
Information Processing Letters 99 (2006) 203–207

www.elsevier.com/locate/ipl

A linear space algorithm for computing a longest common
increasing subsequence

Yoshifumi Sakai

Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-amamiyamachi, Aoba-ku, Sendai-shi, 981-8555 Japan

Received 21 September 2005; received in revised form 6 January 2006

Available online 9 June 2006

Communicated by M. Yamashita

Abstract

Let X and Y be sequences of integers. A common increasing subsequence of X and Y is an increasing subsequence common to
X and Y . In this note, we propose an O(|X| · |Y |)-time and O(|X| + |Y |)-space algorithm for finding one of the longest common
increasing subsequences of X and Y , which improves the space complexity of Yang et al. [I.H. Yang, C.P. Huang, K.M. Chao, A fast
algorithm for computing a longest common increasing subsequence, Inform. Process. Lett. 93 (2005) 249–253] O(|X| · |Y |)-time
and O(|X| · |Y |)-space algorithm, where |X| and |Y | denote the lengths of X and Y , respectively.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Algorithms; Longest common subsequence; Longest increasing subsequence
1. Introduction

We consider the longest common increasing subse-
quence (LCIS) problem, whose goal is to find one of the
longest increasing subsequences common to all given
sequences of integers. This problem is a simple general-
ization of a classic computer science problem of finding
one of the longest increasing subsequences (LISs) of
a single sequence of integers [2,8]. As well, the LCIS
problem is closely linked to another classic computer
science problem: finding one of the longest common
subsequences (LCSs) of all given sequences [5–7]. For
a sequence S0 in which no element appears more than
once, the LCS problem for sequences S0, S1, . . . , Sk co-
incides with the LCIS problem for integer sequences
X1, . . . ,Xk , where each Xi is obtained from Si by re-

E-mail address: sakai@biochem.tohoku.ac.jp (Y. Sakai).
0020-0190/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2006.05.005
placing each element in Si identical with the sth element
in S0 by the integer s, and deleting all elements in Si

not appearing in S0. The relationship between the LCIS
problem and the LCS problem can be applied when
computing the alignment of whole genomes [4].

In this note, we only focus on the LCIS problem for
two sequences. For any sequence S, we use |S| to de-
note the length of S, and S[s] to denote the sth element
of S. That is, S = S[1]S[2] · · ·S[|S|]. A subsequence of
a sequence S is a sequence S[s1]S[s2] · · ·S[st] for any
length 0 � t � |S| and any indices 1 � s1 < s2 < · · · <

st � |S|. For integer sequences, X and Y , and integers,
l and u, an (X,Y, l, u)-common increasing sequence
((X,Y, l, u)-CIS) is a common subsequence Z of X

and Y such that l < Z[1] < Z[2] < · · · < Z[|Z|] < u.
The LCIS problem is to find one of the longest such
(X,Y, l, u)-CISs for any given integer sequences, X and
Y , and any integers, l and u.

204 Y. Sakai / Information Processing Letters 99 (2006) 203–207
Recently, Yang et al. [9] proposed an O(|X| · |Y |)-
time and O(|X| · |Y |)-space algorithm for the LCIS
problem, which improves the time complexity of the
straightforward algorithm based on the relationship be-
tween the LCIS problem and the LCS problem men-
tioned earlier. In this note, we propose an O(|X| · |Y |)-
time and O(|X| + |Y |)-space algorithm for the LCIS
problem, which improves the space complexity of Yang
et al.’s algorithm. Subsequently to [9], several faster al-
gorithms were obtained for the LCIS problem in special
cases, for example, where the number of pairs 〈x, y〉
such that X[x] = Y [y] is relatively small [3], and where
the length of the LCIS of X and Y is relatively small [1].
In particular, Brodal el al.’s algorithm [1] has the same
linear space complexity as our algorithm, although the
time complexities of these algorithms are incomparable
when the length of the LCIS of X and Y is unrestricted.

2. The algorithm

In this section, we use the following notations and
terminology: For a sequence S and an index 0 � s �
|S|+1, S[1..s] denotes the prefix of S with length s, and
S[s..|S|] denotes the suffix of S with length |S| + 1 − s.
For sequences S and T , S · T denotes the concatenation
S[1]S[2] · · ·S[|S|]T [1]T [2] · · ·T [|T |]. For a sequence
S, the head element of S is S[1], and the tail element
of S is S[|S|].

