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Abstract

Multi-resolution quantization is a way of constructing a progressively refinable descripti
a discrete random variable. The underlying discrete optimization problem is to minimize an ex
distortion over all refinement levels weighted by the probability or importance of the descriptio
different resolutions. This research is motivated by the application of multimedia communic
via variable-rate channels. We propose anO(rN2) time andO(N2 logN) space algorithm to desig
a minimum-distortion quantizer ofr levels for a random variable drawn from an alphabet of sizeN .
It is shown that for a very large class of distortion measures the objective function of op
multi-resolution quantization satisfies the convex Monge property. The efficiency of the pro
algorithm hinges on the convex Monge property. But our algorithm is simpler (even though
same asymptotic complexity) than the well-known SMAWK fast matrix search technique, wh
the best existing solution to the quantization problem. For exponential random variables our ap
leads to a solution of even lower complexity:O(rN) time andO(N logN) space, which outperform
all the known algorithms for optimal quantization in both multi- and single-resolution cases. W
generalize the multi-resolution quantization problem to a graph problem, for which our algo
offers an efficient solution.
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1. Introduction

Signal quantization is a subject of fundamental importance to the engineering
of digital communications and data compression. The problem of optimal quantiza
directly motivated by the desire to code and transmit signals as accurately and effi
as possible. The optimization objective is simple to state: coding of a random va
X to the maximum precision (or minimum distortion) using a given number of
Consider a discrete random variableX whose values are drawn from a finite alphabetA,
A = {x1, x2, . . . , xN } ⊂ R, wherexi < xi+1, 1 � i < N . Let p(xi),1 � i � N , be the
probability mass function of the random variableX. We assume without loss of general
thatp(xi) > 0 for all i,1 � i �N . For any positive integerk, denote by{0,1}k the set of
all binary words of lengthk. LetB be another finite alphabet such thatA ⊆ B ⊂ R.

Definition 1. A fixed-rate scalar quantizerQ for the random variableX is a pair of two
mappings: the encoderfQ :A → {0,1}r , wherer is an integer such that 1� r � log2N ,
and the decoder, which is a one-to-one functiongQ : {0,1}r → Y , Y ⊂ B. For each
symbolx ∈ A, the valuegQ(fQ(x)), also denoted byQ(x), is called the reproductio
codeword ofx, whereasfQ(x) is called the binary codeword index forx. The setY of all
reproduction codewords is called a codebook.

The quantizer generates a partition of the input alphabetA: Cu = {x ∈ A | fQ(x)= u},
u ∈ {0,1}r . The setsCu of this partition are called the codecells of the quantizer.
quantizer maps all symbolsx contained in a codecellCu to a reproduction codewor
gQ(u) = Q(x). The quantizer mapping functionQ induces a distortiond(x,Q(x))
between a symbolx and its reproductionQ(x). The overall reproduction quality o
quantizerQ is measured by the expected distortion

D(Q)=E{d(X,Q(X))}=
∑

u∈{0,1}r

∑
x∈Cu

d
(
x,gQ(u)

)
p(x). (1)

Besides its expected distortionD(Q), a quantizerQ is also characterized by its bit ra
R(Q) which is the average number of bits per symbol required to label the codew
Throughout this paper we only consider the case of fixed rate quantizer for whi
codewords have the same code length. In the formulation above, the fixed code
is r, hence the quantizer rate isR(Q)= r.

Since 1960s the majority of work in the literature on scalar quantization address
problem of designing optimal scalar quantizers that minimizeD(Q), over all possible
quantizersQ, given the random variableX, for a fixed rateR(Q) [3,5,13,16,18–22]. We
call this class of quantizers single-resolution scalar quantizers. Recently, motivated
applications in the Internet and wireless communications, researchers turned their a
to the problem of multi-resolution quantization [6–9,15,23], as defined below.

Definition 2. A multi-resolution scalar quantizer ofL refinement stages is a sequence
L scalar quantizersQ = (Q1,Q2, . . . ,QL) such thatR(Q1) < R(Q2) < · · · < R(QL),
where any rateR(Qi), 1� i � L, is an integer, and for eachx ∈A and 1� i < L

fQi+1(x) ∈ fQi (x){0,1}R(Qi+1)−R(Qi). (2)
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The condition (2) states that the binary codeword index ofx for Qi+1, the quantizer
at the(i + 1)th refinement stage, is obtained by appending exactly 2R(Qi+1)−R(Qi) bits
to the end of the codeword index ofx at the previous refinement stage correspond
to Qi . It implies that each codecell ofQi is partitioned into 2R(Qi+1)−R(Qi) codecells
of Qi+1. In other words, the alphabet partitions formed by the sequence ofL quantizers
Q1,Q2, . . . ,QL are successively embedded into each other, and hence multi-reso
quantizer (MRQ) is progressively refinable fromQ1 toQ2, then toQ3, and so forth. The
description ofx can be progressively refined by so-called embedded bit plane co
which scans the bits of the codeword indexfQi+1(x), from the most significant to th
least.

The advantage of multi-resolution quantizer over its single-resolution counterpart
it facilitates rate-distortion scalable compression of a signal. The rate-distortion scal
is a very important mechanism for maintaining the quality of network service whe
bandwidth fluctuates in time due to network congestion and/or channel noise. Wh
effective transmission rate drops below the target bit rate of a non-scalable code
on single-resolution quantization, the code may fail abruptly, causing sudden o
of network service. In contrast, a scalable embedded code stream of multi-reso
quantizer code offers a graceful degradation in reconstruction quality when ch
conditions deteriorate. This is because an embedded bit sequence can be truncate
middle, and the truncated code segment (a prefix of the sequence) can still be dec
an overall representation of the coded signal, with a reconstruction quality propor
to the length of the truncated code segment. The effect of successive refineme
coded image via progressive transmission of embedded MRQ bit stream is illustra
Fig. 1.

One can also define a multi-resolution vector quantizer simply by replacing ra
variableX with random vectorX in the definition above. However, even single-resolut
optimal vector quantization is known to be NP-hard [12], whereas optimal si
resolution scalar quantizers can be computed inO(KN) orO(N2) time depending on th
distortion metricd(X,Q(X)), whereN is the size of symbol alphabetA andK = 2r is the
number of codewords [20,21]. Ifd(X,Q(X)) is mean-square error, then the problem
be solved inO(N

√
K logN +N logN) time [3], or even better inO(N2O(

√
logK log logN))

time [18]. Note thatK < N in data compression applications. Since efficient algorith
(polynomial inN , and pseudo-polynomial inK) exist for optimal scalar quantizer desig
but not for optimal vector quantizer design unless P= NP, we restrict ourselves in th
paper to the investigation of algorithms for designing optimal scalar multi-resol
quantizers. In the sequel, the terms quantizer and quantization, unless explicitly qu
all refer to the scalar case.

The paper is organized as follows. In the next section we formulate the proble
optimal multi-resolution quantization, which aims to minimize the expected disto
over a set of bit rates rather than for a fixed bit rate as in optimal single-reso
quantization. In Section 3 we present anO(rN3) time dynamic programming algorithm
for designing optimal MRQ ofL refinement stages for a source alphabet of sizeN , wherer
is the rate of the highest refinement level (r = R(QL)). The time complexity of optima
MRQ design can be reduced toO(rN2) under a very mild monotonicity condition o
the distortion function, which is the topic of Section 4. Section 5 addresses the
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Fig. 1. Progressive image reconstruction via scalable embedded bit stream.

complexity of the MRQ design algorithm. We show how the intermediate results o
dynamic programming process, which are required to reconstruct the alphabet part
the optimal quantizer, can be efficiently stored. In Section 6 we present anO(MN) time
andO(MN) space algorithm that computes the distortions of all convex subsetsA,
whereM is the size of alphabetB. This algorithm performs a necessary preprocessin
facilitate the optimal MRQ design algorithm of Section 4. In practical cases of int
we haveM = O(N), hence the preprocessing step does not increase the complex
the optimization problem. Furthermore, the preprocessing can be completed inO(N)

time andO(N) space for the ubiquitous mean-square distortion measure. In Sec
we show how the time complexity of optimal MRQ design can be further lowere
O(rN) for exponential random variables (commonly encountered in applications of s
compression). This result immediately extends to the design of optimal single-reso
quantizer of exponential random variables, since the problem is a special case of o
MRQ design. TheO(rN) time complexity is the lowest so far in the literature. Sectio
generalizes the problem of optimal MRQ design to a graph problem, which can be s
by using the algorithms presented in this paper.

