
PARALLEL CONSTRUCTION OF TREES WITH OPTIMAL

WEIGHTED PATH LENGTH

Lawrence L. Larmore and Teresa M. Przytycka t

Department of Computer Science,

University of California, Riverside, CA 92521

Abstract

This paper deals with the problem of parallel construc-

tion of trees with optimal weighted path length. We

study both the unordered case, known as the Htiflman

coding problem and the ordered case known as the op-

timal alphabetic binary tree problem. The methods

used in both cases are different. We reduce the Huff-

man coding problem to the Concave Least Weight Sub-

sequence and give a parallel algorithm that solves the

latter problem in O(filog n) time with n processors

on a CREW PRAM. This leads to the first sub linear

time o(n2)-total work parallel algorithm for the Huff-

man coding problem. The alphabetic binary tree prob-

lem is a special case of the Optimum Binary Search

tie problem and can be solved in O(log2 n) time with

n4 processors using the dynamic programming tech-

nique. We show that an optimal height restricted al-

phabetic tree can be constructed in O(L log n) time on

a CREW PRAM using only linearly many processors,

where L is an upper bound on the height of the tree.

t and Instytut Informatyki, Uniwersytet War=wski.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies arc not made or distributed for direct commercial
advan~ge, the ACM copyright notice and the title of the publication and

its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a f= and/or specific permission.

This implies that an alphabetic tree whose cost

differs by at most I/nk from the cost of the optimal

tree can be constructed in O(k log2 n) time using linear

number of processors. To achieve this result we use a

parallel version of the package merge technique.

1 INTRODUCTION

The level of a node in a tree is its distance from the

root. The problem of constructing a Huflman tree

is, given a sequence of n real numbers, Z1, X2, Zn,

construct a binary tree with n leaves such that the

leaves of the tree are in one-t~one correspondence

with elements of the sequence, and the following cost

function, c, ia minimized:

n

(1.1) C(T) = ~ Xi/i

i=l

where .?i denotes the level of the leaf corresponding to

the number zi, not necessarily the ith leaf. The value

zj associated with a leaf v ia called the weight of v.

In the optimal alphabetic binary free problem

we additionally assume that the ith leaf of the tree

is assigned weight xi. Without loss of generality,

~~=1 Zi = 1 and Zi # Zj for i # j. The height

restricted optimal alphabetic tree problem is given an

integer L, where log n < L < n — 1, construct an

alphabetic tree of height at most L that minimizes

the cost function c.

01991 ACM 0897914384/91/0007/0071 $1.50

71

Both the Huffman tree problem and the optimal

alphabetic tree problem can be solved in O(n log n)

sequential time [8,13]. Yet, despite much effort,

neither of the problems has a good parallel algorithm.

Currently the best NC algorithm for the Huffman

coding problem takes O(log2 n) time with roughly n2

CREW PRAM processors [4]. A close approximation

for the solution to the Huffman coding problem can be

computed in O(log n log* n) time using linear number

of CREW processors [14,22]. In this paper we present

the firat sublinear time, o(n2)-work parallel algorithm

for the Huffman coding problem.

At the heart of our algorithm is the reduction of

the Huffman coding problem to the Concave Least

Weight Subsequence (CLWS) problem. This reduc-

tion leads to a brand new linear time (if the input

sequence of weights is sorted) sequential algorithm for

the Huffman coding problem.

The CLWS problem has a long list of applications,

including paragraph breaking. A good parallel algo-

rithm for this problem is thus interesting in its own

right. Hirschberg and Larmore [10] define the Least

Weight Subsequence (LWS) problem ss follows: Given

an integer n, and a real-valued weight function w(i, j)

defined for integers O ~ i < j ~ n, find a sequence

of integerso= ~0 < al < . . . < ffk_l < ~k = n

such that ~~~~ W(CYi, ~i+l) is minimized. The Sin-

gle Source LWS problem is to find such a minimal

fRqUf311Ceo=CWJ <(YI < . . . <CYk_l < CYk =T71

for all m s n. The LWS problem can be solved in

0(n2) sequential time [10]. This complexity can be

reduced by imposing certain restrictions on the weight

function. The weight function is concave if for all

O~iO<il<jO~jl~n,

(1.2) w(iO,jO) + w(il, j~) S w(iO,jl) + w(~l, jO).

