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Abstract 

The classical algorithm for computing the similarity be- 
tween two sequences [36, 39] uses a dynamic program- 
ming matrix, and compares two strings of size n in 
O(n 2) time. We address the challenge of computing the 
similarity of two strings in sub-quadratic time, for met- 
rics which use a scoring matrix of unrestricted weights. 
Our algorithm applies to both local and global alignment 
computations. 

The speed-up is achieved by dividing the dynamic pro- 
gramming matrix into variable sized blocks, as induced 
by Lempel-Ziv parsing of both strings, and utilizing the 
inherent periodic nature of both strings. This leads to 
an O(n2/logn) algorithm for an input of constant al- 
phabet size. For most texts, the time complexity is ac- 
tually O(hn2/logn) where h _< 1 is the entropy of the 
text. 

1 Introduct ion  

The rapid progress in large-scale DNA sequencing opens 
a new level of computational challenges involved in stor- 
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ing, organizing and analyzing the wealth of biological 
information. One of the most interesting new fields 
that the availability of the complete genomes has cre- 
ated is that of genome comparison (the genome is all of 
the DNA sequence passed from one generation to the 
next). Comparing complete genomes can give deep in- 
sights about the relationship between organisms, as well 
as shedding light on the function of specific genes in 
each single genome. The challenge of comparing com- 
plete genomes necessitates the creation of additional, 
more efficient computational tools. 

One of the most common problems in biological com- 
parative analysis is that of aligning two long bio- 
sequences in order to measure their similarity. In 
the global alignment problem [19], [29], the similar- 
ity between two strings A and B is measured. In the 
local alignment problem [39], the objective is to find 
substrings of A which are similar to substrings of B. 
Both alignment problems can be solved in O(n 2) time 
by dynamic programming [19], [39]. 

In this paper data compression techniques are employed 
to speed up the alignment of two strings. The compres- 
sion mechanism enables the algorithm to adapt to the 
data and to utilize its repetitions. The periodic nature 
of the sequence is quantified via its entropy, denoted 
0 < h <: 1. Entropy is a measure of how "compressible" 
a sequence is [5],[7], and is small when there is a lot of 
order (i.e, the sequence is repetitive and therefore more 
compressible) and large when there is a lot of disorder 
(see section 2.2). 

We present an O(n2/logn) algorithm for computing 
both global and local similarity between two strings over 
a constant alphabet. The algorithm is even faster when 
the sequence is compressible. In fact, for most texts, the 
complexity of our algorithm is actually O(hn2[ logn). 

Note that the algorithm presented is the first sub- 
quadratic local alignment algorithm. 
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After the optimal scores are computed, an alignment 
trace corresponding to the optimal score can be recov- 
ered in time complexity which is linear with the size of 
the trace, for both the global alignment and the local 
alignment problems. 

The algorithms described in this paper are the first 
to approach f~lIy compressed (both source and target  
strings are compressed) string alignment. The methods 
given in this paper can also be used by applications 
where both input strings are stored or t ransmitted in 
the form of L Z 7 8  or L Z W  compressed sequence, thus 
providing an efficient solution to the problem of how to 
compare the two strings without having to decompress 
them first. 

The only previously known sub-quadratic global align- 
ment string comparison algorithm, by Masek and Pa- 
terson [31], is based on the Four Russians paradigm. 
The "Four Russians" algorithm divides the dynamic 
programming table into uniform sized (log n by log n) 
blocks, and uses table lookup to obtain an O ( n 2 / l o g n )  
time complexity, based on two assumptions. One is tha t  
the sequence elements come from a constant alphabet. 
The other, which they denote the "discreteness" con- 
dition, is tha t  the weights (of substitutions and indels) 
are all rational numbers. 

Our algorithms present a new approach and are better  
than the above algorithm in two aspects. 

The algorithms presented here are faster for com- 
pressible sequences. For such sequences, the com- 
plexity of our algorithms is O ( h n 2 / l o g ~ ) ,  where 
h _< 1 is the entropy of the sequence. 

Our algorithms are general enough to support 
scoring schemes with real number weights. 

For many scoring schemes, the rational number 
weights supported by Masek and Paterson's algo- 
r i thm do not suffice. For example, the entries of 
PAM similarity matrices, as well as BLOSUM evo- 
lutionary distance matrices, are defined to be real 
numbers, computed as log-odds ratios - and there- 
fore could be irrational. 

