
679

A Sub-quadratic Sequence Alignment Algorithm for Unrestricted Cost
Matrices

Maxime C r o c h e m o r e *
Institut Gaspard-Monge

Universit de Maxne-la~Vall~e

Gad M. L a n d a u t

Haifa University
and

Polytechnic University

Michal Ziv-Ukelson
Haifa University

and
IBM T.J.W Research Center

Abstract

The classical algorithm for computing the similarity be-
tween two sequences [36, 39] uses a dynamic program-
ming matrix, and compares two strings of size n in
O(n 2) time. We address the challenge of computing the
similarity of two strings in sub-quadratic time, for met-
rics which use a scoring matrix of unrestricted weights.
Our algorithm applies to both local and global alignment
computations.

The speed-up is achieved by dividing the dynamic pro-
gramming matrix into variable sized blocks, as induced
by Lempel-Ziv parsing of both strings, and utilizing the
inherent periodic nature of both strings. This leads to
an O(n2/logn) algorithm for an input of constant al-
phabet size. For most texts, the time complexity is ac-
tually O(hn2/logn) where h _< 1 is the entropy of the
text.

1 Introduct ion

The rapid progress in large-scale DNA sequencing opens
a new level of computational challenges involved in stor-

~ t u t Gaspard-Monge, Universit de Marne-la-Vallde, Cit
Descartes, Champs-sur-Marne, 77454 Marne-la-Vall~e Cedex 2~
~-~Mlce~ email: macCOmonge, tmiv-mlv, f t .

#Department of Computer Science, Halfa University, Haifa
31905, Israel, phone: (972-4) 824-0103, FAX: (9?2-4) 824-9331;
Department of Computer and Information Science, Polytechnic
University, Six MetroTech Center, Brooklyn, NY 11201-3840;
emaih landauQpoly, edu; partially supported by NSF grant CCR-
0104307, by NATO Science Programme grant PST.CLG.977017,
by the Israel Science Foundation (grants 173/98 and 282/01),
by the FIRST Foundation of the Israel Academy of Science and
Humanities, and by IBM Faculty Partnership Award.

SDepartment of Computer Science, Haifa University, Haifa
31905, Israel; On Education Leave from the IBM T.J.W. Research
Center; emaih michalQcs.haifa.i].; partially supported by by
the Israel Science Foundation (grants 173/98 and 282/01), and
by the FIRST Foundation of the Israel Academy of Science and
Humanities.

ing, organizing and analyzing the wealth of biological
information. One of the most interesting new fields
that the availability of the complete genomes has cre-
ated is that of genome comparison (the genome is all of
the DNA sequence passed from one generation to the
next). Comparing complete genomes can give deep in-
sights about the relationship between organisms, as well
as shedding light on the function of specific genes in
each single genome. The challenge of comparing com-
plete genomes necessitates the creation of additional,
more efficient computational tools.

One of the most common problems in biological com-
parative analysis is that of aligning two long bio-
sequences in order to measure their similarity. In
the global alignment problem [19], [29], the similar-
ity between two strings A and B is measured. In the
local alignment problem [39], the objective is to find
substrings of A which are similar to substrings of B.
Both alignment problems can be solved in O(n 2) time
by dynamic programming [19], [39].

In this paper data compression techniques are employed
to speed up the alignment of two strings. The compres-
sion mechanism enables the algorithm to adapt to the
data and to utilize its repetitions. The periodic nature
of the sequence is quantified via its entropy, denoted
0 < h <: 1. Entropy is a measure of how "compressible"
a sequence is [5],[7], and is small when there is a lot of
order (i.e, the sequence is repetitive and therefore more
compressible) and large when there is a lot of disorder
(see section 2.2).

We present an O(n2/logn) algorithm for computing
both global and local similarity between two strings over
a constant alphabet. The algorithm is even faster when
the sequence is compressible. In fact, for most texts, the
complexity of our algorithm is actually O(hn2[logn).

Note that the algorithm presented is the first sub-
quadratic local alignment algorithm.

680

After the optimal scores are computed, an alignment
trace corresponding to the optimal score can be recov-
ered in time complexity which is linear with the size of
the trace, for both the global alignment and the local
alignment problems.

The algorithms described in this paper are the first
to approach f~lIy compressed (both source and target
strings are compressed) string alignment. The methods
given in this paper can also be used by applications
where both input strings are stored or t ransmitted in
the form of L Z 7 8 or L Z W compressed sequence, thus
providing an efficient solution to the problem of how to
compare the two strings without having to decompress
them first.

The only previously known sub-quadratic global align-
ment string comparison algorithm, by Masek and Pa-
terson [31], is based on the Four Russians paradigm.
The "Four Russians" algorithm divides the dynamic
programming table into uniform sized (log n by log n)
blocks, and uses table lookup to obtain an O (n 2 / l o g n)
time complexity, based on two assumptions. One is tha t
the sequence elements come from a constant alphabet.
The other, which they denote the "discreteness" con-
dition, is tha t the weights (of substitutions and indels)
are all rational numbers.

Our algorithms present a new approach and are better
than the above algorithm in two aspects.

The algorithms presented here are faster for com-
pressible sequences. For such sequences, the com-
plexity of our algorithms is O (h n 2 / l o g ~) , where
h _< 1 is the entropy of the sequence.

Our algorithms are general enough to support
scoring schemes with real number weights.

