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Linear and O(n log n) Time Minimum-Cost Matching 
Algorithms for Quasi-convex Tours 

Samuel R. BUSS* 

Abstract 
Let G be a complete, weighted, undirected, bipartite graph with 
R red nodes, R’ blue nodes, and symmetric cost function ~(2, y) . 
A maximum matching for G consists of min{n,n’} edges from 
distinct red nodes to distinct blue nodes. Our objective is to find 
a minimum-cost maximum matching, i.e. one for which the sum 
of the edge costs has minimal value. This is the weighted bipartite 
matching problem; or as it is sometimes called, the assignment 
problem. 

We report a new and very fast algorithm for an abstract special 
case of this problem. Our first requirement is that the nodes of 
the graph are given as a ‘quasi-convex tour’. This means that they 
are provided circularly ordered as 21,. , z,v where N = n + n , 
and that for any z,,z~,z~, z(, not necessarily adjacent but in tour 
order, with z,,, z, of one color and zk, z( of the opposite color, 
the following mequality holds: 

c(zt,zo) +c(z,,a) I C(Z,,Zk) + C(2,,2<) 

If n = n’, our algorithm then finds a minimum-cost matching 
in O(N log N) time. Given an additional condition of ‘weak 
analyticity’, the time complexity is reduced to O(N . 
cases only linear space is required. In certain cases t b 

In both 
ese results 

apply even if n # n’. 
Our algorithm is conceptually elegant, straightforward to imple- 

ment, and free of large hidden constants. As such we expect that 
it may be of practical value in several problem areas. 

Many natural graphs satisfy the quasi-convexity condition. 
These include graphs which lie on a line or circle with the canonical 
tour ordering, and costs given by any concave-down function of 
arclength - or graphs whose nodes lie on an arbitrary convex 
planar figure with costs provided by Euclidean distance. 

The weak-analyticity condition applies to points lying on a circle 
with costs given by Euclidian distance, and we thus obtain the 
first linear-time algorithm for the minimum-cost matching problem 
in this setting (and also where costs are given by the Li or L, 
metrics). 

Given two symbol strings over the same alphabet, we may 
imagine one to be red and the other blue, and use our algorithms 
to compute string distances. In this formulation, the strings are 
embedded in the real line and multiple independent assignment 
problems are solved; one for each distinct alphabet symbol. 

While these examples are somewhat geometrical, it is important 
to remember that our conditions are purely abstract; so that our 
algorithms may find application to problems in which no direct 
connection to geometry is evident. 

Keywords - Assignment problem, bipartite weighted matching, 
computational geometry, concave penalty function, convexity, linear 
time, Monge property, quadrangle inequality, string comparison. 

1. Introduction 
The abstract above gives a short overview of the contents 

of the paper and we shall give an in-depth discussion of our 
definitions, results and algorithm below. However, we first 
give a quick review of prior related work on matching. We 
shall consider graphs G which have N nodes, the nodes are 
partitioned into a set of n red nodes and n’ blue nodes with 
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N = n + n’. G is balanced if it has equal numbers of red 
and blue nodes. There is a symmetric cost function c(z, y), 
which gives the cost of an edge from node 2 to node y, with 
2 and y of distinct colors. A matching is a set of edges 
with no endpoints in common that match all the nodes of 
one color with the same number of nodes of the opposite 
color. The cost of a matching is the sum of the costs of its 
edges. The problem of finding a minimal-cost matching for 
a general bipartite graph is known to have an O(N3) time 
algorithm (see Lawler [15] for this and other background on 
matching), and for graphs with nodes in the plane with the 
Euclidean distance as cost function, there is a O(N2.5 log N) 
time algorithm, due to Vaidya [19]. 