The paper by Masek and Paterson is concluded 
with the following statement:  "The  most important 
problem remaining is finding a bet ter  algorithm 
for the finite (in our terms constant) alphabet 
case without the discreteness condition". Here, 
more than twenty years later, this important  open 
question will finally be answered! 

These advantages are based in the following facts. First, 
our algorithm does not require any pre-computation 
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Figure 1: The alignment graph for comparing strings 
A = "ctacgaga" and B ~ "aacgacga". The scoring scheme 
matrix 5 is shown in the lower left corner of the figure. The 
highest scoring global alignment paths originate in vertex 
(0,0), end in vertex (8,8) and have a total weight of 3. The 
highest scoring local alignment path has a total weight of 5 
and corresponds to the alignment of substrings a = "acgaga" 
and b = acgacga". A sub-graph G corresponding to the block 
for comparing substrings a = "ag" and b = "acg ~ is shown 
in the  lowex-right c o m e r  of the figure. Also specified are the  
values I for the entries of the input border for G (in white- 
shaded rectangles), and the values O of the output border of  
G (in grey-shaded rectemgles), as set during a local alignment 
computation. 

of  lookup-tables, and therefore can afford more flexi- 
ble weight values. Also, instead of dividing the dy- 
namic programming matrix into uniform sized blocks 
as did Masek and Paterson, we employ a variable sized 
block partition, as induced by Lempei-Ziv factorization 
of both  source and target. The common denominator  
between blocks, maximized by the compression tech- 
nique, is then re-cycled and used for computing the  rel- 
evant information for each block in t ime which is linear 
with the  length of its sides. In this sense, the approach 
described in this paper can be viewed as another  ex- 
ample of speeding up dynamic programming by keeping 
and computing only a relevant subset of  important  val- 
ues, as demonstrated in [10], [11], [27] and [37]. 

The  remainder of this paper is organized as follows. 
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Section 2 includes preliminaries. In section 3 we de- 
scribe the global alignment solution using fully com- 
pressed string comparison. In section 4 we extend the 
solution to compute the highest scoring regions of local 
alignment. Section 5 contains a discussion of how to re- 
duce the space complexity without impairing the time 
complexity, when computing global alignment over "dis- 
crete" scoring matrices. 

A description of how to recover a path alignment trace 
in time linear with its size will be given in the journal 
version of the paper. 

2 Prel iminaries  

2.1 Highest  Scoring P a t h s  in t h e  A l i g n m e n t  
Graph. The dynamic programming solution to the 
string comparison computation problem can be repre- 
seated in terms of a weighted alignment graph [19] (See 
Figure 1). The weight of a given edge can be specified 
directly in the grid graph, or as is frequently the case 
in biological applications, is given by a penalty matrix, 
denoted 5, which specifies the substitution cost for each 
pair of characters and the deletion cost for each charac- 
ter from the alphabet. Typically, in the biological do- 
main, (i is negative for all operations except replacement 
of similar symbols, and the objective is to maximize the 
alignment score. 

The classical dynamic programming algorithm for 
global alignment will set the value at each vertex ( i , j )  of 
the alignment graph, row by row in a left to right order, 
to the score between the first i characters of A and the 
first j characters of B, using the following recurrence. 
v ( i ,  i )  = - 1) + 

v ( i  - 1 , . / )  + 

V( i  - 1 , . / -  1) + 5(Ai, Bi)] 

Smith and Waterman [39] showed that essentially the 
same O([A[[BI) dynamic programming solution can be 
used for local alignment, provided that  the score of the 
alignment of two empty strings is defined as 0, and only 
pairs whose alignment scores are above 0 are of interest. 
The Smith-Waterman algorithm for local alignment will 
compute the following recurrence, which includes 0 as 
an additional option, and thus restricts the scores to 
non-negative values. 

S ( i , j )  = maz[O,S ( i , j  - 1) + 6(e, B j ) ,  

sCi  - 1, j )  + 

sCi -- 1 , j  - 1) + 5(Ai, Bj)] 

The score for the most similar substrings is found in the 
highest scoring nodes in the alignment graph. 