For many scoring schemes, the rational number
weights supported by Masek and Paterson's algo-
r i thm do not suffice. For example, the entries of
PAM similarity matrices, as well as BLOSUM evo-
lutionary distance matrices, are defined to be real
numbers, computed as log-odds ratios - and there-
fore could be irrational.

The paper by Masek and Paterson is concluded
with the following statement: "The most important
problem remaining is finding a bet ter algorithm
for the finite (in our terms constant) alphabet
case without the discreteness condition". Here,
more than twenty years later, this important open
question will finally be answered!

These advantages are based in the following facts. First,
our algorithm does not require any pre-computation

•

at c g t

c= - 1 - 1 1 - 1 - 1

la - 1 - 1 - 1 I -

t - 1 - 1 - 1 - 1

a g 4 a 5 c 6 g 7 a 8

--4 ~.5 --6 -7 --8 t

Figure 1: The alignment graph for comparing strings
A = "ctacgaga" and B ~ "aacgacga". The scoring scheme
matrix 5 is shown in the lower left corner of the figure. The
highest scoring global alignment paths originate in vertex
(0,0), end in vertex (8,8) and have a total weight of 3. The
highest scoring local alignment path has a total weight of 5
and corresponds to the alignment of substrings a = "acgaga"
and b = acgacga". A sub-graph G corresponding to the block
for comparing substrings a = "ag" and b = "acg ~ is shown
in the lowex-right c o m e r of the figure. Also specified are the
values I for the entries of the input border for G (in white-
shaded rectangles), and the values O of the output border of
G (in grey-shaded rectemgles), as set during a local alignment
computation.

of lookup-tables, and therefore can afford more flexi-
ble weight values. Also, instead of dividing the dy-
namic programming matrix into uniform sized blocks
as did Masek and Paterson, we employ a variable sized
block partition, as induced by Lempei-Ziv factorization
of both source and target. The common denominator
between blocks, maximized by the compression tech-
nique, is then re-cycled and used for computing the rel-
evant information for each block in t ime which is linear
with the length of its sides. In this sense, the approach
described in this paper can be viewed as another ex-
ample of speeding up dynamic programming by keeping
and computing only a relevant subset of important val-
ues, as demonstrated in [10], [11], [27] and [37].

The remainder of this paper is organized as follows.

681

Section 2 includes preliminaries. In section 3 we de-
scribe the global alignment solution using fully com-
pressed string comparison. In section 4 we extend the
solution to compute the highest scoring regions of local
alignment. Section 5 contains a discussion of how to re-
duce the space complexity without impairing the time
complexity, when computing global alignment over "dis-
crete" scoring matrices.

A description of how to recover a path alignment trace
in time linear with its size will be given in the journal
version of the paper.

2 Prel iminaries

2.1 Highest Scoring P a t h s in t h e A l i g n m e n t
Graph. The dynamic programming solution to the
string comparison computation problem can be repre-
seated in terms of a weighted alignment graph [19] (See
Figure 1). The weight of a given edge can be specified
directly in the grid graph, or as is frequently the case
in biological applications, is given by a penalty matrix,
denoted 5, which specifies the substitution cost for each
pair of characters and the deletion cost for each charac-
ter from the alphabet. Typically, in the biological do-
main, (i is negative for all operations except replacement
of similar symbols, and the objective is to maximize the
alignment score.

The classical dynamic programming algorithm for
global alignment will set the value at each vertex (i , j) of
the alignment graph, row by row in a left to right order,
to the score between the first i characters of A and the
first j characters of B, using the following recurrence.
v (i , i) = - 1) +

v (i - 1 , . /) +

V(i - 1 , . / - 1) + 5(Ai, Bi)]

Smith and Waterman [39] showed that essentially the
same O([A[[BI) dynamic programming solution can be
used for local alignment, provided that the score of the
alignment of two empty strings is defined as 0, and only
pairs whose alignment scores are above 0 are of interest.
The Smith-Waterman algorithm for local alignment will
compute the following recurrence, which includes 0 as
an additional option, and thus restricts the scores to
non-negative values.

S (i , j) = maz[O,S (i , j - 1) + 6(e, B j) ,

sCi - 1, j) +

sCi -- 1 , j - 1) + 5(Ai, Bj)]

The score for the most similar substrings is found in the
highest scoring nodes in the alignment graph.

2.2 A Block P a r t i t i o n o f t he A l i g n m e n t G r a p h
based on LZ78 Fac tor iza t ion . The traditional aim
of text compression is efficient use of resources such as
storage and bandwidth. Here, we will compress the
sequences in order to speed up the alignment process.
Note that this approach, denoted "acceleration by text-
compression", has been recently applied to a related
problem - that of exact string matching [22], [30], [38].

It should also be mentioned that another related prob-
lem - that of exact string matching in compressed text
without decoding it, which is often referred to as "com-
pressed pattern matching", has been studied exten-
sively [3], [13] [34]. Along these lines, string search
in compressed text wa~ developed for the compression
paradigm of LZ78 [45], and its subsequent variant LZW
[43], a$ described in [23], [35]. A more challenging prob-
lem is that of ' fu l ly compressed" pattern matching when
both the pattern and text strings are compressed [16],
[17].

For the LZ78-LZW paradigm, compressed matching has
been extended and generalized to that of approximate
pattern matching (finding all occurrences of a short
sequence within a long one allowing up to k changes)
in [21], [33].