The inequality (1.2) is also called the quadrangle

inequality [25]. The LWS problem defined by a

concave weight function is called the Concave Least

Weight Subsequence (CLWS) problem. Hirschberg

and Larmore [10] showed that the CLWS problem can

be solved in O(n log n) time. Subsequently, Galil and

Giancarlo [7] showed the O(n log n) complexity bound

for the convez least weight subsequence problem (i.e.

when the weight function satisfies the reverse of the

inequality (1.2)). Later, Wilber [24] proposed an

O(n) algorithm for the CLWS subsequence problem.

The best known sequential algorithm for the convex

case was proposed by Klawe and Kleitman [16]. Their

algorithm requires O(n&(n)) time.

All of the above algorithms for the LWS and

CLWS problems actually solve the single source ver-

sions. Henceforth, when we refer to any variant of the

LWS problem, we shall mean the single source version.

In the parallel setting, the CLWS problem

seems to be more difficult than the correspond-

ing convex problem. Lam and Chan [6] presented

an 0(log2 n log log n)-time, n/log log n - processor

CREW PRAM algorithm to solve the convex problem.

On the other hand, the best current NC algorithm for

the CLWS problem can be obtained using the concave

matrix mult iplicat ion techniques [2,3,4] and requires

0(log2 n) time with n2/ log n processors. In this paper

we present an O(X log n)-time n-processors CREW

PRAM algorithm to solve the CLWS problem.

The optimal alphabetic tree problem is a special

case of the Optimum Binary Search Tree (OBST)

problem. Thus it can be solved using parallel dy-

namic programming techniques in O(log2 n) time with

roughly n4 processors, using the concave matrix mul-

tiplication algorithm [4]. An O(log2 n)-time, n2-

processor algorithm that uses dynamic programming

techniques to compute an approximately optimal bi-

nary search tree was given in [4]. This algorithm can

be used to obtain an approximately optimal alphabetic

tree. On the other hand, the best currently known

sequential algorithm to construct an optimal alpha-

betic binary tree does not use dynamic programming.

Thus one can ask whether, in the parallel setting of

the problem, one can also find a non-dynamic pro-

gramming algorithm whose complexity is less than the

complexity of parallel OBST algorithms that are cur-

rently known. In this paper we give a partial answer to

72

the above question. We present an O(L log n)-time n-

processor CREW PRAM algorithm which constructs

an optimal alphabetic tree subject to height restric-

tion L. The best known sequential algorithm for this

problem [17] requires O(nL log n) time. As a conse-

quence, we obtain an O(k log2 n)-time, n-processor al-

gorithm that constructs an almost optimal alphabetic

tree (more precisely a tree whose cost differs by at

most I/nk from the cost of an optimal tree). Further-

more if the input sequence of weights does not contain

two consecutive elements of weight less than l/nk the

algorithm produces an optimal tree. We base our al-

gorithm on the package-merye technique introduced in

[17] (see also [18,19,20]).

The paper is organized as follows. In the next

section, we present a parallel algorithm for the CLWS

problem. In the third section, we show the reduction

of the Huffman coding problem to the CLWS problem.

In the fourth section, we describe briefly the package

merge technique. In the fifth section, we outline a par-

allel implementation of the package merge algorithm.

2 A PARALLEL SINGLE SOURCE CLWS

ALGORITHM

Consider an instance of the least weight subsequence

problem over [0, n] defined by a weight function w.

Let lws(i, j) denote the solution to the least weight

subsequence problem on [i, j] defined by the same

function w. (This “solution” includes backpointers as

well as the values of the minimum weight paths.) Let

g(i, j) be the weight of the least weight subsequence

on [i, j]. We will compute Iws(O, j) for all O < j ~ n

under the assumption that the weight function satisfies

the quadrangle inequality (1.2). Let ~(j) = g(O, j)

Define

pred(j) =

(undefined forj=O

i

min{ili < j, f(j) = for 0< j < ~

f(i) + w(i, j)}

Thus f(j) is equal to the weight of the least weight

subsequence for the interval [0, j] and pred(j) is equal

to the index of the lsst but one element of such a

sequence (in the csse of ties we choose the leftmost).

Let F(j) = (f(j), pred(j)). To solve the LWS problem

it suffices to compute the function F(j) for sJl j E

[0,n].