2.2 A Block P a r t i t i o n  o f  t he  A l i g n m e n t  G r a p h  
based  on  LZ78 Fac tor iza t ion .  The traditional aim 
of text compression is efficient use of resources such as 
storage and bandwidth. Here, we will compress the 
sequences in order to speed up the alignment process. 
Note that  this approach, denoted "acceleration by text- 
compression", has been recently applied to a related 
problem - that of exact string matching [22], [30], [38]. 

It should also be mentioned that another related prob- 
lem - that  of exact string matching in compressed text 
without decoding it, which is often referred to as "com- 
pressed pattern matching", has been studied exten- 
sively [3], [13] [34]. Along these lines, string search 
in compressed text wa~ developed for the compression 
paradigm of LZ78 [45], and its subsequent variant LZW 
[43], a$ described in [23], [35]. A more challenging prob- 
lem is that  of ' fu l ly  compressed" pattern matching when 
both the pattern and text strings are compressed [16], 
[17]. 

For the LZ78-LZW paradigm, compressed matching has 
been extended and generalized to that of approximate 
pattern matching (finding all occurrences of a short 
sequence within a long one allowing up to k changes) 
in [21], [33]. 

The LZ compression methods are based on the idea of 
self reference: while the text file is scanned, substrings 
or phrases are identified and stored in a dictionary, and 
whenever, later in the process, a phrase or concatena- 
tion of phrases is encountered again, this is compactly 
encoded by suitable pointers [28], [44], [45]. 

Of the several existing versions of the method, we will 
use the ones which are denoted LZ78 family [43], [45]. 
The main feature which distinguishes LZ78  factoriza- 
tion from previous L Z  compression algorithms is in the 
choice of code words. Instead of allowing pointers to 
reference any string that  has appeared previously, the 
text seen so far is parsed into phrases, where each phrase 
is the longest matching phrase seen previously plus one 
character. For example, the string "S = aacgacg" is di- 
vided into fours phrases: a, ac, g, acg. Each phrase is 
encoded as an index to its prefix, plus the extra charac- 
ter. The new phrase is then added to the list of phrases 
that may be referenced. 

Since each phrase is distinct, the following upper bound 
applies to the possible number of phrases obtained by 
LZ78 factorization. 

THEOREM 2.1. (Zw AND LEMPEL 1976 [28].) Given 
a sequence S of size n over a constant alphabet. The 
maximal number of distinct phrases in S is O ( i - ~ ) .  
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Figure 2: The block partition of the alignment graph, 
and the tries corresponding to LZ-78 parsing of strings 
A = "cSacgaga" and B = "aacgacga'. Note that for t h e  
block G in this example, a = "ag' ,  fl = "a~g", ~ = 2, 
ec ---- 3, i = 5 and j = 4. (The new cell of G, which does n o t  
appear in any of the prefix blocks, is the rightmost cell at 
the bottom row of G, and can be distinguished by its white 
color.) This figure continues Figure 1. 

Even though the upper bound above applies to any 
possible sequence over a con.~tant alphabet, it has been 
shown that  in many cases we can do bet ter  than that .  

Intuitively, the L Z 7 8  algorithm compresses the se- 
quence because it is able to  discover some repeated pat- 
terns. Therefore, in order to compute a tighter upper 
bound on the number of phrases obtained by L Z 7 8  fac- 
torization for "compressible" sequences, the repetitive 
nature of the sequence needs to be  quantified. One of 
the fundamental ideas in information theory is that  of 
entropy, denoted 0 < h < 1, which is a measure of 
the amount of disorder or randomness, or inversely, the 
m o u n t  of order or redundancy in a sequence. Entropy 
is small when there is a lot of order (i.e, the sequence 
is repetitive) and large when there is a lot of disorder. 
The entropy of a sequence should ideally reflect the ratio 
between the size of the sequence after it has been com- 
pressed, and the length of the uncompressed sequence. 

The number of distinct phrases obtained by L Z 7 8  
factorization has been shown to be O ( h n / l o g n )  for 
most texts [5], [7], [28], [45]. Note that  for any other 
text over a constant  alphabet ,  the upper bound above 
still applies by setting h to 1. 

3 T h e  G l o b a l  A l i g n m e n t  S o l u t i o n  

3.1 D e f i n i t i o n s  a n d  B a s i c  O b s e r v a t i o n s .  The 
alignment graph will be parti t ioned as follows. Strings 
A and B will be parsed using L Z 7 8  factorization. 
This induces a partition of the alignment graph for 
comparing A with B into variable sized blocks (see 
Figure 2). Each block will correspond to  a comparison 
of an LZ phrase of A with an LZ phrase of B.  