The LZ compression methods are based on the idea of
self reference: while the text file is scanned, substrings
or phrases are identified and stored in a dictionary, and
whenever, later in the process, a phrase or concatena-
tion of phrases is encountered again, this is compactly
encoded by suitable pointers [28], [44], [45].

Of the several existing versions of the method, we will
use the ones which are denoted LZ78 family [43], [45].
The main feature which distinguishes LZ78 factoriza-
tion from previous L Z compression algorithms is in the
choice of code words. Instead of allowing pointers to
reference any string that has appeared previously, the
text seen so far is parsed into phrases, where each phrase
is the longest matching phrase seen previously plus one
character. For example, the string "S = aacgacg" is di-
vided into fours phrases: a, ac, g, acg. Each phrase is
encoded as an index to its prefix, plus the extra charac-
ter. The new phrase is then added to the list of phrases
that may be referenced.

Since each phrase is distinct, the following upper bound
applies to the possible number of phrases obtained by
LZ78 factorization.

THEOREM 2.1. (Zw AND LEMPEL 1976 [28].) Given
a sequence S of size n over a constant alphabet. The
maximal number of distinct phrases in S is O (i - ~) .

682

®

0 ®

G0
a ®g
a

LZ78-Part lUoned
Alignment Graph

Q®® ®

C

t
a ~
C

\

/

a c

N
prefix 15/2)

~ 4

Trie for A Trie for B

" ~ a c a c g a

diagonal
prefix (3~.) prefix (3,4)

c g

Graph G
for Block (5,4)

Figure 2: The block partition of the alignment graph,
and the tries corresponding to LZ-78 parsing of strings
A = "cSacgaga" and B = "aacgacga'. Note that for t h e
block G in this example, a = "ag' , fl = "a~g", ~ = 2,
ec ---- 3, i = 5 and j = 4. (The new cell of G, which does n o t
appear in any of the prefix blocks, is the rightmost cell at
the bottom row of G, and can be distinguished by its white
color.) This figure continues Figure 1.

Even though the upper bound above applies to any
possible sequence over a con.~tant alphabet, it has been
shown that in many cases we can do bet ter than that .

Intuitively, the L Z 7 8 algorithm compresses the se-
quence because it is able to discover some repeated pat-
terns. Therefore, in order to compute a tighter upper
bound on the number of phrases obtained by L Z 7 8 fac-
torization for "compressible" sequences, the repetitive
nature of the sequence needs to be quantified. One of
the fundamental ideas in information theory is that of
entropy, denoted 0 < h < 1, which is a measure of
the amount of disorder or randomness, or inversely, the
m o u n t of order or redundancy in a sequence. Entropy
is small when there is a lot of order (i.e, the sequence
is repetitive) and large when there is a lot of disorder.
The entropy of a sequence should ideally reflect the ratio
between the size of the sequence after it has been com-
pressed, and the length of the uncompressed sequence.

The number of distinct phrases obtained by L Z 7 8
factorization has been shown to be O (h n / l o g n) for
most texts [5], [7], [28], [45]. Note that for any other
text over a constant alphabet , the upper bound above
still applies by setting h to 1.

3 T h e G l o b a l A l i g n m e n t S o l u t i o n

3.1 D e f i n i t i o n s a n d B a s i c O b s e r v a t i o n s . The
alignment graph will be parti t ioned as follows. Strings
A and B will be parsed using L Z 7 8 factorization.
This induces a partition of the alignment graph for
comparing A with B into variable sized blocks (see
Figure 2). Each block will correspond to a comparison
of an LZ phrase of A with an LZ phrase of B.

Let xa denote a phrase in A obtained by extending a
previous phrase x of A with character a, and yb denote
a phrase in B, obtained by extending a previous phrase
of B with character b.

From now on we will focus on the computat ions neces-
sary for a single block of the alignment graph.

Consider the block G which corresponds to the compar-
ison of xa and yb. We define input border I - as the
left and top borders of G, and output border 0 - as the
bo t tom and right borders of G. (The node entries on
the input border are numbered in a clockwise direction,
and the node entries on the ou tpu t border are numbered
in a counter-clockwise direction.)

Rather than filling in the values of each vertex in G,
as does the classical dynamic programming algorithm -
the only -¢alues computed for each block will be those
on its I / 0 borders (see Figures 1, 5A). Intuitively, this
is the reason behind the efficiency gain.

Let t r -denote the number of rows in G, l r = Ixal. Let
£c -denote the number of columns in G, £e = lYbl. Let
t = £r -I- £¢. Clearly, I I I = tOI -- t.

We define the following three p r e f i x blocks of G.

1. The l e f t pre. f ix of G -denotes the block comparing
phrase xa of A and phrase y of B.

2. The diagonal p r e f i x of G -denotes the block com-
paring phrase x of A and phrase y of B.

3. The top p r e f i x of G -denotes the the block comparing
phrase x of A and phrase yb of B.

O b s e r v a t i o n 1 When traversing the blocks of an L Z 7 8
parsed alignment graph in a left-to-right, top- to-bot tom
order. The blocks for the left prefix, diagonal prefix and
top prefix of G are encountered prior to block G.

Note that the graph for the left prefix of G is identical
to the subgraph of G containing all columns bu t the
last one. More specifically, bo th the s tructure and the
weights of the edges of these two graphs are identical,
bu t the weights to be assigned to the vertices during the
similarity computat ion may vary according to the input
border values. Similarly, for the top prefix and diagonal
prefix graphs. The only new cell in G, which does not

683

appear in any of its prefix block graphs, is the cell for
comparing a and b.