2. Problem formulation

Since an MRQ is to operate in a range of bit rates, its distortion should measu
expected reconstruction quality weighted by the probability of its operational bit r
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rather than at a single fixed rater = R(Q). Let U(i) be the probability that the MRQ
operates at theith refinement stage, i.e.,R(Qi) bits are used to representX, 1 � i � L.
The expected distortion of the MRQQ is defined as

D(Q)=
L∑
i=1

U(i)D(Qi). (3)

Now we can state the problem of designing optimal MRQ, the central thesis of this p
as the following.

Problem 1. Given the discrete random variableX, a sequence ofL target ratesR1<R2<

· · · < RL (all being positive integers) and a probability mass functionU(i), 1 � i � L,
with U(i) being the probability thatRi bits are used to representX, construct an MRQ
with L refinement stagesQ = (Q1,Q2, . . . ,QL) such thatR(Qi) = Ri , 1 � i � L, and
the expected distortionD(Q) is minimal.

A key to the tractability of the underlying optimization problem is the convexity of
codecells. A single-resolution optimal quantizer (for a wide class of distortion meas
has to have convex codecellsCu, i.e., for any two valuesx andx ′ contained inCu with
x < x ′, any symbolx ′′ ∈ A, x < x ′′ < x ′, is also contained inCu [10,11]. This property
permits the use of dynamic programming to design optimal single-resolution quan
[3,5,13,18–22]. Unfortunately, pathological cases were found in which an optimal m
resolution quantizer has non-convex codecells [10]. Also for entropy-constrained
quantizers, even in the single-resolution case, codecell convexity might preclude opti
[14]. For tractability, however, codecell convexity was imposed in the developme
algorithms for optimal MRQ design [6,17,23]. Under this constraint Brunk et al.
proposed an iterative descent algorithm for MRQ design. However, their algorithm
only find a locally optimal solution. In [23] we presented a dynamic programm
algorithm that computes the globally optimal MRQ of convex codecells. The s
constraint is also respected in this paper, and should be assumed by the reader in th
so that we will not have to state it everywhere. The complexity of the algorithm of [2
O(rN3), wherer =RL is the bit rate of the finest refinement level of MRQ.

The main contribution of the present paper is a reduction of the complexity toO(rN2)

for a wide class of distortion functionsd(X,Q(X)). We call a distortion functiond(x, y),
d : R×R → [0,∞), monotone, if for any realx, y1, andy2, if x � y1< y2 or x � y1> y2,
thend(x, y1) � d(x, y2). All distortion measures of signal quantization used in prac
fall into the class of monotone distortion functions. Based on (1) and (3) the exp
distortion of the MRQQ can be rewritten as

D(Q)=
L∑
i=1

U(i)
∑

u∈{0,1}R(Qi)

∑
x∈Cu

d
(
x,gQi (u)

)
p(x). (4)

It follows that for each codecellCu of the optimal MRQ, the associated reproduct
codewordgQi (u) must satisfy∑

d
(
x,gQi (u)

)
p(x)= min

y∈B
∑

d(x, y)p(x). (5)

x∈Cu x∈Cu
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For each subsetC of the input alphabetA, define the distortion ofC, D(C) as

D(C)= min
y∈B

∑
x∈C
d(x, y)p(x) (6)

if C �= ∅, andD(C) = 0 if C = ∅. Hence the expected distortion of the MRQ can
expressed as:

D(Q)=
L∑
i=1

U(i)
∑

u∈{0,1}R(Qi)
D(Cu). (7)

For the sake of completeness, we note the necessity of allowing empty MRQ cod
For single-resolution quantizer the optimal quantizer with given rater has all 2r codecells
nonempty,r � log2N , if the distortion functiond(X,Q(X)) is monotone (this assertio
should be understood in a weaker sense: there exists an optimal quantizer with all co
nonempty). However, in the case of MRQ, imposing the condition that all the 2R(Qi)

codecells at each refinement stageQi , be nonempty, might preclude the optimali
especially whenR(QL) is close to log2N . We illustrate this by the following example.

Example. Let the two alphabets beA = {20,40,60,140} andB = {y ∈ N | 20� y � 140}.
Consider the random variableX whose probability mass function is:p(20) = 1/8,
p(40)= 1/8, p(60)= 3/8, andp(140)= 3/8. Let the distortion function be the squar
distance:d(x, y) = (x − y)2. Now examine the problem of constructing the optim
MRQ with two refinement stages and target ratesR1 = 1 andR2 = 2. If we require all
codecells to be nonempty, then the only possible MRQ (up to a reindexing of code
must have the codecells:C0 = {20,40}, C1 = {60,140} at the first refinement stage, a
C00 = {20}, C01 = {40}, C10 = {60}, C11 = {140} at the second refinement stage. T
expected distortion of this MRQ is

D1 =U(1) · 625+U(2) · 0. (8)

Consider now the MRQ with codecells:C′
0 = {20,40,60}, C′

1 = {140}, and C′
00 =

{20,40},C′
01 = {60}, C′

10 = {140},C′
11 = ∅. The expected distortion of this MRQ is

D2 =U(1) · 160+U(2) · 25. (9)

ForU(1)= α andU(2)= 1− α such that 5/98< α � 1, we haveD2<D1.

3. Optimal MRQ design

By its definition an MRQQ is completely specified by the encoder at the high
refinement stage and all intermediate ratesR(Q1),R(Q2), . . . ,R(QL−1). Indeed, the
condition (2) is equivalent to the requirement that for each 1� i < L, and eachu ∈
{0,1}R(Qi), the codecellCu of the quantizerQi is the union of the 2R(QL)−R(Qi) codecells
of the quantizerQL whose indices are binary numbers having the binary wordu as their
common most significant bits

Cu =
⋃
R(QL)−R(Qi)

Cv. (10)
v∈u{0,1}
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where u{0,1}k is the set of all binary words formed by appending tou all possible
k-bit binary numbers. In fact the encoder ofQL defines a multi-resolution quantizer
not only L, but R(QL) refinement stages, corresponding to all integer rates from
R(QL).

In general, any quantizerQ of fixed rater is naturally associated with an MRQ ofr
refinement stages. LetCv , v ∈ {0,1}r , be the codecells ofQ. For eachi,1 � i < r, and
each binary wordu of lengthi, define the set

Cu =
⋃

v∈u{0,1}r−i
Cv. (11)

Denote byQi , 1 � i � r, the quantizer of ratei consisting of the codecellsCu, u ∈
{0,1}i , and letQ̂ be the sequence of quantizers(Q1,Q2, . . . ,Qr). Since condition (2)
is clearly satisfied,̂Q is an MRQ. We call̂Q the multi-resolution quantizer induced b
the quantizerQ. Given a probability mass functionW(i), 1� i � r, with W(i) being the
probability that the firsti bits of the quantized random variableX are transmitted via th
channel, the expected distortion of the MRQ̂Q is

D
(

Q̂
)=

r∑
i=1

W(i)
∑

u∈{0,1}i
D(Cu). (12)

The objective of optimal MRQ design is to minimizeD(Q̂). Note thatQ̂ represents an
MRQ of the maximum number of refinement stages. However, in the general ca
Problem 1 one can obtain the solution by minimizingD(Q̂), but lettingW(i) = U(j) if
there is somej such thati = Rj , andW(i)= 0 otherwise. Thus we can restate Problem
as the following.

