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Abstract

For problems on computing an optimal path as well as its length in a certain setting, the “sta
approach for finding an actual optimal path is by building (or “growing”) a single-source op
path tree. In this paper, we study a class of optimal path problems with the following phenom
The spacecomplexity of the algorithms for reporting thelengthsof single-source optimal path
for these problems is asymptotically smaller than the space complexity of the “standard
growing algorithms for finding actual optimal paths. We present a general and efficient algor
paradigm for finding an actual optimal path for such problems without having to grow a s
source optimal path tree. Our paradigm is based on the “marriage-before-conquer” strate
prune-and-search technique, and a new data structure calledclipped trees. The paradigm enable
us to compute an actual path for a number of optimal path problems and dynamic progra
problems in computational geometry, graph theory, and combinatorial optimization. Our algor
solutions improve the space bounds (in certain cases, the time bounds as well) of the previou
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1. Introduction

For combinatorial problems on computing an optimal path as well as its length
certain setting, the “standard” approach for finding an actual optimal path is by buildin
“growing”) a single-source optimal path tree. This is normally done by maintaining s
predecessorinformation as the path lengths from the source are being computed
see [11]). This tree-growing approach is effective for finding actual single-source op
paths, especially as thetime complexity is concerned. In fact, it is well known that
general algorithms are known that compute an optimal path betweenone pairof locations
with a fastertimebound than that for computing single-source optimal paths. However
need not be the case for many problems as far as thespacecomplexity is concerned. In thi
paper, we study a class of optimal path problems with the following interesting yet
exploited phenomenon: Thespacecomplexity of the algorithms for reporting thelengths
of single-source optimal paths for these problems is asymptotically smaller than the
complexity of the “standard” tree-growing algorithms for finding actual optimal paths.
goal is to show that for such problems, it is possible to find an actual optimal path w
having to grow a single-source optimal path tree, thus achieving asymptotically
space bounds for finding one actual optimal path than those for single-source optima

It should be mentioned that the phenomenon that the space bound for finding an
optimal path can be smaller than that for single-source optimal paths has been ob
and exploited in some scattered situations. For example, Edelsbrunner and Guib
showed that for computing a longest monotone path or a longest monotone conca
on the arrangement of sizeO(n2) formed byn lines on the plane, it is possible to report t
lengthof such a path inO(n2) time andO(n) space. To output an actual longest monot
path, they usedO(n2 logn) time andO(n logn) space, and to output an actual long
monotone concave path, they usedO(n2 logn) time andO(n logn) space (or alternatively
O(n3) time andO(n) space). It was posed as open problems in [14] whether these
time and space bounds for reporting an actual longest monotone path or longest mo
concave path could be partially or completely avoided. Another example is the prob
computing a longest common subsequence of two strings of sizen [10,20,31] (this problem
can be reduced to an optimal path problem). Hirschberg [20] used dynamic program
to find an actual longest common subsequence and its length inO(n2) time andO(n)
space without growing a single-source tree. The actual optimal path algorithms in [1
a recursive back-up method, and the one in [20] is based on a special divide-and-c
strategy called “marriage-before-conquer.”

We study in a systematic manner the phenomenon that the space bound for find
actual optimal path can be smaller than that for single-source optimal paths. We dev
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general algorithmic paradigm for reporting an actual optimal path without using the
growing approach, and characterize a class of optimal path and dynamic progra
problems to which our paradigm is applicable. This paradigm not only considerably g
alizes the marriage-before-conquerstrategy used in [20], but also brings forward add
interesting techniques such as prune-and-search and a new data structure calledclipped
trees. Furthermore, the paradigm makes it possible to exploit useful structures of so
the problems we consider. Our techniques enable us to compute efficiently an act
timal solution for a number of optimal path and dynamic programming problems in
putational geometry, graph theory, and combinatorial optimization, improving the
bounds (in certain cases, the time bounds as well) of the previously best known algo

Below is a summary of our main results on computing an actual optimal solution.
Computing a shortest path in the arrangement ofn lines on the plane. As mentioned

in [5,17], it is easy to reduce this problem to a shortest path problem on a planar
of sizeO(n2) that represents the arrangement, and then solve it inO(n2) time and space
by using the optimal shortest path algorithm for planar graphs [22]. We present anO(n2)

time,O(n) space algorithm.
Computing a longest monotone convex/concave path in the arrangement ofn lines on

the plane. An O(n2 logn) time, O(n logn) space algorithm and anO(n3) time, O(n)
space algorithm were given by Edelsbrunner and Guibas [14]. We present anO(n2) time,
O(n) space algorithm. Our solution is an improvement on those of [14], and settle
corresponding open problem in [14].

Computing a longest monotone path in the arrangement ofn lines on the plane. An
O(n2 logn) time, O(n logn) space algorithm and anO(n2/ε) time, O(n1+ε/ε) space
algorithm were given in [14]. We present anO(n2 logn/ log(h + 1)) time,O(nh) space
algorithm, whereh is any integer such that 1� h� nε for any constantε with 0< ε < 1.
Note that forh = O(1), our algorithm usesO(n2 logn) time andO(n) space, and fo
h= nε , our algorithm usesO(n2/ε) time andO(n1+ε) space (unlike [14], our space bou
does not depend on the 1/ε factor). Our solution is an improvement on those of [14], a
provides an answer to the corresponding open problem in [14].

Computing a longest monotone path in the arrangement ofn planes in the3D
space. An O(n3) time, O(n2) space algorithm was given by Anagnostou et al. [1]
computing thelength of such a path. If the techniques in [14] are used, then an a
path would be computed inO(n3 logn) time andO(n2 logn) space. We present a
O(n3 logn/ log(h + 1)) time,O(n2h) space algorithm, whereh is any integer such tha
1 � h � nε for any positive constantε < 1. Forh = O(1), we useO(n3 logn) time and
O(n2) space, improving the space complexity by anO(logn) factor.

Computing a minimum-weight,k-link path in a graph. Let G = (V ,E) be a weighted
graph ofn= |V | vertices andm= |E| edges with nonnegative edge weights. A minimu
weight, k-link path inG between two vertices is a path that uses at mostk edges and
whose total sum of edge weights is minimized. If the standard tree-growing appro
used for computing such an actual optimal path, then it would useO(k(n+m)) time and
O(kn) working space [23,25]. We present anO(k(n+m) logk/ log(h+ 1)) time,O(nh)
working space algorithm, whereh is any integer such that 1� h � kε for any constan
ε with 0< ε < 1. Note that forh = O(1), our algorithm usesO(k(n + m) logk) time
andO(n) working space, and forh= kε , our algorithm usesO((1/ε)k(n+m)) time and
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O(nkε) working space (the constant of the working space bound does not depend o/ε).
Furthermore, ifG is a directed acyclic graph, then our algorithm usesO(k(n+m)) time
andO(n) working space.

0–1 knapsack with integer item sizes. Given a positive integerB andn items, with the
ith item having a positive integer sizeki and an arbitrary weight valuewi , the problem
is to select a subset of the items such that the sum of sizes of the selected item
bigger thanB and the total weight of the selected items is maximized. This problem is
complete and has often been solved by dynamic programming [11,25,26,30]or by re
the problem to computing an optimal path in a directed acyclic graph ofO(nB) vertices
and edges [23,27]. If the standard tree-growing approach is used for computing an
solution, then it would useO(nB) time and space [23,25–27,30] (it was also shown in [
how to use a bit representation to reduce the space bound toO(n+ nB/ log(n+B))). We
present anO(nB) time,O(n+B) space algorithm.

Single-vehicle scheduling. The general problem is to schedule a route for a vehic
visit n given sites each of which has a time window during which the vehicle is allo
to visit that site. The goal is to minimize a certain objective function of the route (
time or distance), if such a route is possible. This problem is clearly a generalization
Traveling Salesperson Problem and is NP-hard even for some very special cases
example, it is NP-hard for the case in which a vehicle is to visitn sites on a straight line
(equivalently, a ship is to visitn harbors on a convex shoreline) with time windows wh
start times and end times are arbitrary [6]. Psaraftis et al. [29] gave anO(n2) time and
space dynamic programming algorithm for the case withn sites on a straight line whos
time windows have only (possibly different) start times. Chan and Young [6] gave anO(n2)

time and space dynamic programming algorithm for the case withn sites on a straight line
whose time windows have the same start time but various end times. We presentO(n2)

time,O(n) space algorithms for both these cases.
Actually, several of our algorithms can be further generalized. For example, fo

optimal path problems on the arrangement ofn planar lines, we can confine the paths
the portion of the arrangement in a specified convex region ofm vertices. Our algorithm
for these cases have better time bounds that depend onn,m, and the size of the arrangeme
portion in the convex region.

