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Abstract

For problems on computing an optimal path as well as its length in a certain setting, the “standard”
approach for finding an actual optimal path is by building (or “growing”) a single-source optimal
path tree. In this paper, we study a class of optimal path problems with the following phenomenon:
The spacecomplexity of the algorithms for reporting tHengthsof single-source optimal paths
for these problems is asymptotically smaller than the space complexity of the “standard” tree-
growing algorithms for finding actual optimal paths. We present a general and efficient algorithmic
paradigm for finding an actual optimal path for such problems without having to grow a single-
source optimal path tree. Our paradigm is based on the “marriage-before-conquer” strategy, the
prune-and-search technique, and a new data structure céifped trees The paradigm enables
us to compute an actual path for a number of optimal path problems and dynamic programming
problems in computational geometry, graph theory, and combinatorial optimization. Our algorithmic
solutions improve the space bounds (in certain cases, the time bounds as well) of the previously best
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known algorithms, and settle some open problems. Our techniques are likely to be applicable to other
problems.
0 2003 Elsevier Inc. All rights reserved.
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1. Introduction

For combinatorial problems on computing an optimal path as well as its length in a
certain setting, the “standard” approach for finding an actual optimal path is by building (or
“growing”) a single-source optimal path tree. This is hormally done by maintaining some
predecessoinformation as the path lengths from the source are being computed (e.g.,
see [11]). This tree-growing approach is effective for finding actual single-source optimal
paths, especially as théme complexity is concerned. In fact, it is well known that no
general algorithms are known that compute an optimal path betamepairof locations
with a fastetimebound than that for computing single-source optimal paths. However, this
need not be the case for many problems as far aspghescomplexity is concerned. In this
paper, we study a class of optimal path problems with the following interesting yet less-
exploited phenomenon: Thepacecomplexity of the algorithms for reporting thengths
of single-source optimal paths for these problems is asymptotically smaller than the space
complexity of the “standard” tree-growing algorithms for finding actual optimal paths. Our
goal is to show that for such problems, it is possible to find an actual optimal path without
having to grow a single-source optimal path tree, thus achieving asymptotically better
space bounds for finding one actual optimal path than those for single-source optimal paths.

It should be mentioned that the phenomenon that the space bound for finding an actual
optimal path can be smaller than that for single-source optimal paths has been observed
and exploited in some scattered situations. For example, Edelsbrunner and Guibas [14]
showed that for computing a longest monotone path or a longest monotone concave path
on the arrangement of siz&(n?) formed byn lines on the plane, it is possible to report the
lengthof such a path ir0 (n?) time andO (n) space. To output an actual longest monotone
path, they used (n?logn) time andO(nlogn) space, and to output an actual longest
monotone concave path, they used:? logn) time andO (nlogn) space (or alternatively,

0 (n®) time andO (n) space). It was posed as open problems in [14] whether these extra
time and space bounds for reporting an actual longest monotone path or longest monotone
concave path could be partially or completely avoided. Another example is the problem of
computing a longest common subsequence of two strings of $iA&20,31] (this problem

can be reduced to an optimal path problem). Hirschberg [20] used dynamic programming
to find an actual longest common subsequence and its lengfhiR) time and O (n)

space without growing a single-source tree. The actual optimal path algorithms in [14] use
a recursive back-up method, and the one in [20] is based on a special divide-and-conquer
strategy called “marriage-before-conquer.”

We study in a systematic manner the phenomenon that the space bound for finding an
actual optimal path can be smaller than that for single-source optimal paths. We develop a
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general algorithmic paradigm for reporting an actual optimal path without using the tree-
growing approach, and characterize a class of optimal path and dynamic programming
problems to which our paradigm is applicable. This paradigm not only considerably gener-
alizes the marriage-before-conquer strategy used in [20], but also brings forward additional
interesting techniques such as prune-and-search and a new data structurelipglést

trees Furthermore, the paradigm makes it possible to exploit useful structures of some of
the problems we consider. Our techniques enable us to compute efficiently an actual op-
timal solution for a number of optimal path and dynamic programming problems in com-
putational geometry, graph theory, and combinatorial optimization, improving the space
bounds (in certain cases, the time bounds as well) of the previously best known algorithms.

Below is a summary of our main results on computing an actual optimal solution.

Computing a shortest path in the arrangement:dines on the planeAs mentioned
in [5,17], it is easy to reduce this problem to a shortest path problem on a planar graph
of size O (n?) that represents the arrangement, and then solveGt(irf) time and space
by using the optimal shortest path algorithm for planar graphs [22]. We presenti
time, O (n) space algorithm.

Computing a longest monotone convex/concave path in the arrangemelfines on
the plane An O(n?logn) time, O (nlogn) space algorithm and a® () time, O(n)
space algorithm were given by Edelsbrunner and Guibas [14]. We presént:@ntime,

O (n) space algorithm. Our solution is an improvement on those of [14], and settles the
corresponding open problem in [14].

Computing a longest monotone path in the arrangement lifies on the planeAn
O (n%logn) time, O (nlogn) space algorithm and a® (n2/¢) time, O (n1*€/¢) space
algorithm were given in [14]. We present @ann?logn/log(h + 1)) time, O (nh) space
algorithm, where: is any integer such thatg » < n€ for any constan¢ with 0 < ¢ < 1.

Note that forh = O(1), our algorithm use®) (n2logn) time and O (n) space, and for

h = n€, our algorithm use® (n2/¢) time ando (n11¢) space (unlike [14], our space bound
does not depend on thgd factor). Our solution is an improvement on those of [14], and
provides an answer to the corresponding open problem in [14].

Computing a longest monotone path in the arrangement gflanes in the3D
space An O(n®) time, O(n?) space algorithm was given by Anagnostou et al. [1] for
computing thdength of such a path. If the techniques in [14] are used, then an actual
path would be computed i (n3logn) time and O (n%logn) space. We present an
O (n3logn/log(h + 1)) time, O (n%h) space algorithm, wherk is any integer such that
1 < h < n€ for any positive constant < 1. Forkh = 0 (1), we useO (nlogn) time and
0 (n?) space, improving the space complexity by@dogn) factor.

Computing a minimum-weighk;link path in a graphLet G = (V, E) be a weighted
graph ofn = | V| vertices andn = | E| edges with nonnegative edge weights. A minimum-
weight, k-link path in G between two vertices is a path that uses at ntostiges and
whose total sum of edge weights is minimized. If the standard tree-growing approach is
used for computing such an actual optimal path, then it would@e&n + m)) time and
O (kn) working space [23,25]. We present &tk (n + m) logk/log(h + 1)) time, O (nh)
working space algorithm, where is any integer such that & 4 < k€ for any constant
€ with 0 < ¢ < 1. Note that forh = O (1), our algorithm uses) (k(n + m) logk) time
and O (n) working space, and fdr = k€, our algorithm use® ((1/¢)k(n 4+ m)) time and
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O (nk¢) working space (the constant of the working space bound does not depepé)on 1
Furthermore, ifG is a directed acyclic graph, then our algorithm ugg& (n + m)) time
and O (n) working space.

0-1 knapsack with integer item siz&Siven a positive integeB andn items, with the
ith item having a positive integer size and an arbitrary weight value;, the problem
is to select a subset of the items such that the sum of sizes of the selected items is no
bigger thanB and the total weight of the selected items is maximized. This problem is NP-
complete and has often been solved by dynamic programming [11,25,26,30] or by reducing
the problem to computing an optimal path in a directed acyclic graph(@fB) vertices
and edges [23,27]. If the standard tree-growing approach is used for computing an actual
solution, then it would us@ (n B) time and space [23,25-27,30] (it was also shown in [26]
how to use a bit representation to reduce the space boudidite- nB/log(n + B))). We
present arO (nB) time, O (n + B) space algorithm.

Single-vehicle schedulin@he general problem is to schedule a route for a vehicle to
visit n given sites each of which has a time window during which the vehicle is allowed
to visit that site. The goal is to minimize a certain objective function of the route (e.g.,
time or distance), if such a route is possible. This problem is clearly a generalization of the
Traveling Salesperson Problem and is NP-hard even for some very special cases [4]. For
example, it is NP-hard for the case in which a vehicle is to visites on a straight line
(equivalently, a ship is to visit harbors on a convex shoreline) with time windows whose
start times and end times are arbitrary [6]. Psaraftis et al. [29] gave (@R) time and
space dynamic programming algorithm for the case witlites on a straight line whose
time windows have only (possibly different) start times. Chan and Young [6] gag&e®)
time and space dynamic programming algorithm for the casemséites on a straight line
whose time windows have the same start time but various end times. We péegeit
time, O (n) space algorithms for both these cases.