The algorithm proposed in this note is based on
Hirschberg’s divide-and-conquer method of solving the
LCS problem in linear space [6]. In order to apply
the method, we need the following definitions which
will be used to divide the LCIS problem into two sub-
problems. For integer sequences, X, Y and Z, we say
〈x1, y1〉〈x2, y2〉 · · · 〈x|Z|, y|Z|〉 is an index sequence of
〈X,Y 〉 representing Z, if 1 � x1 < x2 < · · · < x|Z| �
|X|, 1 � y1 < y2 < · · · < y|Z| � |Y |, and X[xz] =
Y [yz] = Z[z] for any index 1 � z � |Z|. Let the cen-
ter of an index sequence 〈x1, y1〉〈x2, y2〉 · · · 〈x|Z|, y|Z|〉
of 〈X,Y 〉 representing nonempty Z be 〈xz, yz〉 such that

z =
{

1 if y1 > �|Y |/2�,
max{k | yk � �|Y |/2�} otherwise.

Let the center of an empty index sequence be empty.
Based on the divide-and-conquer method [6], we first

prove the following lemma.

Lemma 1. Assume that, for any integer sequences, X

and Y , and any integers, l and u, the center of an in-
dex sequence of 〈X,Y 〉 representing one of the longest
(X,Y, l, u)-CISs can be computed in O(|X| · |Y |) time
and O(|X| + |Y |) space. Then, for any integer se-
quences, X and Y , and any integers, l and u, one of
the longest (X,Y, l, u)-CISs can be computed in O(|X| ·
|Y |) time and O(|X| + |Y |) space.

Proof. Since the lemma holds when an empty sequence
is the only (X,Y, l, u)-CIS, we only consider the case
where there exists at least one nonempty (X,Y, l, u)-
CIS. Let 〈x, y〉 be the center of any index sequence
of 〈X,Y 〉 representing any longest (X,Y, l, u)-CIS.
Let XL = X[1..x − 1], YL = Y [1..min(y, �Y/2�) − 1],
XU = X[x + 1..|X|], and YU = Y [max(y, �Y/2�) +
1..|Y |]. Furthermore, let ZL be any longest (XL, YL, l,

X[x])-CIS, and ZU be any longest (XU, YU,X[x], u)-
CIS.

We first show that the concatenation ZL ·X[x] ·ZU is
one of the longest (X,Y, l, u)-CISs. Since the tail inte-
ger of nonempty ZL is less than X[x], and X[x] is less
than the head integer of nonempty ZU, ZL · X[x] · ZU
is an (X,Y, l, u)-CIS. On the other hand, from the def-
inition of 〈x, y〉, there exists a longest (X,Y, l, u)-CIS
Z and an index sequence 〈x1, y1〉〈x2, y2〉 · · · 〈x|Z|, y|Z|〉
of 〈X,Y 〉 representing Z whose center 〈xz, yz〉 is
〈x, y〉. Let y0 = 0 and y|Z|+1 = |Y | + 1. Then, since
Z[1..z − 1] is a longest (XL, Y [1..y − 1], l,X[x])-
CIS and yz−1 � min(y, �Y/2�) − 1, Z[1..z − 1] is
a longest (XL, YL, l,X[x])-CIS, which implies that
|ZL| = |Z[1..z − 1]|. Similarly, since Z[z + 1..|Z|] is
a longest (XU, Y [y + 1..|Y |],X[x], u)-CIS and yz+1 �
max(y, �Y/2�) + 1, |ZU| = |Z[z + 1..|Z|]|. Therefore,
|ZL · X[x] · ZU| = |Z|. Recall that ZL · X[x] · ZU is an
(X,Y, l, u)-CIS and that Z is a longest (X,Y, l, u)-CIS.
Thus, ZL · X[x] · ZU is a longest (X,Y, l, u)-CIS.

Since we assume that 〈x, y〉 can be computed in
O(|X| · |Y |) time and O(|X| + |Y |) space, and both
the lengths of YL and YU are at most |Y |/2, if ZL
can be recursively computed in O(|XL| · |YL|) time and
O(|XL|+|YL|) space, and if ZU can be recursively com-
puted in O(|XU| · |YU|) time and O(|XU| + |YU|) space,
then it is easy to verify that ZL · X[x] · ZU can be com-
puted in O(|X| · |Y |) time and O(|X| + |Y |) space. �

Before explaining how to compute the center of
an index sequence of 〈X,Y 〉 representing one of the
longest (X,Y, l, u)-CISs in O(|X| · |Y |) time and
O(|X| + |Y |) space, we need to prove some additional
lemmas.