Given an interval 1 = [il, i2] C [0, n] we can also

consider a restricted version of the LWS problem in

which we require that for all j > i2, pred(j) G 1 (i.e.

for any j > i2 the last but one element of the solution

to Jws(O, j) belongs to 1). To solve thw problem it

suffices to compute, for all O < j ~ n, functions ~l(j)

and predr(j) where

f’(j) =

{

f(j) for j ~ iz

rninia(f(O + W(ijj)) for i2 <: j < n

predz(j) =

i

rnin{ili E 1, i < j, f~(j) =
foriz<:j~n

f(i) + to(i, j)}

Let Fr = (fz, predI). For any interval 1 = [ii, iz],

where i2 = il + k the function predr partitions the

interval [iz -t 1, n] into k + 1 subsets DO, D1, ..., Dk,

such that j E Dt if and only if predl(j) = il + t.

Some of the sets Di may be empty. We say that

element it dominates elements in Dt. This partition

of the interval [iz + 1, n] dominance partition yielded

by interval 1. If the weight function is concave then

the dominance partition satisfies the properties stated

by the following lemma:

LEMMA 2.1. If the weight jinction w satisfies the

quadrangle inequality (1.2) then, for any interval I =

[il, iz] C [0, n], all nonempty subsets of the dominance

partition yielded by I are intervals. Furthermore, if

Di = [a, b] is the set of elements dominated by i and

Dj = [c, dl is the set of elements dominated by j, and

i<jthenb <c.

Assume that n = m2 for some integer m, Let fi” =

f [“,iml and pred = pred[”)iml. The basic idea of our al-

gorithm is to iteratively compute FO, FI, Fm = F

73

where Fi = (fi, predi). For O < i ~ m, define

Ii = [(i – l)m, ire]. The algorithm can be described

as follows:

ALGORITHM 1: Concave Least Weight Sub-

sequence

1. (pnqw-ucessing) for all i, j such

j – i ~ m do compute /ws(i, j);

2. (initialize) for all O ~ j ~ n

do ~“(j) = O,predO(j) = O od ;

Do = [I, n];

that i < j and

3. for i := 1 to m do (iteratively compute Fi)

3.1 for all k E Ii do using the results of Step 1

and F“-l compute lws(O, k)

3.2 compute FI~;

.9.9 from FKi and ~-~ compute Fi.

LEMMA 2.2. The algorithm Con-

cave Least Weight Subsequence can be implemented in

O{& log n) time with n CREW PRAM processors.

Proof: To prove the lemma we present an implemen-

tation of the consecutive steps of the algorithm and

discuss their complexity. Some of the implementation

details we leave to the reader.

STEP 1. Assign one processor to each element of the

sequence. Compute lws(i, j) for all O ~ i < n – m

and j < i + m using a linear-time algorithm for one

instance, of size m, of the single source CLWS problem

for each i. This step requires O(m) time. Q

STEP 3.1. Let pred(i,j) be the pred function for the

least weight subsequence on the interval [i, j]. Then

for all k E Ii, we can compute f(k) and pred(k) using

the following algorithm:

for all r in the solution of some iws(j, s) where

j,s c Ii do pred(r) = pred(j,~)(r) Od ;

for all k c Ii do

f(k) = minj.~i,j<~(fi-’(j) + g(j, k));

t := min{j I j G Ii, j s k, fi-l(j) + g(j, k) =

f(k)};

pred(t) = pre~-l(t).

To implement this algorithm we assign one processor

for each pair j, k E Ii, j < k and compute, for each

such j, k, the value fl.-l(j) + g(j, k). This requires

O(1) time using n processors (or in O(log n) time

using n/log n processors). Then we compute the

corresponding minima in O(log n) time using n/ log n

processors. 0

STEP 3.2. We implement this step by computing

the dominance partition yielded by the interval Ii.

To do th~, for each j c Ii, we compute Zeft(j) and

right(j) equal, respectively, to the left and to the right

boundary of Dj (ieft(j) > right(j) signals empty Dj).

Assume that j < k. Let boundary(j, k) be the leftmost

element in the interval [im + 1, n] for which j is a

better candidate for pred*i than k. We compute the

dominance partition using the following algorithm

For j < k, bmmdary(j, k) = min{tlt E [im + 1, n],

and f(j) + w(j, t) s f(k)+ w(k, t)};

for all j E Ii do

right(j) = minkcIa,~sj boundar~(j, k) ;

left(j) = m=~~~i,~<j boundar~(k, j);

if right(j) < left(j) then Dj = 0.