Problem 2. Given a random variableX, a positive integerr and the probability mas
functionW(i), 1� i � r, construct a single-resolution quantizerQ of rater, such that the
multi-resolution quantizer induced byQ has the minimal expected distortionD(Q̂).

The convexity of codecells of̂Q implies that for each nonempty codecellCu there exist
a unique pair of integers(n1, n2), 0 � n1 < n2 � N , such thatCu = {xi | n1 < i � n2}.
For all integersn1, n2,0 � n1 � n2 � N , denote byc(n1, n2] the set{xi | n1 < i � n2}
(obviously,c(n1, n1] = ∅). To shorten the notation, the distortion of the setc(n1, n2] as
defined by (6) is written asD(n1, n2] instead ofD(c(n1, n2]).

There is a natural partial order≺ on the set of nonempty convex subsets ofA:
c(n1, n2] ≺ c(n3, n4] if and only if n2 � n3. This partial order induces a total order on t
set of nonempty codecells of each refinement stage of the MRQ. To simplify the algo
design we would like to index the codecells of quantizerQ in such a way as to preserve t
order of codecells. Specifically, for any two binary wordsu andu′ with equal length and
such thatCu andCu′ are nonempty, ifu < u′ in lexicographical sense, thenCu ≺ Cu′ .
Since the distortion of single-resolution quantizer clearly does not depend on ho
codecells are indexed, reindexing the codecells of quantizerQ in lexicographical orde
does not changeD(Q). On the other hand, since the codecells of MRQQ̂ are structured
on the codecells ofQ and the structure is labelled by (11), an arbitrary reindexing of
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codecells ofQ might change the encoder partitions at previous refinement stagesQ̂,
thus affectingD(Q̂). However, if the codecells at all refinement stages ofQ̂ are convex,
the following reindexing of the codecells ofQ does preserve the order of codecells at e
refinement stageQi of Q̂, and does not affect the expected distortion of the MRQ,D(Q̂).
For each integeri, 0� i � r − 1, in increasing order, and each binary wordu of lengthi,
test codecellsCu0 andCu1 (on the(i+1)th refinement stage of̂Q). If any of them is empty
or Cu0 ≺ Cu1 do nothing; otherwise reindex all the codecells ofQ by interchanging the
prefixesu0 andu1. From now on we may assume that the indexing of codecells pres
the order of codecells.

To find an efficient solution to Problem 2 we exploit the structure of embedded cod
of a quantizerQ: Cu =⋃

v∈u{0,1}k Cv , with u ∈ {0,1}r−k, 1 � k � r − 1. Given a code

cell Cu, consider all possible partitions ofCu into sub-codecellsCv , v ∈ u{0,1}k. These
varying partitions only affect the partial sum of (12):

k∑
i=1

W(r − k + i)
∑

v∈u{0,1}i
D(Cv). (13)

Furthermore, as long asCu is fixed, the variation of the other codecells of quantizerQ:
Cw, w /∈ u{0,1}k, does not affect the above expression either. Since the codecells ofQ̂ are
convex, we haveCu = c(a, b] for some integersa, b, 0 � a � b � N , and the codecell
Cv ∈ u{0,1}k form a convex partition ofc(a, b]. Since the indexing of codecells preserv
the codecells order, it follows that there is a(2k+1)-tuple of integers(s0, s1, . . . , s2k−1, s2k )

such thata = s0 � s1 � · · · � s2k−1 � s2k = b and, for anyj,0� j � 2k − 1,

c(sj , sj+1] = Cuu′ , (14)

whereu′ is thek-bit binary representation ofj . Consequently, the partial sum (13) can
rewritten as

Dk(s0, s1, . . . , s2k−1, s2k )=
k∑
i=1

W(r − k + i)
2i−1∑
j=0

D(sj2k−i , s(j+1)2k−i ]. (15)

Hence, givenCu = c(a, b] with fixeda andb, minimizing (13) is equivalent to minimizin
Dk(s0, s1, . . . , s2k−1, s2k ) over all (2k + 1)-tuple of integers(s0, s1, . . . , s2k−1, s2k ) satis-
fying a = s0 � s1 � · · · � s2k−1 � s2k = b. The set of all these(2k + 1)-tuple of integers
is denoted byIk(a, b]. For each pair ofa and b, 0 � a � b � N and each 1� k � r,
define

D̂k(a, b] = min
(s0,s1,...,s2k−1,s2k )∈Ik(a,b]

k∑
i=1

W(r − k + i)
2i−1∑
j=0

D(sj2k−i , s(j+1)2k−i ]. (16)

Obviously,D̂k(a, a] = 0 for all a, 0 � a � N . By (16) the minimal expected distortio
D(Q̂) equals toD̂r (0,N]. The following proposition shows that the valueŝDk(a, b] can
be computed recursively. We set by conventionD0(a, b] = 0 for all a, b,0� a � b �N .
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Proposition 1. For 1 � k � r, 0� a � b�N , the following relation holds:

D̂k(a, b] = min
ξ, a�ξ�b

{
W(r − k + 1)

(
D(a, ξ ] +D(ξ, b])

+ D̂k−1(a, ξ ] + D̂k−1(ξ, b]
}
. (17)

Proof. Consider an arbitrary(2k + 1)-tuple of integers(s0, s1, . . . , s2k ) in Ik(a, b] and let
ξ = s2k−1. Then

Dk(s0, s1, . . . , s2k )=W(r − k + 1)
(
D(a, ξ ] +D(ξ, b])+Dk−1(s0, . . . , s2k−1)

+Dk−1(s2k−1, . . . , s2k ).

When ξ is fixed, the first term of the above sum is constant, and the quan
Dk−1(s0, . . . , s2k−1) andDk−1(s2k−1, . . . , s2k ) can be minimized independently. Now t
conclusion follows. ✷

Further, for each 1� k � r, 0� a � b �N , we define

ξk(a, b] = argmin
ξ, a�ξ�b

{
W(r − k + 1)

(
D(a, ξ ] +D(ξ, b])

+ D̂k−1(a, ξ ] + D̂k−1(ξ, b]
}
. (18)

In case when the point of minimum of the underlying objective function is not unique
let ξk(a, b] be the largest among these points. Clearly,ξk(a, a] = a for all 0 � a �N .

Proposition 1 immediately suggests the following dynamic programming algorith
solve Problem 2.

Algorithm 1. Optimal MRQ design.

Step1. For increasingk, k = 1,2, . . . , r, and for all integersa, b, 0 � a � b � N ,
compute and store the valueŝDk(a, b] and ξk(a, b] using the recursion (17
(Whenk = r it suffices to consider onlya = 0 andb=N .)

Step2. Let q0 = 0 andq2r = N . For decreasingk, k = r, r − 1, . . . ,1 and eachi =
0,1, . . . ,2r−k − 1, set

q(2i+1)2k−1 = ξk(qi2k , q(i+1)2k ].

The algorithm outputs the(2r + 1)-tuple of integers(q0, q1, . . . , q2r ), which specifies
the optimal scalar multi-resolution quantizer. Namely, for eachu ∈ {0,1}r , Cu =
c(qi, qi+1], wherei is the integer whoser-bit binary representation isu.