Fix integer sequences, X and Y , and integers, l and
u, arbitrarily. For indices 1 � x � |X|, 1 � y � |Y |, a
length 1 � k � |X| and an integer a, let Wx

y (k, a) be
the set of all index sequences W of 〈X,Y 〉 represent-
ing any (X[1..x], Y [1..y], l, u)-CIS Z such that |Z| = k,

Y. Sakai / Information Processing Letters 99 (2006) 203–207 205
Z[k] = a, xk � x and yk � y, where W [k] = 〈xk, yk〉.
Furthermore, let

Kx[y] = max
({

k |Wx
y (k,Y [y]) �= ∅} ∪ {0}),

Ky[x] = max
({

k |Wx
y (k,X[x]) �= ∅} ∪ {0}),

Lx
y[k] = min

({
a |Wx

y (k, a) �= ∅} ∪ {∞}).
In other words, Kx[y] (resp. Ky[x]) denotes the length
of the longest (X[1..x], Y [1..y], l, u)-CIS whose tail in-
teger is Y [y] (resp. X[x]), while Lx

y[k] denotes the least
tail integer of any (X[1..x], Y [1..y], l, u)-CIS whose
length is k. As we will see later, these values play the
important roles in computing inductively the center of
an index sequence of 〈X,Y 〉 representing one of the
longest (X,Y, l, u)-CISs. Let K0[y] = K0[x] = 0 and
L0

y[k] = ∞. We define three conditions C1, C2 and C3
as follows:

(C1) l < X[x] < u and X[x] = Y [y],
(C2) k = Ky[x] and Lx−1

y [k] � X[x],
(C3) y � �|Y |/2� or Ky[x] = 1.

Then we have the following inductive lemmas.

Lemma 2. For any indices 1 � x � |X| and 1 � y �
|Y |,

Kx[y] =
{

min{k | X[x] � Lx−1
y [k]} if C1,

Kx−1[y] otherwise,

and

Ky[x] =
{

Kx[y] if C1,

Ky−1[x] otherwise.

Proof. Assume C1. It follows from X[x] = Y [y] that
Ky[x] = Kx[y]. Hence, it suffices to show that Ky[x] =
min{k | X[x] � Lx−1

y [k]}. If Lx−1
y [k] < X[x], then for

any W ∈ Wx−1
y (k,Lx−1

y [k]), the concatenation W ·
〈x, y〉 is in Wx

y (k + 1,X[x]). Therefore, it follows

from Wx−1
y (k,Lx−1

y [k]) �= ∅ that Wx
y (k + 1,X[x]) �=

∅, and hence, Ky[x] � k + 1. Conversely, if Ky[x] �
k + 1, then for any W ∈ Wx

y (Ky[x],X[x]), the prefix

W [1..k] is in Wx−1
y (k,X[x′]), where W [k] = 〈x′, y′〉.

Therefore, it follows from Wx
y (Ky[x],X[x]) �= ∅ that

Wx−1
y (k,X[x′]) �= ∅, and hence, Lx−1

y [k] < X[x] be-
cause X[x′] < X[x]. Thus, Ky[x] � k if and only if
X[x] � Lx−1

y [k], which implies that Ky[x] is the least k

such that X[x] � Lx−1
y [k].

Assume ¬C1. Then, 〈x, y〉 is not the tail element
of any index sequence of 〈X,Y 〉 representing any
(X[1..x], Y [1..y], l, u)-CIS. Therefore, Wx

y (k,Y [x]) =
Wx−1

y (k,Y [x]) for any length 1 � k � |X|, and hence,
Kx[y] = Kx−1[y]. Similarly, Wx
y (k,X[x]) = Wx

y−1(k,

X[x]) for any length 1 � k � |X|, and hence, Ky[x] =
Ky−1[x]. �
Lemma 3. For any indices 1 � x � |X|, 1 � y � |Y |,
and any length 1 � k � |X|,
Lx

y[k] =
{

X[x] if C2,

Lx−1
y [k] otherwise.

Proof. Assume C2. It follows from k = Ky[x] and
Wx

y (Ky[x],X[x]) �= ∅ that Lx
y[k] = Lx

y[Ky[x]] � X[x].
On the other hand, Lx

y[k] is equal to either Lx−1
y [k] or

X[x]. Therefore, it follows from Lx−1
y [k] � X[x] that

Lx
y[k] � X[x]. Thus, Lx

y[k] = X[x].
Assume ¬C2. Since Lx

y[k] is equal to either Lx−1
y [k]

or X[x], Lx−1
y [k] �= X[x] implies that Lx

y[k] = Lx−1
y [k].