3.2 I / 0 P r o p a g a t i o n Across G. The work for each
block will consist of two stages (a similar approach is
shown in [6, 20, 26, 27]).

1. encoding : Study the structure of G and represent it in
an efficient way.

2. propagation : Given I and the encoding of G, con-
structed in the previous stage, compute 0 for G.

DI/ST matrix
10=l 0 -1 -2 -3 A A
I1---2 - 1 - 1 - 2 - 1 - 3 A

I2 ---- 3 - 2 0 0 1 - 1 - 3

I s = 2 A - 2 --2 0 --2 --2
14 = 1 A A --2 0 --1 - -I

I5 ----- 3 A A A - 2 - 1 0

OUT m a t r i x

1 0 - 1 - 2 - o o - o o

1 1 0 1 - 1 - o o

1 3 3 4 2 0

- 1 2 0 0 2 0 0

- 1 3 - 1 3 - 1 1 0 0

- 1 4 --14 --14 1 2 3

Oo Oz O= Os 04 Os
1 3 3 4 2 3

c o l u m n numbers

0 1 2 3 4 5

Figure 3: The DIST matrix which corresponds to the
subsequences "aCE', "at ~, the OUT matrix obtained by
adding the values of I to the rows of DIST, and the O
containing the row maxima of OUT. This figure continues
Figures 1 and 2.

The structure of G will be encoded by computing
weights of optimal paths connecting each entry of its
input border with each entry of its output border. The
following DIST matrix will be used (see Figure 3).

DEFINITION 3.1. DIST[i,j] stores the weight of the
optimal path from entry i o.f the input border o.f G to
entry j o/it~ output border.

D I S T matrices have also been used in [4], [6], [20], [27]
and [37].

Given input row I and the D I S T for G, the weight of
output row vertex Oj can be computed as follows.

Oj = dax{Ir + DIST[r,j]}
r : 0

Oj is the maximum of column j of the following OUT
matrix, which merges the information from input row I
and D I S T . (See Figure 3).

D E F I N I T I O N 3 . 2 . O U T [i ,]] ----- Ii + D!ST[i,j].

Aggaxwal and Park [2] and Schmidt [37] observed that
D I S T matrices are Monte arrays [32].

DEFINITION 3.3. A matrix M [0 . . . m , 0 . . . n] is
M o n g e if either condition 1 or 2 below holds -for all
a , b - O . . . m ; c , d - O . . . n :

I . c o n v e x c o n d i t i o n : M[a, c] + M[b, ~ < M[b, c] +
M[a, a~ for all a < b and c < d.

2. concave condition: M[a, c] + M[b, c~ >_ M[b, c] +
M[a, a~ for all a < b and c < d.

Since D I S T is Monge- so is OUT, which is a D I S T
with constants added to its rows.

An important property of Monge arrays is that of being
totally monotone.

DEFINITION 3.4. A matri~M[O.., m, 0 . . . n] /s t o t a l ly
m o n o t o n e if either condition I or 2 below holds for all
a , b = 0 . . . m ; c , d - O. . .n:

1. convex cond i t ion : M[a,c] ~ M[b,c]
M[a, d] > M[b, d] /'or all a < b and c < d.

2. concave condi t ion : M[a, c] < M[b, c]
M[a, ~ ~ M[b, d~ for all a < b and c < d.

Note that the Monge property implies total monotonic-
ity, but the converse is not true. Therefore, both DIST
and OUT are totally monotone by the concave condi-
tion.

Aggarwal et al [1] gave a recursive algorithm, nicknamed
S M A W K in the literature, which can compute in O(n)
time all row and column maxima of an n x n totally
monotone matrix, by querying only O(n) elements of
the array. Hence, one could use S M A W K to compute
the output row 0 by querying only O(n) elements of
OUT. Clearly, if both the full D I S T and all entries of
I axe available, then computing an element of OUT is
O(1) work.

684

For various solutions to related problems, which also
utilize Monge and Total Monotonicity properties, we
refer the interested reader to [8], [9], [14], [15], [24] and
[27]. In order to efficiently utilize these properties here,
we need to address the following two problems.

1. How to efficiently compute D I S T and represent it
in a format which allows direct access to its entries.
This will be done in section 3.2.2.

2. S M A W K is intended for a full, rectangular ma-
trix. However, both D I S T and its corresponding
OUT are not rectangular. Since paths in an align-
ment graph can only assume a left-to-right, top-
to-bot tom direction, connections between some in-
put border vertices and some ou tpu t border vertices
are impossible. Therefore, the matrices are migsing
both a lower left triangle and upper right triangle
(see Figure 3).

3.2 .1 A d d r e s s i n g t h e R e c t a n g l e P r o b l e m . The
undefined entries of OUT can be complemented in
constant time each, as follows.

1. The missing upper right triangle entries can be
completed by setting the value of any entry OUT[i,j]
in this triangle to - c o .

2. Let k denote maximal absolute value of a score in &
The missing lower left triangle entries can be completed
by setting the value of any OUT[i,j] in this triangle to
- (n + i + l) , k .

LEMMA 3.1. Complementing the undefined envies as
described above preserves the concave total monotongcity
condition of OUT, and does not introduce new row-
maxima.