As in the step 3.1 assign one processor for each pair

j, k E Ii, j < k. Then, by Lemma 2.1, for each such

pair j, k, where j < k, we compute boundary(j, k)

using binary search. Since we have one processor

per boundary value, for each j, functions /e ft(j) and

right (j) can be computed in O(log n) time. time using

n processors. ~

STEP 3.3. To compute Fi we simply have to check,

for every element j E [im + 1, n], which of f ‘-l(j) and

f ‘i (j) is smaller, using O(1) time with n processors.

o

❑

74

3 REDUCTION OF THE HUFFMAN TREE

PROBLEM TO CLWS

A binary tree where each internal node has two

children can be uniquely described by listing the levels

of its leaves, in left to right order. A sequence of

n integers 41,12, . . .,.& for which there exists a tree

with n leaves whose levels when read from the left to

the right are 41, -?2,.. ., lfl is called a leaf pattern. A

tree is said to be ieft-justijied [4] if its leaf pattern is

non-increasing. It can be shown (see for example Hu

and Tan [11]) that a Huffman tree can be realized as a

tree whose whose leaf pattern is sorted. Thus, by the

definition of the cost function, c, we have the following

lemma:

LEMMA 3.1. ([4]) Given an arbitrary input se-

quence X, a Huffman tree for X can be realized by

a left-justified binary tree whose leaf weights form a

non-decreasing sequence.

By the above lemma, sorting reduces our initial prob-

lem to that of constructing a left-justified binary tree

which minimizes the cost function c. We show that

the last problem can be reduced to the CLWS prob-

lem. A left-justified tree T of height k can be uniquely

described by listing the numbers of internal nodes on

each level of the tree. Thus T can be described by

a strictly monotone increasing sequence of integers

q=cxo, cll, ..., ~~_l, CXo= O, a~ = n — 1, where,

for any j > 0, a~ – Cij_l is equal to the number of

internal nodes on level k — j. We call ~ the level

sequence of the tree T. However, not every strictly

monotone sequence starting at O and ending at n – 1

is the level sequence for a left-justified tree.

The main result of this section is stated in the

following theorem:

THEOREM 3.1. Let Sl, S2, ..., Sn be the sequence

of prejiz sums for a nondecnasing sequence X =

Xl, zz,xn i.e. s~ = &l ~j and M w(i, j) be the

weight function defined as follows:

{

S2j-i if2j —i<n
w(i, j) = ~

otherwise

then the L WS problem defined by w is concave and the

solution to this problem is equal to the level sequence

of the left justified Huffman tree for X.

Proofi (sketch) The fact that w is concave follows

easily from the fact that xi < Zi+l. Let @ = a. <

. . . < ak be a sequence which is a candidate for

being the level sequence of some tree – i.e., {xO = O,

~k=n— 1, and 2~i –cq_l~n forall O<i <k.

We construct a tree Tz which satisfies the following

properties:

a) If z = ~ for some left-justified binary tree T,

then T== T and weight(~) = weight(T).

b) Otherwise, weight(~) > weight.

It follows that if ~ has minimum weight, ?F = ~,

where T is the Huffman tree.

The construction of T= is as follows. Start with

the ordered forest of n one-element trees. In step i,

first take 2(~i – cq_l) trees from the left and, for every

j such that 2j < 2(~i – ~i _ 1), create a common parent

for the trees which are on positions 2j – 1 and 2j in

the forest (counting from the left). u

4 THE PACKAGE MERGE ALGORITHM

First, we introduce a geometric interpretation of bi-

nary trees and forests. A more detailed description of

the properties of such interpretation is given in [20].

Consider an n x n square in the plane, divided into

n2 unit squares, which we call tiles. (See Figure 4.1)

We refer to the tile in the lth row and the ith column

as Sl,i. We refer to 1 as the level of sl,i, and to i as

its index. We adopt the conventions that levels range

from O ton – 1, from the top down, while indices range

from 1 to n, from left to right.

The weight, w(sl,i), of a tile sl,i is defined to be

Zi. The weight of a set of tiles is equal to the sum of

75

the weight of its members.

