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Abstract 

We show that the traveling salesman problem with a symmetric relaxed Monge matrix as distance matrix is pyramidally 
solvable and can thus be solved by dynamic programming. Furthermore, we present a polynomial time algorithm that decides 
whether there exists a renumbering of the cities such that the resulting distance matrix becomes a relaxed Monge matrix. 0 1998 
Elsevier Science B.V. All rights reserved. 
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1. Introduction 

The traveling salesman problem (TSP) is defined 
as follows. Given an n x n distance matrix C = (cij). 
find a cyclic permutation n of the set { 1,2, . . . , n) that 
minimizes the function 

i=l 

(the salesman must visit cities 1 to n in arbitrary order 
and wants to minimize the total travel length). This 
problem is known to be NP hard. For more information 
refer to Lawler et al. [ 111. 
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Several special cases of the TSP are solvable in 
polynomial time, due to special combinatorial struc- 
tures of the distance matrix (see [9] and the recent sur- 
vey [ 11). Among them is the TSP with a Monge matrix. 

An II x n matrix C = (cq) is called a Mange matrix 
if it satisfies the following conditions for all indices 
i,j,k,ZE(l,..., n} with i -c k and j < I: 

Cij+Ckl<Cil$.Ckj. (1) 

Monge matrices are well known, due to their no- 
torious role in combinatorial optimization (see the 
survey [2] and the references therein). Supnick [13] 
showed in 1957 that the TSP with a symmetric Monge 
matrixissolvedbytbetour(1,3,5,...,6,4,2).(Here 
we use brackets (..) to distinguish the cyclic repre- 
sentation of a permutation in the form n = (1, n(l), 

n(n(l)) , . . .) from the alternative representation n = 

(n(l), n(2), . . . , n(n)).) 
In order to characterize optimal solutions of the 

TSP with asymmetric Monge matrices one needs the 
concept of pyramidal tours, i.e., permutations n with 
n = (l,il,i2 ,..., i,,n, jl, _. ., jn_r_2), where il < 
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i2 < ... -C i, and jr > +.a > j,_,_, hold. The TSP 
restricted to a class of matrices is called pyramidally 

solvable if for every matrix in this class there is an 
optimal tour that is pyramidal. Although the number 
of pyramidal tours on n cities is exponential in n, a 
minimum cost pyramidal tour can be determined in 
0(n2) time by a dynamic programming approach (cf. 
Gilmore et al. [9]). 

It was shown by several authors (see, e.g., [9,1]) 
that the TSP restricted to asymmetric Monge matrices 
is pyramidally solvable, so it can be solved in 0(n2) 
time. 

Clearly, the combinatorial structure of a distance 
matrix depends on the numbering of the rows and 
columns. A matrix C = (cd) is called a permuted 

Mange matrix if there is a permutation cr of its rows 
and columns such that the permuted matrix C, = 
(ca(i)o(j)) is a Monge matrix. A permuted Monge 
matrix can be recognized in 0(n2) time [7]. So, the 
TSP on a permuted Monge matrix can also be solved 
in 0(n2) time. 

In this note, we introduce a relaxation of the Monge 
condition (1). An n x n matrix C = (cg) will be called 
a relaxed Mange matrix (RM-matrix, for short) if the 
following inequalities hold for all cities i, i + 1, j, I E 
11,.*., n)withi+le j#Z: 

Ci,i+l + Cjl G Gil + Cj,i+l~ (2) 

Ci+l,i + Cjl 6 Ci+l,l + Cji- (3) 

Note that diagonal elements of C are not involved in 
the definition of relaxed Monge matrices and thus may 
as well remain unspecified. 

In Section 2 we show that the TSP restricted to 
symmetric RM-matrices is pyramidally solvable. We 
show that the system (2~(3) is equivalent to the 
system of O(n2) inequalities, so the TSP with an RM- 
matrix can be recognized and solved in 0(n2) time. 
Until now there was only one pyramidally solvable 
TSP case with the same property known, namely the 
TSP with a Demidenko matrix ([S], see also [9]). 