The complexity of the above algorithm is dominated by the operations of Step 1.
we assume that a preprocessing step is taken to compute and store all the valuesD(a,b],
0 � a � b �N . The details of this preprocessing are deferred to Section 6 where w
show that the cost of the preprocessing does not affect the complexity of the algo
For each triplek, a, b, the computation of̂Dk(a, b] using (17) spendsO(N) time if linear
search is applied. Since there areO(rN2) such triples to be considered, the total cos
Step 1 becomesO(rN3). We will show in the next section that solving (17) does not n
linear search, and reduce the time complexity toO(rN2).
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4. Complexity reduction by monotonicity

The baseline algorithm for optimal MRQ design as given in the previous section c
improved by exploiting a monotonicity property ofξk(a, b] stated below.

Proposition 2. For any integerk, 1 � k � r, and any integersa, a′, b, b′ such that
0 � a � b�N , 0� a′ � b′ �N , a � a′, andb � b′, the following inequality holds:

ξk(a, b] � ξk(a′, b′], (19)

if the distortion measured(X,Q(X)) between a random variableX and its quantizer
reproductionQ(X) is monotone(defined in Section2).

This proposition says that the search range forξk(a, b] can be reduced from the interv
[a, b] to the much smaller one[ξk(a, b − 1], ξk(a + 1, b]]. Later in this section we wil
use this property to organize the computations ofD̂k(a, b] and ξk(a, b] for all intervals
(a, b], 0 � a < b � N , and for a givenk in such a way that theseO(N2) values can
be computed inO(N2) time. In fact, the counterpart of Proposition 2 for conventio
single-resolution quantization was shown by Wu and Zhang for all monotone disto
measures [21]. In what follows we generalize the results of [21] to the case of op
multi-resolution quantization and eventually prove Proposition 2.

To proceed we need a few notations. For any integerk, 1� k � r, and any integersa, b,
0 � a � b�N , let

Ek(a, b)=W(r − k + 1)D(a, b] + D̂k−1(a, b], (20)

and rewrite (17) and (18) respectively as

D̂k(a, b] = min
ξ, a�ξ�b

{
Ek(a, ξ)+Ek(ξ, b)

}
(21)

and

ξk(a, b] = argmin
ξ, a�ξ�b

{
Ek(a, ξ)+Ek(ξ, b)

}
. (22)

The proof of Proposition 2 relies on the fact that the functionEk(·, ·) satisfies the so-calle
convex Monge condition. A real valued functionA(a,b) of integersa, b, 0 � a � b�N ,
is said to satisfy the convex Monge condition if and only if for all integers 0� a < a′ �
b < b′ �N , the following relation holds [4]:

A(a,b)+A(a′, b′)�A(a,b′)+A(a′, b). (23)

Working toward the proof of Proposition 2, we present two lemmas.

Lemma 1. If A(a,b) and A′(a, b) are two real-valued functions defined on integ
0 � a � b � N , which satisfy the convex Monge condition, then the functionB(a, b) as
defined by

B(a, b)= min
a�µ�b

(
A(a,µ)+A′(µ,b)

)
, 0� a � b�N, (24)

also satisfies the convex Monge condition.
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Proof. We want to show that for 0� a < a′ � b < b′ �N
B(a,b)+B(a′, b′)� B(a, b′)+B(a′, b). (25)

Consider the integersξ andν, a � ξ � b′ anda′ � ν � b, such that by (24)

B(a, b′)=A(a, ξ)+A′(ξ, b′), (26)

B(a′, b)=A(a′, ν)+A′(ν, b). (27)

There are two cases:ξ � ν andξ > ν. We present the proof only for the first case;
second case can be treated analogously.

Assuming thatξ � ν, then clearlya � ξ � b anda′ � ν � b′. From (24) it follows that

B(a, b)�A(a, ξ)+A′(ξ, b), (28)

B(a′, b′)�A(a′, ν)+A′(ν, b′). (29)

Relations (26)–(29) imply that (25) holds if

A(a, ξ)+A′(ξ, b)+A(a′, ν)+A′(ν, b′)
�A(a, ξ)+A′(ξ, b′)+A(a′, ν)+A′(ν, b), (30)

which is equivalent to

A′(ξ, b)+A′(ν, b′)�A′(ξ, b′)+A′(ν, b). (31)

The above inequality is valid because 1� ξ � ν � b < b′ �N and the functionA′ satisfies
the convex Monge condition.✷
Lemma 2. For each integerk,1 � k � r, the functionEk(a, b) satisfies the convex Mong
condition, if the distortion measured(X,Q(X)) is monotone.

In the proof of Lemma 2 we use the fact thatD(a,b], as a function of integersa, b,
satisfies the convex Monge condition. We borrow a result of Wu and Zhang [21].
prove that the functionε(a, b], defined as

ε(a, b] = min
y∈R

b∑
i=a+1

d(xi, y)p(xi), (32)

for all 0 � a < b �N , satisfies the convex Monge condition ifd(x, y) is monotone. Note
that the functionε(a, b] is not identical toD(a,b], because we have according to (6):

D(a,b] = min
y∈B

b∑
i=a+1

d(xi, y)p(xi), (33)

for all 0 � a < b �N , andB is strictly included inR. However, an attentive examinatio
of the proof of [21] shows that the result still stands if in the definition (32) the rangey
over which the minimum is taken is restricted to a subset ofR which contains all element
of A. SinceA ⊆ B, we conclude that our functionD(a,b] satisfies the convex Mong
condition, too.
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Proof of Lemma 2. The proof is constructed by induction onk. If k = 1, then

E1(a, b)=W(r)D(a, b]. (34)

Since D(a,b] satisfies the convex Monge condition, clearlyE1(a, b) satisfies the
condition, too.

Fix somek, 1� k � r − 1, and assume that the functionEk(a, b) satisfies the conve
Monge condition. Applying further the equality (21) and Lemma 1, we conclude
D̂k(a, b] also satisfies the convex Monge condition. The relation

Ek+1(a, b)=W(r − k + 1)D(a, b] + D̂k(a, b], (35)

implies thatEk+1(a, b) is a linear combination of functions satisfying the convex Mo
condition, hence clearly it satisfies the condition, too.✷

Now we are ready to construct the proof of Proposition 2.

Proof of Proposition 2. Assume that inequality (19) is not satisfied, in other words,

ξk(a, b]> ξk(a′, b′]. (36)

Let ξ ′ = ξk(a, b] andξ = ξk(a′, b′]. It follows thata � a′ � ξ < ξ ′ � b� b′. The definition
of ξk(a, b] implies that

Ek(a, ξ)+Ek(ξ, b)�Ek(a, ξ ′)+Ek(ξ ′, b). (37)

Since the functionEk(·, ·) satisfies the convex Monge condition (Lemma 2), we have

Ek(a, ξ
′)+Ek(a′, ξ)�Ek(a, ξ)+Ek(a′, ξ ′),

Ek(ξ, b
′)+Ek(ξ ′, b)�Ek(ξ, b)+Ek(ξ ′, b′). (38)

Summing up the above inequalities yields

Ek(a, ξ
′)+Ek(ξ ′, b)+Ek(a′, ξ)+Ek(ξ, b′)

�Ek(a, ξ)+Ek(ξ, b)+Ek(a′, ξ ′)+Ek(ξ ′, b′). (39)

Relations (37) and (39) imply that

Ek(a
′, ξ)+Ek(ξ, b′)�Ek(a′, ξ ′)+Ek(ξ ′, b′), (40)

which contradicts the definition ofξk(a′, b′] (recall thatξ = ξk(a′, b′]). ✷
Proposition 2 implies that (21) is equivalent to

D̂k(a, b] = min
ξ, ξk(a,b−1]�ξ�ξk(a+1,b]

(
Ek(a, ξ)+Ek(ξ, b)

)
(41)

and (22) is equivalent to

ξk(a, b] = argmin
ξ, ξk(a,b−1]�ξ�ξk(a+1,b]

{
Ek(a, ξ)+Ek(ξ, b)

}
. (42)

Now we see that the search range forξk(a, b] can be reduced from the interval[a, b] to
a much smaller one[ξk(a, b − 1], ξk(a + 1, b]]. In order to take advantage of this, t
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computation ofξk(a, b− 1] andξk(a + 1, b] has to be completed before the computat
of ξk(a, b] starts. The required sequencing can be achieved if the entries of the
triangular matriceŝDk andξk (whose entries arêDk(a, b] andξk(a, b], 0 � a � b � N ,
wherea is the row index andb is the column index) are computed advancing from
leftmost column to the rightmost one, and inside each column advancing from the b
to the top. This strategy leads to a surprisingly simple algorithm of computing allD̂k(a, b]
for a givenk as described by the following pseudocode.