A tree, or a forest, can be represented as a con-

nected union of “tiles “. Namely, if a 41,12, in is

a leaf-pattern of a tree T then tile sJ,i belongs to the

geometrical representation of T if and anly if 1 s li.

Thus the coat of a tree is equzd to weight of its g-

metric representation.

I 234 5 n=6

/$
S2>

Figure 4.1 A tree and its geometric

represent ation

We now give a jointly recursive (but still fairly

simple) definitions of two concepts: level i item and

level i package. A level 1 item is either a level 1 package

or a level 1 tile. A level 1 package is a union of two level

1– 1 items. By this recursive definition it follows that

a package is a union of tiles.

Two sets of tiles A, B are tentatively connected

with respect to a set of tiles C (denoted T-C(A, l?; C))

if and only if for any tile a from A and any tile b from

B there exists a path of tiles between a and b which is

contained in A U B U C.

An optimal alphabetic tree can be constructed

iteratively as a union of certain packages. Let log n ~

L~n–1. At each level 1, starting from level

L, the algorithm receives O or more l-packages from

previous iteration. These are inserted (merged) into

the list of level 1 tiles; both packages and tiles are

called level Z-items. These items are paired according

to tentative-connectivity rules similar to [12], and

resulting packages are exported to the next higher

level; the odd item, if any is discarded. The set of

O-items defines the optimla tree.

ALGORITHM 2: Package Merge(L)

1. PKL := O;lTL := {SL,I, SL,2, . . . ,SL,n};

comment: PKl is a set of level 1 tiles and ITI is a

set of level 1 items

2. for / := L downto 1 do

2.1. ITl_l := {s,_l,l, sLl,2,..., m,,n};

PK1–1 := O;j := 1;

2.2. while IITII ~ 2 do

2.2.1. Pick z, y E ITl of minimal total

weight such that T-C(Z, y; PK1-l);

2.2.2. P1-l,j := Z Uy;

2.2.3. PKl_l := PKl_l U P/-l,j;

2.2.4. ITI := ITI – {z, y}; ~TI_l := ~TI_l U

{P1-l,j} ;

2.2.5. j := j + 1;

3. georn.repr := PKO U {s0,1, so,z, . . . So,n}

An O(nL log n)-time sequential implementation of

the Package Merge algorithm was presented in [17] (see

also [18,19,20]). In the next section we present a new

parallel implementation of this algorithm.

5 PARALLEL CONSTRUCTION

OF OPTIMAL HEIGHT RESTRICTED

ALPHABETIC TREES

In this section we show an efficient parallel imple-

mentation of a single iteration of the main loop of

the Package Merge algorithm. Let Pi- I,j be a pack-

age created at some iteration of Step 2.2 and let sk ,d

be an arbitrary tile in this package. A tile si_~,d is

called the left dominating tile of the package P/-l,j if

d = maxi<k{i[w(sl-l,i) > VJ(Pl_l~)}. The left domi-

nating tile may be undefined. Informally, the left dom-

76

inating tile for a package, P, is the closest to the left

(with respect to any tile of the package) level 1 tile,

which has weight greater than w(P). For any 1 we

represent the set of level 1 items (lT1) as what we call

a normalized sequence of level 1 items. With this rep-

resentation we can compute efficiently, in parallel, all

packages created at one iteration of step 2 of the Pack-

age Merge algorithm. Below we give a constructive

definition of normalized sequence of level 1 items:

1.

2.

3.

For each level l-package compute its left dominati-

ng tile;

Sort all packages which have the same left

dominating tile according to weight in decreasing

order,

Insert each (sorted) sequence of packages com-

puted at Step 2. into Sl,l, S1,2,. . . . Sl,n; after its

dominating tile (the sorted sequence of elements

which do not have a left dominating tile is inserted

before Sl,l).

LEMMA 5.1. The normalized sequence for Ill-1

be computed in O(log n) time with n processors,

whe~ n is the lengih of the sequence.