Actually, several of our algorithms can be further generalized. For example, for the
optimal path problems on the arrangementgflanar lines, we can confine the paths to
the portion of the arrangement in a specified convex region @értices. Our algorithms
for these cases have better time bounds that depemgdorand the size of the arrangement
portion in the convex region.

The structure of the paper is as follows. Section 2 discusses the clipped tree data
structure. Section 3 gives an overview of our general algorithmic paradigm. Section 4
recalls several approaches for sweeping arrangements that are needed by our algorithms.
We then illustrate various aspects of our paradigm with examples on different optimal
path problems on arrangements (Sections 5 to 7). We finally characterize a class of
dynamic programming problems to which our paradigm is applicable, and solve several
combinatorial optimization problems of this class (Section 8).

2. Clipped trees

A key ingredient of our general paradigm is a new data structure celilgoed trees
that we introduce in this section. Clipped trees are important to our paradigm because they
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Fig. 1.7 is a clipped tree of’ based on the sample nodes (unfilled circles).

contain information needed for carrying out techniques such as marriage-before-conquer
and prune-and-search.

In a nutshell, a clipped tre® is a “compressed” version of a corresponding single-
source optimal path tre8ST such thatl’ consists of a (usually sparse) sample set of the
nodes ofSSTand maintains certain topological structuresS&T The sample nodes are
selected fron5STbased on a certain criterion (e.g., geometric or graphical) that depends
on the specific problem.

Let T’ be a rooted tree with root nodeLet S be a set of sample nodesBfwith r € S.

A clipped treeT of T’ based on the sample sets defined as follows:

e The nodes of the clipped trgeare precisely those if.
e Forevery node € S — {r}, the parent ob in T is the nearest proper ancestoiof v
in T’ such thatw € S.

Clearly, the size of" is O(]S]). If S consists of all the nodes af, thenT is simply T’
itself. An example of a clipped tree is given in Fig. 1.
The clipped tred” of T’ can be obtained by the following simple procedure:

e Make the root of T’ the root ofT', and pass down to all children efin T’ a pointer
tor.

e Forevery node of T’ that receives from its parent iff a pointer to a proper ancestor
nodew of v in T’ (inductively,w is already a node df), do the following: Ifv € S,
then addv to T, makew the parent ofv in T, and pass down to all children of
in 7’ (if any) a pointer tav; otherwise, pass down to all childrenwofn T’ (if any) the
pointer tow.

It is easy to see that it take3(|7’|) time to construct the clipped trefe from 7’7 and
from the given sample se&t, and O(|S|) space to stord'. Also, observe that the above
procedure need not have the trEeexplicitly stored. In fact, as long as the nodes7of
are produced in a parent-to-children ordeican be constructed. Note that this is precisely
the order in which a single-source optimal path tree grows, and this growing process takes
place as the lengths of optimal paths are being computed. Further, observe that one need
not have the sample s&texplicitly available in order to construét. As long as a criterion
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is available for deciding (preferably i1 (1) time) whether any node of 7’ belongs to the
sample sef, the above procedure is applicable.

Consequently, one can use an algorithm for computing the lengths of single-source
optimal paths and a criterion for determining the membership for a sample clethe
nodes of the single-source optimal path t&&Tto construct a clipped tre€ based on
SSTandS, without having to stor&ST Actually, whenT is being constructed, it is often
beneficial to associate with the nodesfcertain information about the corresponding
optimal paths to which these nodes belong. Once the process of computing the lengths of
single-source optimal paths terminates, the clipped Tretogether with useful optimal
path information stored in its nodes, is obtained.

Perhaps we should point out a seemingly minor but probably subtle aspect: The above
procedure for building a clipped tree depends only on the ability to generate a single-source
optimal path tree in a parent-to-children (or source-to-destination) order. This is crucial
for the applicability of our general paradigm. In contrast, the marriage-before-conquer
algorithm in [20] computes an actual optimal path using both the source-to-destination
and destination-to-source orders. Although the problem in [20] is symmetric with respect
to these two orders, it need not be the case with many other optimal path problems.
For example, for some dynamic programming problems that are solvable by following
a source-to-destination order (e.g., [6,29]), it may be quite difficult or even impossible to
use the destination-to-source order. This aspect of clipped trees also enables us to avoid
using the recursive back-up method of [14], since it may be difficult to use this back-up
method to significantly reduce the sizes of the subproblems in a marriage-before-conquer
algorithm.

3. Overview of the paradigm

In this section, we give a general overview of our algorithmic paradigm. Note that this
paradigm, when applied to a specific problem, may be incorporated with other techniques
and special structures of the problem to achieve an efficient algorithm.

The outline of our paradigm for finding an actual optimal p@(s, 1) between two
verticess andr in a given setting is as follows. Suppose an algorithm for computing the
lengthsof such optimal paths from a vertex is already known.

1. Run the algorithm for computing the lengths of single-source optimal paths, starting at
vertexs. Assume that this algorithm visits the vertices of the given setting in an order
of growing a single-source optimal path tr&8Trooted ats.

2. The treeSSTis not explicitly stored. Instead, a sample $ebf the nodes ofSST
(s andr are inS) is maintained by a clipped tré®, such thatS contains some vertices
of the sought optimal pat®P(s, t) in addition tos and¢. (Note that the criterion for
determining the sample s&tis problem-specific.)

3. ldentify the vertices of N OP(s, t) from T. Let these vertices ba, vy, ..., vy @along
OP(s, t), in this order, withvy = s, v, =, andg > 3.

4. Recursively find an optimal path from to v; 41, foreveryi =1,2,..., g — 1.
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Clearly, the above paradigm gives rise to an algorithm of ghe 1)-way marriage-before-
conquer nature. There are two keys to a successful application of this paradigm to solving
a problem:

(1) the availability of thelength version of the presumed single-source optimal path
algorithm, and
(2) the (problem-specific) criterion and method for determining the sample set

For all the problems we consider, a single-source optimal path length algorithm is
available. Hence, the main difficulty is on the second key which we further discuss below.

In the above paradigm, determining an appropriate sample(Set € S) in an efficient
fashion is critical to the overall efficiency of the desired algorithm for computing an actual
optimal pathOP(s, ). Some of the particularly useful propertiesHére as follows:

1. S should not be very large (otherwisg,itself could become the optimal path tree
SST.
2. S should contain some vertices of the optimal pat(s, r) in addition tos andz.
3. The vertices ir§ N OP(s, t) should induce “nice” subproblems for the recursion:
(3.1) The sizes of the subproblems should somewhat be “balanced.”
(3.2) It would be very helpful if the sum of the sizes of the- 1 subproblems is
smaller than the size of the original problem (say, a constant fraction of the
original size).

Remark. Note that in property (3.2), when subproblem sizes sum to a constant fraction of
the original problem, balancing condition (3.1) becomes unnecessary.

If the sample sef is “nice” (i.e., having all the above properties), then it is possible to
compute an optimal patBP(s, ¢) in the same time bound as that for computing the lengths
of optimal paths from vertex. In fact, for the majority of the problems we consider, the
sample sets we use have these properties. However, there are still a few problems for which
we cannot find sample sets satisfying property (3.2). As a consequence, our algorithms
for computingOP(s, 1) for such problems have an additional logarithmic factor in the
time bound in comparison with the corresponding length versions of these algorithms.
Thus, depending on whether the sample sets we use satisfy property (3.2), we classify
the problems into two types: type A satisfying property (3.2) and type B not satisfying
property (3.2).

One of our main efforts is therefore spent on constructing nice sample sets, and it
is usually for determining a nice sample set that other techniques and specific problem
structures are brought into the picture. Sections 5 to 8 present examples showing various
ways of obtaining a nice sample sefor different optimal path problems.

4. Topological sweep, topological walk, and topological peeling

Arrangements are a fundamental structure in combinatorial and computational geome-
try [13], and a great deal of work has been devoted to studying various arrangements and
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Fig. 2. The arrangement @f in a convex regiorR.

their properties. We briefly discuss in this section several arrangement sweeping algorithms
that will be needed in Section 5 to Section 7: Topological sweep [1,14], topological walk
[2,3], and topological peeling [8,9].