In Section 3 we show that permuted RM-matrices 
can be recognized in polynomial time. What distin- 
guishes the TSP restricted to symmetric KM-matrices 
from similar efficiently solvable special cases is that 
the following two properties hold simultaneously: 
(1) It can be decided in polynomial time whether a 

matrix is a permuted RM-matrix. 

(2) There does not exist a fixed optimal tour of the 
TSP restricted to an RM-matrix, i.e., a tour that 
depends only on n but not on the actual entries of 
the distance matrix. 

All efficiently solvable cases known so far for which 
a property analogous to (1) holds have a fixed opti- 
mal tour (see [13,6] for permuted Supnick matrices 
and [ 10,4] for permuted Kalmanson matrices). This is 
different for the TSPs restricted to permuted symmet- 
ric RM-matrices: they can have differently structured 
optimal tours that can be found by applying a dynamic 
programming algorithm. 

The Euclidean TSP is the TSP where the cities are 
represented by points in the two-dimensional Euclid- 
ean plane and the distances are measured accord- 
ing to the Euclidean metric. Given a specially struc- 
tured distance matrix C = (cu), it is interesting to de- 
cide whether there exists a Euclidean point set with 
the distance matrix C. The combinatorial structure of 
Euclidean point sets that have the Monge property is 
rather primitive: if this set contains n > 9 points, they 
must lie on a common straight line (Quintas and Sup- 
nick [12]). 

In Section 4 we characterize Euclidean point sets 
that fulfill the relaxed Monge property. Additional 
geometric properties of these matrices allow to reduce 
the complexity of the recognition algorithm for these 
matrices from 0(n4) to O(n3). 

2. The TSP on symmetric RM-matrices 

We use a unified proof-technique for pyramidally 
solvable TSPs. This technique was essentially intro- 
duced by Van der Veen [ 151 and successfully ap- 
plied in, e.g., Burkard and Van der Veen [3], Van der 
Veen [14] and Burkard et al. [l]. 

The idea is as follows. In order to prove that under 
certain conditions on the distance matrix there exists 
an optimal tour that is pyramidal, a tour-improvement 
technique (TI-technique) is used. Starting from an 
arbitrary tour t, a sequence of tours tr, r2, . . . , ts is 
constructed, with tt = t, such that 

c(n) 2 c(t2) k *. . 2 C(G), 

where c(tt> denotes the length of the tour tr and 
s = S(T) is the smallest integer such that ts is a pyra- 
midal tour. Note that if S(Z) < co for every tour t, 
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k 

. . . 

Fig. 1. Illustration to Step 2 of TI-algorithm (case tt(i) > i) 

then there is always an optimal tour that is pyra- 
midal. Tour rt+l is obtained from rt by exchanging 
a number of arcs. This operation is called a trans- 
fimtation. A transformation is called feasible if the 
conditions on the distance matrix assure that the to- 
tal length of the inserted arcs is no longer than the 
length of the removed arcs. In what follows, we 
use also the definition of a valley: An index i E 

{I,..., n} is called a vuZZey of a permutation t if 
i < min{t-l(i), z(i)}. 

Theorem 2.1. The TSP restricted to symmetric RM- 

matrices is pyramidally solvable. 

Proof. Consider the following TI-algorithm. 

T&technique 
Input: A tour t. 
Output: A pyramidal tour. 
Step 0: Set tl := t and t := 1. 
Step 1: Find the smallest valley i + 1 that is 

greater than 1. 
If rr does not contain such a valley, then STOP: 
rt is a pyramidal tour. 

Step 2: Transformation: 
if tt (i) > i then 

Letrt(i)=Zandrt(i+l)=k. 
Obtain rr+l from rr by replacing arcs [i, I] and 

[i + 1, kl by [i, i + 11, [I, kl and 
reversing the subpath [Z, rt (Z), . . . , i + 11. 

Return to Step 1 with t := t + 1. 
else 

Letr,‘(i)=Zandr;-‘(i+l)=k. 
Obtain rr+t from rr by replacing arcs [I, i] and 

[k, i + l] by [i + 1, i], [k, I] and 
reversingthesubpath[i+l,rt(i+l),...,Z]. 