Prvof: Step 1 of the above construction can be

implemented in O(log n) time with n/ log n processors

on a CREW PRAM using a pamllel algorithm that for

any element in a sequence computes its closest bigger

neighbor ([5, 15]). An implementation of the remaining

steps is routine. •l

Our algorithm to construct an optimal height

restricted alphabetic tree can be described as follows:

ALGORITHM 3: Parallel Package Merge

1. for 1 := L downto 1 do

1.1 package construction: given a normalized

sequence of level 1 items construct the 1 – 1

level packages: Pi-1,1, PI-1,2, . . .;

1.2 package merge: insert the set of con-

structed packages into the sequence sl_ 1,1,

SI-1,2? Sl_ ~,n in such a way that the re-

sulting sequence is normalized; these pack-

ages and slots become the level (1 —]1) items.

2. geom_repr := Pl),~ u P~,~ u . . . u P@_~ u

{s0,,,s0,2, . . .Sll,n};

3. Compute the actual alphabetic tree.

We need to show how to implement the pack-

age construction step. We base our implementation

on the concept of level tree introduced in [15,22].

Let V = V1, V2, Vm be a normalized sequence of

level 1 items. We add to this sequence two elements:

Vo, Vm+l = BR where BR (Big Real) is a real number

greater than the cost of the optimal tree.

BR BR

Figure 5.1 Construction of a level tree

Consider the following geometric construction (see

Figure 5.1). For every i, there will be an associated

point, (i, vi), in the Cartesian plane. For every i =

o,.. .m there will be a line segment which connects

the points (i, vi) and (i+ 1, ~i+l), forming a polygonal

path of (m + 1) segments. For every i such that

vi < Ui+l (resp., vi > vi+l), draw a horizontal line

going from (i, vi) to the left (resp.,to the right) until

it hits the polygonal path. The intervals defined in

this way are called level intervals. We also consider

the interval [(0, BR), (m + 1, BR)] and the degenerate

77

intervals [(i, vi), (i, vi)] to be level intervals. The level

tme is a binary tree whose nodes are the level intervals.

The degenerate intervals are the leaves of the tree, the

parent of any level interval is the unique closest level

interval which is above it, and [(0, Ill?), (m + 1, BR)]

is the root. A level treee is closely related to the

cartesian tree introduced in [23]. In the contr=ct to a

cartesian tree a level tree need not to be binary.

LEMMA 5.2. ([15,22]) Given a sequence of n

weights the level tree can be constructed in O(log n)

time using n~ log n processors on CREW PRAM.

Let v be a node of a level tree Z’fe”. The

pseudovalley defined by v is the subsequence of a

normalized sequence whose elements are the leaves of

the minimal rooted subtree of Tlev that contains v.

A pseudovalley that has an even (resp., odd) number

of elements is called an even pseudovaliey (resp., an

odd pseudo valley). If U is a pseudovalley defined by

v then U = WI VW2 where Wi is a (possibly empty)

pseudovalley. An empty pseudovalley is considered to

be even.

For any element v of the normalized sequence of

level 1 items we need to find the unique element v’ such

that v and v’ are combined by the algorithm Package

Merge into one package. We observe that elements

from an even pseudovalley must be paired among

themselves. Each odd pseudovalley is responsible for

exporting one element which is paired with an element

outside this pseudovalley. The “exported element” is

the largest element of the valley, thus tis is the element

that defines the valley. This observation leads to the

following Package Construction Rules:

Package Construction Rules:

1.

2.

If v defines a pseudovalley U = WI v W2 where

both Wi are even then U is odd and v is the

element exported by U.

If v defines a pseudovalley U = WI v W2 where

one of Wi (say WI) is odd and the other is even

then U is even and v is paired with the element

exported by WI.

3< Assume that v defines a pseudovalley U =

Wlv W2 where both of Wi are odd. Let WI (resp.

U12) be the element exported by W1 (resp., W2)

and WI < W2. Then v is paired with WI and W2

is the element exported by U.

LEMMA 5.3. Given a normalized sequence of level

1 items, ITl, the Package Construction Rule defines

exactly the same set of level 1 – 1 as it is constructed

in step 2 of algorithm Package Merge.

Proof We leave the proof to the full version of the

paper. The following two observations gives useful

hints.

First, two minimal items of any pseudovalley

defined by IT1 are tentatively connected with respect

to PKl_l. In Step 2. of the Package Merge algorithm,

we take the minimal such pair remove it form ITl,

and insert their union into PKl_ 1. The sequence

ITf remains normalized. Furthermore, two minimal

items of any pseudovalley of the modified sequence

IT1 are tentatively connected with respect to modified

set PK1_ 1. Thus we can repeat this step iteratively.