The structure of the paper is as follows. Section 2 discusses the clipped tre
structure. Section 3 gives an overview of our general algorithmic paradigm. Sec
recalls several approaches for sweeping arrangements that are needed by our alg
We then illustrate various aspects of our paradigm with examples on different op
path problems on arrangements (Sections 5 to 7). We finally characterize a cl
dynamic programming problems to which our paradigm is applicable, and solve s
combinatorial optimization problems of this class (Section 8).

2. Clipped trees

A key ingredient of our general paradigm is a new data structure calledclipped trees
that we introduce in this section. Clipped trees are important to our paradigm becau
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Fig. 1.T is a clipped tree ofT ′ based on the sample nodes (unfilled circles).

contain information needed for carrying out techniques such as marriage-before-c
and prune-and-search.

In a nutshell, a clipped treeT is a “compressed” version of a corresponding sing
source optimal path treeSST, such thatT consists of a (usually sparse) sample set of
nodes ofSSTand maintains certain topological structures ofSST. The sample nodes a
selected fromSSTbased on a certain criterion (e.g., geometric or graphical) that dep
on the specific problem.

LetT ′ be a rooted tree with root noder. LetS be a set of sample nodes ofT ′ with r ∈ S.
A clipped treeT of T ′ based on the sample setS is defined as follows:

• The nodes of the clipped treeT are precisely those inS.
• For every nodev ∈ S − {r}, the parent ofv in T is the nearest proper ancestorw of v

in T ′ such thatw ∈ S.

Clearly, the size ofT isO(|S|). If S consists of all the nodes ofT ′, thenT is simplyT ′
itself. An example of a clipped tree is given in Fig. 1.

The clipped treeT of T ′ can be obtained by the following simple procedure:

• Make the rootr of T ′ the root ofT , and pass down to all children ofr in T ′ a pointer
to r.

• For every nodev of T ′ that receives from its parent inT ′ a pointer to a proper ancest
nodew of v in T ′ (inductively,w is already a node ofT ), do the following: Ifv ∈ S,
then addv to T , makew the parent ofv in T , and pass down to all children ofv
in T ′ (if any) a pointer tov; otherwise, pass down to all children ofv in T ′ (if any) the
pointer tow.

It is easy to see that it takesO(|T ′|) time to construct the clipped treeT from T ′ and
from the given sample setS, andO(|S|) space to storeT . Also, observe that the abov
procedure need not have the treeT ′ explicitly stored. In fact, as long as the nodes ofT ′
are produced in a parent-to-children order,T can be constructed. Note that this is precis
the order in which a single-source optimal path tree grows, and this growing proces
place as the lengths of optimal paths are being computed. Further, observe that on
not have the sample setS explicitly available in order to constructT . As long as a criterion
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is available for deciding (preferably inO(1) time) whether any nodev of T ′ belongs to the
sample setS, the above procedure is applicable.

Consequently, one can use an algorithm for computing the lengths of single-s
optimal paths and a criterion for determining the membership for a sample setS of the
nodes of the single-source optimal path treeSSTto construct a clipped treeT based on
SSTandS, without having to storeSST. Actually, whenT is being constructed, it is ofte
beneficial to associate with the nodes ofT certain information about the correspondi
optimal paths to which these nodes belong. Once the process of computing the len
single-source optimal paths terminates, the clipped treeT , together with useful optima
path information stored in its nodes, is obtained.

Perhaps we should point out a seemingly minor but probably subtle aspect: The
procedure for building a clipped tree depends only on the ability to generate a single-
optimal path tree in a parent-to-children (or source-to-destination) order. This is c
for the applicability of our general paradigm. In contrast, the marriage-before-co
algorithm in [20] computes an actual optimal path using both the source-to-desti
and destination-to-source orders. Although the problem in [20] is symmetric with re
to these two orders, it need not be the case with many other optimal path pro
For example, for some dynamic programming problems that are solvable by follo
a source-to-destination order (e.g., [6,29]), it may be quite difficult or even impossi
use the destination-to-source order. This aspect of clipped trees also enables us
using the recursive back-up method of [14], since it may be difficult to use this ba
method to significantly reduce the sizes of the subproblems in a marriage-before-c
algorithm.

3. Overview of the paradigm

In this section, we give a general overview of our algorithmic paradigm. Note tha
paradigm, when applied to a specific problem, may be incorporated with other tech
and special structures of the problem to achieve an efficient algorithm.

The outline of our paradigm for finding an actual optimal pathOP(s, t) between two
verticess andt in a given setting is as follows. Suppose an algorithm for computing
lengthsof such optimal paths from a vertex is already known.

1. Run the algorithm for computing the lengths of single-source optimal paths, star
vertexs. Assume that this algorithm visits the vertices of the given setting in an o
of growing a single-source optimal path treeSSTrooted ats.

2. The treeSST is not explicitly stored. Instead, a sample setS of the nodes ofSST
(s andt are inS) is maintained by a clipped treeT , such thatS contains some vertice
of the sought optimal pathOP(s, t) in addition tos andt . (Note that the criterion fo
determining the sample setS is problem-specific.)

3. Identify the vertices ofS ∩ OP(s, t) from T . Let these vertices bev1, v2, . . . , vg along
OP(s, t), in this order, withv1 = s, vg = t , andg � 3.

4. Recursively find an optimal path fromvi to vi+1, for everyi = 1,2, . . . , g − 1.
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Clearly, the above paradigm gives rise to an algorithm of the(g−1)-way marriage-before
conquer nature. There are two keys to a successful application of this paradigm to s
a problem:

(1) the availability of thelength version of the presumed single-source optimal p
algorithm, and

(2) the (problem-specific) criterion and method for determining the sample setS.

For all the problems we consider, a single-source optimal path length algorith
available. Hence, the main difficulty is on the second key which we further discuss b

In the above paradigm, determining an appropriate sample setS (s, t ∈ S) in an efficient
fashion is critical to the overall efficiency of the desired algorithm for computing an a
optimal pathOP(s, t). Some of the particularly useful properties ofS are as follows:

1. S should not be very large (otherwise,S itself could become the optimal path tr
SST).

2. S should contain some vertices of the optimal pathOP(s, t) in addition tos andt .
3. The vertices inS ∩ OP(s, t) should induce “nice” subproblems for the recursion:

(3.1) The sizes of the subproblems should somewhat be “balanced.”
(3.2) It would be very helpful if the sum of the sizes of theg − 1 subproblems is

smaller than the size of the original problem (say, a constant fraction o
original size).

Remark. Note that in property (3.2), when subproblem sizes sum to a constant fract
the original problem, balancing condition (3.1) becomes unnecessary.

If the sample setS is “nice” (i.e., having all the above properties), then it is possibl
compute an optimal pathOP(s, t) in the same time bound as that for computing the leng
of optimal paths from vertexs. In fact, for the majority of the problems we consider,
sample sets we use have these properties. However, there are still a few problems fo
we cannot find sample sets satisfying property (3.2). As a consequence, our algo
for computingOP(s, t) for such problems have an additional logarithmic factor in
time bound in comparison with the corresponding length versions of these algor
Thus, depending on whether the sample sets we use satisfy property (3.2), we c
the problems into two types: type A satisfying property (3.2) and type B not satis
property (3.2).

One of our main efforts is therefore spent on constructing nice sample sets,
is usually for determining a nice sample set that other techniques and specific pr
structures are brought into the picture. Sections 5 to 8 present examples showing
ways of obtaining a nice sample setS for different optimal path problems.

4. Topological sweep, topological walk, and topological peeling

Arrangements are a fundamental structure in combinatorial and computational g
try [13], and a great deal of work has been devoted to studying various arrangeme
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Fig. 2. The arrangement ofH in a convex regionR.

their properties. We briefly discuss in this section several arrangement sweeping algo
that will be needed in Section 5 to Section 7: Topological sweep [1,14], topological
[2,3], and topological peeling [8,9].

Let H = {l1, l2, . . . , ln} be a set ofn straight lines on a plane. The lines inH divide
the plane into a subdivision called thearrangementA(H) of H . A(H) consists of a set o
convex regions (calledcells), each bounded by some edges (i.e., segments of the lin
H ) and vertices (i.e., intersection points between the lines inH ). The interior of each cel
of A(H) intersects no lines ofH . In general,A(H) hasO(n2) cells, edges, and vertice
One may also consider the portionAR of A(H) within a convex polygonal regionR, i.e.,
AR =A(H)∩R (see Fig. 2).

Without loss of generality (WLOG), we assume that the lines inH are in genera
position, i.e., no three lines meet at the same point and no line is vertical (the g
case can be handled by using the techniques in [15]).