Return to Step 1 with t := t + 1. 

The feasibility of the transformation in Step 2 
follows immediately from inequalities (2)-(3). Since 
the smallest valley (greater than 1) is increased in 
every step, the algorithm ends after a finite number 
of steps. Starting with an arbitrary optimal tour, 
the algorithm constructs an optimal tour, which is 
pyramidal. q 

Proposition2.2. A symmetric RM-matrix can be re- 

cognized in 0(n2) time. 

Proof. We claim that in the symmetric case the system 
(2)-(3) is equivalent to the system 

Ci,i+l + Ci+2,1 < Gil + Ci+Z,i+l I (4) 

Ci,i+l + Cl&+2 6 Ci,i+2 + Ci,i+lT (5) 

withi,i+l,i+2,ZE{l,..., n}andi+2<Z.The 
proposition follows immediately from this claim. 

It is clear that (4)-(5) is a subsystem of (2)-(3). 
To prove that (4)-(5) imply (2)-(3), consider the 
differences 

A(i, i + 1, j, 2) = ci,i+t + cjl - cil- cj,i+l 

with i,i+l,j,ZE{l,..., n} and i+l< j#Z. 
It follows from (4)-(5) that A(i, i + 1, j, Z) < 0 if 
min{j, I} = i + 2. If min{j, Z} > i + 2, then the 
following recursion holds: 

A(i, i + 1, j, 1) 

=A(i,i+l,i+2,Z)+A(i+l,i+2,1, j). 
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(Here we used the fact that C is a symmetric matrix.) this by c,-1,~ + ckl < cu-1,~ + ckv and cu,u-1 + Ckl < 

This recursion together with (4)-(5) guarantees the in- cvl + Ck,u_l with k, 1: k # V, I # v and k # 1 > u - 1. 
equalities A(i, i + 1, j, 1) < 0 for all i, i + 1, j, 1 E If several candidates for u fulfill these conditions, then 

{l,..., n} with i + 1 < j # 1. This proves the proposi- any of them can be assigned to u, as the following 
tion. 0 lemma shows. 

As an open problem we pose the question to de- 
cide the computational complexity of the TSP with an 
asymmetric RM-matrix. This problem is not pyrami- 
dally solvable, as the example below shows. It is easy 
to see that the matrix 

Lemma 3.1. Iffor a given n x n RM-matrix there are 

two indices u and v: 1 < u < v < n such that 

cu-1,~ + Ckl < cu-1,1 + Cku, (6) 

cu,u-1 + Ckl < CIA + Ck,u-1, (7) 

forallk,l: k#v, l#vandk#l>u-l,thenthe 
permutation 

c= 

*Ollll 

O*OllO 

ll*lOl 

010*00 

lllO*O 

llOlO* 

is an RIM-matrix and the TSP with C has a unique 
optimaltourt= (1,2,6,3,5,4). 

3. Recognizing permuted RIM-matrices 

In this section, we consider the following problem: 

Given an n x n distance matrix C = (c& does there 
exist a renumbering of the cities, i.e., a permutation u 
of the rows and columns of C, such that the resulting 
matrix C, = (C,(i),(j)) is an RM-matrix? 

If such a permutation u exists, then the matrix C is 
called a permuted Rh4-matrix and (I is called an RM- 

permutation. 
Note that in this section we do not require that C be 

symmetric. Though we only succeeded in proving the 
polynomial solvability of the TSP restricted to a sym- 
metric RM-matrix, we still hope that the asymmetric 
case can be solved in polynomial time as well. 

A permuted RM-matrix can be recognized by an 
algorithm that is based on the next lemma. Suppose 
that u - 1 cities have already been chosen and placed 
in an RM-permutation at the places 1,2, . . . , 24 - 1. Let 
these cities be renumbered as 1,2, . . . , u - 1. Then 
the city v that can be assigned to place u should be 
chosen from the conditions (2)~(3). We can express 

p=(1,2,..., u-l,u,u+l,..., 

v-l,u,u+l,..., n) 

is an RM-permutation. 