Thus, it suffices to show that, if k �= Ky[x], then
Lx−1

y [k] �= X[x]. If k < Ky[x], then for any W ∈
Wx

y (Ky[x],X[x]), the prefix W [1..k] is in Wx−1
y (k,

X[x′]), where W [k] = 〈x′, y′〉. Therefore, it follows
from Wx

y (Ky[x],X[x]) �= ∅ that Wx−1
y (k,X[x′]) �= ∅,

which implies that Lx−1
y [k] < X[x] because X[x′] <

X[x]. On the other hand, if k > Ky[x], then Wx
y (k,

X[x]) = ∅. Therefore, it follows from Wx−1
y (k,X[x]) ⊆

Wx
y (k,X[x]) that Wx−1

y (k,X[x]) = ∅, and hence,

Lx−1
y [k] �= X[x]. �

Next, we inductively define the values, Iy[x] and
J x

y [k], which will be shown to be the center of an index
sequence in Wx

y (Ky[x],X[x]), and the center of an in-
dex sequence in Wx

y (k,Lx
y[k]), respectively. Note that,

since max{k | L|X|
|Y | [k] < ∞} is equal to the length of the

longest (X,Y, l, u)-CISs, J
|X|
|Y | [max{k | L

|X|
|Y | [k] < ∞}]

gives us the center of an index sequence of 〈X,Y 〉 rep-
resenting one of the longest (X,Y, l, u)-CISs, which is
what we want to compute. For indices 1 � x � |X|,
1 � y � |Y |, and a length 1 � k � |X|, let

Iy[x] =
⎧⎨
⎩

〈x, y〉 if C1 ∧ C3,

J x−1
y [Ky[x] − 1] if C1 ∧ ¬C3,

Iy−1[x] otherwise,

and

J x
y [k] =

{
Iy[x] if C2,

J x−1
y [k] otherwise,

where I0[x] and J 0
y [k] are empty. Then, we have the

following lemma.

Lemma 4. For any indices 1 � x � |X| and 1 � y �
|Y |, if Ky[x] � 1, then there exists W ∈ Wx

y (Ky[x],

206 Y. Sakai / Information Processing Letters 99 (2006) 203–207
X[x]) whose center is Iy[x], and for any length 1 � k �
|X|, if Lx

y[k] < ∞, then there exists W ∈ Wx
y (k,Lx

y[k])
whose center is J x

y [k].

Proof. We use the induction method.
Assume that Ky[x] � 1 and C1 ∧ C3. From C1,

there exists W ∈ Wx
y (Ky[x],X[x]) whose tail element

is 〈x, y〉. From C3, 〈x, y〉 is the center of W .
Assume that Ky[x] � 1 and C1 ∧ ¬C3. It follows

from Ky[x] � 1 and ¬C3 that Ky[x] � 2. Therefore, for
any W ∈ Wx

y (Ky[x],X[x]), the prefix W [1..Ky[x]−1]
is in Wx−1

y (Ky[x] − 1,X[x′]), where W [Ky[x] − 1] =
〈x′, y′〉. Hence, it follows from Wx

y (Ky[x],X[x]) �= ∅
that Wx−1

y (Ky[x] − 1,X[x′]) �= ∅, which implies that

Lx−1
y [Ky[x] − 1] < X[x] because X[x′] < X[x]. Thus,

based on the induction assumption, there exists W ′ ∈
Wx−1

y (Ky[x] − 1,Lx−1
y [Ky[x] − 1]) whose center is

J x−1
y [Ky[x] − 1]. It follows from Lx−1

y [Ky[x] − 1] <

X[x] and C1 that the concatenation W ′ · 〈x, y〉 is in
Wx

y (Ky[x],X[x]). Furthermore, from ¬C3, W ′ · 〈x, y〉
has the same center of W ′.

Assume that Ky[x] � 1 and ¬C1. It follows from
Lemma 2 that Ky−1[x] = Ky[x]. Therefore, Ky−1[x] �
1, and hence, based on the induction assumption,
there exists W ∈Wx

y−1(Ky−1[x],X[x]) whose center is
Iy−1[x]. On the other hand, from ¬C1, 〈x, y〉 is not the
tail element of any index sequence in Wx

y (Ky[x],X[x]),
which implies that Wx

y (Ky[x],X[x]) = Wx
y−1(Ky[x],

X[x]). Thus, it follows from Ky−1[x] = Ky[x] that
Wx

y (Ky[x],X[x]) = Wx
y−1(Ky−1[x],X[x]), and hence,

W is in Wx
y (Ky[x],X[x]).