If one is interested only in constructing and reporting (but not storing)A(H), then
this can be done by a relatively simple algorithm that sweeps the plane by a vertica
in O(n2 logn) time andO(n) space [16]. Edelsbrunner and Guibas [14] gave the n
topological sweepapproach for constructing and reportingA(H) in O(n2) time andO(n)
space. The topological sweep approach sweeps the plane with an unbounded simp
that is monotone to they-axis and that intersects each line ofH exactly once. Asano et a
[2] developed another interesting approach, calledtopological walk, for constructing and
reportingA(H) in O(n2) time andO(n) space. Essentially, a topological walk traver
A(H) in a depth-first search fashion by preferring left branches [2,3]. Topological wal
also be extended to traversing the portionAR of A(H) inside a convex polygonal regionR,
in O(K + (n+ |R|) log(n+ |R|)) time andO(n+ |R|) space, whereK is the number of
vertices inAR and|R| is the number of vertices ofR.

Let P = {p1,p2, . . . , pn} be a set ofn planes in the 3D space. The arrangementA(P)

in the 3D space is the subdivision of convex polytopes dissected by then planes inP .
Each such convex polytope is bounded by a set of 2D faces, each of which is a
the arrangement on a planepi ∈ P defined by then − 1 lines that are the intersection
of pi with all pj ∈ P − {pi}. In general, there areO(n2) such lines on each plane ofP .
HenceA(P) hasO(n3) vertices. Anagnostou, Guibas, and Polimenis [1] extended
planar topological sweep technique in [14] to 3D, sweeping then 2D arrangements (one o
each planepi ) simultaneously with a special unbounded monotone surface. This swe
algorithm takesO(n3) time andO(n2) space [1].



D.Z. Chen et al. / Journal of Algorithms 49 (2003) 13–41 21

p and

lso not
s.

n”
hortest

tual
roblem
f
o lie
lem,

graph
s

proach,

ously
bound

se
, as
ional
ree data
m.

on
g

However, there are problems on arrangements to which topological swee
topological walk may not be appropriate. Computing shortest paths inA(H) is such a
problem. It seems to be difficult for topological walk to compute shortest paths inA(H)

because of the depth-first nature of its searching strategy. Topological sweep may a
work well, since a shortest path can cross itsy-monotone sweeping curve multiple time

A new arrangement sweeping approach, calledtopological peeling, was introduced by
Chen and Xu [8,9]. Starting at a vertexs of A(H) in a convex regionR on a plane, this
approach expands the sweeping ofAR in a manner as if a wave is propagated onAR
from s. LetB(R) be the boundary ofR andP be a simple curve onAR such thatP starts
and ends onB(R). We sayP is aconvex curveto s if the planar region containings and
enclosed byP andB(R) is convex. A topological peeling advances its traversal ofAR by
“propagating” from one convex curve to the next convex curve onAR . It traversesAR in
O(K + (n+|R|) log(n+|R|)) time andO(n+|R|) space. Due to its “wave-propagatio
nature, topological peeling is suitable for several problems such as computing s
paths in arrangements of lines on a plane [8,9].

5. Shortest paths in an arrangement

In this section, we illustrate our paradigm with an algorithm for finding an ac
shortest path between two points in the arrangement of lines on the plane. The p
can be stated as follows: Given a setH of n lines and two pointss andt on some lines o
H on the plane, find ans-to-t path of the shortest Euclidean distance that is restricted t
on the lines ofH . As mentioned in [5,17,18], to solve this geometric shortest path prob
one can first construct a planar graph of sizeO(n2) that represents the arrangementA(H)

of H and then apply the optimal algorithm for computing a shortest path in a planar
[22]. Such an algorithm (even for the pathlength) usesO(n2) time and space, and it ha
been an open problem to improve these bounds. By using the topological peeling ap
Chen and Xu [8,9] was able to come up with anO(n logn+K) time,O(n) space algorithm
for computing the lengths of single-source shortest paths inAR. Here,K is the number of
vertices ofAR for a special convex polygonal regionR that contains a shortests-to-t path
in A(H) (K =O(n2) in the worst case).

Although we are not yet able to improve the asymptotic time bound of the previ
known actual shortest path algorithm [5,17], we show how to reduce its space
by a factor ofn. Our algorithm finds an actual shortests-to-t path inO(n) space and
O(n log2n log(K/n) + min{n2,K logn}) time. Hence our algorithm in the worst ca
takesO(n) space andO(n2) time. Our solution is based on topological peeling [8,9]
well as topological sweep [14] and topological walk [2,3]. It also makes use of addit
techniques such as marriage-before-conquer, prune-and-search, and the clipped t
structure, and exploits a number of interesting observations on this particular proble

5.1. Computing shortest path lengths

We begin with some preliminaries. Lets andt be the source and destination points
the arrangementA(H) for the sought shortest path. Letst be the line segment connectin
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s andt . Of course,st need not be on any line ofH . WLOG, assumest is horizontal with
s as the left end vertex. LetHc(st) be the set of lines inH that intersect the interior ofst ,
called thecrossing linesof st . Let HP(H −Hc(st)) be the set of half-planes each of whi
is bounded by a line inH −Hc(st) and containsst . As observed in [5], since no shorte
path inA(H) can cross a line inH twice, one can restrict the search of a shortests-to-t path
to the (possibly unbounded) convex polygonal regionR that is the common intersection
the half-planes inHP(H −Hc(st)). Hence, the problem of finding a shortests-to-t path
in A(H) can be reduced inO(n logn) time to that of finding a shortests-to-t path in the
portionAR of A(H) contained inR (by computing the common intersection of the ha
planes inHP(H −Hc(st)) [28] and identifying the crossing lines ofst ). Henceforth, we
still let n denote the number of lines ofH intersecting the convex regionR.

A topological peeling, starting ats, is used in [8,9] to report the length of a short
s-to-t path inAR. The following is a simple yet useful lemma.

Lemma 1. For any linel ∈H and any vertexv ofA(H) on l, the intersection of a shorte
s-to-v path with l is either the vertexv or a line segment onl that hasv as an endpoint
Consequently, no shortests-to-v path inA(H) can crossl (i.e., intersecting the interior o
both the half-planes bounded byl) and l cannot contribute two disjoint line segments to
shortests-to-v path inA(H).

Proof. Obviously, the vertexv is on the shortests-to-v path. Assume that the shortests-
to-v path crossesl and letu be a vertex at which the path crossesl. Then, by replacing the
portion of the path betweenu andv by the line segmentuv on l, a shorter path is obtaine
a contradiction. Similar arguments hold when assuming thatl contributes two disjoint line
segments, or one line segment that does not havev as an endpoint, to the shortests-to-v
path. ✷

We consider a generalization of Lemma 1. Recall that a simple curveP onAR with both
its endpoints on the boundaryB(R) of R is convex tos if the planar region containings
and enclosed byP andB(R) is convex. The following lemma is important to the algorith
for computing single-source shortest path lengths inAR .

Lemma 2. LetP be a convex curve tos onAR whose endpoints are both onB(R), andv
be a vertex ofAR inside the region enclosed byP andB(R). Then no shortests-to-v path
in AR can crossP .

Proof. This follows easily from the convexity ofP . ✷
Based on Lemma 2 and by incorporating the computation of shortest path length

the construction and traversal ofAR by topological peeling, an efficient algorithm f
computing the lengths of single-source shortest paths inAR from the sources was given
in [8,9]. In particular, this algorithm computes the shortest path lengths in the pare
children order in the single-source shortest path tree rooted ats. The following result has
been given in [8,9].
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Fig. 3. The two regionsR1 andR2 in R defined by two linesli andlj of H .

Lemma 3. The length of a shortest path inAR from s to every vertex ofAR can be
computed inO(n logn + K) time andO(n) space, whereK is the number of vertice
ofAR.

5.2. Computing an actual shortest path

In this subsection, we present theO(n log2n log(K/n)+ min{n2,K logn}) time,O(n)
space algorithm for reporting an actual shortests-to-t path inAR, whereK is the size
of AR.

Let v be a vertex on a shortests-to-t path inAR such thatv is the intersection of two
linesli andlj ofH and such that at least one ofli andlj is a crossing line ofst . LetSP(s, t)
denote the shortests-to-t path inAR. ThenSP(s, t)= SP(s, v) ∪ SP(v, t).

The following lemmas are a key to our marriage-before-conquer based algorithm

Lemma 4. The two linesli and lj of H define two interior-disjoint convex subregionsR1
andR2 in R such that SP(s, v) stays withinR1 and SP(v, t) stays withinR2 (see Fig.3).
Further, at most four lines ofH (two of them areli and lj ) can appear on the boundarie
of bothR1 andR2.