Algorithm 2.

for a = 0 toN do
ξk(a, a] := a; D̂k(a, a] := 0;
for i = 1 toa do
D̂k(a − i, a] := minξ, ξk(a−i,a−1]�ξ�ξk(a−i+1,a](Ek(a − i, ξ)+Ek(ξ, a));
ξk(a − i, a] := argminξ, ξk(a−i,a−1]�ξ�ξk(a−i+1,a](Ek(a − i, ξ)+Ek(ξ, a)).

Note that for each pair of integersa, andb, Ek(a, b] is evaluated in constant time usin
formula (20). Consequently, the evaluation of botĥDk(a − i, a] and ξk(a − i, a] takes
O(ξk(a− i+ 1, a]− ξk(a− i, a− 1]) operations ifi > 0, orO(1) operations ifi = 0. The
time complexityTk of Algorithm 2 is

Tk =O(N)+O
(
N∑
a=1

a∑
i=1

(
ξk(a − i + 1, a] − ξk(a − i, a − 1]))

=O(N)+O
(
N∑
a=1

a∑
i=1

ξk(a − i + 1, a] −
N−1∑
a=0

a+1∑
i=1

ξk(a − i + 1, a]
)

=O(N)+O
(
N∑
i=1

ξk(N − i + 1,N] −
N−1∑
a=0

ξk(0, a]
)

=O(N2). (43)

Consequently, replacing Step 1 of Algorithm 1 byr invocations of Algorithm 2 (one fo
eachk = 1,2, . . . , r) reduces the time complexity of optimal MRQ design fromO(rN3)

toO(rN2).
Before ending this section we mention in passing that the sameO(N2) time complexity

for the computation of all valueŝDk(a, b] for a givenk, can also be achieved by th
fast matrix search technique proposed by Aggarwal et al. [1]. Indeed, it can be
shown that this problem is equivalent to the problem of tube minima in a totally mon
three-dimensional array [2]. Even though our algorithm achieves the same asym
complexity, it is much simpler in structure.

But can this simpler algorithm be applied to optimal single-resolution quantiz
(SRQ) as well? Clearly, SRQ is a special case of MRQ, where the finest resolutio
probability 1 (W(r) = 1) and all intermediate resolutions have probability 0 (W(k) = 0,
1 � k < r). Thus, the algorithm presented in this section offers a new solution to desi
optimal SRQ ofK = 2r codecells, without using the SMAWK matrix reduction techniq
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introduced by Aggarwal et al. [1] for fast matrix search. But its time complexit
higher than SMAWK:O(rN2) vs. O(N2) for general monotone distortion functio
and vs.O(KN) when the distortion function is the squared Euclidean distance [20
Interestingly though, if the random variable to be quantized has exponential distrib
applying the simple idea developed in this section in conjunction with the propert
exponential distribution yields anO(rN) time algorithm for optimal MRQ design, and fo
optimalK = 2r -codecells SRQ design, too. In this case our simple algorithm also
lower asymptotical time complexity than all previous algorithms of optimal SRQ de
We present this algorithm in Section 7.

5. Space complexity

Now we discuss the space complexity. For eachk, the matrixD̂k , which is formed by the
kth invocation of Algorithm 2, has to be stored until the completion of the(k+1)th invoca-
tion. To store all theO(N2) entries of the matrix, at leastO(N2 log2N) bits are required
In order to reconstruct the underlying partition of the resulting optimal MRQ (Step
Algorithm 1) the algorithm also needs to keep all intermediate values ofξk(a, b]. If we
simply stored all matricesξk , 1� k � r, we would need an additionalO(rN2 log2N) bits,
which dominates and determines the space complexity. We can reduce this space co
ity by storing the information aboutξk(a, b] via a compact encoding scheme. Of cour
this adds an extra time of decoding to Step 2 of Algorithm 1. But since only 2r+1 < 2N
values ofξk(·, ·] need to be back traced in Step 2, the decoding time is onlyO(rN), as we
will show below, being negligible comparing to the time complexity ofO(rN2) for Step 1.

By Proposition 2, for eachk, any rowa of the matrixξk has the entries in nondecreasi
order. Hence, any entryξk(a, b] is either equal to or larger than the previous entry on
row. We use one bit to encode which is the case, and create anN × N upper triangular
matrixZk of binary entriesZk(a, b), 0� a �N−1,a+1� b�N . Namely,Zk(a, b)= 0
if ξk(a, b] = ξk(a, b − 1] andZk(a, b) = 1 otherwise. Since the value ofξk(a, a + t]
remains a constant in a ranget = 0,1, . . . , we can compactly encode these ranges
this end we use anotherN × N upper triangular matrixZ′

k of binary entriesZ′
k(a, ξ),

0 � a � N − 1, a + 1 � ξ � N , such thatZ′
k(a, ξ) = 1 if ξ = ξk(a, b] for someb,

a � b �N , otherwiseZ′
k(a, ξ)= 0.

Computing the two matricesZk and Z′
k incurs almost no cost. Algorithm 2 firs

initializes all the binary entries to 0. Upon obtaining eachξk(a, b], the algorithm sets
bothZk(a, b) andZ′

k(a, ξk(a, b]) to 1 if ξk(a, b] �= ξk(a, b − 1]. (The valueξk(a, b] is
not discarded immediately, but only after the computation ofξk(a, b+ 1].)

Aided with Zk andZ′
k, Algorithm 1 can reconstruct the valueξk(a, b] as follows.

Given k and a, keep an ordered list of the nonzero entries of matrixZ′
k on row a in

increasing column indices. Thenξk(a, b] equals thej th element of this list such tha
j =∑b

t=a+1Zk(a, t) (if j = 0, thenξk(a, b] = a). To determineξk(a, b), the algorithm
firstly computes the associatedj value, which takesb − a additions. Then it finds th
j th nonzero entry on rowa of matrix Zk, which requires at mostb − a comparisons
(sinceξk(a, b] � b, only the entries up toZk(a, b) are checked). Thus, the time spe
to reconstruct anyξk(a, b] is onlyO(b− a).
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In Step 2 of algorithm there are 2r+1 quantizer end points to be reconstructed, nam
ξk(qi2k , q(i+1)2k] for eachk = r, r−1, . . . ,1 and eachi = 0,1, . . . ,2r−k−1. Consequently
the total extra time required by the compact encoding scheme to save space is

O

(
r∑
k=1

2r−k−1∑
i=0

(q(i+1)2k − qi2k )
)

=O
(

r∑
k=1

N

)
=O(rN). (44)

This is negligible comparing to the time complexity of Step 1. Hence, the total
complexity ofO(rN2) is not affected.