Proof. 1. U p p e r R i g h t T r i ang le : All similarity scores
in the alignment graph are finite. Therefore, no new
column maxima are introduced. Suppose OUT[a, c] <_
OUT[b, c), a < b, and OUT[a, c] has been set to - c o .
Due to the shape of the redefined upper-right triangle,
once a - c o value in row a is encountered, all future
values in row a are also - c o . The future values of row
b could either be finite or - c o . Therefore, OUT[a, a~ ~_
OUT[b, ~ for all d > c.

2. L o w e r L e f t Tr iang le : The worst score appearing in
the alignment graph is lower bounded by - n k . Since i is
always greater than or equal to zero, the complemented
values in the lower left triangle are upper-bounded by
- (n + 1) , k and no new column maxima are introduced.
Also, for any complemented entry OUT[b, c] in the lower
left triangle, OUT[b,c] < OUT[a,c] for all a < b,

and therefore the concave total monotonicity condition
holds.

3.2.2 I n c r e m e n t a l U p d a t e o f t h e n e w D I S T
I n f o r m a t i o n fo r G. In this section we will show how
to efficiently compute the new D I S T info for G, using
the D I S T representations previously computed for its
prefix blocks, plus the information of its new cell.

When processing a new block G, we will compute the
scores of t new optimal paths, leading from the input
border to the new vertex (tr, £¢) in the lowest, rightmost
corner of G. These values correspond to coh!rnn lc of the
D I S T matrix for G, and can be computed as follows.

Entry [i] in column £c of the D I S T for G contains
the weight of the optimal path from entry i in the
input border of G to vertex (lr, £c). This path must
go through one of the three vertices (tr - 1,lc), (£r -
1, lc - 1) or (£r, tc - 1). Therefore, the weight of the
optimal path from entry i in the input border of G to
(lr, lc) is equal to the maximum among the following
three values:

1. Entry [i] of column £c - 1 of the D I S T for the
left prefix of G, plus the weight of the horizontal edge
leading into (tr, £c).

2. Entry [i] of column lc - 1 of the D I S T for the
diagonal prefix of G, plus the weight of the diagonal
edge leading into (£r, ~).

3. Ent ry [/] of column £c of the D I S T £or the top prefix
of G, plus the weight of the vertical edge leading into

(lr, ~c)-

3 .2 .3 M a i n t a i n i n g D i r e c t A c c e s s t o D I S T
C o l u m n s . In order to compute an entry of OUT in
constant time during the execution of S M A W K , di-
rect access to D I S T entries is necessary. This is not
straightforward, since as shown in the previous section,
for each block only one new D I S T column has been
computed and stored. All other columns besides col-
umn ~c of the D I S T for G need to be obtained from
G's prefix ancestor blocks.

Therefore, before the execution of S M A W K begins, a
vector with pointers to all t + 1 columns of the D I S T
for G is constructed (see Figure 4). This vector is no
longer needed after the computat ions for G have been
completed, and its space can be freed.

The pointers to all columns of the D I S T for G are
assembled as follows. Column £c is set to the newly
constructed vector for G. All columns of indices smaller
than lc are obtained via lc recursive calls to left prefix

685

~ 0 1 2 3 4 ~ ,

I ol I I I I , - L ~ ' \

\ 311 l l I - L .
\ ' t I 1 1 1] \

\sl . 1.1.1 m !

Trie for A Trie for B

. /

Figure 4: A table containing an entry for each block of
the alignment graph. Entry (i,j) of the table corresponds
to the block whose substrings are represented by node i in
the trie for A and node j in the trie for B. The entry for
each block in the table points to the start of its new DIST
column. Also shown is the vector which contains pointers to
all columns of the DIST for block (5, 4), as obtained from
its ancestor prefix blocks. This figure continues Figures 1, 2
and 3.

blocks of G. All columns of indices greater than £c are
obtained via lr recursive calls to top prefix blocks of G.

3.2.4 Query ing a Pref ix B l o c k a n d O b t a i n i n g
i ts DIST C o l u m n in C o n s t a n t t i m e . The LZ78
phrases form a trie (see Figure 2), and the string to
be compressed is encoded as a sequence of names of
prefixes of the trie. Each node in the trie contains the
serial number of the phrase it represents. Since each
block corresponds to a comparison of a phrase from A
with a phrase from B, e v ~ block will be identified by a
pair of numbers, composed of the serial numbers for its
corresponding phrases in the tries for A and B.

Another data structure to be constructed is a Block
Table (see Figure 4), containing an entry for each
partitioned block of the alignment graph. The entry
for each block in the table points to the start of its
new DIST column, and can be directly accessed via
the block's phrase number index pair.

The left prefix of G can be identified in constant time
as a pair of phrase numbers, the first identical to the
serial number of xa, and the second corresponding to
the serial number of y, which is the direct ancestor
of yb in the trie for B. Similarly, the top prefix
of (7 can be identified in constant time. Given the

pair of identification numbers for a block, a pointer to
the corresponding DIST column can then be directly
obtained from the Block Table.

3.3 T i m e and Space Analys i s

Assuming sequence size n and sequence entropy h _<
1. The LZ78 factorization algorithm will parse the
strings and construct the tries for A and B in O(n)
time. The resulting number of phrases in both A and
B is O(hn] log n). The number of resulting blocks
in the alignment graph is equal to the number of
phrases in A times number of phrases in B, and is
therefore O(h2n2/(logn)2). For each block G, the
following information (1-3) is computed, in time and
space complexity linear with the size of its I /O borders:

1. U p d a t i n g the E n c o d i n g S t r u c t u r e fo r G. The
prefix blocks of G can be accessed in constant time.
The vectors of DIST column pointers for the prefix
blocks have already been freed. However, since each
prefix block directly points to its newly computed DIST
column - all values needed for the computations are still
available. Since each entry of the new DIST column
for G is set to the maximum among up to three sums of
pairs, the new DIST column for G can be constructed
in O(t) time and space.