Proof. The first part of the lemma follows from Lemma 1. For the second part, obs
thatR1 andR2 shareli and lj . Let a and b (respectively,c and d) be the intersection
points of li and lj with the upper (respectively, lower) boundary ofR. Let l(ab) be the
line (possible not inH ) containingab. If l(ab) ∈ H (respectively,l(cd) ∈H ), thenl(ab)
(respectively,l(cd)) is shared byR1 andR2. SinceR is a convex region, no other upp
(respectively, lower) boundary line ofH can be shared byR1 andR2. ✷
Lemma 5. The lines inH that SP(s, t) crosses are exactly the crossing lines ofst (i.e.,
Hc(st)).

Proof. Simple and omitted. ✷
Lemma 6. Let li and lj be defined as in Lemma4. The crossing lines ofst in Hc(st)−
{li , lj } can be partitioned into two subsetsH1 andH2, such that no line inH1 (respectively,
H2) intersects SP(v, t) (respectively, SP(s, v)). Moreover,H1 (respectively,H2) consists
of all the lines inHc(st) − {li , lj } that intersect the interior of the line segmentsv
(respectively,vt ), i.e.,H1 =Hc(sv) (respectively,H2 =Hc(vt)).
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Proof. Assume that there is a linel ∈ Hc(st) − {li , lj } such thatl intersects the interio
of bothSP(s, v) andSP(v, t). SinceSP(s, t) = SP(s, v) ∪ SP(v, t), it implies that eitherl
contributes toSP(s, t) with at least two disjoint line segments, which contradicts Lemm
or l contributes toSP(s, t) with exactly one line segment, which means thatl containsv
and hencel ∈ {li , lj }, also a contradiction. To prove the second part of the lemma
l ∈ Hc(st)− {li , lj } and observe thatl cannot intersect bothsv andvt (otherwise,s and
t would be on the same side ofl, and thusl /∈ Hc(st)). Let P = sv ∪ vt . SinceP is
a continuous curve insideR, l must crossP . Hencel crosses eithersv or vt (but not
both). Assumel crossessv. By Lemma 5,SP(s, v) crossesl and thusl cannot intersec
SP(v, t). ✷

Lemma 6 implies that if we are to computeSP(s, v) (respectively,SP(v, t)), the lines in
Hc(vt) (respectively,Hc(sv)) need not be considered. Letvc denote the number of line
in H crossed bySP(s, v) (i.e., vc = |Hc(sv)|), called thecrossing numberof v. If we
could somehow find a vertexv on SP(s, t) such that its crossing numbervc is (roughly)
half the crossing numbertc of t , then we would have an efficient marriage-before-conq
algorithm for reportingSP(s, t). This is because we would be able to recursively repor
subpathsSP(s, v) andSP(v, t) in R1 andR2, respectively (by Lemma 4). Moreover, wh
computingSP(s, v) andSP(v, t), we would not have to consider the intersections betw
lines from the two line setsHc(sv) andHc(vt), thus eliminating from further consideratio
a constant fraction of the totalO(n2) intersections ofA(H) among then lines inH .

The next lemma makes it possible for an incremental method to compute the cr
numbers.

Lemma 7. Letu andw be two neighboring vertices ofA(H) on a linel ∈H (i.e.,uw is an
edge ofA(H) on l). Let linel(u) (respectively,l(w)) ofH intersectl atu (respectively,w).
ThenHc(su) differs fromHc(sw) on at most two elements. Furthermore, these diffe
elements are in{l(u), l(w)}.

Proof. Sinceu andw are neighboring vertices ofA(H), it is easy to see thatHc(su)−
{lu, lw} =Hc(sw)−{lu, lw}. The possible difference betweenHc(su) andHc(sw) can only
be caused bylu andlw , and there are four possible cases:

(1) lu ∈Hc(sw) andlw ∈Hc(su);
(2) lu ∈Hc(sw) andlw /∈Hc(su);
(3) lu /∈Hc(sw) andlw ∈Hc(su);
(4) lu /∈Hc(sw) andlw /∈Hc(su).

To identify which case holds, one only needs to check the intersections oflu, lw with
sw, su, which can be easily done in constant time.✷

Based on Lemma 7, if the crossing numberuc of a vertexu of A(H) is already known
then it is easy to computewc for a neighboring vertexw of u in A(H). This immediately
implies that the crossing numbers of the vertices ofAR can be computed by a topologic
peeling starting from the source vertexs (with sc = 0). In particular, our shortest pa
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length algorithm can be easily modified to report (but not store) the crossing numb
the vertices ofAR.

At this point, it might be tempting to try to compute an actual pathSP(s, t) with the
algorithm below. Letk be half the crossing numbertc of t (k = �tc/2 can be obtained
by running the shortest path length algorithm onAR once, as a preprocessing step). T
following is done.

1. If k = O(
√
n), then reportSP(s, t) by a tree-growing approach inAR. Otherwise,

continue.
2. Run the path length algorithm onAR, and build a clipped treeT with sample nodess,
t , and all verticesu of AR such thatu is on a crossing line ofst anduc = k.

3. From the clipped treeT , find a vertexv on SP(s, t) such thatvc = k (the parent node
of t in T is such a vertex).

4. Using the vertexv, recursively report the subpathsSP(s, v) andSP(v, t) in R1 andR2

(by Lemma 4).

The above algorithm, however, does not work well due to one difficulty: The siz
the sample node setS for T is super-linear! The astute reader may have observed that
size of the sample setS is closely related to the well-known problem on the combinato
complexity of thekth level of the arrangement ofn planar lines. The best known low
bound for thekth level size of such an arrangement isO(n log(k+1)) [19,24], and the bes
known upper bound isO(nk1/3) [12]. Hence the clipped treeT based on such a sample s
S would use super-linear space, not the desiredO(n) space. To resolve this difficulty, w
avoid using these verticesu as sample nodes forT such thatu is on a crossing line ofst
anduc = k. Instead, we use a prune-and-search approach to locate a vertexv on SP(s, t)
such thatv is on a crossing line ofst andvc = k. Our prune-and-search procedure is ba
on some additional observations and (again) on the clipped tree data structure.

Lemma 8. For any two verticesu andw ofA(H) such thatu is on SP(s,w), wc � uc.

Proof. An immediate consequence of Lemma 1.✷
Lemma 9. It is possible to find, inO(K + n logn) time andO(n) space, a vertical lineL
such thatL partitions theK vertices ofAR into two subsets of sizesc1K andc2K, where
c1 andc2 are both positive constants andc1 + c2 = 1.

Proof. Use a topological walk to compute a vertexu of AR such that there are at lea
O(K/4) vertices ofAR on each side of the vertical lineL passing throughu. This can be
done as follows. WLOG, assumeK is super-linear.

1. Find the median of thex-coordinates of the firstK/n vertices ofAR encountered by
the topological walk, then find the median of the nextK/n vertices, and so on, unt
all the vertices ofAR are encountered.

2. Find the medianxu of then medians computed in Step 1. LetL pass throughxu.
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Fig. 4. Searching for a desired vertexv on SP(s, t) by prune-and-search.

Note that the algorithm above finds a median among the medians ofn lists. The fact
that there are at leastO(K/4) vertices ofAR on each side of the vertical lineL follows
from the standard analysis for the linear time selection algorithm [11]. Since the m
of a list can be computed in linear time and space,u is found by a topological walk in
O(n logn+K) time andO(n) space. ✷

Lemma 8 provides a structure onSP(s, t) for searching, and Lemma 9 provides a me
for pruning. The procedure below finds such a desired vertexv on SP(s∗, t∗) in a convex
subregionR∗ of R that (possibly) is between two vertical lines (initially,R∗ = R, s∗ = s,
andt∗ = t).

1. LetK∗ be the number of vertices ofAR∗ = AR ∩ R∗. If K∗ = O(n), then find the
desired vertexv onSP(s∗, t∗) inAR∗ by a tree-growing approach. Otherwise, contin

2. Compute a vertical lineL as specified in Lemma 9. LetL partition the regionR∗
into two convex subregionsR′ andR′′ (Fig. 4). LetS be the set of sample nodes th
includess∗, t∗, and all verticesu andw of AR∗ such thatuw is an edge ofAR∗ that
intersectsL. Note that|S| =O(n) sinceL intersects each line ofH once.

3. Run the path length algorithm onAR∗ from s∗ to t∗, and build a clipped treeT based
on the sample node setS. Associate with each node ofS its crossing number.

4. Find all proper ancestorss∗, u1, u2, . . . , ur of t∗ in T . If T contains no such nodesui ,
thenSP(s∗, t∗) does not touch the vertical lineL and hence the search forv is reduced
to the subregion (say)R′ containing boths∗ and t∗; go to Step 6. Otherwise, go t
Step 5.