Let H = {l1,1>,...,1,} be a set ofz straight lines on a plane. The lines h divide
the plane into a subdivision called thee|angementA (H) of H. A(H) consists of a set of
convex regions (calledells), each bounded by some edges (i.e., segments of the lines in
H) and vertices (i.e., intersection points between the lindg)nThe interior of each cell
of A(H) intersects no lines ofl. In general A(H) hasO (n?) cells, edges, and vertices.
One may also consider the portidry of A(H) within a convex polygonal regioR, i.e.,

Ar =A(H)NR (see Fig. 2).

Without loss of generality (WLOG), we assume that the linesHirare in general
position, i.e., no three lines meet at the same point and no line is vertical (the general
case can be handled by using the techniques in [15]).

If one is interested only in constructing and reporting (but not storia@y), then
this can be done by a relatively simple algorithm that sweeps the plane by a vertical line,
in O(n?logn) time andO (n) space [16]. Edelsbrunner and Guibas [14] gave the novel
topological sweeppproach for constructing and reportingH ) in O (n?) time andO (1)
space. The topological sweep approach sweeps the plane with an unbounded simple curve
that is monotone to the-axis and that intersects each linemfexactly once. Asano et al.

[2] developed another interesting approach, caltgmblogical walk for constructing and
reportingA(H) in O(n?) time andO (n) space. Essentially, a topological walk traverses
A(H) in a depth-first search fashion by preferring left branches [2,3]. Topological walk can
also be extended to traversing the portibgp of A(H) inside a convex polygonal regiaty

in O(K + (n+ |R])log(n + |R|)) time andO (n + |R|) space, wher& is the number of
vertices inAg and|R| is the number of vertices at.

Let P ={p1, p2, ..., pn} be a set ofr planes in the 3D space. The arrangem&a®)
in the 3D space is the subdivision of convex polytopes dissected by gianes inP.

Each such convex polytope is bounded by a set of 2D faces, each of which is a cell of
the arrangement on a plape € P defined by the: — 1 lines that are the intersections

of p; with all p; € P — {p;}. In general, there ar® (n?) such lines on each plane &f.

Hence A(P) has O(n®) vertices. Anagnostou, Guibas, and Polimenis [1] extended the
planar topological sweep technique in [14] to 3D, sweeping BB arrangements (one on
each plang;) simultaneously with a special unbounded monotone surface. This sweeping
algorithm takes0 (n®) time ando (n?) space [1].
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However, there are problems on arrangements to which topological sweep and
topological walk may not be appropriate. Computing shortest paths(if) is such a
problem. It seems to be difficult for topological walk to compute shortest patiAg ih)
because of the depth-first nature of its searching strategy. Topological sweep may also not
work well, since a shortest path can crosgiionotone sweeping curve multiple times.

A new arrangement sweeping approach, calgmblogical peelingwas introduced by
Chen and Xu [8,9]. Starting at a vertexof A(H) in a convex regiorR on a plane, this
approach expands the sweepingAf in a manner as if a wave is propagated Ap
froms. Let B(R) be the boundary ok and P be a simple curve oA ; such thatP starts
and ends orB(R). We sayP is aconvex curveo s if the planar region containing and
enclosed byP and B(R) is convex. A topological peeling advances its traversal pfoy
“propagating” from one convex curve to the next convex curvei@n It traversesdg in
O(K + (n+|R))log(n + | R|)) time andO (n + | R|) space. Due to its “wave-propagation”
nature, topological peeling is suitable for several problems such as computing shortest
paths in arrangements of lines on a plane [8,9].

5. Shortest pathsin an arrangement

In this section, we illustrate our paradigm with an algorithm for finding an actual
shortest path between two points in the arrangement of lines on the plane. The problem
can be stated as follows: Given a $&tof n lines and two points ands on some lines of
H on the plane, find as-to-¢ path of the shortest Euclidean distance that is restricted to lie
on the lines of . As mentioned in [5,17,18], to solve this geometric shortest path problem,
one can first construct a planar graph of size:?) that represents the arrangemeriff)
of H and then apply the optimal algorithm for computing a shortest path in a planar graph
[22]. Such an algorithm (even for the pdémgth usesO (n?) time and space, and it has
been an open problem to improve these bounds. By using the topological peeling approach,
Chen and Xu [8,9] was able to come up with@xw logn + K) time, O (n) space algorithm
for computing the lengths of single-source shortest patlszinHere, K is the number of
vertices ofA r for a special convex polygonal regighthat contains a shortestto-t path
in A(H) (K = 0(n?) in the worst case).

Although we are not yet able to improve the asymptotic time bound of the previously
known actual shortest path algorithm [5,17], we show how to reduce its space bound
by a factor ofn. Our algorithm finds an actual shortesto-+ path in O(n) space and
O (nlog?nlog(K /n) + min{n?, K logn}) time. Hence our algorithm in the worst case
takesO (n) space and) (n?) time. Our solution is based on topological peeling [8,9], as
well as topological sweep [14] and topological walk [2,3]. It also makes use of additional
techniques such as marriage-before-conquer, prune-and-search, and the clipped tree data
structure, and exploits a number of interesting observations on this particular problem.

5.1. Computing shortest path lengths

We begin with some preliminaries. Letands be the source and destination points on
the arrangememt (H) for the sought shortest path. Lgtbe the line segment connecting
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s andz. Of coursest need not be on any line df. WLOG, assume is horizontal with
s as the left end vertex. L. (s7) be the set of lines i that intersect the interior aof,
called thecrossing lineof sz. LetHP(H — H.(st)) be the set of half-planes each of which
is bounded by a line i — H.(s7) and contains¢. As observed in [5], since no shortest
pathinA(H) can cross aline it twice, one can restrict the search of a shortdsts path
to the (possibly unbounded) convex polygonal regiothat is the common intersection of
the half-planes iHP(H — H,(st)). Hence, the problem of finding a shortesto- path
in A(H) can be reduced i@ (nlogn) time to that of finding a shortestto-r path in the
portion Ag of A(H) contained inR (by computing the common intersection of the half-
planes inHP(H — H.(st)) [28] and identifying the crossing lines 6f). Henceforth, we
still let n denote the number of lines &f intersecting the convex regiak.

A topological peeling, starting at, is used in [8,9] to report the length of a shortest
s-to-t path inAg. The following is a simple yet useful lemma.

Lemma 1. For any linel € H and any vertex of A(H) onl, the intersection of a shortest
s-to-v path with! is either the vertex or a line segment ohthat hasv as an endpoint.
Consequently, no shortesto-v path in A(H) can crosd (i.e., intersecting the interior of
both the half-planes bounded Byand/ cannot contribute two disjoint line segments to a
shortests-to-v path in A(H).

Proof. Obviously, the vertex is on the shortest-to-v path. Assume that the shortast
to-v path crossesand letu be a vertex at which the path crosge¥hen, by replacing the
portion of the path betweanandv by the line segmeritv on!, a shorter path is obtained,
a contradiction. Similar arguments hold when assumingithantributes two disjoint line
segments, or one line segment that does not haa® an endpoint, to the shortasto-v
path. O

We consider a generalization of Lemma 1. Recall that a simple deio/eA g with both
its endpoints on the boundaB(R) of R is convex tos if the planar region containing
and enclosed by andB(R) is convex. The following lemma is important to the algorithm
for computing single-source shortest path lengths in

Lemma 2. Let P be a convex curve toon Ag whose endpoints are both @ R), andv
be a vertex ofd  inside the region enclosed B and B(R). Then no shortest-to-v path
in Ag can crosspP.

Proof. This follows easily from the convexity af. O

Based on Lemma 2 and by incorporating the computation of shortest path lengths with
the construction and traversal dfg by topological peeling, an efficient algorithm for
computing the lengths of single-source shortest pathsgrfrom the source was given
in [8,9]. In particular, this algorithm computes the shortest path lengths in the parent-to-
children order in the single-source shortest path tree rootedTdte following result has
been givenin [8,9].
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Fig. 3. The two region®; and R in R defined by two lineg; and/; of H.

Lemma 3. The length of a shortest path iAg from s to every vertex ofAp can be
computed inO(nlogn + K) time and O (n) space, wherek is the number of vertices
of Ag.

5.2. Computing an actual shortest path

In this subsection, we present ti&n log? nlog(K /n) + min{n?, K logn}) time, O (n)
space algorithm for reporting an actual shortesb-r path in Az, wherek is the size
of Ag.

Let v be a vertex on a shortestto-t path in Ag such that is the intersection of two
lines!; and!; of H and such that at least onelpaind/; is a crossing line off. Let SR(s, 1)
denote the shortestto-r path inAg. ThenSR(s, 1) = SR(s, v) U SR, 1).