2. M a i n t a i n i n g D i r e c t Access to DIST c o l u m n s .
Since p r e f i x blocks and their DIST columns can be
accessed in constant time, the vector with pointers to
columns of the DIST for G can be set in O(t) time.

3. P r o p a g a t i o n for G. Using the information com-
puted for G, and given the I for G obtained from the
O vectors for the block above G and the block to its
left, the values of O for G are computed via S M A W K
Matrix Searching in O(t) time.

Total C o m p l e x i t y . Since the work and space for
each block is linear with the size of its I /O borders,
the total time and space complexity is linear with the
total size of the borders of the blocks. The block
borders form O(hn/logn) rows of size tBI each, and
O(hn/logn) columns of size IA I each, in the alignment
graph (see Figure 2). Therefore, the total time and
space complexity is O(hn2/logn).

4 E x t e n s i o n s to Loca l A l i g n m e n t

When computing the highest local alignment score, the
added challenge is that an optimal path could begin and
end inside any block. Therefore, we will modify O to
consider the additional paths originating inside G.

686

A

DiST[i,j] (~)

L QQt '.._

o

Figure 5: A. The I /0 path weight vectors computed for
each block in the global alignment solution. DIST[i, j] will
be set to the highest scoring path connecting vertex i i~
the input border with vertex j in the output border. B,C.
The vectors of optimal path weights considered for the local
alignment computation.

Also, in addition to the DIST described in section 3, we
compute for eac-h block G the following data structures
(see Figures 5]3, 5C).

1. E - is a vector of size t. E[i] contains the value of
the highest scoring path which starts in vertex i of the
input border of G and ends inside G.

2. S - is a vector of size t. S[i] contains the value of the
highest scoring path which starts inside G and ends in
vertex i of the output border of G.

3. C - is the value of the highest scoring path contained
in G, that is - the highest scoring path which originates
inside G and ends inside G.

4. F - is the weight of the highest scoring path ending
in G. This path could either begin and end inside G (a
C-path) or start outside G and end inside G (an / -pa th
followed by an E-path).

The overall highest local alignment score for comparing
A and B can be computed as the mwY]mum among the
F values of each block.

The two stages described in section 3.2 will be extended
as follows.

4.1 Encod ing . DIST is computed as described ha
section 3.2. In addition, the values of E, S and C are

computed as follows.

1. C o m p u t i n g the values of E. E[i] is computed as
the maximum between E[i] for the left prefix of G, E[i]
for the top prefix of G, and DIST[i, £c].
2. C o m p u t i n g t h e values of S. The only new value
computed for S is the Smith-Waterman score for the
new vertex (er, £c). Given the Smith-Waterman local
alignment scores for vertices (£r - 1,£c - 1) obtained
from the diagonal prefix, (£r, £c - 1) obtained from the
left prefix and (£ r - 1, tc) obtained from the top prefi~
of G, and the weights of the 3 edges leading into vertex
(lr,£e), the Smith-Waterman score for vertex (£r,/c)
can be computed in O(1) time complexity, using the
recursion given in section 2.1. The value for entry £c of
S is set to this newly computed Smith-Waterman score
for vertex (tr, it).
The values of all other entries of S are then set as
follows. The first le values of S axe copied from the
first te values of the S computed for the left prefix of
G. The last £r values are copied from the last £r values
of the S vector for the top prefix of G.

3. C o m p u t i n g t h e value of C. C is computed as
the ma~dmum between the C value for the left prefix of
G, the C value for the top prefix of G, and the newly
computed Site] as described above.

4.2 P r o p a g a t i o n .
1. C o m p u t i n g t h e values of 0 . Our objective is
to set O[i] to the weight of the highest scoring path
originating anywhere in the alignment graph and ending
in entry i of the output border. Vector O will first be
computed from the I and DIST for G as described in
section 3.2. At this point entry O[i] reflects the weight
of the optimal path starting anywhere outside G and
ending in entry i of the output border. It needs to be
updated with the weights of the highest scoring paths
starting inside G- This is achieved by resetting OI/] to
the maximum between O[i] and S[i].

2. C o m p u t i n g the values of F . F is computed as
mo=(M~[=oU[i] + Eli]}, C)

4.3 T i m e a n d Space Analys is
Encoding . Since, as shown in section 3.2.3, each prefix
block of G can be accessed in constant time, the values
of the S and E vectors for G can be computed and
stored in O(t) time and space, and the C value for G
can be computed in constant time and space.

P ropaga t ion . Given the vectors computed in the
encoding stage - the values of O and F can be computed
in O(t) time each as described above.

687

The weight of the highest scoring path in the align-
ment graph can then be computed in an additional
O(h2n2/(logn) 2) time as the maximum value among
the F values computed for each block.

Tota l C o m p l e x i t y Since the work and space for each
block is linear with the size of its I / 0 borders, the
total time and space complexity for the local alignment
solution is O(hn ~] log n).

5 R e d u c i n g t h e Space C o m p l e x i t y

When computing global alignment with scoring matri-
ces which follow the "discreteness" condition (see Sec-
tion 1), the et]icient alignment stage algorithm described
in [27] can be extended to support full propagation from
the leftmost and upper boundaries to the bottom and
right most boundaries of G.