Second, the above construction can be performed

independently in disjoint pseudovalleys. ❑

With the Package Construction Rules the package

construction step can be implemented in O(log n)

time with n/ log n processors using tree contraction

techniques [1,21].

To implement Step 2 of the Parallel Pack-

age Merge algorithm we need to identify packages

P0,1,P0,2,. ... Po,.- I and compute their union. To do

this, for each tile we determine whether if belongs to

the geometric representation of the optimal tree. This

can be done in O(k log2 n) time with n processors by

a level-by-level computation.

Finally step 3 can be implemented as follows. If

tile si,j belongs to the geometric representation and

tile si+l,j does not, then the jth leaf of the optimal

tree has depth i. Given a sequence of leaf depths one

can construct the corresponding tree in O(log n) time

78

with n/ log n processors [15,22].

Thus the algorithm can be implemented in

O(L log n) time with linear number of processors. If

L is polylogarithmic this gives immediately a polylog-

arithrnic time algorithm. The algorithm can be also

ueed to find an approximately optimal tree. This ob-

servation is made precise in the following theorem.

THEOREM 5.1. Given a sequence of reals X =

21,22, . . . , Zn such that ~~=1 zi = 1, and constant k,

an alphabetic tree whose cost differs at most by I/nk

frvm the cost of an optimal alphabetic tree for X can be

constructed in O(k logz n) time un”th n CREW PRAM

processors. Furthermom, if X does not contain two

consecutive elements of weight less than l/nk then the

resulting tree is optimal.

Proof We use the following lemma, which follows from

the results of [9].

LEMMA 5.4. An optimal alphabetic tree for a se-

quence of reals X = xl, zz, Zn such that ~~=1 zi =

1 and no two consecutive elements are less than l/n~

has height at most kpog nl,

Let T be an optimal tree for the sequence X. The

above lemma leads immediately to an O (k logz n)-time

n-processor CREW PRAM which computes T if the

sequence does not contain two consecutive elements of

weight less than I/n k. Thus, assume that X contains

one or more subsequences of consecutive elements

of weight less than l/nk. We replace each such

subsequence with an arbitrary one of its element called

the representative of the subsequence. By Lemma 5.4,

the tree, T), which is optimal for the new sequence,

haa height at most k Pog nl. Now replace every leaf

of T’ that is a representative of a subsequence of

elements of small weight by the full binary tree build

on the subsequence. The resulting tree T’t has height

at most (k + 1) Pog nl. Let Tk be an optimal height

(k+ 1) (log nl restricted tree. Observe that

c(Tk) S c(T”) S c(T’) + n2/nk ~ c(T) + l/n~-2

which together with the parallel implemental ion oft he

Package Merge Algorithm implies the theorem. ❑

6 Open Questions

The best sequential algorithm for the Concave Leaat

Weight Subsequence problem takes ~(n) time, and (of

course) e(n) work, while every known NC algorithm

takes Q(n2) work.

If we define “work-time” to be the product of

the time complexity and the work complexity of an

algorithm, every known algorithm for the CLWS haa

Q(n2) ‘work-time” complexity. The algorithm we

have presented in this paper is no exception, lhaving a

work-time complexity of 0 (n2 log2 n).

We conjecture that there should exist a family

of parallel algorithms exhibiting various tradeoffs be-

tween work and time, ranging between the best se-

quential and the best known NC algorithms, but all

with quadratic times polylog work-time. (Our new al-

gorithm is just in the middle of this hypothetical fam-

ily.) We also suggest that finding a parallel algorithm

whose work-time is less than quadratic will be a very

challenging problem.

References

[1]

[2]

[3]

K. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and

T. M. Przytycka. A simple parallel tree contraction al-

gorithm, Journal of Algorithms 10, (1989) pp. 287-

302 also in Proc. 25th Allerton Conference on Com-

munication, Control and Computing (1987),

A, Apostolico, M. J. Atallah, L. L. Larmore,

H. S. McFadden. Efficient parallel algorithms for string

editing and related problems, Proc. .Mnd Annual

Allerton Conf. on Comm., Controll and Computing,

Monticello IL (Oct. 1988) pp. 253–263. Reprinted aa

CSD-TR-724, Purdue University (1988), reprinted in

SIAM Journal of Computing, 19 pp.968-988 (1990).