The following lemmas are a key to our marriage-before-conquer based algorithm.

Lemma 4. The two lined; and!; of H define two interior-disjoint convex subregioRs
and Rz in R such that SR, v) stays withinR1 and SRv, r) stays withinR, (see Fig.3).
Further, at most four lines off (two of them ard; and;) can appear on the boundaries
of bothR; and R».

Proof. The first part of the lemma follows from Lemma 1. For the second part, observe
that Ry and R, sharel; and/;. Let a and b (respectivelyc andd) be the intersection
points of/; and/; with the upper (respectively, lower) boundary ®f Let /(ab) be the

line (possible not i) containingab. If I(ab) € H (respectively/(cd) € H), thenl(ab)
(respectively/(cd)) is shared byR; and R,. SinceR is a convex region, no other upper
(respectively, lower) boundary line é&f can be shared bRy andR2. O

Lemma 5. The lines inH that SRs, r) crosses are exactly the crossing linessof(i.e.,
He(s1)).

Proof. Simple and omitted. O

Lemma 6. Let/; andl; be defined as in Lemm# The crossing lines off in H.(st) —

{{;,1;} can be partitioned into two subsety and H», such that no line irff1 (respectively,
Hy) intersects SR, t) (respectively, S8, v)). Moreover, H1 (respectively,H,) consists
of all the lines in H.(st) — {l;,1;} that intersect the interior of the line segmeni

(respectivelyypr), i.e., Hy = H.(5v) (respectivelyH, = H.(vr)).



24 D.Z. Chen et al. / Journal of Algorithms 49 (2003) 13-41

Proof. Assume that there is a linec H.(st) — {/;,1;} such that intersects the interior

of bothSH(s, v) andSRv, t). SinceSH(s, 1) = SR, v) U SR, 1), it implies that either
contributes t&&R(s, 1) with at least two disjoint line segments, which contradicts Lemma 1,
or [ contributes taSH(s, t) with exactly one line segment, which means thabntainsv

and hencd € {I;,;}, also a contradiction. To prove the second part of the lemma, let
l € H.(st) — {l;,1;} and observe thdtcannot intersect botkw andvr (otherwise,s and

¢t would be on the same side &6f and thusl ¢ H.(st)). Let P = 5v U vi. Since P is

a continuous curve insid&, ! must crossP. Hencel crosses eithefv or vf (but not
both). Assuméd crossesv. By Lemma 5,SR(s, v) crossed and thug cannot intersect
SRv,t). O

Lemma 6 implies that if we are to compuB&(s, v) (respectivelySRw, t)), the lines in
H.(vt) (respectivelyH,(5v)) need not be considered. Let denote the number of lines
in H crossed bySRs, v) (i.e., v, = |H.(5v)]|), called thecrossing numbenof v. If we
could somehow find a vertex on SR(s, t) such that its crossing numbey is (roughly)
half the crossing numbey of ¢, then we would have an efficient marriage-before-conquer
algorithm for reportindsR(s, ¢). This is because we would be able to recursively report the
subpath$SRs, v) andSRu, t) in R1 and Rz, respectively (by Lemma 4). Moreover, when
computingSR(s, v) andSR, 1), we would not have to consider the intersections between
lines from the two line set#l.(5v) andH,(vf), thus eliminating from further consideration
a constant fraction of the tota} (n2) intersections ofA(H) among the: lines in H.

The next lemma makes it possible for an incremental method to compute the crossing
numbers.

Lemma7. Letu andw be two neighboring vertices @f(H) on alinel € H (i.e.,uw is an
edge ofA(H) onl). Letlinel(u) (respectivelyl(w)) of H intersect atu (respectivelyw).
ThenH,.(5u) differs fromH.(sw) on at most two elements. Furthermore, these different
elements are il (u), [(w)}.

Proof. Sinceu andw are neighboring vertices A(H), it is easy to see thatl. (su) —
{ly, Ly} = H.(sw) —{l,, I, }. The possible difference betweéh (su) andH.(sw) can only
be caused by, andl,,, and there are four possible cases:

(1) I, € He.(sw) andly, € H.(5u);
(2) Iy € He(sw) andly, ¢ H.(5u);
(3) lu ¢ He(sw) andly, € H.(5u);
(4) lu ¢ Hc(sw) andly, ¢ He(5u).

To identify which case holds, one only needs to check the intersectidpsigfwith
sw, su, which can be easily done in constant timel

Based on Lemma 7, if the crossing numbegiof a vertexu of A(H) is already known,
then it is easy to compute. for a neighboring vertex of u in A(H). This immediately
implies that the crossing numbers of the verticeg gfcan be computed by a topological
peeling starting from the source vertexwith s. = 0). In particular, our shortest path
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length algorithm can be easily modified to report (but not store) the crossing numbers of
the vertices ofAg.

At this point, it might be tempting to try to compute an actual p&#ts, ¢) with the
algorithm below. Letk be half the crossing number of ¢ (k = [¢./2] can be obtained
by running the shortest path length algorithm 4p once, as a preprocessing step). The
following is done.

1. If k = O(y/n), then reportSR(s, 1) by a tree-growing approach iAg. Otherwise,
continue.

2. Run the path length algorithm oty, and build a clipped tre& with sample nodes,
t, and all vertices of Ag such thau is on a crossing line off andu, = k.

3. From the clipped tre&, find a vertexv on SR(s, r) such that, = k (the parent node
of t in T is such a vertex).

4. Using the vertex, recursively report the subpatB&(s, v) andSRu, r) in R1 andR»
(by Lemma 4).

The above algorithm, however, does not work well due to one difficulty: The size of
the sample node sétfor T is super-lineat The astute reader may have observed that the
size of the sample sétis closely related to the well-known problem on the combinatorial
complexity of thekth level of the arrangement af planar lines. The best known lower
bound for thecth level size of such an arrangementign log(k + 1)) [19,24], and the best
known upper bound i® (nk/3) [12]. Hence the clipped treE based on such a sample set
S would use super-linear space, not the desipgd) space. To resolve this difficulty, we
avoid using these verticesas sample nodes f@t such thaix is on a crossing line off
andu. = k. Instead, we use a prune-and-search approach to locate a veteRR(s, 1)
such that is on a crossing line off andv. = k. Our prune-and-search procedure is based
on some additional observations and (again) on the clipped tree data structure.

Lemma 8. For any two vertices andw of A(H) such thatz is on SRs, w), we > u..
Proof. An immediate consequence of Lemma 1o

Lemma 9. Itis possible to find, ir0 (K + nlogn) time andO (r) space, a vertical lind.
such thatZ partitions thekK vertices ofA g into two subsets of sizesK andcyK, where
¢1 andcz are both positive constants aed + ¢2 = 1.

Proof. Use a topological walk to compute a vertexof Ar such that there are at least
O (K /4) vertices ofA g on each side of the vertical line passing through. This can be
done as follows. WLOG, assunié is super-linear.

1. Find the median of the-coordinates of the firsk /n vertices ofAg encountered by
the topological walk, then find the median of the né&xtn vertices, and so on, until
all the vertices ofA ; are encountered.

2. Find the median, of then medians computed in Step 1. Letpass through,,.
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Fig. 4. Searching for a desired vertexon SR(s, t) by prune-and-search.

Note that the algorithm above finds a median among the mediandists. The fact
that there are at leag? (K /4) vertices of Ag on each side of the vertical ling follows
from the standard analysis for the linear time selection algorithm [11]. Since the median
of a list can be computed in linear time and spacés found by a topological walk in
O(nlogn + K) time andO (n) space. O

Lemma 8 provides a structure &Ms, ¢) for searching, and Lemma 9 provides a means
for pruning. The procedure below finds such a desired verte SR(s*, r*) in a convex
subregionR* of R that (possibly) is between two vertical lines (initial§ = R, s* = s,
andr* =1).

1. Let K* be the number of vertices g« = Ar N R*. If K* = O(n), then find the
desired vertex onSR(s*, r*) in A g+ by a tree-growing approach. Otherwise, continue.

2. Compute a vertical lind. as specified in Lemma 9. Ldt partition the regionR*
into two convex subregion®’ and R” (Fig. 4). LetS be the set of sample nodes that
includess™*, ¢*, and all verticest andw of A+ such thatzw is an edge ofA g+ that
intersectd.. Note that|S| = O (n) sinceL intersects each line dff once.

3. Run the path length algorithm otg+ from s* to t*, and build a clipped tre& based
on the sample node s&t Associate with each node 6fits crossing number.