This extended propagation algorithm can then be used
to compute the values of the global alignment O for G,
given the I for G and a minimal encoding of the D I S T
for G. The advantage of this minimal encoding of D I S T
is that rather than saving an O(t) sized D I S T column
per block, we only need to save a constant number of
values per block. The encoding for the new D I S T
column of each block can be computed and stored in
constant time and space from the information stored
for the left, diagonal and top prefix blocks of G, using
the technique described in section 6 of [37].

This reduces the space complexity to O(h2n2/(log n)2),
while preserving the O(hn~/logn) time complexity.

6 Conc lus ions

The results demonstrated in this paper are as follows.

* The algorithm presented in this p~.per is the first
O(hn~/logn) string comparison algorithm.

. This is the first sub-quadratic string comparison
algorithm for general scoring tables whose weights
are not restricted to rational numbers.

• We showed how to extend this result to a local
alignment 0 (hn~ / log n) algorithm.

• For global alignment over "discrete" scoring ma-
trices, we explained how the space complexity can
be reduced to O(h2n2/(logn)2), without impairing
the O(hn2/logn) time complexity.

In addition to the scores computed by dynamic pro-
gramming, it is often desired to recover a meaningful
trace of the optimal alignments. Optimal paths in the

alignment graph (paths whose total weight is maximum)
represent optimal alignments of A and B.

Without any added complexity, the current algorithmic
infrastructure can be modified to support the recovery
of an optimal global alignment path trace, as well as
an optimal local alignment trace as defined by Erickson
and Sellers [12], in time complexity which is linear with
the size of the trace.

Due to lack of space, the description of how to recover
the path alignment traces is reserved for the journal
version of the paper.

A c k n o w l e d g e m e n t

Thanks to Dan Gusfield for a helpful discussion of the
"Four Russians" algorithm.

References

[1] Aggarwal, A., M. Klawe, S. Moran, P. Shot, and tL
Wilber, Geometric Applications of a Matrix-Searching
Algorithm, Algorithmica , 2, 195-208 (1987).

[2] Aggarawal, A., and J. Park, Notes on Searching in
Multidimensional Monotone Arrays, Proc. Bgth IEEE
Syrup. on Foundations of Computer Science, 497-512
(1988).

[3] Amir, A., G. Benson, and M. Farach, Let sleeping files
lie: Pattern matching in Z-compressed files. J. of Comp.
and Bys. Sciences, 52(2), 299-307 (I996).

[4] Apostolico, A., M. Atallah, L. Larmore, and S. Mc-
Faxldin, Efficient parallel algorithms for string editing
problems. 8IAM J. Comput., 19, 968-998 (1990).

[5] Bell, T.C., J.C. Cleary, and I.H. Witten. Text Com-
pression. Prentice I4_all, (1990).

[6] Benson, G., A space efficient algorithm for finding
the best nonoverlapping alignment score, Theoretical
Computer Science, 145, 357-369 (1995).

[7] Crochemore, M., mad W. Rytter, Text Algorithms,
Ozford University Press, (1994).

[8] Eppstein} D., Sequence Comparison with Mixed Con-
vex and Concave Costs, Journal of Algorithms, 11, 85-
101 (1990).

[9] Eppstein, D., Z. Galil, and R. Giancarlo, Speeding
Up Dynamic Programming, Proc. 29th IEEE Syrap. on
Foundations of Computer Science, 488-296 (1988).

[10] Eppstein, D., Z. Galil, It. Giancarlo, and G.F. Italiano,
Spa~e Dynamic Programming I: Linear Cost Func-
tions, JACM, 39, 546-567 (1992).

[11] Eppstein, D., Z. Galil, It. Giancarlo, and G.F. Italiano,
Sparse Dynamic Programming II: Convex and Concave
Cost Functions, JACM, 39, 568-599 (1992).

[12] Erickson, B.W., and P.H. Sellers, Recognition of pat-
terns in genetic sequences, in Time Warps, String Ed-
its, and Macromoleeules: The Theory and Practice of
Sequence Comparison, D. Sankoff and J.B. Kruskal,
eds., Addison-Wesley, Reading, MA, 55-91 (1983).

688

[13] Farach, M., and M. Thorup, String matching in
Lempel-Ziv compressed strings. Algorithmica, 20, 388-
404 (1998).

[14] Galil, Z., and R. Giancarlo, Speeding Up Dynamic
Programming with Applications to Molecular Biology,
Theoretical Computer Science, 64, 107-118 (1989).

[15] Galil Z., and K. Park, A linear-time algorithm for
concave one-dimensionaJ dynamic programming, Info.
Processin 9 Letters, 33, 309-311 (1990).

[16] Gasieniec, L., M. Karpinski, W. Plandowski, W. ttyt-
ter, Randomised efficient algorithms for compressed
strings: the finger-print approach, Proc. 7th An-
nual Symposium On Combinatorial Pattern Matching,
LNCS 1075, 39-49 (1996).

[17] Oasieniec, L., and W. Rytter, Almost optimal fully
LZW compressed pattern matching, Data Compreasion
Conference, J. Starer, ed, (1999).

[18] Giancar{o, R. , Dynamic Programming: Special Cases,
Pattern Matching Algorithms, edited by Apostolico, A.
and Z. Galil, Oxford University Press, 201-232 (1997).