Let xa  denote a phrase in A obtained by extending a 
previous phrase x of A with character a, and yb denote 
a phrase in B, obtained by extending a previous phrase 
of B with character b. 

From now on we will focus on the computat ions neces- 
sary for a single block of the alignment graph. 

Consider the block G which corresponds to the compar- 
ison of xa  and yb. We define input border I - as the  
left and top borders of G, and output border 0 - as the  
bo t tom and right borders of G. (The node entries on 
the input border are numbered in a clockwise direction, 
and the node entries on the ou tpu t  border  are numbered 
in a counter-clockwise direction.) 

Rather  than filling in the values of each vertex in G, 
as does the classical dynamic programming algorithm - 
the only -¢alues computed for each block will be  those 
on its I / 0  borders (see Figures 1, 5A ). Intuitively, this 
is the reason behind the efficiency gain. 

Let  t r  -denote the number of rows in G, l r  = Ixal. Let 
£c -denote the number of columns in G, £e = lYbl. Let  
t = £r -I- £¢. Clearly, I I I =  tOI -- t. 

We define the following three p r e f i x  blocks of  G. 

1. The l e f t  pre. f ix  of G -denotes the block comparing 
phrase xa of A and phrase y of B.  

2. The diagonal p r e f i x  of G -denotes the block com- 
paring phrase x of A and phrase y of B.  

3. The top p r e f i x  of G -denotes the the  block comparing 
phrase x of A and phrase yb of B.  

O b s e r v a t i o n  1 When traversing the blocks of  an L Z 7 8  
parsed alignment graph in a left-to-right, top- to-bot tom 
order. The blocks for the left prefix, diagonal prefix and 
top  prefix of G are encountered prior to  block G. 

Note that  the graph for the left prefix of G is identical 
to the subgraph of G containing all columns bu t  the 
last one. More specifically, bo th  the s tructure and the 
weights of the edges of these two graphs are identical, 
bu t  the weights to be assigned to  the vertices during the 
similarity computat ion may vary according to the input 
border  values. Similarly, for the top prefix and diagonal 
prefix graphs. The only new cell in G, which does not 
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appear in any of its prefix block graphs, is the cell for 
comparing a and b. 

3.2 I / 0  P r o p a g a t i o n  Across  G. The work for each 
block will consist of two stages (a similar approach is 
shown in [6, 20, 26, 27]). 

1. encoding : Study the structure of G and represent it in 
an efficient way. 

2. propagation : Given I and the encoding of G, con- 
structed in the previous stage, compute 0 for G. 

DI/ST matrix 
10=l  0 -1 -2  -3  A A 
I1---2 - 1  - 1  - 2  - 1  - 3  A 

I2 ---- 3 - 2  0 0 1 - 1  - 3  

I s = 2  A - 2  --2 0 --2 --2 
14 = 1 A A --2 0 --1 - -I  

I5 ----- 3 A A A - 2  - 1  0 

OUT m a t r i x  

1 0 - 1  - 2  - o o  - o o  

1 1 0 1 - 1  - o o  

1 3 3 4 2 0 

- 1 2  0 0 2 0 0 

- 1 3  - 1 3  - 1  1 0 0 

- 1 4  --14 --14 1 2 3 

Oo Oz O= Os 04  Os 
1 3 3 4 2 3 

c o l u m n  numbers 

0 1 2 3 4 5 

Figure 3: The DIST matrix which corresponds to the 
subsequences "aCE', "at ~, the OUT matrix obtained by 
adding the values of I to the rows of DIST, and the O 
containing the row maxima of OUT. This figure continues 
Figures 1 and 2. 

The structure of G will be encoded by computing 
weights of optimal paths connecting each entry of its 
input border with each entry of its output border. The 
following DIST matrix will be used (see Figure 3). 

DEFINITION 3.1. DIST[i,j] stores the weight of the 
optimal path from entry i o.f the input border o.f G to 
entry j o/it~ output border. 

D I S T  matrices have also been used in [4], [6], [20], [27] 
and [37]. 

Given input row I and the D I S T  for G, the weight of 
output row vertex Oj can be computed as follows. 