With the proposed compact encoding scheme we only need to store the twoN×N upper
triangular binary matricesZk andZ′

k, 1� k � r, to facilitate Step 2 of the algorithm. Th
space requirement is clearly onlyO(rN2) in bits. In addition to the space requireme
of O(N2 log2N) for matrix D̂k , the total space complexity isO(N2 log2N + rN2), or
O(N2 log2N) sincer =O(logN).

6. The preprocessing step

In this section we consider the computation of the distortions of all convex subs
alphabetA, i.e., allD(a,b], 0� a � b �N . The same task was addressed in [21] and
solved withO(MN) time and space requirements, whereM denotes the size of alphabetB.
We present here a different method, which achieves the same asymptotic complex
is much simpler.

Recall that

D(a,b] = min
y∈B

b∑
i=a+1

d(xi, y)p(xi), (45)

for all 0 � a � b � N . In [21] it is shown that the above minimum is achieved for so
y ∈ B∩[xa+1, xb] (see remarks after Lemma 2). Denote this byµ(a, b] (in case of multiple
points, the largest one is picked). It is also shown in [21] that the functionµ(a, b] of
integersa andb is monotone in botha andb, i.e., for any integersa, a′, b, b′, such that
0 � a < b �N , 0� a′ < b′ �N , a � a′, andb� b′, the following inequality holds

µ(a, b] � µ(a′, b′]. (46)

The above property allows us to compute the valuesD(a,b] andµ(a, b] for all 0 �
a < b � N , in O(MN) time (by using the same idea as in Section 4), provided
the expression

∑b
i=a+1d(xi, y)p(xi) can be evaluated in constant time for any integ

a, b, 0 � a < b �N , and anyy ∈ B ∩ [xa+1, xb]. Let y1, y2, . . . , yM denote the elemen
of B, listed in increasing order.

Instead of precomputing and storing all the values
∑b
i=a+1d(xi, y)p(xi) we use the

approach of [21] to save time and space. Namely, we compute and store the(N + 1)×M
matrixS with entriesS(b, j), 0� b�N , 1� j �M, defined as

S(b, j)=
b∑
d(xi, yj )p(xi) (47)
i=1
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if b > 0, andS(0, j)= 0. Then
∑b
i=a+1d(xi, yj )p(xi) can be computed in constant tim

according to

b∑
i=a+1

d(xi, yj )p(xi)= S(b, j)− S(a, j), (48)

for all a, b, 0 � a < b � N , andyj ∈ B ∩ [xa+1, xb]. Mention that the matrixS can be
built in O(MN) time since each columnj can be incrementally computed inO(N) time.

The method of [21] consists of computing the distortionsD(a,b] for fixed a and
all b, a < b � N , by applying the fast matrix search technique. Indeed, this proble
equivalent to the problem of finding all the row minima of an(N − a) × Ma matrix,
which is totally monotone (due to the property of the distortion functiond(x, y)), where
Ma =M − |B ∩ [x1, xa+1]|. Note thatMa � N − a sinceA ⊆ B. As proved in [1], this
problem can be solved inO(Ma) time. Applying this method for eacha, 0 � a < N , the
total complexity becomesO(MN) time.

We achieve the same time complexity but in a much simpler way using the idea ex
in Section 4. The inequality (46) implies that

D(a,b] = min
j, µ(a,b−1]�yj�µ(a+1,b]

(
S(b, j)− S(a, j)), (49)

for all a, b, 0 � a < b− 1 �N − 1. Obviously,µ(a, a+ 1] = a+ 1 andD(a,a+ 1] = 0
for anya, 0 � a � N − 1. The pseudocode for computing allD(a,b] andµ(a, b] is the
following:

Algorithm 3.

for b = 0 toN − 1 do
µ(b, b+ 1] := b+ 1;D(b,b+ 1] := 0;
for i = 1 tob do
D(b− i, b+ 1] := minj, µ(b−i,b]�yj�µ(b−i+1,b+1](S(b+ 1, j)− S(b− i, j));
µ(b− i, b+ 1] := maxargminj, µ(b−i,b]�yj�µ(b−i+1,b+1](S(b+ 1, j)

− S(b− i, j)).

The time complexity of this algorithm, via a similar analysis as that of Algorithm
Section 4, isO(MN). In most cases of interestM =O(N), hence the preprocessing st
does not increase the complexity of the algorithm for optimal MRQ design.

The most widely used distortion function in data compression is the square dis
d(x, y)= (x−y)2. In this case, the preprocessing step is even faster. Instead of com
all O(N2) valuesD(a,b], only someO(N) quantities are computed inO(N) time. These
quantities allow the evaluation ofD(a,b] in constant time, every time it is needed [20].
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7. Optimal MRQ for exponential random variable

In this section we treat the special case of quantizing an exponential random va
We will show that for a family of distortion measures, which includes the ubiqui
squared Euclidean distance, the time complexity of the algorithm for optimal M
design can be reduced toO(rN). This result presents complexity reduction for optim
SRQ design as well. Indeed, it means that the optimalK-codecells SRQ design for a
exponential random variable can be effected inO(N logK) time, which is the fastes
among all known solutions for optimal SRQ design [3,5,13,16,18–21]. (The algo
presented in this section works for the case when the number of codecells is a po
two, but it can be easily extended to the other cases, too.)

We assume the symbols of alphabetA to bexi = α+ iδ, 1� i �N , for some real value
α, δ, δ > 0. The probability mass function isp(xi)= ceλi for all i, 1 � i �N , whereλ is
a real value,λ �= 0, andc is a constant such that

∑N
i=1p(xi)= 1.

We also assume that the symbols of alphabetB areyj = α + jδ/m, 1� j �M, where
m is a positive integer. The distortion functiond(x, y) is assumed to be a nondecreas
function of the absolute distance|x − y|, in other words, there is a nondecreasing func
f : R → [0,∞), such thatd(x, y)= f (|x − y|), for all realx andy. Note that under this
assumption the distortion functiond(x, y) is monotone, hence all the results obtained
the previous sections hold.

The reduction in complexity of optimal MRQ design fromO(rN2) to O(rN) follows
from the observation that there is no longer the need to evaluate the quantitiesD̂k(a, b] for
all pairs of integersa, b, 0� a � b �N , but only for the pairs witha = 0. This property
is a consequence of the following proposition.

Proposition 3. For any integersk, a, b, 1� k � r, 0 � a � b �N , the following equalities
hold:

D̂k(a, b] = eλaD̂k(0, b− a], (50)

ξk(a, b] = a + ξk(0, b− a]. (51)

Proof. The proof proceeds in two steps. The first step is to show that the equality

D(a,b] = eλaD(0, b− a] (52)

is valid for all integers 0� a � b �N . The second step is to prove by induction onk, that
(50) and (51) hold, too.