4. Find all proper ancestos$, u1, up, ..., u, of t* in T. If T contains no such nodes,
thenSRs*, *) does not touch the vertical line and hence the search fois reduced
to the subregion (sayR®’ containing boths* andr*; go to Step 6. Otherwise, go to
Step 5.

5. T contains such nodesg, and henc&R(s*, 1*) touchesL (possibly multiple times).
Let ug,up,...,u, appear alongSRs*, r*) in the s*-to-+* order. Then, either the
desired vertexv € {u1,u2,...,u,}, OF v iS an interior vertex on exactly one path
SRu;,ui+1),i =0,1,...,r (with ug = s* andu, 1 = t*). Note that based on the
definition of the sample set, such a pattsRu;, u;+1) stays completely inside one of
the subregion®’ andR” (Fig. 4).

6. LetR’ be the subregion containing Search fow on SRu;, u; 1) recursively inR’.

It is easy to see that the procedure above ta€s) space. Its time complexity
(dominated by the computation in the second and third steps) is given by the following
recurrence:
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3K
T(K)<T<T>+O(K+nlogn), if K>n,
T(K)=0m), ifK<n,

whose solution i§°(K) = O(K +nlognlog(K /n)). Therefore, the above procedure takes
O(K +nlognlog(K /n)) time andO (n) space, wher& = |Ag]|.

With this procedure, we are able to report an actual [Bts,7) in O(nlog?n
log(K /n) + min{n?, K logn}) time andO (n) space. Our algorithm for reportir®f(s, 1)
proceeds as follows (initially®* = R, s* =, t* =1t, 1} =1, andz, = O (n)):

1. LetR* be a convex subregion & in which an actual patBR(s*, *), for two vertices
s* andt* on SR, 1), is to be reported. LeK* be the size ofAg« = Ap N R*. If
K* = O(n), then reportSR(s*, t*) in Ag+ by a tree-growing approach. Otherwise,
continue.

2. Find a vertex on SRs*, t*) such thatb, =} /2 andv is on a crossing line ofr*.

3. Compute the line setd1 and H», each of sizey, that are respectively associated with
the convex region®; and R defined by the lines intersecting@afLemmas 4 and 6).

4. Recursively repoBRis*, v) andSRv, t*) on R1 and R, respectively.

Let T(R) be the recursion tree of the algorithm above, whose heightlisgn). Then
each node of T (R) is associated with a convex subregi®n Observe that our algorithm
need not store the whole trdg R). Instead, at any given moment, it only needs to store
a leaf-to-root path i (R) (as well as the associated information of #hé€logn) nodes
on that path). For a node on such a path iff (R), the algorithm mainly maintains two
vertices between which a shortest path is to be reported, and the crossing lines associated
with R,. Since the number of crossing lines at each node is a constant fraction of that at
its parent node, the information of each leaf-to-root pathi (R) uses onlyO (n) space to
store. Hence the overall algorithm also ugk®) space.

The time complexity of the algorithm is given by the following recurrence:

m m .
T(m,K) < T<§, K1) + T(E’ Kz) + O(K +m|Ogm|Og(K/n)), if K >n,

Tm,K)=0(m), if K<n,

where K < m?, K1 < (m/2)2, K» < (m/2)%, and K1 + K> < K. The solution of
this recurrence il (n, K) = O(nlog?nlog(K /n) + min{n?, K logn}). Therefore, the
algorithm takes altogethe? (n log? n log(K /n) + min{n2, K logn}) time andO (n) space,
whereK = |Ag|.

Theorem 1. A shortests-to-r path in the arrangemem (H) of a setH of n planar lines
can be reported irO (n log? n log(K /n) + min{n?, K logn}) time andO (n) space, where
K is the number of vertices afg and R is the convex region associated witlandz on
the plane.

Proof. It follows from the above discussion and analysisi
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Note that it is easy to extend our algorithm to computing a shartest path confined
to the portion ofA(H) in any given convex regioR’ on the plane, with an additive time
factor|R’|log|R’| and an additive space factat’|.

6. Longest monotone concave/convex pathsin an arrangement

In this section, we present an(n?) time, O (n) space algorithm for reporting a longest
monotone concave (or convex) pathdiiH ), improving the time and space bounds of the
algorithms by Edelsbrunner and Guibas [14]. This algorithm in spirit is similar to the one
for reporting a shortest path in Section 5, yet is less sophisticated than the shortest path
algorithm. Hence we will mainly describe the differences between these two algorithms.
WLOG, assume that we are to compute a longest monotone concave path.

A monotonegathz in A(H) is a continuous curve consisting of edges and vertices of
A(H), such that every vertical line interseeatsn exactly one point. A vertex of is aturn
if the two incident edges are not collinear. A monotone patis concave(respectively,
convey if the curve keeps making left (respectively, right) turns as one traces it from left
to right. The length ofr is defined as the number of its turns plus one.

Let LMC be a longest monotone concave pathiigf{) andLMC(u, v) be the subpath
of LMC between two verticeg andv of LMC. WLOG, we assume that the vertices along
LMC are in increasing order of theircoordinates. Leslopg!) denote the slope of a line
(or line segment}, andslope, (H') denote the median slope of the lines in a sulget
of H. Clearly, the slopes of the segments alaMC are in increasing order. For a line
segment, the supporting liné(e) of e is the line containing. The next lemma is useful.

Lemma 10. Lets andt be two vertices of LMC ang, ande; be the first and last segments
of LMC(s, ), respectively. Letv be the intersection of the two supporting lirngs;) and
l(e;). Then each line inH that contributes a segment to LME) intersects both the
segmentsw and wz.

Proof. It follows from the fact that the slopes of the segments along the monotone concave
pathLMC(s, t) are in increasing order (see Fig. 5)0

Fig. 5. lllustrating Lemma 10.
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If alinel € H intersects bothw andw?, then we say that, taMC¢s, 1), [ is feasible
otherwiseinfeasible Examples are given in Fig. 5, whele !y, I3, [4 are feasible antt, Ig
are infeasible.

Our algorithm for reportindg.MC proceeds as follows:

1. Find two consecutive segmermis andzw on LMC such thatslope, (H) is between
slopduz) andslop&zw) (i.e.,slopguz) < slope,(H) < slop&zw)).

2. PartitionH into two subsetdd; and H», each having at most/2 lines, such that all
lines in H1 U H> are feasible, and such that the slopes of all line#irare less than
slopduz) and the slopes of all lines iH, are greater thaslopgzw).

3. Recursively report the portion @MC beforeuz and the portion oEMC afterzw.

Clearly, the key to the algorithm above is Step 1. For this step, we use the following
prune-and-search procedure to locate the consecutive segmearidzw of LMC.

1. Let R be a convex region in which the subpatiC(s, r) of LMC, for two verticess
andr of LMC in Ay, contains segmenig andzw. (Initially, R is the whole plane, and
s andt are the “vertices” o MC at —oo and+o00.) Let K = |Ag|. If K = O(n), then
find LMC(s,7) in Ag (as well as segmenig andzw) by a tree-growing approach.
Otherwise, continue.

2. Compute a vertical lind. as specified in Lemma 9. Observe that any monotone
concave path can intersettat most once. Let the sample node Sgtcontains, ¢
and the right vertices of the edgesf all longest monotone concave pathsiip from
s such thatl intersects.

3. Build a clipped treel’ based onS; by running the length version of the longest
monotone concave path algorithm in [2]. This algorithm computes the length of
LMC(s, ) in Ag. Let e, be the edge o£MC(s, t) whose right vertex is a node
of T.

4. Let L partition R into two convex subregionR; and Ry, each havingk /2 vertices
of R. By comparingslopdge,) andslope, (H), decide on which side df the desired
vertexz of LMC lies. Let sayslope, (H) < slopde,) (and hence € Ry).

5. Recursively search farz andzw (on pathLMC(s, v)) in the convex regioR;, where
R} is the common intersection &, and the upper half-plane bounded/y, ).

The procedure for Step 1 takéxn?) time andO (n) space, since the problem size in
each recursive call is reduced by a constant fraction.

Hence, the time bound of the overdlMC algorithm is given by the recurrence
T(n) < 2T (n/2) + O(n?), whose solution isT'(n) = O(n?). The space bound is only
O(n), since each recursive call us&gn) space for bookkeeping and for the topological
walk.

Theorem 2. A longest monotone concay@ conve) path in the arrangement of lines
on the plane can be reported i (#2) time andO (n) space.