Assume that Lx
y[k] < ∞ and C2. Then, Ky[x] = k �

1, and hence, based on the induction assumption, there
exists W ∈Wx

y (Ky[x],X[x]) whose center is Iy[x]. On
the other hand, it follows from Lemma 3 that Lx

y[k] =
X[x]. Therefore, from Ky[x] = k, Wx

y (k,Lx
y[k]) =

Wx
y (Ky[x],X[x]), and hence, W is in Wx

y (k,Lx
y[k]).

Assume that Lx
y[k] < ∞ and ¬C2. It follows from

Lemma 3 that Lx−1
y [k] = Lx

y[k]. Therefore, Lx−1
y [k] <

∞, and hence, based on the induction assumption, there
exists W ∈Wx−1

y (k,Lx−1
y [k]) whose center is J x−1

y [k].
On the other hand, it follows from the definition that
Wx−1

y (k,Lx−1
y [k]) ⊆ Wx

y (k,Lx−1
y [k]). Therefore, from

Lx−1
y [k] = Lx

y[k], Wx−1
y (k,Lx−1

y [k]) ⊆ Wx
y (k,Lx

y[k]),
and hence, W is in Wx

y (k,Lx
y[k]). �

Now we are ready to show the following lemma.

Lemma 5. For any integer sequences, X and Y , and
any integers, l and u, the center of an index sequence of
〈X,Y 〉 representing one of the longest (X,Y, l, u)-CISs
can be computed in O(|X| · |Y |) time and O(|X| + |Y |)
space.

Proof. For any indices 0 � x � |X| and 1 � y � |Y |,
let Hx

y be a (4|X| + 1)-tuple

〈
Kx[y], Ky[1], . . . ,Ky[x],Ky−1[x + 1], . . . ,
Ky−1[|X|],Lx

y[1], . . . ,Lx
y[|X|], Iy[1], . . . , Iy[x],

Iy−1[x + 1], . . . , Iy−1[|X|], J x
y [1], . . . , J x

y [|X|]〉.
For example, if X = 4 1 3, Y = 3 1 7 2 4 3, l = 0 and
u = 5, then we have

H 0
1 = 〈0, 0,0,0, ∞,∞,∞, empty, empty, empty,

empty, empty, empty〉,
H 1

1 = 〈0, 0,0,0, ∞,∞,∞, empty, empty, empty,

empty, empty, empty〉,
H 2

1 = 〈0, 0,0,0, ∞,∞,∞, empty, empty, empty,

empty, empty, empty〉,
H 3

1 = 〈1, 0,0,1, 3,∞,∞, empty, empty, 〈3,1〉,
〈3,1〉, empty, empty〉,

H 0
2 = 〈0, 0,0,1, ∞,∞,∞, empty, empty, 〈3,1〉,

empty, empty, empty〉,
...

H 1
6 = 〈0, 1,1,1, 4,∞,∞, 〈1,5〉, 〈2,2〉, 〈3,1〉,

〈1,5〉, empty, empty〉,
H 2

6 = 〈0, 1,1,1, 1,∞,∞, 〈1,5〉, 〈2,2〉, 〈3,1〉,
〈2,2〉, empty, empty〉,

H 3
6 = 〈2, 1,1,2, 1,3,∞, 〈1,5〉, 〈2,2〉, 〈2,2〉,

〈2,2〉, 〈2,2〉, empty〉.
From the definition of Lx

y[k] and Lemma 4, if

L
|X|
|Y | [1] < ∞, then J

|X|
|Y | [max{k | L

|X|
|Y | [k] < ∞}] is the

center of an index sequence of 〈X,Y 〉 representing one
of the longest (X,Y, l, u)-CISs, otherwise, an empty se-
quence is the only (X,Y, l, u)-CIS. Therefore, it suffices
to show that H

|X|
|Y | can be computed in O(|X| · |Y |) time

and O(|X| + |Y |) space. We will show that, only us-
ing a memory space of size O(|X|) that can take the
value of any Hx

y , together with access to X and Y , H
|X|
|Y |

can be computed in O(|X| · |Y |) time by successively
updating the content of the memory space in order of
H 0

1 ,H 1
1 , . . . ,H

|X|
1 ,H 0

2 ,H 1
2 , . . . ,H

|X|
|Y | (the same order

of the example above), which will complete the proof
of the lemma.