Proof. First, we claim that the following equalities 

Cuk - Cvk = Cu,u-1 - Cu,u-1. (8) 

Ckv - Cku = Cu-l,v - Cu-1,~ (9) 

hold for all k > u, k # V. Indeed, it follows from the 
definition of an RM-matrix that 

Cu-1,~ + Cku < Cu-1,~ + Cku, 

Cu,u-1 + Cvk < Cuk + Cu,u-1, 

for all k > u. On the other hand, system (6)-(7) 
contains the inequalities 

cu-1,~ + Cku < Cu-1,~ + Ckv, 

Cu,u-1 + Cuk < Cvk + Cu,u-1 

with k > u. Combining these two systems gives us the 
equalities (8)-(9). 

Now we prove that LL is an RM-permutation, i.e., 
the inequalities 

(10) 

(11) 
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hold for all i, i + 1, j, k E (1,2, . . . , n} with i + 
1 c j # k. We restrict ourselves to considering only 
inequalities (10) and distinguish the following cases: 
l i<u-l,ori>v,oru<i<u-landj#v, 

k# v; 
0 i=u-1; 

l i=u; 
l u<i<v-land(j=vork=u); 
0 i=u-1; 

0 i=v. 
Clearly, in the first case (10) is equivalent to (2), 

which follows from the fact that C is an RM-matrix. 
If i = u - 1, then p(i) = u - 1, p(i + 1) = V, and 

(10) is equivalent to (6). 
Ifi=uandu+l,j,k#u,then(lO)hastheform 

Cv,u+l + cjk 6 cuk + cj,u+l. 

Taking into account (8), the last inequality can be 
rewritten as 

cu,u+l - (cd + cu,u-1 - cv,u-1) + cjk 

< cuk - (Cuk + Cu,u-1 - Cu,u-1) + Cj,u+l, 

or 

Cu,u+l + cjk < Cuk + cj,u+l~ 

which follows from the definition of an RM-matrix. 
If i = u and u + 1 = u, then p(i) = u + 1, p(i + 

1) = u, and (10) follows again from the fact that C = 
(cij) is an RM-matrix. 

If i = u, u + 1 < v and j = u, then we have the 
inequality 

Cu,u+l + Cuk \ Cvk + Cu,u+l, < 

which is transformed using (8)-(9) into the inequality 

cu,u+l + Cvk < Cuk + cu,u+l. 

The case i = u, u + 1 < v and k = v is similar to the 
previous one. 

If u < i < I.J - 1 and j = v or k = u, we can use 
again (8)-(9) and transform the inequality into one that 
follows from the definition of an RM-matrix. 

If i = 2, or i = u - 1 = u, then again (10) follows 
directly from the definition of an RM-matrix. If i = 
u - 1 and v - 1 # U, then u - 1 > u and, using 
(9), we transform (10) into an inequality that follows 
immediately from the definition of an RI&matrix. 
Thus the lemma is proved. q 

Due to the remarks at the beginning of this section, 
we get therefore the following result: 

Theorem 3.2. It can be decided in O(n4) time whether 
II x n matrix C = (cu) is a permuted RM-matrix. Zf it 
is, permutation u is explicitly determined within this 
time bound. 

Proof. First, try all n cities as candidates for the first 
place. Having chosen the first city, transform matrix 
C = (cd) into C’ = (CL) by subtracting constants 
from rows and columns: cb = cu - ctj - tit, i, j E 

11,2,..., n}. (We suppose here that ctr = 0.) 
Suppose that the second city has been chosen. It 

follows from (3) with i = 1 that cil 2 cjl for I,j E 
(3,. . . I n}, i # j. This means that a candidate for 
the second city (if there exist any) can be found by 
comparing the rows in C’ in 0(n2) time. If there is 
more than one candidate, any of them can be chosen, 
as the lemma shows. 