5. T contains such nodesui , and henceSP(s∗, t∗) touchesL (possibly multiple times)
Let u1, u2, . . . , ur appear alongSP(s∗, t∗) in the s∗-to-t∗ order. Then, either th
desired vertexv ∈ {u1, u2, . . . , ur }, or v is an interior vertex on exactly one pa
SP(ui , ui+1), i = 0,1, . . . , r (with u0 = s∗ andur+1 = t∗). Note that based on th
definition of the sample setS, such a pathSP(ui, ui+1) stays completely inside one o
the subregionsR′ andR′′ (Fig. 4).

6. LetR′ be the subregion containingv. Search forv on SP(ui , ui+1) recursively inR′.

It is easy to see that the procedure above takesO(n) space. Its time complexit
(dominated by the computation in the second and third steps) is given by the follo
recurrence:
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3K

4

)
+O(K + n logn), if K > n,

T (K)=O(n), if K � n,

whose solution isT (K)=O(K+n logn log(K/n)). Therefore, the above procedure tak
O(K + n logn log(K/n)) time andO(n) space, whereK = |AR|.

With this procedure, we are able to report an actual pathSP(s, t) in O(n log2n

log(K/n)+ min{n2,K logn}) time andO(n) space. Our algorithm for reportingSP(s, t)
proceeds as follows (initially,R∗ =R, s∗ = s, t∗ = t , t∗c = tc, andtc =O(n)):

1. LetR∗ be a convex subregion ofR in which an actual pathSP(s∗, t∗), for two vertices
s∗ and t∗ on SP(s, t), is to be reported. LetK∗ be the size ofAR∗ = AR ∩ R∗. If
K∗ = O(n), then reportSP(s∗, t∗) in AR∗ by a tree-growing approach. Otherwis
continue.

2. Find a vertexv onSP(s∗, t∗) such thatvc = t∗c /2 andv is on a crossing line ofs∗t∗.
3. Compute the line setsH1 andH2, each of sizevc , that are respectively associated w

the convex regionsR1 andR2 defined by the lines intersecting atv (Lemmas 4 and 6)
4. Recursively reportSP(s∗, v) andSP(v, t∗) onR1 andR2, respectively.

Let T (R) be the recursion tree of the algorithm above, whose height isO(logn). Then
each nodeu of T (R) is associated with a convex subregionRu. Observe that our algorithm
need not store the whole treeT (R). Instead, at any given moment, it only needs to s
a leaf-to-root path inT (R) (as well as the associated information of theO(logn) nodes
on that path). For a nodeu on such a path inT (R), the algorithm mainly maintains tw
vertices between which a shortest path is to be reported, and the crossing lines ass
with Ru. Since the number of crossing lines at each node is a constant fraction of
its parent node, the information of each leaf-to-root path inT (R) uses onlyO(n) space to
store. Hence the overall algorithm also usesO(n) space.

The time complexity of the algorithm is given by the following recurrence:

T (m,K)� T

(
m

2
,K1

)
+ T

(
m

2
,K2

)
+O

(
K +m logm log(K/n)

)
, if K > n,

T (m,K)=O(n), if K � n,

where K � m2, K1 � (m/2)2, K2 � (m/2)2, and K1 + K2 � K. The solution of
this recurrence isT (n,K) = O(n log2n log(K/n) + min{n2,K logn}). Therefore, the
algorithm takes altogetherO(n log2n log(K/n)+ min{n2,K logn}) time andO(n) space,
whereK = |AR|.

Theorem 1. A shortests-to-t path in the arrangementA(H) of a setH of n planar lines
can be reported inO(n log2n log(K/n)+ min{n2,K logn}) time andO(n) space, where
K is the number of vertices ofAR andR is the convex region associated withs and t on
the plane.

Proof. It follows from the above discussion and analysis.✷
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Note that it is easy to extend our algorithm to computing a shortests-to-t path confined
to the portion ofA(H) in any given convex regionR′ on the plane, with an additive tim
factor|R′| log|R′| and an additive space factor|R′|.

6. Longest monotone concave/convex paths in an arrangement

In this section, we present anO(n2) time,O(n) space algorithm for reporting a longe
monotone concave (or convex) path inA(H), improving the time and space bounds of
algorithms by Edelsbrunner and Guibas [14]. This algorithm in spirit is similar to the
for reporting a shortest path in Section 5, yet is less sophisticated than the shorte
algorithm. Hence we will mainly describe the differences between these two algor
WLOG, assume that we are to compute a longest monotone concave path.

A monotonepathπ in A(H) is a continuous curve consisting of edges and vertice
A(H), such that every vertical line intersectsπ in exactly one point. A vertex ofπ is aturn
if the two incident edges are not collinear. A monotone pathπ is concave(respectively,
convex) if the curve keeps making left (respectively, right) turns as one traces it from
to right. The length ofπ is defined as the number of its turns plus one.

Let LMC be a longest monotone concave path inA(H) andLMC(u, v) be the subpath
of LMC between two verticesu andv of LMC. WLOG, we assume that the vertices alo
LMC are in increasing order of theirx-coordinates. Letslope(l) denote the slope of a lin
(or line segment)l, andslopem(H

′) denote the median slope of the lines in a subsetH ′
of H . Clearly, the slopes of the segments alongLMC are in increasing order. For a lin
segmente, the supporting linel(e) of e is the line containinge. The next lemma is usefu

Lemma 10. Let s andt be two vertices of LMC andes andet be the first and last segmen
of LMC(s, t), respectively. Letw be the intersection of the two supporting linesl(es) and
l(et ). Then each line inH that contributes a segment to LMC(s, t) intersects both the
segmentssw andwt .

Proof. It follows from the fact that the slopes of the segments along the monotone co
pathLMC(s, t) are in increasing order (see Fig. 5).✷

Fig. 5. Illustrating Lemma 10.
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If a line l ∈H intersects bothsw andwt , then we say that, toLMC(s, t), l is feasible,
otherwiseinfeasible. Examples are given in Fig. 5, wherel1, l2, l3, l4 are feasible andl5, l6
are infeasible.

Our algorithm for reportingLMC proceeds as follows:

1. Find two consecutive segmentsuz andzw on LMC such thatslopem(H) is between
slope(uz) andslope(zw) (i.e.,slope(uz)� slopem(H)� slope(zw)).

2. PartitionH into two subsetsH1 andH2, each having at mostn/2 lines, such that al
lines inH1 ∪H2 are feasible, and such that the slopes of all lines inH1 are less than
slope(uz) and the slopes of all lines inH2 are greater thanslope(zw).

3. Recursively report the portion ofLMC beforeuz and the portion ofLMC afterzw.

Clearly, the key to the algorithm above is Step 1. For this step, we use the follo
prune-and-search procedure to locate the consecutive segmentsuz andzw of LMC.

1. LetR be a convex region in which the subpathLMC(s, t) of LMC, for two verticess
andt of LMC inAR , contains segmentsuz andzw. (Initially, R is the whole plane, an
s andt are the “vertices” ofLMC at−∞ and+∞.) LetK = |AR|. If K =O(n), then
find LMC(s, t) in AR (as well as segmentsuz andzw) by a tree-growing approach
Otherwise, continue.

2. Compute a vertical lineL as specified in Lemma 9. Observe that any monot
concave path can intersectL at most once. Let the sample node setSL contains, t
and the right vertices of the edgese of all longest monotone concave paths inAR from
s such thatL intersectse.

3. Build a clipped treeT based onSL by running the length version of the longe
monotone concave path algorithm in [2]. This algorithm computes the leng
LMC(s, t) in AR. Let ev be the edge ofLMC(s, t) whose right vertexv is a node
of T .

4. LetL partitionR into two convex subregionsR1 andR2, each havingK/2 vertices
of R. By comparingslope(ev) andslopem(H), decide on which side ofL the desired
vertexz of LMC lies. Let sayslopem(H) < slope(ev) (and hencez ∈ R1).

5. Recursively search foruz andzw (on pathLMC(s, v)) in the convex regionR′
1, where

R′
1 is the common intersection ofR1 and the upper half-plane bounded byl(ev).

The procedure for Step 1 takesO(n2) time andO(n) space, since the problem size
each recursive call is reduced by a constant fraction.

Hence, the time bound of the overallLMC algorithm is given by the recurrenc
T (n) � 2T (n/2) + O(n2), whose solution isT (n) = O(n2). The space bound is on
O(n), since each recursive call usesO(n) space for bookkeeping and for the topologi
walk.

Theorem 2. A longest monotone concave(or convex) path in the arrangement ofn lines
on the plane can be reported inO(n2) time andO(n) space.

Proof. It follows from the above discussion.✷
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Our algorithm can also be used to solve, in the same time and space bounds, t
problem, which is stated as follows [14]: Given a setS of n planar points (S is dual to
H so that the slopes of the lines determine thex-coordinates of the points), find a longe
concave/convex chain ofS.