Proof. It follows from the above discussion.o
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Our algorithm can also be used to solve, in the same time and space bounds, the dual
problem, which is stated as follows [14]: Given a $ebf n planar points § is dual to
H so that the slopes of the lines determine theoordinates of the points), find a longest
concave/convex chain of.

7. Longest monotone pathsin an arrangement

In this section, we apply our algorithmic paradigm to the problems of computing a
longest monotone path in the arrangement dines in 2D orn planes in 3D, yielding
two efficient algorithms. These algorithms make use of topological sweep [1,14] and our
clipped tree data structure. Our algorithm for the planar case @keslogn / log(h + 1))
time and O (nh) space, with 1< A < n€ and O< € < 1. Fork = O(1), our algorithm
usesO (n?logn) time andO (n) space, improving th® (n?logn) time, O (nlogn) space
solution in [14]. Forh = n€, our algorithm use® (n?/¢) time ando (n11€) space (unlike
the O (n?/€) time, O (n'*</¢) space solution in [14], our space bound does not depend
on the Ye factor). Our algorithm for the 3D case takéxn®logn/log(h + 1)) time
and O (n?h) space, improving the@ (n3logn) time, O (n?logn) space solution that would
result if the techniques in [14] are applied.

7.1. Longest monotone path in a 2D arrangement

Let A(H) be the arrangement formed by a $£0f n lines on the plane. We denote by
LMP(A(H)) a longest monotone path i H). Monotone paths i (H) and their lengths
are defined in the same manner as in Section 6.

Edelsbrunner and Guibas [14] used topological sweep to compute the length of
LMP(A(H)), in O(n?) time andO(n) space. To find an actual patiMP(A(H)), they
used a recursive back-up method that maintains some “snapshots” which are states of their
sweeping process. Storing each snapshot 0ge3 space, which enables them to resume
the sweeping process of their algorithm at the corresponding state, without having to start
from the initial state again. As it turns out, the algorithm for reportiMP(A(H)) in [14]
needs to maintain simultaneoug)(logn) snapshots. Altogether, it tak€gn2 logn) time
and O (nlogn) space.

Our techniques are different from [14]. We use a marriage-before-conquer approach
and a clipped tree. Our algorithm first performs a topological sweep(@h) and makes
h snapshots, So, ..., S, of the sweeping process. Each snapshatetermines a cuf;
(i.e., a sequence af special edges ofl(H)) and a corresponding-monotone sweeping
curve SC;, as in [14]. Theh sweeping curves partition th@ (n2) vertices ofA(H) into
h + 1 subsets of (roughly) equal sizes @{n2/(h + 1)). Using theO (nh) right vertices
of the edges of thé cutsCy, Co, ..., Cj, as the sample nodes for the clipped tree, we can
identify for eachC; the vertexv; on LMP(A(H)) N C;. After theh verticesvy, va, ..., v,
of LMP(A(H)) are identified, the problem is reduced to solving- 1 subproblems of
equal sizes, in the left to right order.

The ith subproblem is to find a longest monotone subpathMP(A(H)) between
v; andv;41 in the region bounded by the sweeping cur$€s and SC;11 (initially, let
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vo andvy1 be on the vertical lines = —co andx = +o0, respectively). We solve the
subproblem on each such region recursively, until the region for the subproblem contains
only O(nh) vertices of A(H) (at that point, we simply use a tree-growing approach to
report the portion oEMP(A(H)) in that region).

In this algorithm, oncevs, v, ..., v, are identified, we associate with eachthe
number of vertices ofA(H), denoted byrum;, to the left of the sweeping curveC;,
and release the space occupied by snapshotS,, ..., S,. Starting at the initial state
(or snapshot)Sy of the sweeping algorithm, we recursively solve the first subproblem.
In each step of the recursion, we always maintain exactly one snafstiot the left
boundary of the currently considered subproblem. It is important to observe that for any
such snapshas,, the subpath oEMP(A(H)) to the left of the sweeping curv&C. has
been reported. Once thth subproblem is solved, we resume the sweeping f§prwhich
is the snapshot for the left boundary of the just solved subsubproblem, to restore snapshot
Si+1, and letS; 1 be the news,. RestoringS; ;1 from S, is done by counting the number
of A(H) vertices visited by the sweeping until them; 1th vertex is met.

Note that, unlike our algorithm for the actushortestpath problem onA(H), it is
not clear to us how the total size of the arrangement portions for the subproblems can be
significantly reduced. One reason for this is that a longest monotone pattHn can
cross a line inH multiple times.

We summarize our algorithm as follow. L&tbe the region bounded by two sweeping
curvesSC; andSC,, and letK be the number of vertices of(H) in R. The algorithm
computes inR the subpatlLMPz(A(H)) of LMP(A(H)) from one vertexs on C; to
another vertex on C,, where(C; and C, are the corresponding cuts 6{; and SC,.
Initially, the regionR is bounded by two vertical lines atoo and+oc. The following
steps are carried out.

1. If R contains onlyO (nh) vertices ofA(H), then perform a topological sweep i
and use the tree-growing approach to report the subpelffg (A(H)) from s to ¢.
Otherwise, continue.

2. Starting at the snapshs8t (initially, S, is the initial state of the sweeping algorithm),
restore the snapshet, let S; be the news,, and sweep regioR from S;. During the
sweeping, make a snapslthtat every(K /(h + 1))th vertex encountered, and build a
clipped treeT using the right vertices of the edges of the odtsi = 1,2, ..., k, as
the sample nodes.

3. Find theh ancestors, vy, ..., v, of ¢ in the clipped tred” with v; on C;, determine
for v; the numbemum; of A(H) vertices to the left ofSC;, and release the space
occupied bySy, S, ..., S, and the clipped tre&.

4. Recursively report the subpathld¥iPr (A(H)) from s to v1, fromvy tovo, ..., and
from v, to 1, in this order.

The correctness of this algorithm follows from the correctness of the solution in [14].
Its time bound is given by the following recurrence:

K .
T(K) :(h—i—l)T(m) + O(K), if K >nh,
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T(K)=0(nh), if K <nh,

whose solution i (K) = O(K logK /log(h + 1)), with K being the size of the portion
of A(H) in aregionR. For A(H), K = 0(n?), and hence the time bound for computing
LMP(A(H)) is O (n®logn/log(h + 1)).

For the space bound, note that the topological sweep@g¢esspace. Thé snapshots
and the clipped tree both ug®(nh) space. After determining the vertices(u’yf’:l cHn
LMP(A(H)), we release the space occupied by/itmapshots and the clipped tree. Thus,
for each subproblem (except the currently considered one), we only need to maiiiain
information. Hence the total space used in any step(ish).

The following result follows from the above discussion.

Theorem 3. An actual longest monotone path LM H)) in a 2D arrangementd (H) of
n lines can be computed i@ (n?logn/ h + 1) time andO (nh) space, wheré is an integer
betweerl andnr€, for any constant with0 < ¢ < 1.

7.2. Longest monotone path in a 3D arrangement

In 3D, a monotone path in the arrangemem (H) of n planes inH is a connected
curve of edges and vertices af H) such that any plane perpendicular to thaxis cuts
7 at exactly one point.

To find a longest monotone path A(H) in 3D, we use an algorithm similar to the 2D
version. The main differences are as follows.

First of all, instead of using the 2D topological sweep algorithm [14], we use the
generalized version, the 3D topological sweep [1], to sweelf). Second, for each region
R bounded by two sweeping surfaces, if the number of vertice® is O (n?h), then a
tree-growing approach is used to report the subpMPz(A(H)) of LMP(A(H)) in R.
Otherwise, we perform a 3D topological sweepRro makeh snapshotsi, So, ..., Sy
and build a clipped tre@ from the O (n2h) right vertices of the edges of the cufs,
i=12,...,h. After determining the: vertices of(Uf‘=l C;) NLMP(A(H)), the space
for the clipped tree andy, So, ..., S, is released, and the algorithm orderly reports the
subpaths ot MPg (A(H)) in the equal-size subregions &t Third, we make use of the
length version of the 3D longest monotone path algorithm [1].

The correctness of our 3D algorithm can be argued as for the 2D version. The time
bound is given by the following recurrence:

T(K)=(h+1T K + O0(K), if K>n’h
B h+1 ’ Z

T(K)=0(n?h), if K <n’h,
whose solution i'(K) = O(K logK /log(h + 1)). For K = O (%), the time bound is

O (nlogn/log(h + 1)). Clearly, the space bound &(n2h). Thus, we have the following
result.