Starting from the definition ofD(a,b] (45) and the observation mentioned in Sectio
thatµ(a, b] ∈ B ∩ [xa+1, xb], the following sequence of equalities follows:

D(a,b] = min
y∈B∩[xa+1,xb]

b∑
i=a+1

f
(|y − α− iδ|) · ceλi

= eλa · min
y∈B∩[xa+1,xb]

b−a∑
f
(|y − α − aδ− jδ|) · ceλj . (53)
j=1
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From the way the symbols of alphabetsA and B were defined it follows thaty ∈
B∩ [xa+1, xb] if and only if y − aδ ∈ B∩ [x1, xb−a]. By a change of variabley ′ = y − aδ,
we have

D(a,b] = eλa · min
y ′∈B∩[x1,xb−a]

b−a∑
j=1

f
(|y ′ − α − jδ|) · ceλj

= eλaD(0, b− a], (54)

concluding the first step of the proof.
We now prove Proposition 3 by induction onk. Let k = 1 anda, b be arbitrary integer

such that 0� a � b �N . Then, from Proposition 1 it follows that

D̂1(a, b] = min
ξ, a�ξ�b

W(r)
(
D(a, ξ ] +D(ξ, b]). (55)

ReplacingD(a, ξ ] andD(ξ, b] according to (52) yields

D̂1(a, b] = min
ξ, a�ξ�b

W(r)
(
eλaD(0, ξ − a] + eλξD(0, b− ξ ])

= min
ξ, a�ξ�b

W(r)
(
eλaD(0, ξ − a] + eλaeλ(ξ−a)D(0, b− ξ ])

= eλa min
ξ, a�ξ�b

W(r)
(
D(0, ξ − a] +D(ξ − a, b− a])

= eλa min
µ, 0�µ�b−aW(r)

(
D(0,µ] +D(µ,b− a])

= eλaD̂1(0, b− a]. (56)

The second last equality in the above sequence is obtained by replacingξ − a byµ, which
also implies that

ξ1(a, b] = a + ξ1(0, b− a]. (57)

Thus, the verification step of the inductive proof is completed. The inductive stepk→ k+1
follows easily using the same idea and we omit the proof.✷

A direct consequence of Propositions 1 and 3 is the following recursive formula:

D̂k(0, a] = min
ξ, 0�ξ�a

{
W(r − k + 1)

(
D(0, ξ ] + eλξD(0, a − ξ ])

+ D̂k−1(0, ξ ] + eλξ D̂k−1(0, a − ξ ]} (58)

for all 1 � k � r and 0� a �N . On the other hand, Proposition 2 implies that

ξk(0, a − 1] � ξk(0, a] � ξk(1, a] (59)

for all 1 � k � r and 1� a � N . Moreover, Proposition 3 impliesξk(1, a] = 1 + ξk(0,
a − 1]. Summing up the above observations leads to the following recursion

D̂k(0, a] = min
ξ∈{ξk(0,a−1],1+ξk(0,a−1]}

{
W(r − k + 1)

(
D(0, ξ ] + eλξD(0, a − ξ ])

+ D̂k−1(0, ξ ] + eλξ D̂k−1(0, a− ξ ]} (60)
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for all 1 � k � r and 1� a �N .
Using the recursion above the minimal expected distortionD(Q̂), or D̂r (0,N], can

be obtained by recursively computing all valueŝDk(0, a] and ξk(0, a], 1 � k � r and
0 � a � N , in increasing order ofk anda. According to (60) the computation of ea
such value requires constant time, hence the whole process takesO(rN) time.

The space complexity of this algorithm for exponential random variable is
decreased by a factor ofN comparing to the general algorithm. Indeed, the matrixD̂k
which has to be stored at each current value ofk has the dimension 1× (N + 1). Also for
eachk,1 � k � r, the matrixZk with binary entries which encodes the information ab
the valuesξk(0, a], has onlyN entries:Zk(0, a), 1� a �N . Mention that the matrixZ′

k

is no longer needed (sinceξk(0, a] is eitherξk(0, a − 1] or 1+ ξk(0, a − 1], andξk(0, a]
is increasing ina, it follows thatξk(0, a] =∑a

i=1Zk(0, a), 1� a �N ). Hence, the spac
requirement amounts toO(N log2N + rN)=O(N log2N) bits.

8. Generalization to a graph problem

The design of optimalK-codecells single-resolution quantizer is an instance of
problem of finding a minimum-weightK-link path in a directed acyclic graph (DAG
[3]. Conversely, we can generalize optimal MRQ design to a graph problem. Firs
us introduce a so-called multi-edge-sets weighted directed acyclic graph (MEWD
denoted byG = (V ,E1,ω1, . . . ,Er ,ωr), where for eachk, 1� k � r,Gk = (V ,Ek,ωk) is
a weighted directed acyclic graph, with the setV of vertices, the setEk of edges, and th
functionωk assigning weights to edges,ωk :Ek → R. Moreover, the topological order o
the setV is the same in all component graphsGk,1 � k � r. V is called the vertex set o
the MEWDAGG. Let v0, v1, . . . , vn be the vertices of the graph, in topological order.
call anr-layered embedded path inG any sequence of pathsP = (P1,P2, . . . ,Pr ), where
eachPk is a path fromv0 to vn in graphGk , and for anyk, 1 � k � r − 1, and any link
(vi , vj ) of Pk , there is a subpath ofPk+1 from nodevi to nodevj (this subpath is called th
expansion of the link(vi, vj )). We define the weight of ther-layered embedded pathP ,
denoted byω(P), to be the sum of the weightsωk(Pk) of the component paths.

An interesting problem associated withG is ther-layered embedded path of minimu
weight, called theminimum-weightr-layered embedded pathproblem. Some example
of the applications of the minimum-weight layered embedded path are optimal m
resolution piecewise approximation of a discrete signal, and optimal entropy-const
multi-resolution quantization [7]. TheO(rN3) dynamic programming algorithm of [7] fo
the latter problem can be generalized to solve the graph problem of the minimum-w
layered embedded path. Of close relevance to optimal fixed-rate MRQ ofr refinement
levels is a more restrictive variant of minimum-weight layered embedded path, as
below.

Problem 3 (bifurcate minimum-weightr-layered embedded path). LetG = (V ,E1,ω1, . . . ,

Er,ωr ) be an MEWDAG. Find ther-layered embedded pathP = (P1,P2, . . . ,Pr ) of min-
imum weight, which satisfies the additional constraint that the pathP1 contains at most two
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links and for anyk,1� k � r−1, the expansion of any link(vi , vj ) of pathPk has at mos
two links, too.

Clearly, optimal MRQ design (Problem 2) is an instance of the bifurcate minim
weight r-layered embedded path problem. The corresponding MEWDAG isG = (V ,E1,

ω1, . . . ,Er ,ωr), where V = {v0, v1, . . . , vN }, Ek = {(vi, vj ) | 0 � i < j � N}, and
ωk(vi , vj )=W(k)D(i, j ], for all 0� i < j �N and 1� k � r. Note that ther component
graphsGk = (Vk,Ek,ωk) share not only the same vertex set, but also the same edg
which is the maximal possible given the topological order (i.e., all theser DAG’s are
complete and the corresponding MEWDAGG is also said to be complete).

In each component graphGk , each edge(vi , vj ) corresponds to a subset of alphabetA,
namelyc(i, j ]. Hence, to each path in the graphGk corresponds a partition of the alphab
A into nonempty convex sets, and the correspondence is one-to-one. From the dis
in Section 3 it follows that any quantizer can be identified with the partition of alphabA
consisting of the quantizer’s nonempty codecells (because the distortion of the qu
depends only on its nonempty codecells and not on the way they are indexed; also
that the codecells are convex sets). It follows that there is a one-to-one correspo
between the paths of the graphGk and the quantizers, and the weight of each path is e
to the distortion of the corresponding quantizer, multiplied byW(k).

Let nowQ be a quantizer of rater (i.e., with at most 2r nonempty codecells), and l
Q̂ = (Q1,Q2, . . . ,Qr) be the MRQ induced byQ. Let Pk be the path in the graphGk
corresponding to quantizerQk , for eachk,1 � k � r. Each pathPk has as many links a
nonempty codecells of quantizerQk , i.e., at most 2k (recall that the rate ofQk equalsk).
The condition (2) is equivalent to the condition that for anyk,1 � k � r − 1, and any
link (vi , vj ) of pathPk , there is a subpath ofPk+1 between nodesvi andvj and it has at
most two links. Thus, it follows thatP = (P1,P2, . . . ,Pr ) is anr-layered embedded pa
satisfying the constraint in Problem 3. Moreover, the weight of thisr-layered embedde
path,ω(P), equals the expected distortion of MRQ̂Q:

ω(P)=
r∑
k=1

ωk(Pk)=
r∑
k=1

W(k)D(Qk)=D
(
Q̂
)
. (61)

Conversely, if P = (P1,P2, . . . ,Pr ) is an r-layered embedded path satisfying t
conditions in Problem 3, andQk is the quantizer corresponding to each pathPk , 1� k �
r − 1, it follows that the sequence of quantizers(Q1,Q2, . . . ,Qr) is an MRQ, namely the
MRQ induced by quantizerQr .