Oj = dax{Ir  + DIST[r,j]} 
r : 0  

Oj is the maximum of column j of the following OUT 
matrix, which merges the information from input row I 
and D I S T .  (See Figure 3). 

D E F I N I T I O N  3 . 2 .  O U T [ i , ] ]  ----- Ii  + D!ST[i,j]. 

Aggaxwal and Park [2] and Schmidt [37] observed that 
D I S T  matrices are Monte arrays [32]. 

DEFINITION 3.3. A matrix M [ 0 . . . m , 0 . . . n ]  is 
M o n g e  if either condition 1 or 2 below holds -for all 
a , b - O . . . m ;  c , d - O . . . n :  

I .  c o n v e x  c o n d i t i o n :  M[a, c] + M[b, ~ < M[b, c] + 
M[a, a~ for all a < b and c < d. 

2.  concave condition: M[a, c] + M[b, c~ >_ M[b, c] + 
M[a, a~ for all a < b and c < d. 

Since D I S T  is Monge-  so is OUT, which is a D I S T  
with constants added to its rows. 

An important property of Monge arrays is that of being 
totally monotone. 

DEFINITION 3.4. A matri~M[O.., m, 0 . . .  n] /s  t o t a l ly  
m o n o t o n e  if either condition I or 2 below holds for all 
a , b =  0 . . . m ;  c , d -  O. . .n:  

1. convex  cond i t ion :  M[a,c] ~ M[b,c] 
M[a, d] > M[b, d] /'or all a < b and c < d. 

2. concave  condi t ion :  M[a, c] < M[b, c] 
M[a, ~ ~ M[b, d~ for all a < b and c < d. 

Note that the Monge property implies total monotonic- 
ity, but the converse is not true. Therefore, both DIST 
and OUT are totally monotone by the concave condi- 
tion. 

Aggarwal et al [1] gave a recursive algorithm, nicknamed 
S M A W K  in the literature, which can compute in O(n) 
time all row and column maxima of an n x n totally 
monotone matrix, by querying only O(n) elements of 
the array. Hence, one could use S M A W K  to compute 
the output row 0 by querying only O(n) elements of 
OUT. Clearly, if both the full D I S T  and all entries of 
I axe available, then computing an element of OUT is 
O(1) work. 
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For various solutions to related problems, which also 
utilize Monge and Total Monotonicity properties, we 
refer the interested reader to [8], [9], [14], [15], [24] and 
[27]. In order to efficiently utilize these properties here, 
we need to address the following two problems. 

1. How to efficiently compute D I S T  and represent it 
in a format which allows direct access to its entries. 
This will be done in section 3.2.2. 

2. S M A W K  is intended for a full, rectangular ma- 
trix. However, both D I S T  and its corresponding 
OUT are not rectangular. Since paths  in an align- 
ment graph can only assume a left-to-right, top- 
to-bot tom direction, connections between some in- 
put  border vertices and some ou tpu t  border vertices 
are impossible. Therefore, the matrices are migsing 
both  a lower left triangle and upper  right triangle 
(see Figure 3). 

3.2 .1  A d d r e s s i n g  t h e  R e c t a n g l e  P r o b l e m .  The 
undefined entries of OUT can be complemented in 
constant time each, as follows. 

1. The  missing upper right triangle entries can be 
completed by setting the value of any entry OUT[i,j] 
in this triangle to - c o .  

2. Let k denote maximal absolute value of a score in & 
The missing lower left triangle entries can be  completed 
by setting the value of any OUT[i,j] in this triangle to 
- ( n  + i  + l ) , k .  

LEMMA 3.1. Complementing the undefined envies as 
described above preserves the concave total monotongcity 
condition of OUT, and does not introduce new row- 
maxima. 

Proof. 1. U p p e r  R i g h t  T r i ang le :  All similarity scores 
in the alignment graph are finite. Therefore, no new 
column maxima are introduced. Suppose OUT[a, c] <_ 
OUT[b, c), a < b, and OUT[a, c] has been set to - c o .  
Due to the shape of the redefined upper-right triangle, 
once a - c o  value in row a is encountered, all future 
values in row a are also - c o .  The future values of row 
b could either be finite or - c o .  Therefore, OUT[a, a~ ~_ 
OUT[b, ~ for all d > c. 