Y. Sakai / Information Processing Letters 99 (2006) 203–207 207
Recall that K0[y] = K0[x] = 0, L0
y[k] = ∞, and

both I0[x] and J 0
y [k] are empty. Hence, H 0

1 can be com-

puted in O(|X|) time. Also, for any 2 � y � |Y |, H 0
y can

be obtained from H
|X|
y−1 in O(|X|) time by only initializ-

ing K0[y], L0
y[1], . . . ,L0

y[|X|] and J 0
y [1], . . . , J 0

y [|X|].
On the other hand, for any 1 � x � |X| and 1 �
y � |Y |, it follows from Lemmas 2 and 3 and the
definitions of Iy[x] and J x

y [k] that Hx
y can be ob-

tained from Hx−1
y by only replacing Kx−1[y], Ky−1[x],

Lx−1
y [Ky[x]], Iy−1[x] and J x−1

y [Ky[x]] with Kx[y],
Ky[x], Lx

y[Ky[x]], Iy[x] and J x
y [Ky[x]], respectively.

Note that all the five values, Kx[y], Ky[x], Lx
y[Ky[x]],

Iy[x] and J x
y [Ky[x]], can be computed only from

X[x], Y [y] and Hx−1
y . Since it follows from the de-

finition that Kx−1[y] � Kx[y], Ky[x] can be found
in O(Kx[y] − Kx−1[y] + 1) time by repeatedly in-
creasing k from Kx−1[y] until X[x] becomes less than
or equal to Lx−1

y [k]. After Kx[y] is found, the other
four values can be computed in constant time. There-
fore, Hx

y can be obtained from Hx−1
y in O(Kx[y] −

Kx−1[y] + 1) time, and hence, for each 1 � y � |Y |,
H

|X|
y can be obtained from H 0

y in O(|X|) time because
K |X|[y] � |X|. Thus, successively updating Hx

y in order

of H 0
1 ,H 1

1 , . . . ,H
|X|
1 ,H 0

2 ,H 1
2 , . . . ,H

|X|
|Y | , we can finally

obtain H
|X|
|Y | in O(|X| · |Y |) time. �

From Lemmas 1 and 5, we immediately have the fol-
lowing theorem.
Theorem 1. For any integer sequences, X and Y , and
any integers, l and u, one of the longest (X,Y, l, u)-CISs
can be computed in O(|X| · |Y |) time and O(|X| + |Y |)
space.

References

[1] G.S. Brodal, K. Kaligosi, I. Katriel, M. Kutz, Faster algorithms for
computing longest common increasing subsequences, BRICS RS-
05-37, Department of Computer Science, University of Aarhus,
Ny Munkegade, building 540, DK-8000 Aarhus C, Denmark, De-
cember 14, 2005.

[2] S. Bespamyatnikh, M. Segal, Enumerating longest increasing sub-
sequences and patience sorting, Inform. Process. Lett. 76 (2000)
7–11.

[3] W.T. Chan, Y. Zhang, S.P.Y. Fung, D. Ye, H. Zhu, Efficient algo-
rithms for finding a longest common increasing subsequence, in:
Lecture Notes in Comput. Sci., vol. 3827, Springer, Berlin, 2005,
pp. 655–674.

[4] A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O. White,
S.L. Salzberg, Alignment of whole genomes, Nucl. Acids Res. 27
(1999) 2376–2396.

[5] J.Y. Guo, F.K. Hwang, An almost-linear time and linear space al-
gorithm for the longest common subsequence problem, Inform.
Process. Lett. 94 (2005) 131–135.

[6] D.S. Hirschberg, A linear space algorithm for computing maximal
common subsequences, Comm. ACM 18 (6) (1975) 341–343.

[7] W.J. Masek, M.S. Paterson, A fast algorithm computing string edit
distance, J. Comput. System Sci. 20 (1) (1980) 18–31.

[8] C. Schensted, Longest increasing and decreasing subsequences,
Canad. J. Math. 12 (1961) 179–191.

[9] I.H. Yang, C.P. Huang, K.M. Chao, A fast algorithm for comput-
ing a longest common increasing subsequence, Inform. Process.
Lett. 93 (2005) 249–253.