The equivalence we have shown between the problem of optimal MRQ d
(Problem 2) and the bifurcate minimum-weightr-layered embedded path problem for t
MEWDAG G, allows the generalization of the algorithms presented in this paper to
Problem 3. Namely, the following proposition holds.

Proposition 4. Let G = (V ,E1,ω1, . . . ,Er ,ωr) be anr-edge setWDAG, with the vertex
setV = {v0, v1, . . . , vN }, the nodes being indexed in topological order. Then Proble3
can be solved inO(rN3) time. Moreover, if all the componentWDAG’sGk , 1 � k � r,
are complete and satisfy the convex Monge condition, i.e.,
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ωk(i, j)+ωk(i ′, j ′)� ωk(i, j ′)+ωk(i ′, j),
for all 0 � i < i ′ � j < j ′ �N and allk, (62)

then Problem3 can be solved inO(rN2) time.(In the above relationsωk(i, j) is a short-
ened notation forωk(vi , vj ) if i < j , andωk(i, j)= 0 if i = j .)

Proof. Note first that the MEWDAGG may be assumed to be complete (otherwis
can be extended to a complete one simply by assigning the infinite value to the w
ωk(i, j) for the pairs(vi, vj ) which are not edges ofGk , without changing the solution o
Problem 3). Then Algorithm 1 can be applied to solve Problem 3, where recursion (
replaced by

D̂k(a, b] = min
ξ, a�ξ�b

{
ωr−k+1(a, ξ)+ωr−k+1(ξ, b)

+ D̂k−1(a, ξ ] + D̂k−1(ξ, b]
}
. (63)

Note that the whole development of Section 4, which leads to the complexity redu
of optimal MRQ design, henges on the fact that the functionD(a,b] satisfies the conve
Monge condition. In order to extend this to the algorithm for the graph problem,
weighting functionωk(·, ·), 1� k � r, must satisfy the convex Monge condition. Hence
condition (62) is fulfilled, then the idea of Section 4 can be applied to solve Problem
O(rN2) time, too. ✷

9. Conclusion

We present a simple algorithm ofO(rN2) time andO(N2 logN) space complexity to
design an optimal multi-resolution quantizer ofr refinement levels (or of bit rater in case
of data compression) for a very general class of distortion measures, whereN is the size of
alphabet of the input discrete random variable. The simplicity and relatively high effic
of the proposed algorithm hinge on the convex Monge property of the underlying obj
function. Our algorithm is simpler than the SMAWK matrix search technique, which i
best existing solution to the quantization problem. Moreover, in the case of expon
random variable, the time and space complexity of optimal MRQ design can be redu
O(rN) andO(N logN), respectively.

The proposed algorithm also offers a new simple solution to the conventional prob
designing optimal single-resolution quantizer. In the case of exponential random va
this solution has lower time and space complexity than the best existing algorithms.

We also generalize the problem of optimal multi-resolution quantization to a new
problem, which can be solved by ourO(rN2) time algorithm.

Acknowledgments

We thank the reviewers for their constructive comments and suggestions that s
cantly enriched the contents and improved the presentation of this paper.



22 S. Dumitrescu, X. Wu / Journal of Algorithms 50 (2004) 1–22

hing

S ’88,

e

mpres-

IEEE

tah,

Trans.

scalar

oblem,

level

nform.

ion, in:

sign in

in:

Trans.

Trans.

IEEE

ssion
References

[1] A. Aggarval, M. Klave, S. Moran, P. Shor, R. Wilber, Geometric applications of a matrix-searc
algorithm, Algorithmica 2 (1987) 195–208.

[2] A. Aggarwal, J. Park, Notes on searching in multidimensional monotone arrays, in: Proc. of FOC
White Plains, New York, 24–26 October, 1988, pp. 497–512.

[3] A. Aggarwal, B. Schieber, T. Tokuyama, Finding a minimum-weightk-link path in graphs with the concav
Monge property and applications, Discrete Comput. Geom. 12 (1994) 263–280.

[4] A. Apostolico, Z. Galil (Eds.), Pattern Matching Algorithms, Oxford Univ. Press, New York, 1997.
[5] J.D. Bruce, Optimum quantization, ScD thesis, MIT, May 14, 1964.
[6] H. Brunk, N. Farvardin, Fixed-rate successively refinable scalar quantizers, in: Proc. IEEE Data Co

sion Conference, April 1996, pp. 250–259.
[7] S. Dumitrescu, X. Wu, Optimal multiresolution quantization for scalable multimedia coding, in: Proc.

Information Theory Workshop, 2002, pp. 139–142.
[8] M. Effros, Practical multi-resolution source coding: TSVQ revisited, in: Proc. DCC ’98, Snowbird, U

March 1998.
[9] M. Effros, Distortion-rate bounds for fixed- and variable-rate multiresolution source codes, IEEE

Inform. Theory 45 (1999) 1887–1910.
[10] M. Effros, D. Muresan, Codecell contiguity in optimal fixed-rate and entropy-constrained network

quantizers, in: Proc. IEEE Data Compression Conference, April 2002, pp. 312–321.
[11] A. Gersho, R.M. Gray, Vector Quantization and Signal Compression, Kluwer, Boston, 1992.
[12] M.R. Garey, D.S. Johnson, H.S. Witsenhausen, The complexity of the generalized Lloyd–Max pr

IEEE Trans. Inform. Theory 28 (2) (1982) 255–256.
[13] D. Greene, F. Yao, T. Zhang, A linear algorithm for optimal context clustering with application to bi-

image coding, in: IEEE ICIP ’98, 1998, pp. 508–511.
[14] A. Gyorgy, T. Linder, On the structure of optimal entropy-constrained scalar quantizers, IEEE Trans. I

Theory 48 (2002) 416–427.
[15] H. Jafarkhani, H. Brunk, N. Farvardin, Entropy-constrained successively refinable scalar quantizat

Proc. IEEE Data Compression Conference, March 1997, pp. 337–346.
[16] J. Max, Quantizing for minimum distortion, IRE Trans. Inform. Theory IT-6 (1960) 7–12.
[17] D. Muresan, M. Effros, Quantization as histogram segmentation: globally optimal scalar quantizer de

network systems, in: Proc. IEEE Data Compression Conference, April 2002, pp. 302–311.
[18] B. Schieber, Computing a minimum-weightk-link path in graphs with the concave Monge property,

Proc. ACM–SIAM Symp. on Algorithms ’95, 1995, pp. 405–411.
[19] D.K. Sharma, Design of absolutely optimal quantizers for a wide class of distortion measures, IEEE

Inform. Theory IT-24 (1978) 693–702.
[20] X. Wu, Optimal quantization by matrix searching, J. Algorithms 12 (1991) 663–673.
[21] X. Wu, K. Zhang, Quantizer monotonicities and globally optimal scalar quantizer design, IEEE

Inform. Theory 39 (1993) 1049–1053.
[22] X. Wu, P. Chou, X. Xue, Minimum conditional entropy context quantization, in: Proc. of the 2000

International Symposium on Information Theory, 2000.
[23] X. Wu, S. Dumitrescu, On optimal multi-resolution scalar quantization, in: Proc. IEEE Data Compre

Conference ’02, April 2002, pp. 322–331.