[19] Gusfield, D., Algorithms on Strings, Trees, and Se-
quences. Cambridge University Press, (1997).

[20] Kannan, S. K., and E. W. Myers, An Algorithm
For Locating Non-Overlapping Regions of Maximum
Alignment Score, SIAM J. Comput., 25(3), 648-662
(1996).

[21] Karkkv~en, J., G. Navarro and E. Ukkonen, Approx-
imate String Matching over Ziv-Lempel Compressed
Text, Proc. l Ith Annual Symposium On Combinatorial
Pattern Matching, LNCS 1848, 195-209 (2000).

[22] Karkk~inen, J., and E. Ukkonen, Lempel-Ziv parsing
and sublinear-size index structures for string matching,
Proc. Third South Amer/can Workshop on Strin9 Pro-
ceasing (WSP '96), 141-155 (1996).

[23] Kida, T., M. Takeda, A. Shinohaxa, M. Miyazaki, and
S. Arikawa, Shift-And approach to pattern matching in
LZW compressed text, Proc. 10th Annual Symposium
On Combinatorial Pattern Matching, LNCS 1645, 1-13
(1999).

[24] Klawe, M., and D. Kleitman, An Almost Linear Algo-
rithm for Generalized Matrix Searching, SIAM Jour.
Descrete Math., 3, 81-97 (1990).

[25] Landau, G.M., E.W. Myers and J.P. Schmidt, Incre-
mental String Comparison, SIAM J. Comput., 27(2),
557-582 (1998).

[26] Landau, G.M. and M. Ziv-Ukelson, On the Shared
Substring Alignment Problem, Proc. Symposium On
Discrete Algorithms, 804-814 (2000).

[27] Landau, G.M., and M. Ziv-Ukelson, On the Common
Substring Alignment Problem, Journal of Algorithms.

[28] Lempel, A., and J. Ziv, On the complexity of finite
sequences, IEEE Transactions on Information Theory,
22, 75-81 (197fi).

[29] Levenshtein, V.I., Binary Codes Capable of Correcting,
Deletions, Insertions and ReversaLs, Souiet Phys. Dokl,
10, 707-710 (1966).

{30] Manber, U., A text compression scheme that allows fast
searching directly in the compressed file, Proe. 5th An-

nual Symposium On Combinatorial Pattern Matching,
LNCS 807, 113-124 (1994).

[31] Masek, W.J., and M.S. Paterson, A faster algorithm for
computing string edit distances. J. Comput. Syst. Sci.,
20, 18-31 (1980).

[32] Mange, G., Deblai et Kembla~,Memoires del l'Academie
des Sciences, Paris (1781).

[33] Navarro G., T. Kida~ M. Takeda, A. Shinohara, and
S. Arikawa: Faster Approximate String Matching Over
Compressed Text, Proc. Data Compression Conference
(DCC~O01), IEEE Computer Society, 459-468 (2001).

[34] Navarro, G., and M. Rxdfiuot, A general practical
approach to pattern matching over Ziv-Lempel com-
pressed text, Prec. lOth Annual Symposium On Com-
binatorial Pattern Matching, LNCS 1645, 14-36 (1999).

[35] Navarro, G., and M. Raflinot. Bayer-Moore string
matching over Ziv-Lempel compressed text, Proc. 11th
Annual Symposium On Combinatorzal Pattern Match-
ing, LNCS 1848, 166-180 (2000).

[36] Sankoff D., aud J.B. Kruskal (editors), Time Warps,
String Edits, and Macromolecules- the Theory and
Practice of Sequence Comparison, Addison-Wesley,
~ , MA, (1983).

[37] Schmidt, J.P., All Highest Scoring Paths In Weighted
Grid Graphs and Their Application To Finding All
Approximate Repeats In Strings, SIAM J. Comput,
27(4), 972-992 (1998).

[38] Shabita Y., T. Kida, S. Fuk~mar~hi, M. Takeda, A.
Shinohara, T. Shinohara, S. Arikawa, Speedin 9 up
pattern matching by tez~ compression, CIAU £000,
LNCS 1767, 306-315 (2000).

[39] Smith, T. F. and M. S. Waterman, Identification of
common molecular subsequences, J. Molecular Biol.,
14T, 195-197 (1981).

[40] Szpankowski, W., and P. Jacquet. Asymptotic Behavior
of the Lempel-Ziv Parsing Scheme and Digital Search
Trees, Theoretical Computer Science, 144, 161-197
(1995).

[41] Takeda, M., Y. Shibata, T. Matsumoto, T. Kida,
A. Shinohara, S. Fukamachi, T. Shinohara, and S.
Arikawa: Speeding up string pattern matching by text
compression: The dawn of a new era, 42(3), pp. 370-
384 (2001).

[42] Waterman, M.S., and M. Eggert, A new algorithm for
best subsequence alignment with application to tRNA-
rRNA comparisons, J. Molecular Biol., 197, 723-728
(1987).

[43] Welch, T.A., A Technique for High Performance Data
Compression, IEEE Trans. on Computers, 17(6), 8-19
(1984).

[44] Ziv, J., and A. Lempel, A Universal Algorithm for
Sequential Data Compression, IEEE Transactions on
Information Theory, IT-23(3), 337-343 (1977).

[45] Ziv, J., and A. Lempel, Compression of individual se-
quences via variable rate coding, IEEE Trans. Inform.
Th., 24, 530-536 (1978).