7. Longest monotone paths in an arrangement

In this section, we apply our algorithmic paradigm to the problems of computi
longest monotone path in the arrangement ofn lines in 2D orn planes in 3D, yielding
two efficient algorithms. These algorithms make use of topological sweep [1,14] an
clipped tree data structure. Our algorithm for the planar case takesO(n2 logn/ log(h+ 1))
time andO(nh) space, with 1� h � nε and 0< ε < 1. For h = O(1), our algorithm
usesO(n2 logn) time andO(n) space, improving theO(n2 logn) time,O(n logn) space
solution in [14]. Forh= nε , our algorithm usesO(n2/ε) time andO(n1+ε) space (unlike
theO(n2/ε) time,O(n1+ε/ε) space solution in [14], our space bound does not dep
on the 1/ε factor). Our algorithm for the 3D case takesO(n3 logn/ log(h + 1)) time
andO(n2h) space, improving theO(n3 logn) time,O(n2 logn) space solution that woul
result if the techniques in [14] are applied.

7.1. Longest monotone path in a 2D arrangement

LetA(H) be the arrangement formed by a setH of n lines on the plane. We denote b
LMP(A(H)) a longest monotone path inA(H). Monotone paths inA(H) and their lengths
are defined in the same manner as in Section 6.

Edelsbrunner and Guibas [14] used topological sweep to compute the leng
LMP(A(H)), in O(n2) time andO(n) space. To find an actual pathLMP(A(H)), they
used a recursive back-up method that maintains some “snapshots” which are states
sweeping process. Storing each snapshot usesO(n) space, which enables them to resu
the sweeping process of their algorithm at the corresponding state, without having t
from the initial state again. As it turns out, the algorithm for reportingLMP(A(H)) in [14]
needs to maintain simultaneouslyO(logn) snapshots. Altogether, it takesO(n2 logn) time
andO(n logn) space.

Our techniques are different from [14]. We use a marriage-before-conquer app
and a clipped tree. Our algorithm first performs a topological sweep onA(H) and makes
h snapshotsS1, S2, . . . , Sh of the sweeping process. Each snapshotSi determines a cutCi
(i.e., a sequence ofn special edges ofA(H)) and a correspondingy-monotone sweepin
curveSCi , as in [14]. Theh sweeping curves partition theO(n2) vertices ofA(H) into
h+ 1 subsets of (roughly) equal sizes ofO(n2/(h+ 1)). Using theO(nh) right vertices
of the edges of theh cutsC1,C2, . . . ,Ch as the sample nodes for the clipped tree, we
identify for eachCi the vertexvi on LMP(A(H))∩Ci . After theh verticesv1, v2, . . . , vh
of LMP(A(H)) are identified, the problem is reduced to solvingh + 1 subproblems o
equal sizes, in the left to right order.

The ith subproblem is to find a longest monotone subpath ofLMP(A(H)) between
vi andvi+1 in the region bounded by the sweeping curvesSCi andSCi+1 (initially, let
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v0 andvh+1 be on the vertical linesx = −∞ andx = +∞, respectively). We solve th
subproblem on each such region recursively, until the region for the subproblem co
only O(nh) vertices ofA(H) (at that point, we simply use a tree-growing approach
report the portion ofLMP(A(H)) in that region).

In this algorithm, oncev1, v2, . . . , vh are identified, we associate with eachvi the
number of vertices ofA(H), denoted bynumi , to the left of the sweeping curveSCi ,
and release the space occupied by snapshotsS1, S2, . . . , Sh. Starting at the initial stat
(or snapshot)S0 of the sweeping algorithm, we recursively solve the first subprob
In each step of the recursion, we always maintain exactly one snapshotSc for the left
boundary of the currently considered subproblem. It is important to observe that fo
such snapshotSc , the subpath ofLMP(A(H)) to the left of the sweeping curveSCc has
been reported. Once theith subproblem is solved, we resume the sweeping fromSc, which
is the snapshot for the left boundary of the just solved subsubproblem, to restore sn
Si+1, and letSi+1 be the newSc. RestoringSi+1 from Sc is done by counting the numb
of A(H) vertices visited by the sweeping until thenumi+1th vertex is met.

Note that, unlike our algorithm for the actualshortestpath problem onA(H), it is
not clear to us how the total size of the arrangement portions for the subproblems
significantly reduced. One reason for this is that a longest monotone path inA(H) can
cross a line inH multiple times.

We summarize our algorithm as follow. LetR be the region bounded by two sweepi
curvesSCl andSCr , and letK be the number of vertices ofA(H) in R. The algorithm
computes inR the subpathLMPR(A(H)) of LMP(A(H)) from one vertexs on Cl to
another vertext on Cr , whereCl andCr are the corresponding cuts ofSCl and SCr .
Initially, the regionR is bounded by two vertical lines at−∞ and+∞. The following
steps are carried out.

1. If R contains onlyO(nh) vertices ofA(H), then perform a topological sweep inR
and use the tree-growing approach to report the subpathLMPR(A(H)) from s to t .
Otherwise, continue.

2. Starting at the snapshotSc (initially, Sc is the initial state of the sweeping algorithm
restore the snapshotSl , let Sl be the newSc , and sweep regionR from Sl . During the
sweeping, make a snapshotSi at every(K/(h+ 1))th vertex encountered, and build
clipped treeT using the right vertices of the edges of the cutsCi, i = 1,2, . . . , h, as
the sample nodes.

3. Find theh ancestorsv1, v2, . . . , vh of t in the clipped treeT with vi onCi , determine
for vi the numbernumi of A(H) vertices to the left ofSCi , and release the spa
occupied byS1, S2, . . . , Sh and the clipped treeT .

4. Recursively report the subpath ofLMPR(A(H)) from s to v1, from v1 to v2, . . . , and
from vh to t , in this order.

The correctness of this algorithm follows from the correctness of the solution in
Its time bound is given by the following recurrence:

T (K)= (h+ 1)T

(
K

)
+O(K), if K > nh,
h+ 1
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T (K)=O(nh), if K � nh,

whose solution isT (K)= O(K logK/ log(h+ 1)), with K being the size of the portio
of A(H) in a regionR. ForA(H), K =O(n2), and hence the time bound for computi
LMP(A(H)) isO(n2 logn/ log(h+ 1)).

For the space bound, note that the topological sweep usesO(n) space. Theh snapshots
and the clipped tree both useO(nh) space. After determining the vertices in(

⋃h
i=1Ci) ∩

LMP(A(H)), we release the space occupied by theh snapshots and the clipped tree. Th
for each subproblem (except the currently considered one), we only need to maintaiO(1)
information. Hence the total space used in any step isO(nh).

The following result follows from the above discussion.

Theorem 3. An actual longest monotone path LMP(A(H)) in a 2D arrangementA(H) of
n lines can be computed inO(n2 logn/h+1) time andO(nh) space, whereh is an integer
between1 andnε , for any constantε with 0< ε < 1.

7.2. Longest monotone path in a 3D arrangement

In 3D, a monotone pathπ in the arrangementA(H) of n planes inH is a connected
curve of edges and vertices ofA(H) such that any plane perpendicular to thex-axis cuts
π at exactly one point.

To find a longest monotone path inA(H) in 3D, we use an algorithm similar to the 2
version. The main differences are as follows.

First of all, instead of using the 2D topological sweep algorithm [14], we use
generalized version, the 3D topological sweep [1], to sweepA(H). Second, for each regio
R bounded by two sweeping surfaces, if the number of vertices inR is O(n2h), then a
tree-growing approach is used to report the subpathLMPR(A(H)) of LMP(A(H)) in R.
Otherwise, we perform a 3D topological sweep inR to makeh snapshotsS1, S2, . . . , Sh
and build a clipped treeT from theO(n2h) right vertices of the edges of the cutsCi ,
i = 1,2, . . . , h. After determining theh vertices of(

⋃h
i=1Ci) ∩ LMP(A(H)), the space

for the clipped tree andS1, S2, . . . , Sh is released, and the algorithm orderly reports
subpaths ofLMPR(A(H)) in the equal-size subregions ofR. Third, we make use of th
length version of the 3D longest monotone path algorithm [1].

The correctness of our 3D algorithm can be argued as for the 2D version. The
bound is given by the following recurrence:

T (K)= (h+ 1)T

(
K

h+ 1

)
+O(K), if K > n2h,

T (K)=O
(
n2h

)
, if K � n2h,

whose solution isT (K) = O(K logK/ log(h + 1)). ForK = O(n3), the time bound is
O(n3 logn/ log(h+ 1)). Clearly, the space bound isO(n2h). Thus, we have the followin
result.