2. L o w e r  L e f t  Tr iang le :  The worst score appearing in 
the alignment graph is lower bounded by - n k .  Since i is 
always greater than or equal to zero, the complemented 
values in the lower left triangle are upper-bounded by 
- ( n  + 1 ) ,  k and no new column maxima are introduced. 
Also, for any complemented entry OUT[b, c] in the lower 
left triangle, OUT[b,c] < OUT[a,c] for all a < b, 

and therefore the concave total monotonicity condition 
holds. 

3.2.2 I n c r e m e n t a l  U p d a t e  o f  t h e  n e w  D I S T  
I n f o r m a t i o n  fo r  G. In this section we will show how 
to efficiently compute the new D I S T  info for G, using 
the D I S T  representations previously computed for its 
prefix blocks, plus the information of its new cell. 

When processing a new block G, we will compute  the 
scores of t new optimal paths, leading from the input 
border to the new vertex (tr, £¢) in the lowest, rightmost 
corner of G. These values correspond to  coh!rnn lc of the 
D I S T  matrix for G, and can be computed as follows. 

Entry  [i] in column £c of the D I S T  for G contains 
the weight of the optimal path from entry i in the 
input border of G to vertex (lr, £c). This path  must  
go through one of the three vertices (tr  - 1,lc),  (£r - 
1, lc - 1) or (£r, tc - 1). Therefore, the weight of the 
optimal path from entry i in the input border of G to  
(lr,  lc) is equal to the maximum among the following 
three values: 

1. Entry [i] of column £c - 1 of the  D I S T  for the 
left prefix of G, plus the weight of the horizontal edge 
leading into (tr,  £c). 

2. Entry [i] of  column lc - 1 of the D I S T  for the 
diagonal prefix of G, plus the weight of the diagonal 
edge leading into (£r, ~).  

3. Ent ry  [/] of column £c of the D I S T  £or the top  prefix 
of G, plus the weight of the vertical edge leading into 

(lr, ~c)- 

3 .2 .3  M a i n t a i n i n g  D i r e c t  A c c e s s  t o  D I S T  
C o l u m n s .  In order to compute an entry of OUT in 
constant time during the execution of S M A W K ,  di- 
rect access to D I S T  entries is necessary. This is not  
straightforward, since as shown in the previous section, 
for each block only one new D I S T  column has been 
computed and stored. All other columns besides col- 
umn ~c of the D I S T  for G need to be  obtained from 
G's  prefix ancestor blocks. 

Therefore, before the execution of  S M A W K  begins, a 
vector with pointers to all t + 1 columns of the  D I S T  
for G is constructed (see Figure 4). This vector is no 
longer needed after the computat ions for G have been 
completed, and its space can be freed. 

The pointers to all columns of the D I S T  for G are 
assembled as follows. Column £c is set to the newly 
constructed vector for G. All columns of indices smaller 
than lc are obtained via lc recursive calls to left prefix 
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Figure 4: A table containing an entry for each block of 
the alignment graph. Entry (i,j) of the table corresponds 
to the block whose substrings are represented by node i in 
the trie for A and node j in the trie for B. The entry for 
each block in the table points to the start of its new DIST 
column. Also shown is the vector which contains pointers to 
all columns of the DIST for block (5, 4), as obtained from 
its ancestor prefix blocks. This figure continues Figures 1, 2 
and 3. 

blocks of G. All columns of indices greater than £c are 
obtained via lr  recursive calls to top prefix blocks of G. 

3.2.4 Query ing  a Pref ix  B l o c k  a n d  O b t a i n i n g  
i ts  DIST C o l u m n  in C o n s t a n t  t i m e .  The LZ78 
phrases form a trie (see Figure 2), and the string to 
be compressed is encoded as a sequence of names of 
prefixes of the trie. Each node in the trie contains the 
serial number of the phrase it represents. Since each 
block corresponds to a comparison of a phrase from A 
with a phrase from B, e v ~  block will be identified by a 
pair of numbers, composed of the serial numbers for its 
corresponding phrases in the tries for A and B.  

Another data structure to be constructed is a Block 
Table (see Figure 4), containing an entry for each 
partitioned block of the alignment graph. The entry 
for each block in the table points to the start of its 
new DIST column, and can be directly accessed via 
the block's phrase number index pair. 