Theorem 4. A longest monotone path in3D arrangement of planes can be reported in
O (n2logn/log(h + 1)) time andO (n%h) space, wheré is an integer betweeh andn¢,
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for any constant with 0 < € < 1. In particular, if » = O(1), then the time and space
bounds are0 (n2logn) and O (n?), respectively.

8. Dynamic programming problems

Our paradigm is also applicable to a number of other problems, such as computing a
minimum-weightk-link path in a graph [23,25], 0-1 knapsack with integer item sizes [11,
23,25-27,30], and single-vehicle scheduling for sites on a straight line with special time
window constraints [6,29]. We first discuss the common properties of the class of such
problems, and then show how our paradigm is applied to several such problems.

8.1. General characterization

Generally speaking, our paradigm applies to problems with the following two
properties:

e The problem seeks an optimal solution that consists of a value (e.g., an optimal path
length) and a corresponding optimal structure formed by a sequence of elements (e.g.,
an actual optimal path).

e The optimal value can be obtained by a dynamic programming algorithm that builds
a tableM of values, such that each row & is computed fromO (1) immediately
preceding rows.

Let the value tablé/ haven columns and rows, where: is the size of the input and
is an input integer value that may or may not be related tdsing our clipped-tree based
paradigm, we can report an actual optimal structure by first finding an element of that
structure at rowk/2 (if row k/2 contains such an element), and then recursively solving
the subproblems on the two subtablegffone above and the other below réy2.

As mentioned in Section 3, depending on its particular properties, a problem solvable
by our paradigm may fall into one of two categories: type A and type B. In fact, the path
problems in Sections 5 and 6 are of type A, and those in Section 7 are of type B. We now
further discuss these two types of problems in the framework of dynamic programming
algorithms. Figure 6 illustrates these two types of problems.

For a type A problem, the original problem of sizecan be reduced to solving two
independent subproblems of sizeandn — ¢, resulting in that a constant fraction of the

n n
7/ M M

Mie2.q) M(K/2.n

) = ) (k/2n)
~

M(k/2,n-q) M(k/2,n)
=
(a) Reduction for type A (b) Reduction for type B

Fig. 6. Reductions for the two different types of dynamic programming problems.
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entries ofM is eliminated from consideration when solving these subproblems. Hence our
algorithms for finding an actual optimal structure for type A problems have the same time
and space bounds as those for computing an optimal value. Examples of such problems
include computing a minimum-weiglit;link path in a directed acyclic graph [23,25], 0-1
knapsack with integer item sizes [11,23,25-27,30], and single-vehicle scheduling for sites
on a straight line with special time window constraints [6,29].

However, there exist some problems (type B) for which it is not clear how to reduce
the original problem of size to two independent subproblems of sizeandn — g (i.e.,
we only know how to reduce it to two subproblems of sizeach). Thus for a type B
problem, one needs to involve virtually the whole talenvhen solving the subproblems.

Our algorithms for finding an actual optimal structure for type B problems have the same
space bound as that for computing an optimal value, and a time bound with an extra log
factor. An example of such problems is computing a minimum-weigtigk path in a
general graph ofi vertices andn edges [23,25]. Actually, by sampling rows of the
tableM, we obtain arO (k(n +m) logk/log(h + 1)) time, O (nh) working space algorithm

for the general minimum-weighk-link path problem, wheré is any integer such that

1< h < k€ for any constan¢g with 0 < € < 1.

A key to determining whether a problem is of type A or type B is the dependencies
among the entries in the corresponding dynamic programming table. In the following
subsections, we apply our general paradigm to solving several problems in the framework
of dynamic programming.

8.2. 0-1 knapsack problem

The 0-1 knapsack problem with integer item sizes is a well studied special case of the
knapsack problem [23]. Given a positive integer(for the knapsack size) anditems,
with theith item having a positive integer siZg¢ and an arbitrary weight value;, the
problem is to select a subset of items such that the sum of the sizes of the selected items
is no bigger thanB and such that the total weight of the selected items is maximized.
This problem is NP-complete and has often been solved by dynamic programming [11,
25,26,30] or by reducing the problem to computing an optimal path in a directed acyclic
graph of O(nB) vertices and edges [23,27]. When the standard tree-growing approach
is used for computing an actual solution, it takeé:B) time and space [23,25-27,30].
It was also shown in [26] how to use a bit representation to reduce the space bound to
O(n+nB/log(n + B)). We present ai® (nB) time, O (n + B) space algorithm.

Let W; ; be the optimal weight value of the knapsack problem with a knapsacki size
and using as the candidates of selection the fifstms. ThenW; ; can be computed as
follows [23]:

Wi =maxW;_1;, Wi_1jx + wi}.

A dynamic programming tablé/ of sizen x B for the weight valuedV; ; is depicted

in Fig. 7 (where the dashed lines indicate the partitions of the subproblems). The rows
of M correspond to the given items, and the columns correspond to knapsack sizes
of 0,1,2,..., B. The two arrows into entry/(i, j) indicate the dependency &; ; on

Wi_1,; andW;_1 ;. Lets be a dummy source node that has an arrow going into each
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Fig. 7. Dynamic programming table for the 0—1 knapsack problem.

entry of the first row and the first column @1. It is well known that a subset of items
which form an actual optimal solution for the original knapsack problem corresponds to a
path froms to entryM (n, B) in M. A commonly-used approach for finding such a path is
by maintaining a single-source optimal path t&®&Trooted ats.

From Fig. 7, one can immediately see that the 0-1 knapsack problem has the two
properties specified in Section 8.1, and thus is able to make use of our paradigm. For
this problem, a natural choice for a sample set for building a clippeditrisethe entries
of row n/2 of table M plus the dummy source nodeand: = M (n, B). The clipped
tree T is produced by an algorithm for computing the optimal weight z, which only
needs to store (1) rows of M. Suppose the parent noderoin T is M(n/2,q). Then
the original problemP (n, B) is reduced to two subproblems, with knapsack sizesd
B — ¢, respectively, and one having the first2 items while the other having the second
n/2 items. That is, the two subproblems a@é:1/2,¢) and P(n/2, B — g). Clearly, the
0-1 knapsack problem is of type A and can be solve®imB) time andO(n + B)
space.

8.3. Minimum weightk-link paths

Let G = (V, E) be a weighted graph with nonnegative edge weights; |V|, and
m = |E|. Let w,, denote the weight of edg&gu, v) connecting vertices andv. The
minimum weight.k-link path problem is that of finding a minimum weight paf(s, t)
between two vertices andr in G such thatPy (s, t) uses no more thah edges £ < n)
[23]. Some application problems can be formulated as the minimum weigdimi path
problem (e.g., [21]).

It was shown in [23] that theveight W, (s, ) of a minimum weightk-link path Py (s, t)
can be computed using the Bellman—Ford method. For initialization, do the following:

Wi(s,s) =0,
Wi(s, v) = wgy, veV —{s} Q)
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Fig. 8. Dynamic programming table for the minimum weigtjnk path problem.

Then the weight of aii + 1)-link path,i > 1, can be computed iteratively as follows:
Wira(s, o) =min{Wi(s,v), min_ {Wi(s,u) +wia} |
e(u,v)eE

This algorithm take<0 (k(n + m)) time andO (n) working space. To find an actual path
Py (s, t), one can use the standard tree-growing approadd(kin + m)) time andO (kn)
working space.

By working spacewe refer to the space used by the algorithm (for bookkeeping, data
structures, etc) that i addition tothe space needed for input data. The working space
may dominate the overall space bound of a graph algorithm in two cases:

(1) the graplG is sparse (i.e ¢ haso(kn) edges), and
(2) G, although not sparse, can somehow be representadiin space.

In applications, it is sometimes possible to represent graplixef) edges with only
O(n) space (e.g., [7,21]).

It is not difficult to see that the above relation among weight valligg (s, v) can be
captured by a dynamic programming taleof sizek x n, in which the rows correspond
to the numbers of links, the columns correspond to the vertices, @nd W; (s, v) is at
entry M (i, v). The dependencies among the entriedfofre that an entry on row+ 1
depends only on a number of entries on riovn particular,M (i + 1, v) must depend on
M (i, v), and it depends oM (i, ) if and only if e(u, v) € E. Note that the positions of
such entriesV (i, u) on rowi are quite arbitrary for a general gragh(i.e., they can be
anywhere in row). Such a table is depicted in Fig. 8.