Theorem 4. A longest monotone path in a3D arrangement ofn planes can be reported i
O(n3 logn/ log(h+ 1)) time andO(n2h) space, whereh is an integer between1 andnε ,
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for any constantε with 0< ε < 1. In particular, if h = O(1), then the time and spac
bounds areO(n3 logn) andO(n2), respectively.

8. Dynamic programming problems

Our paradigm is also applicable to a number of other problems, such as compu
minimum-weight,k-link path in a graph [23,25], 0–1 knapsack with integer item sizes
23,25–27,30], and single-vehicle scheduling for sites on a straight line with specia
window constraints [6,29]. We first discuss the common properties of the class o
problems, and then show how our paradigm is applied to several such problems.

8.1. General characterization

Generally speaking, our paradigm applies to problems with the following
properties:

• The problem seeks an optimal solution that consists of a value (e.g., an optima
length) and a corresponding optimal structure formed by a sequence of element
an actual optimal path).

• The optimal value can be obtained by a dynamic programming algorithm that b
a tableM of values, such that each row ofM is computed fromO(1) immediately
preceding rows.

Let the value tableM haven columns andk rows, wheren is the size of the input andk
is an input integer value that may or may not be related ton. Using our clipped-tree base
paradigm, we can report an actual optimal structure by first finding an element o
structure at rowk/2 (if row k/2 contains such an element), and then recursively sol
the subproblems on the two subtables ofM, one above and the other below rowk/2.

As mentioned in Section 3, depending on its particular properties, a problem so
by our paradigm may fall into one of two categories: type A and type B. In fact, the
problems in Sections 5 and 6 are of type A, and those in Section 7 are of type B. W
further discuss these two types of problems in the framework of dynamic program
algorithms. Figure 6 illustrates these two types of problems.

For a type A problem, the original problem of sizen can be reduced to solving tw
independent subproblems of sizesq andn− q , resulting in that a constant fraction of th

(a) Reduction for type A (b) Reduction for type B

Fig. 6. Reductions for the two different types of dynamic programming problems.
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entries ofM is eliminated from consideration when solving these subproblems. Henc
algorithms for finding an actual optimal structure for type A problems have the same
and space bounds as those for computing an optimal value. Examples of such pr
include computing a minimum-weight,k-link path in a directed acyclic graph [23,25], 0–
knapsack with integer item sizes [11,23,25–27,30], and single-vehicle scheduling fo
on a straight line with special time window constraints [6,29].

However, there exist some problems (type B) for which it is not clear how to re
the original problem of sizen to two independent subproblems of sizesq andn− q (i.e.,
we only know how to reduce it to two subproblems of sizen each). Thus for a type B
problem, one needs to involve virtually the whole tableM when solving the subproblem
Our algorithms for finding an actual optimal structure for type B problems have the
space bound as that for computing an optimal value, and a time bound with an extrk
factor. An example of such problems is computing a minimum-weight,k-link path in a
general graph ofn vertices andm edges [23,25]. Actually, by samplingh rows of the
tableM, we obtain anO(k(n+m) logk/ log(h+1)) time,O(nh) working space algorithm
for the general minimum-weight,k-link path problem, whereh is any integer such tha
1 � h� kε for any constantε with 0< ε < 1.

A key to determining whether a problem is of type A or type B is the depende
among the entries in the corresponding dynamic programming table. In the follo
subsections, we apply our general paradigm to solving several problems in the fram
of dynamic programming.

8.2. 0–1 knapsack problem

The 0–1 knapsack problem with integer item sizes is a well studied special case
knapsack problem [23]. Given a positive integerB (for the knapsack size) andn items,
with the ith item having a positive integer sizeki and an arbitrary weight valuewi , the
problem is to select a subset of items such that the sum of the sizes of the selecte
is no bigger thanB and such that the total weight of the selected items is maxim
This problem is NP-complete and has often been solved by dynamic programmin
25,26,30] or by reducing the problem to computing an optimal path in a directed a
graph ofO(nB) vertices and edges [23,27]. When the standard tree-growing app
is used for computing an actual solution, it takesO(nB) time and space [23,25–27,30
It was also shown in [26] how to use a bit representation to reduce the space bo
O(n+ nB/ log(n+B)). We present anO(nB) time,O(n+B) space algorithm.

Let Wi,j be the optimal weight value of the knapsack problem with a knapsack sj
and using as the candidates of selection the firsti items. ThenWi,j can be computed a
follows [23]:

Wi,j = max{Wi−1,j ,Wi−1,j−ki +wi}.
A dynamic programming tableM of sizen × B for the weight valuesWi,j is depicted
in Fig. 7 (where the dashed lines indicate the partitions of the subproblems). The
of M correspond to then given items, and the columns correspond to knapsack
of 0,1,2, . . . ,B. The two arrows into entryM(i, j) indicate the dependency ofWi,j on
Wi−1,j andWi−1,j−ki . Let s be a dummy source node that has an arrow going into
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Fig. 7. Dynamic programming table for the 0–1 knapsack problem.

entry of the first row and the first column ofM. It is well known that a subset of item
which form an actual optimal solution for the original knapsack problem correspond
path froms to entryM(n,B) in M. A commonly-used approach for finding such a pat
by maintaining a single-source optimal path treeSSTrooted ats.

From Fig. 7, one can immediately see that the 0–1 knapsack problem has th
properties specified in Section 8.1, and thus is able to make use of our paradig
this problem, a natural choice for a sample set for building a clipped treeT is the entries
of row n/2 of tableM plus the dummy source nodes and t = M(n,B). The clipped
treeT is produced by an algorithm for computing the optimal weightWn,B , which only
needs to storeO(1) rows ofM. Suppose the parent node oft in T is M(n/2, q). Then
the original problemP(n,B) is reduced to two subproblems, with knapsack sizesq and
B − q , respectively, and one having the firstn/2 items while the other having the seco
n/2 items. That is, the two subproblems areP(n/2, q) andP(n/2,B − q). Clearly, the
0–1 knapsack problem is of type A and can be solved inO(nB) time andO(n + B)

space.

8.3. Minimum weight,k-link paths

Let G = (V ,E) be a weighted graph with nonnegative edge weights,n = |V |, and
m = |E|. Let wuv denote the weight of edgee(u, v) connecting verticesu and v. The
minimum weight,k-link path problem is that of finding a minimum weight pathPk(s, t)
between two verticess and t in G such thatPk(s, t) uses no more thank edges (k � n)
[23]. Some application problems can be formulated as the minimum weight,k-link path
problem (e.g., [21]).

It was shown in [23] that theweightWk(s, t) of a minimum weight,k-link pathPk(s, t)
can be computed using the Bellman–Ford method. For initialization, do the following

W1(s, s)= 0,

W1(s, v)=wsv, v ∈ V − {s}. (1)
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Fig. 8. Dynamic programming table for the minimum weight,k-link path problem.

Then the weight of an(i + 1)-link path,i � 1, can be computed iteratively as follows:

Wi+1(s, v)= min
{
Wi(s, v), min

e(u,v)∈E
{
Wi(s,u)+wuv

}}
.

This algorithm takesO(k(n+m)) time andO(n) working space. To find an actual pa
Pk(s, t), one can use the standard tree-growing approach, inO(k(n+m)) time andO(kn)
working space.

By working space, we refer to the space used by the algorithm (for bookkeeping,
structures, etc) that isin addition to the space needed for input data. The working sp
may dominate the overall space bound of a graph algorithm in two cases:

(1) the graphG is sparse (i.e.,G haso(kn) edges), and
(2) G, although not sparse, can somehow be represented ino(kn) space.

In applications, it is sometimes possible to represent graphs ofO(n2) edges with only
O(n) space (e.g., [7,21]).

It is not difficult to see that the above relation among weight valuesWi+1(s, v) can be
captured by a dynamic programming tableM of sizek× n, in which the rows correspon
to the numbers of links, the columns correspond to the vertices ofG, andWi(s, v) is at
entryM(i, v). The dependencies among the entries ofM are that an entry on rowi + 1
depends only on a number of entries on rowi. In particular,M(i + 1, v) must depend on
M(i, v), and it depends onM(i,u) if and only if e(u, v) ∈ E. Note that the positions o
such entriesM(i,u) on row i are quite arbitrary for a general graphG (i.e., they can be
anywhere in rowi). Such a table is depicted in Fig. 8.