A. Aggarwal, J. Park. Notes on searching in multidi-

mensional monotone arrays. In 29th Annual Sym-

posium on Foundation of Computer Science IEEE

(1988).

79

[4] M. J.Atallah, S.R.Kosaraju, L. L. Larmore, G. L.Miller,

and S-H. Teng. Const rutting trees in parallel, Proc.

1st Symp. on Parallel Algorithms and Architectures

(1989) pp. 499-533.

[s] O. Berkman, D. Breslauer, Z.Galil, B.Schleber, and

U. Vlshkin. Highly parallelizable problems, Proc. 21st

ACM Symp. on Theory of Computing (1989) pp. 309-

319.

[6] K-F Chan and T-W Lam. Finding Leas&Weight

Subsequences with Fewer Processors, Proceedings of

the LNCS pp.318-327. (1990)

[7] Z. Galil and R. Ghncarlo. Data Structures and Alg-

rithms for Approximate String Matchhg, Tech. Re-

port, CS Dept., Columbia University, NY (1987).

[8] M.C. Golumblc. Combbatorial Merging, IEEE

Trans. Comp. 25, 11 (1976) 1164-1167.

[9] R. Giittler, K. Mehlhorn and W. Schneider. Binary

search treesx average and worst case behavior, Elec-

tron. Informatiomuerarb K@ernet, 16 (1980) pp. 41–

61.

[10] D. S. Hirschberg, and L. L. Larmore, The Least weight

subsequence problem, Prcc. ?26th Annual Symp. on

Foundations of Computer Science, Portland Oregon

(Oct. 1985), pp. 137-143. Reprinted in SIAM Journal

on Computing 16 (1987) pp. 628–638.

[11] T.C. Hu and K.C. Tan. Path length of binary search

trees, SIAM J, Appl. Math. 22, pp. 225-234 (1972).

[12] T.C.HU and C.Tucker. Optimum computer search

trees. SIAM J. Appl. Math., 21, 1971, pp 514-532.

[13] D.A. Huffman. A method for the constructing of

minimum redundancy codes, Proc. IRE, 40, 1952,

1098-1101.

[14] D.G.Kirkpatrick and T. M. Przytycka. Parallel con-

struction of binary trees with almost optimal

weighted path length, Proc. 2nd Symp. od Parallel

Algorithms and Architectures (1990).

[15] D. G. Kirkpatrick and T. M. Przytycka. An optimal par-

allel minimax tree algorithm, Proc. of the 2nd IEEE

Symp. of Parallel and Distributed Procming (1990)

293-300.

[16] M.M. Klawe and D.J. Kleitman, An almost linear

time algorithm for generalized matrix searching, RJ

6275, IBM - Research Division, Almaden Research

Center, (1988)

[17] L.L, Larmore. Length limited coding and optimal

height-limited binary trees, TR 88-01 University of

California, Irvine (1988).

[18] L.L. Larmore, D.S. Hirschberg. A Fast algorithm for

optimal length-limited codes Journal of the ACM,

(1990) pp. 464473.

[19] L.L. Larmore, and D. S. Hirschberg. Length-limited

coding, Proceedings of the 1“* A CM-SIAM Sympa-

sium on Discrete Algorithms San Francisco, CA.

(January 1990) pp. 310-318.

[20] L. L.Larmore, and T.M.Przytycka, A Fast Algorithm

for Optimum Height Limited Alphabetic Binary

Trees, manuscript.

[21] G.L. Miller and J. Reif. Parallel tree contraction and

its application, Proc. 26th IEEE Symp. on Founda-

tion of Computer Science (1985) pp. 478489.

[22] T.M. Przytycka. Parallel Techniques for Construction

of Tw and Related Problems. Ph.D thesis, the

University of British Columbia, Vancouver (1990).

[23] J.Vnillemin, A unifying look at data structures, C.

ACM, 23, 41980, pp 229-239.

[24] R. Wilber. The concave least weight subsequence

problem revisited, Journal of Algorithms 9, 3 pp.418–

425 (1988).

[25] F.F. Yao, Efficient dynamic programming using quad-

rangle inequalities, Proc. of the l?2th ACM Symp. on

2’heory of Computing, (1980) pp.429435.

80