Having chosen the second city, transform matrix 
C = (cij) into C’ = (c;) with c$ = cij - C2j - 

ci2, i, j E {2,. . . , n} and find the third city, and so on. 
So, the algorithm takes 0(n4) operations over- 

all. 0 

4. The Euclidean TSP with specially structured 
matrices 

This section deals with planar Euclidean point 
sets whose distance matrices are RM-matrices. We 
use here an approach presented in [5]. Let S := 

(~l,U2,..*, u,) c R2 be a sequence of n points in 
the Euclidean plane and let C = (cu) denote its 
distance matrix defined by CQ = d (vi, Vi), where 
d (x, y) denotes the Euclidean distance between points 
x and y. 

A sequence S of points is called an RM-sequence if 
the corresponding distance matrix C is an RM-matrix. 

Forx,y,zElR2,denotebyh(x,y,z)={pER2] 
d(x, p) - d(y, p) = d(x,z) - d(y,z)} the set of 
points p E W2 that he on one (uniquely determined) 
branch of the hyperbola with focal points at x and y. 
Furthermore let H(x, y, z) = {p E W2 1 d(x, p) - 
d(y, p) 3 d(x, z) - d(y, z)} denote the set of points 
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1 (34,31) 1 9 (20,31) 
2 (37,27) 10 (16,31) 
3 (32,25) 11 (16,27) 
4 (32,21) 12 (16,20) 
5 (28,22) 13 (10,20) 
6 (28,26) 14 (6,20) 
7 (24,28) 15 (1,30) 
8 (22,29) [ 16 (1,lO) 

Fig. 2. An RM-sequence of points with coordinates. 

p E lR2 in the infinite region bounded by h (x , y , z) that 
does not contain the focal point x . 

Proposition 4.1. A point sequence S = (~1, . . . , un) is 
an RIM-sequence ifSfor each p, 4 < p < n, point up 
lies within the region 

HP = HP-1 n H(+3, up-l, 19-2) 

n H(vp-2, VP-17 vp-31, 

where H3 = iR2. 

Proof. The proof, based on inequalities (4)~(51, is 
similar to the proof of Theorem 3.1 of [5]. q 

Proposition 4.1 allows to generate RlvI-sequences of 
points in the Euclidean plane. Fig. 2 gives an illus- 
tration of an RM-sequence of 16 points. The optimal 
(pyramidal) tour is (1,2,3,4,5,12,13,14,16,1.5,11, 
10,9,8,7,6). 

Geometric properties of RIvI-sequences allow to 
reduce the complexity of the recognition algorithm 
for Euclidean permuted RM-matrices from O(n4) to 
0(n3). We claim that in this special case the number 
of pairs that can be assigned to the first and second 
places is bounded by a constant. This implies directly 
the stated complexity result. 

Indeed, consider a Euclidean RM-matrix and sup- 
pose that there are two indices kl and 11 (kr < 11) such 
that 

Ckllr + Cij < ckl j + Gil, 9 (12) 

Cllkl + Cij < Cl1 j + Cikl (13) 

foralli, jE{l,..., n}\{kl,Z~].Suchapair{kl,ll}is 
a candidate for the first and second places in an FM- 
permutation. 

If kt > 1, then the definition of RM-matrices yields 

Ckl-l,kl + Cllj < Ckl-1,j + CIlk,. 

Using (12)-(13), we get 

Clikl +Ckl-l,j < Cllj +Ckl-l,kl 

and, therefore, 

Cl,k, + Ckl_l,j = Cl,j + c!Cl-l,kl 

for j E (kl,kl + l,..., n} \ (11). This means that all 
pointsjE(ki,kl+l,..., n} \ {ZI} lie on a branch of 
the hyperbola with focal points at kr - 1 and 11. 

Ifkl=l,thenallpointsjE(1,3,4 ,..., n)\{ll} 
lie on a branch of the hyperbola with focal points at 2 
andll. 

Suppose now that there is another pair of points 
(kz,Z2} (kl < k2 < 12) with the same property. Since 
two branches of hyperbolas with different focal points 
contain no more than four common points we get 
k2 2 n - 6 and therefore only a constant number of 
possibilities for k2 and Z2. Thus the claim is proved. 
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