to find a min-cost path for
the same graph structure but with the new edge-weights. Is it possible to
use the fact that we know both (i) the old min-cost path and (ii) how the
edge-weights change, to develop an efficient algorithm for constructing the
new min-cost path and thus the new min-cost tree? As another example,
let us return to the Varn problem, i.e., all of the p1 = 1. In this case the
edge weights have a very simple structure. Would it be possible to use this
structure to rederive the greedy Varn algorithm directly from our graph
representation? In essence, the question we are raising here is whether the
“min-cost path in a graph” formulation of prefix-free coding could lead to
a better understanding of the structure of such codes in special cases and
better algorithms for those cases.
We conclude by pointing out, without proof, that the algorithm Opti-

mal Tree Construction can be straightforwardly extended to the problem of
finding an optimal height-limited lopsided tree. A height-limited tree is one
without nodes of depth greater than L, L a given parameter. The optimal
height-limited tree problem is to find a min-cost tree with n leaves for given
weights P with tree height limited by L. This is equivalent to finding opti-
mal �L� length-limited Huffman Codes. In [11] it was shown that these two
problems can be solved in O�nL� time.

302 bradford et al.

The optimal height-limited lopsided tree problem is similar. It is again to
find a min-cost tree with n leaves for given weights P with tree height lim-
ited by L. The only difference here is that the edges have unequal integral
lengths α�β with α ≤ β.
We can prove the following result:

Theorem 5 (height limited trees). We can construct a minimum cost
lopsided tree, with height limited by L, in O�nβ · L� time.

The idea is to show that a minimum cost lopsided tree, with height limited
by L, will correspond to a sequence B ∈ �n which is minimum-cost among
all sequences with length ≤L. Such a sequence can in turn be found by
finding the least expensive source-sink path in Gn that has link length, i.e.,
number of edges, ≤L. Using the Monge property such a path and thus a
min-cost height-L limited lopsided tree, can be found in O�nβ · L� time.
Because no new ideas are needed we only state the result and do not
provide further details.

ACKNOWLEDGMENTS

The authors thank the anonymous referees for their comments and suggestions.

REFERENCES

1. J. Abrahams, Code and parse trees for lossless source encoding, in “Sequences’97” (1997).
2. D. Altenkamp and K. Mehlhorn, Codes: Unequal probabilities, unequal letter costs,
J. Assoc. Comput. Mach. 27(3) (1980), 412–427.

3. A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric applications of a
matrix-searching algorithm, Algorithmica 2 (1987), 195–208.

4. R. E. Burkard, B. Klinz, and R. Rudolf, Perspectives of Monge properties in optimization,
Discrete Appl. Math. 70(2) (1996), 95–161.

5. S.-N. Choi and M. Golin, Lopsided trees: Algorithms, analyses and applications, in “Pro-
ceedings of the 23rd International Colloquium on Automata, Languages, and Program-
ming (ICALP 96)” (1996), pp. 538–549.

6. N. Cot, A linear-time ordering procedure with applications to variable length encoding, in
“Proc. 8th Annual Princeton Conference on Information Sciences and Systems” (1974),
pp. 460–463.

7. E. N. Gilbert, Coding with digits of unequal costs, IEEE Trans. Inform. Theory 41 (1995),
596–600.

8. M. Golin and G. Rote, A dynamic programming algorithm for constructing optimal
prefix-free codes for unequal letter costs, IEEE Trans. Inform. Theory 44(5) (1998),
1770–1781.

9. S. Kapoor and E. Reingold, Optimum lopsided binary trees, J. Assoc. Comput. Mach. 36(3)
(1989), 573–590.

10. R. M. Karp, Minimum-redundancy coding for the discrete noiseless channel, IRE Trans.
Inform. Theory 7 (1961), 27–39.

prefix codes for unequal letter costs 303

11. L. L. Larmore and D. S. Hirschberg, A fast algorithm for optimal length-limited Huffman
codes, J. Assoc. Comput. Mach. 37(3) (1990), 464–473.

12. L. L. Larmore, T. Przytycka, and W. Rytter, Parallel computation of optimal alphabetic
trees, in “SPAA93.”

13. L. L. Larmore and B. Schieber, On-line dynamic programming with applications to the
prediction of RNA secondary structure, J. Algorithms 12(3) (1991), 490–515.

14. A. Lempel, S. Even, and M. Cohen, An algorithm for optimal prefix parsing of a noiseless
and memoryless channel, IEEE Trans. Inform. Theory 19(2) (1973), 208–214.

15. K. Mehlhorn, An efficient algorithm for constructing optimal prefix codes, IEEE Trans.
Inform. Theory 26 (1980), 513–517.

16. G. Monge, “Déblai et remblai,” pp. 666–704, Mémoires de l’ Académie des Sciences,
Paris, 1781.

17. Y. Perl, M. R. Garey, and S. Even, Efficient generation of optimal prefix code: Equiprob-
able words using unequal cost letters, J. Assoc. Comput. Mach. 22(2) (1975), 202–214.

18. S. A. Savari, Some notes on Varn coding, IEEE Trans. Inform. Theory 40(1) (1994),
181–186.

19. R. Sedgewick, “Algorithms,” Addison-Wesley, Reading, MA, 1984.
20. D. F. Varn, Optimal variable length codes (arbitrary symbol cost and equal code word

probability), Inform. and Control 19 (1971), 289–301.

	1.INTRODUCTION
	FIG.1.

	2.THREE TYPES OF SEQUENCES RELATED TO LOPSIDED TREES
	FIG.2.

	3.GENERAL STRUCTURE OF THE ALGORITHM
	FIG.3.

	4.DEFINING THE COST IN TERMS OF SEQUENCES
	FIG.4.
	FIG.5.

	5.DESCRIPTION OF THE FUNCTION BuildTree
	FIG.6.
	FIG.7.
	FIG.8.
	FIG.9.
	FIG.10.
	FIG.11.
	FIG.12.

	6.THE SHORTEST PATH COMPUTATION AND THE MONGE PROPERTY
	7.PROOF OF LEMMA 3
	8.FINAL REMARKS
	ACKNOWLEDGMENTS
	REFERENCES