From the structure of the table, one can see that our paradigm is applicable to the
minimum weight.k-link path problem. As for the 0—1 knapsack problem, the sample set
consists of the entries on raky'2 together with the source nodé(1, s) and M (k, t) (let
M (1, s) have an arrow into every other entry of row one). The corresponding clippetl tree
is built during the weight computation. The parent verteMaf, r) in T, sayM(k/2, q),
is used to reduce the original problem to two subproblems: Finding a minimum weight,
(k/2)-link path Py/2(s,q) from s to g and P 2(g,t) from ¢ to ¢. To decide whether
the problem is of type A or B, note that an entryM may depend on entries froamy
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columns of the previous row rather than just the columns to its left as for the 0—1 knapsack
problem. In this situation, it is not clear to us how to partition the original giG@jitto two
disjoint subgraphs for the two subproblems. Consequently, each subproblem must consider
all columns ofM, implying that the subproblem usésas graph when computing a desired
optimal(k/2)-link path. Hence, findind (s, 7) in a general graph is a type B problem, and
can be solved irD (k(n + m) logk) time andO (n) working space. If we samplerows of
M instead of one, we can obtain @&nk(n 4+ m)logk/log(h + 1)) time, O (nh) working
space algorithm, wherg is any integer such that & # < k€ for any constant with
O<e<l.

Itis interesting to note that @7 is a directed acyclic graph, then the problemis of type A.
In this case, one can first sort the verticegaby a topological sort [11], and then arrange
the columns of the tabl#f according to this sorted vertex order. As a result, each entry of
M depends only on entries on columns to its left. Therefore, Pati(s, ¢) (respectively,
Py/2(g, 1)) only involves vertices inG that are betweemn andg (respectivelyg andr)
in the column order of\. It follows that we can partitiorG into two subgraphs, one
induced by vertices betwearandg (for computingPy,2(s, ¢)) and the other induced by
vertices between andr (for computingPy,2(q, t)). Our algorithm for reporting an actual
path P (s, t) samples the entries of roky2 of M. The recurrence for the time bound of
this algorithm isT (k, N) < T (k/2, N1) + T'(k/2, N2) + O(kN), whereN =n + m and
N1+ N2 < N. The solution of thisrecurrenceidk, N) = O(kN). Therefore, the? (s, 1)
problem on a directed acyclic graph can be solve@ {(n 4+ m)) time andO (n) working
space.

8.4. Single-vehicle scheduling problems

The single-vehicle scheduling problem (SVS) studies route scheduling for a vehicle
to visit n given sites, each having a time window during which the vehicle is allowed to
visit that site. The goal is to minimize a certain objective function of the route (e.g., time
or distance), if such a route is possible. The problem is a generalization of the Traveling
Salesperson Problem and is NP-hard even for some very special cases [4]. For example, it
is NP-hard for the case in which a vehicle is to visiites on a straight line (equivalently,

a ship is to visitn harbors on a convex shoreline) with time windows whose start times
(also calledeady timeyand end times (also calletbadline} are arbitrary [6]. We shall
consider two special cases of this problem.

The first special case of the SVS problem considers the following [29]: A vehicle is to
visit a setS of n sites on a straight line. Each sikghas a ready time; but no deadline,
and the Euclidean distance between two sitends; is denoted byD; ;. A vehicle with
unit speed starts at sitg and wants to visit all the sites. The goal is to find a feasible
schedule for visiting the sites which has the minimum completion time. (A schedule is
feasible if each site is visited on or after its ready time.)

It was proved in [29] that at any time along an optimal schedule, the set of visited
sites is the union of two disjoint sef§ andS,, whereS; includes all sites from; to s;

(1 <i <n)while Sz includes all sites froms; to s, (i < j < n 4+ 1, with the convention
thatS, = ¢ if j =n 4+ 1). Furthermore, only; or s; can be the last visited site along the
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Fig. 9. Dynamic programming table for the first case of the SVS problem.

route. Based on this observation, the following dependencies can be used to compute the
minimum completion time.

V(i i, j)y=min{max{r;, V(i—1,i—1j)+ Di_1;},
max{r;, V(j,i — 1, j)+ Dj}},
V(j.i, jy=minfmax{r;, V(j+1,i, j+1)+Dji1;}.
max{r;, V(i,i, j+ 1)+ Djj}}.
forl<i<j<n+1,

whereV (k, i, j) denotes the minimum completion time of a schedule for visiting sites

$1,82,...,8 ands;,s;41,...,8, such that the last visited site & (k € {i, j}). For

initialization, letV (1,1, n +1)=r1andV (0,0, j) =V + 1,i,n+ 1) =ocforall j > 1

andi < n. Then, the minimum completion time for visiting allsites is
len_lgmilgnv(l’l’l+1)_ <?]rn1+1v(]’] 1, ).

Based on the above characterization, the algorithm for computing the minimum comple-
tion time for visiting alln sites take®) (n?) time andO (n) space [29]. However, to produce
an actual optimal route for the visit, the algorithm in [29] ugk&?) time and space.

Again, the dependencies defined in the above relation can be captured by a dynamic
programming tableM, where the row (respectively, column) indices correspond to
(respectivelyy) in V(k,i, j). Two valuesV (i, i, j) andV (j, 1, j), are stored in each table
entryM(i, j),0<i <nand 1< j < n+ 1. Figure 9 depicts such a table. (In fact, only the
upper diagonal half of7 is really needed.) Letbe the node representing ent(1, n+ 1)

(i.e., the starting site;), ands be a dummy node into which an arrow comes from every
entry M(i,i + 1) (representing’min = Mini<i<, V(,i,i + 1)). Then, an actual optimal
site-visit sequence corresponds to a path fsaimz in table M.

Each entry off depends only on the entry immediately above and the one immediately

to its right. Hence, this SVS problem has the two properties specified in Section 8.1 and
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Fig. 10. Dynamic programming table for the second case of the SVS problem.

can make use of our paradigm. Although the shape of the original Adlidariangular, we

can easily reduce it to a rectangular subtable, as followssLbe the last visited site of

the sought optimal schedule for the original problem (i&qin = V (z, z, z + 1)). Note

that V(z,z,z + 1) at entry M(z,z + 1) can be found by the algorithm for computing
the minimum completion time for visiting alt sites. Then the problem is reduced to
the subtable off from row 0 to rowz and from columnz + 1 to columnn + 1 (see

Fig. 9). Once this is done, the rest of our algorithm for producing an actual optimal site-
visit sequence proceeds in the same manner as the one in Section 8.2.

To summarize, this case of the SVS problem is of type A, and an actual schedule can be
found in the same timed{(n?)) and space@ (rn)) bounds as for computing the minimum
completion time.

The second special case of the SVS problem, which is a variation of the first case that
we just discussed above, puts a deadiin® each site;, but lets alln sites have the same
start timer > 0 [6]. A useful observation is given in [6] for solving this case: At any time
along an optimal feasible schedule, the visited sites form a connected region on the straight
line and the last visited site is either the leftmost or rightmost site of that region. Based on
this observation, a dynamic programming algorithm, similar to the one for the first case,
was given in [6] for computing the minimum completion time @»?) time and O (1)
space. However, the algorithm in [6] for producing an actual optimal route for visiting all
the sites use® (n?) time and space.

Let V(k,i, j) denote the optimal time for visiting sites, s;+1,...,s; such that the
last visited site issy (k € {7, j}). Initially, let V (i, i, i) = 8;(maxr, D1,;}), for eachi =
1,2,...,n, where the functiod; (x) is defined as follows:

) _|=x if x <d;,
3i(x) = [ co otherwise

The dependencies among optimal timé&g, i, j) can be characterized by
V@i, jy=min{&(Diy1i + Vi +1i+1, ), 8(Dji +V(.i+1 1))}
V(i jy=min{s;(Dj_1; +V(j—1i j—1),8;(Di; + V(i j—D)},

forl<i<j<n.
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The minimum completion time&Cmin = min{V (1, 1,»n), V(n, 1,n)}. The dynamic pro-
gramming tableVf for the above dependencies is shown in Fig. 10. Likewise, two values,
V(,i, j)andV(j,i, j), are stored in each table ent(, ;).

Comparing the dynamic programming table for this case (Fig. 10) with that for the first
case (Fig. 9), one can immediately see the similarities between the two. Hence, itis easy to
conclude that this case is of type A, and an actual optimal schedule for visitingsééls
can be obtained i (#2) time andO (n) space.

Our examples in this section have demonstrated that a number of problems solvable by
a certain dynamic programming approach can utilize our general paradigm to reduce their
space bounds or to achieve a trade-off between their time and space bounds.
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