The left prefix of G can be identified in constant time 
as a pair of phrase numbers, the first identical to the 
serial number of xa, and the second corresponding to 
the serial number of y, which is the direct ancestor 
of yb in the trie for B. Similarly, the top prefix 
of (7 can be identified in constant time. Given the 

pair of identification numbers for a block, a pointer to 
the corresponding DIST column can then be directly 
obtained from the Block Table. 

3.3 T i m e  and Space  Analys i s  

Assuming sequence size n and sequence entropy h _< 
1. The LZ78 factorization algorithm will parse the 
strings and construct the tries for A and B in O(n) 
time. The resulting number of phrases in both A and 
B is O(hn] log n). The number of resulting blocks 
in the alignment graph is equal to the number of 
phrases in A times number of phrases in B, and is 
therefore O(h2n2/(logn)2). For each block G, the 
following information (1-3) is computed, in time and 
space complexity linear with the size of its I /O borders: 

1. U p d a t i n g  the  E n c o d i n g  S t r u c t u r e  fo r  G. The 
prefix blocks of G can be accessed in constant time. 
The vectors of DIST column pointers for the prefix 
blocks have already been freed. However, since each 
prefix block directly points to its newly computed DIST  
column - all values needed for the computations are still 
available. Since each entry of the new DIST  column 
for G is set to the maximum among up to three sums of 
pairs, the new DIST column for G can be constructed 
in O(t) time and space. 

2. M a i n t a i n i n g  D i r e c t  Access  to  DIST c o l u m n s .  
Since p r e f i x  blocks and their DIST columns can be 
accessed in constant time, the vector with pointers to 
columns of the DIST for G can be set in O(t) time. 

3. P r o p a g a t i o n  for G. Using the information com- 
puted for G, and given the I for G obtained from the 
O vectors for the block above G and the block to its 
left, the values of O for G are computed via S M A W K  
Matrix Searching in O(t) time. 

Total  C o m p l e x i t y .  Since the work and space for 
each block is linear with the size of its I /O borders, 
the total time and space complexity is linear with the 
total size of the borders of the blocks. The block 
borders form O(hn/logn) rows of size tBI each, and 
O(hn/logn) columns of size IA I each, in the alignment 
graph (see Figure 2). Therefore, the total time and 
space complexity is O(hn2/logn). 

4 E x t e n s i o n s  to  Loca l  A l i g n m e n t  

When computing the highest local alignment score, the 
added challenge is that an optimal path could begin and 
end inside any block. Therefore, we will modify O to 
consider the additional paths originating inside G. 
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Figure 5: A. The I /0  path weight vectors computed for 
each block in the global alignment solution. DIST[i, j] will 
be set to the highest scoring path connecting vertex i i~ 
the input border with vertex j in the output border. B,C. 
The vectors of optimal path weights considered for the local 
alignment computation. 

Also, in addition to the DIST described in section 3, we 
compute for eac-h block G the following data structures 
(see Figures 5]3, 5C). 

1. E - is a vector of size t. E[i] contains the value of 
the highest scoring path which starts in vertex i of the 
input border of G and ends inside G. 

2. S - is a vector of size t. S[i] contains the value of the 
highest scoring path which starts inside G and ends in 
vertex i of the output border of G. 

3. C - is the value of the highest scoring path contained 
in G, that  is - the highest scoring path which originates 
inside G and ends inside G. 

4. F - is the weight of the highest scoring path ending 
in G. This path could either begin and end inside G (a 
C-path) or start outside G and end inside G (an / -pa th  
followed by an E-path). 

The overall highest local alignment score for comparing 
A and B can be computed as the mwY]mum among the 
F values of each block. 

The two stages described in section 3.2 will be extended 
as follows. 

4.1 Encod ing .  DIST is computed as described ha 
section 3.2. In addition, the values of E, S and C are 

computed as follows. 

1. C o m p u t i n g  the  values of  E. E[i] is computed as 
the maximum between E[i] for the left prefix of G, E[i] 
for the top prefix of G, and DIST[i, £c]. 
2. C o m p u t i n g  t h e  values of  S. The only new value 
computed for S is the Smith-Waterman score for the 
new vertex (er, £c). Given the Smith-Waterman local 
alignment scores for vertices (£r - 1,£c - 1) obtained 
from the diagonal prefix, (£r, £c - 1) obtained from the 
left  prefix and (£ r -  1, tc) obtained from the top prefi~ 
of G, and the weights of the 3 edges leading into vertex 
(lr,£e), the Smith-Waterman score for vertex (£r,/c) 
can be computed in O(1) time complexity, using the 
recursion given in section 2.1. The value for entry £c of 
S is set to this newly computed Smith-Waterman score 
for vertex (tr, it). 
The values of all other entries of S are then set as 
follows. The first le values of S axe copied from the 
first te values of the S computed for the left prefix of 
G. The last £r values are copied from the last £r values 
of the S vector for the top prefix of G. 