From the structure of the table, one can see that our paradigm is applicable
minimum weight,k-link path problem. As for the 0–1 knapsack problem, the sample
consists of the entries on rowk/2 together with the source nodeM(1, s) andM(k, t) (let
M(1, s) have an arrow into every other entry of row one). The corresponding clipped tT

is built during the weight computation. The parent vertex ofM(k, t) in T , sayM(k/2, q),
is used to reduce the original problem to two subproblems: Finding a minimum w
(k/2)-link path Pk/2(s, q) from s to q andPk/2(q, t) from q to t . To decide whethe
the problem is of type A or B, note that an entry inM may depend on entries fromany
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columns of the previous row rather than just the columns to its left as for the 0–1 kna
problem. In this situation, it is not clear to us how to partition the original graphG into two
disjoint subgraphs for the two subproblems. Consequently, each subproblem must c
all columns ofM, implying that the subproblem usesG as graph when computing a desir
optimal(k/2)-link path. Hence, findingPk(s, t) in a general graph is a type B problem, a
can be solved inO(k(n+m) logk) time andO(n) working space. If we sampleh rows of
M instead of one, we can obtain anO(k(n+m) logk/ log(h+ 1)) time,O(nh) working
space algorithm, whereh is any integer such that 1� h � kε for any constantε with
0< ε < 1.

It is interesting to note that ifG is a directed acyclic graph, then the problem is of type
In this case, one can first sort the vertices ofG by a topological sort [11], and then arran
the columns of the tableM according to this sorted vertex order. As a result, each ent
M depends only on entries on columns to its left. Therefore, pathPk/2(s, q) (respectively,
Pk/2(q, t)) only involves vertices inG that are betweens andq (respectively,q and t)
in the column order ofM. It follows that we can partitionG into two subgraphs, on
induced by vertices betweens andq (for computingPk/2(s, q)) and the other induced b
vertices betweenq andt (for computingPk/2(q, t)). Our algorithm for reporting an actu
pathPk(s, t) samples the entries of rowk/2 of M. The recurrence for the time bound
this algorithm isT (k,N) � T (k/2,N1)+ T (k/2,N2)+O(kN), whereN = n +m and
N1+N2 �N . The solution of this recurrence isT (k,N)=O(kN). Therefore, thePk(s, t)
problem on a directed acyclic graph can be solved inO(k(n+m)) time andO(n) working
space.

8.4. Single-vehicle scheduling problems

The single-vehicle scheduling problem (SVS) studies route scheduling for a ve
to visit n given sites, each having a time window during which the vehicle is allowe
visit that site. The goal is to minimize a certain objective function of the route (e.g.,
or distance), if such a route is possible. The problem is a generalization of the Tra
Salesperson Problem and is NP-hard even for some very special cases [4]. For exa
is NP-hard for the case in which a vehicle is to visitn sites on a straight line (equivalentl
a ship is to visitn harbors on a convex shoreline) with time windows whose start ti
(also calledready times) and end times (also calleddeadlines) are arbitrary [6]. We shal
consider two special cases of this problem.

The first special case of the SVS problem considers the following [29]: A vehicle
visit a setS of n sites on a straight line. Each sitesi has a ready timeri but no deadline
and the Euclidean distance between two sitessi andsj is denoted byDi,j . A vehicle with
unit speed starts at sites1 and wants to visit all then sites. The goal is to find a feasib
schedule for visiting then sites which has the minimum completion time. (A schedul
feasible if each site is visited on or after its ready time.)

It was proved in [29] that at any time along an optimal schedule, the set of v
sites is the union of two disjoint setsS1 andS2, whereS1 includes all sites froms1 to si
(1 � i � n) while S2 includes all sites fromsj to sn (i < j � n+ 1, with the convention
thatS2 = φ if j = n+ 1). Furthermore, onlysi or sj can be the last visited site along t
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Fig. 9. Dynamic programming table for the first case of the SVS problem.

route. Based on this observation, the following dependencies can be used to comp
minimum completion time.

V (i, i, j)= min
{

max
{
ri ,V (i − 1, i − 1, j)+Di−1,i

}
,

max
{
ri ,V (j, i − 1, j)+Dj,i

}}
,

V (j, i, j)= min
{

max
{
rj ,V (j + 1, i, j + 1)+Dj+1,j

}
,

max
{
rj ,V (i, i, j + 1)+Di,j

}}
,

for 1 � i < j � n+ 1,

whereV (k, i, j) denotes the minimum completion time of a schedule for visiting s
s1, s2, . . . , si and sj , sj+1, . . . , sn such that the last visited site issk (k ∈ {i, j }). For
initialization, letV (1,1, n+ 1)= r1 andV (0,0, j)= V (n+ 1, i, n+ 1)= ∞ for all j > 1
andi � n. Then, the minimum completion time for visiting alln sites is

Cmin = min
1�i�n

V (i, i, i + 1)= min
1<j�n+1

V (j, j − 1, j).

Based on the above characterization, the algorithm for computing the minimum co
tion time for visiting alln sites takesO(n2) time andO(n) space [29]. However, to produc
an actual optimal route for the visit, the algorithm in [29] usesO(n2) time and space.

Again, the dependencies defined in the above relation can be captured by a d
programming tableM, where the row (respectively, column) indices correspondi
(respectively,j ) in V (k, i, j). Two values,V (i, i, j) andV (j, i, j), are stored in each tab
entryM(i, j), 0� i � n and 1� j � n+ 1. Figure 9 depicts such a table. (In fact, only
upper diagonal half ofM is really needed.) Lets be the node representing entryM(1, n+1)
(i.e., the starting sites1), andt be a dummy node into which an arrow comes from ev
entryM(i, i + 1) (representingCmin = min1�i�n V (i, i, i + 1)). Then, an actual optima
site-visit sequence corresponds to a path froms to t in tableM.

Each entry ofM depends only on the entry immediately above and the one immed
to its right. Hence, this SVS problem has the two properties specified in Section 8



D.Z. Chen et al. / Journal of Algorithms 49 (2003) 13–41 39

f

g
to

l site-

can be
m

e that
e
me
traight
ed on
case,

g all
Fig. 10. Dynamic programming table for the second case of the SVS problem.

can make use of our paradigm. Although the shape of the original tableM is triangular, we
can easily reduce it to a rectangular subtable, as follows. Letsz be the last visited site o
the sought optimal schedule for the original problem (i.e.,Cmin = V (z, z, z + 1)). Note
that V (z, z, z + 1) at entryM(z, z + 1) can be found by the algorithm for computin
the minimum completion time for visiting alln sites. Then the problem is reduced
the subtable ofM from row 0 to rowz and from columnz + 1 to columnn + 1 (see
Fig. 9). Once this is done, the rest of our algorithm for producing an actual optima
visit sequence proceeds in the same manner as the one in Section 8.2.

To summarize, this case of the SVS problem is of type A, and an actual schedule
found in the same time (O(n2)) and space (O(n)) bounds as for computing the minimu
completion time.

The second special case of the SVS problem, which is a variation of the first cas
we just discussed above, puts a deadlinedi to each sitesi , but lets alln sites have the sam
start timer � 0 [6]. A useful observation is given in [6] for solving this case: At any ti
along an optimal feasible schedule, the visited sites form a connected region on the s
line and the last visited site is either the leftmost or rightmost site of that region. Bas
this observation, a dynamic programming algorithm, similar to the one for the first
was given in [6] for computing the minimum completion time inO(n2) time andO(n)
space. However, the algorithm in [6] for producing an actual optimal route for visitin
the sites usesO(n2) time and space.

Let V (k, i, j) denote the optimal time for visiting sitessi , si+1, . . . , sj such that the
last visited site issk (k ∈ {i, j }). Initially, let V (i, i, i) = δi(max{r,D1,i}), for eachi =
1,2, . . . , n, where the functionδi(x) is defined as follows:

δi(x)=
{
x if x � di,

∞ otherwise.

The dependencies among optimal timesV (k, i, j) can be characterized by

V (i, i, j)= min
{
δi

(
Di+1,i + V (i + 1, i + 1, j)

)
, δi

(
Dj,i + V (j, i + 1, j)

)}
,

V (j, i, j)= min
{
δj

(
Dj−1,j + V (j − 1, i, j − 1)

)
, δj

(
Di,j + V (i, i, j − 1)

)}
,

for 1 � i < j � n.
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The minimum completion timeCmin = min{V (1,1, n),V (n,1, n)}. The dynamic pro-
gramming tableM for the above dependencies is shown in Fig. 10. Likewise, two va
V (i, i, j) andV (j, i, j), are stored in each table entryM(i, j).

Comparing the dynamic programming table for this case (Fig. 10) with that for the
case (Fig. 9), one can immediately see the similarities between the two. Hence, it is
conclude that this case is of type A, and an actual optimal schedule for visiting alln sites
can be obtained inO(n2) time andO(n) space.

Our examples in this section have demonstrated that a number of problems solva
a certain dynamic programming approach can utilize our general paradigm to reduc
space bounds or to achieve a trade-off between their time and space bounds.
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