3. C o m p u t i n g  t h e  value  of  C. C is computed as 
the ma~dmum between the C value for the left prefix of 
G, the C value for the top prefix of G, and the newly 
computed Site] as described above. 

4.2  P r o p a g a t i o n .  
1. C o m p u t i n g  t h e  values of  0 .  Our objective is 
to set O[i] to the weight of the highest scoring path 
originating anywhere in the alignment graph and ending 
in entry i of the output border. Vector O will first be 
computed from the I and DIST  for G as described in 
section 3.2. At this point entry O[i] reflects the weight 
of the optimal path starting anywhere outside G and 
ending in entry i of the output border. It needs to be 
updated with the weights of the highest scoring paths 
starting inside G- This is achieved by resetting OI/] to 
the maximum between O[i] and S[i]. 

2. C o m p u t i n g  the  values  of  F .  F is computed as 
mo=(M~[=oU[ i  ] + Eli]}, C) 

4.3 T i m e  a n d  Space  Analys is  
Encoding .  Since, as shown in section 3.2.3, each prefix 
block of G can be accessed in constant time, the values 
of the S and E vectors for G can be computed and 
stored in O(t) time and space, and the C value for G 
can be computed in constant time and space. 

P ropaga t ion .  Given the vectors computed in the 
encoding stage - the values of O and F can be computed 
in O(t) time each as described above. 
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The weight of the highest scoring path in the align- 
ment graph can then be computed in an additional 
O(h2n2/(logn) 2) time as the maximum value among 
the F values computed for each block. 

Tota l  C o m p l e x i t y  Since the work and space for each 
block is linear with the size of its I / 0  borders, the 
total time and space complexity for the local alignment 
solution is O(hn ~ ] log n). 

5 R e d u c i n g  t h e  Space  C o m p l e x i t y  

When computing global alignment with scoring matri- 
ces which follow the "discreteness" condition (see Sec- 
tion 1), the et]icient alignment stage algorithm described 
in [27] can be extended to support full propagation from 
the leftmost and upper boundaries to the bottom and 
right most boundaries of G. 

This extended propagation algorithm can then be used 
to compute the values of the global alignment O for G, 
given the I for G and a minimal encoding of the D I S T  
for G. The advantage of this minimal encoding of D I S T  
is that rather than saving an O(t) sized D I S T  column 
per block, we only need to save a constant number of 
values per block. The encoding for the new D I S T  
column of each block can be computed and stored in 
constant time and space from the information stored 
for the left, diagonal and top prefix blocks of G, using 
the technique described in section 6 of [37]. 

This reduces the space complexity to O(h2n2/(log n)2), 
while preserving the O(hn~/logn) time complexity. 

6 Conc lus ions  

The results demonstrated in this paper are as follows. 

* The algorithm presented in this p~.per is the first 
O(hn~/logn) string comparison algorithm. 

. This is the first sub-quadratic string comparison 
algorithm for general scoring tables whose weights 
are not restricted to rational numbers. 

• We showed how to extend this result to a local 
alignment 0 ( hn~ / log n) algorithm. 

• For global alignment over "discrete" scoring ma- 
trices, we explained how the space complexity can 
be reduced to O(h2n2/(logn)2), without impairing 
the O(hn2/logn) time complexity. 

In addition to the scores computed by dynamic pro- 
gramming, it is often desired to recover a meaningful 
trace of the optimal alignments. Optimal paths in the 

alignment graph (paths whose total weight is maximum) 
represent optimal alignments of A and B. 

Without any added complexity, the current algorithmic 
infrastructure can be modified to support the recovery 
of an optimal global alignment path trace, as well as 
an optimal local alignment trace as defined by Erickson 
and Sellers [12], in time complexity which is linear with 
the size of the trace. 

Due to lack of space, the description of how to recover 
the path alignment traces is reserved for the journal 
version of the paper. 
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