The minimum-cost matching problem is substantially easier 
in the case where the nodes are linearly or circularly ordered. 
The simplest version of linear/circular ordering is where the 
points lie on a line or on a curve homeomorphic to a circle, 
and the cost c(z,y) of an edge between c and y is equal 
to the shortest arclength distance between the nodes. The 
matching problem for this arclength cost function has been 
studied by Karp-Li [ll], Aggarwal et al. [l], Werman et al. [20] 
and others, and is the ‘Skis and Skiers’ problem of Lawler [15]. 
Karp-Li have given linear time algorithms for this matching 
problem; Aggarwal et al. have generalized the linear time 
algorithm to the transportation problem. 

A more general version of the matching problem for linearly 
ordered graphs has been studied by Gilmore-Gomory [8] 
(see [15]). In this version, the cost of an edge from a red 
node z forward to a blue node y is defined to equal s,” f and 

from a blue node 2 forward to a red node y to equal s,” g, for 
some functions f and g This matching problem has a linear 
time algorithm provided f + g 2 0. 

Another version of the matching problem for linearly ordered 
graphs is considered by Aggarwal et al.[l]: they use graphs 
which satisfy a ‘LMonge” property which states that the 
inequality (1) below holds except with the inequality sign’s 
direction reversed. They give a linear time algorithm for the 
matching problem for (unbalanced) Monge graphs. 

In the prior work most closely related to this paper, 
Marcotte and Suri [17] consider the matching problem for 
a circularly ordered, balanced tour in which the nodes are the 
vertices of a convex polygon and the cost function is equal to 
Euclidean distance. This matching problem is substantially 
more complicated than the comparatively simple ‘Skis and 
Skiers’ type problems; nonetheless, Marcotte and Suri give an 
O(N log N) time algorithm which solves this minimum-cost 
matching problem. For the case where the nodes are the 
vertices of a simple polygon and the cost function is equal to 
the shortest Euclidean distance inside the polygon, they give 
an O(N log’ N) time algorithm. 

The main results of this paper apply to all the above 
matching problems on circularly or linearly ordered tours, 
except for the sole exception of the unbalanced, Monge 
graphs. For the ‘Skis and Skiers’ and the Gilmore-Gomory 
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problems, Theorem 2 gives new linear time algorithms which 
find minimum-cost matchings which are different than the 
traditional minimum-cost matchings (and our algorithms are 
more complicated than is necessary for these simple problems). 
Our algorithms subsume those of Marcotte and Suri and 
give some substantial improvements: First, with the weak 
analyticity condition, we have linear time algorithms for many 
important cases, whereas Marcotte and Suri’s algorithm takes 
O(N log N) time. Second, our assumption of quasi-convexity 
is considerably more general than their planar geometrical 
setting and allows diverse applications. Third, our algorithms 
are conceptually simpler than the divide-and-conquer methods 
used by Marcotte and Suri, and we expect that our algorithms 
are easier to implement. 

We list some sample applications of our algorithms in 
Examples 1-8 below. 

Our quasi-convex property is equivalent to the “inverse 
quadrangle inequality” used, for instance, by [6], but is weaker 
than the similar “inverse Monge property” of [4].’ Dynamic 
programming problems based on cost functions which satisfy 
the (inverse) quadrangle inequality and some closely related 
matrix-search problems have been studied by many authors, 
including [2,3,4,5,6,7,10,12,13,14,16,21,22]. However, there 
seems to be no direct connection between our quasi-convex 
matching problem and the problems solved by these authors. 

We now give the definitions necessary to state the main 
results of this paper. We think of the nodes of the graph G as 
being either a linear or circular tour of the graph; in the case 
of a circular tour, we think of the node zi as following again 
after ZN. 

Definition A sequence of nodes xii, xi2, , xi! are in input 
order if and only if ii < i2 < < il. The nodes are defined 
to be in tour order if and only if there exists a k such that the 
sequence zih,. , xi!, xi,, , zikel is in input order. 

Definition The nodes zr,. , ZN form a quasi-convex tour 
if and only if, whenever z;,xj,xk,z~ are in tour order, with 
zi and xi of one color and XL and xe of the other color, then 

CC%, Xi> - C(Xi, 4 I C(Xj 1 xe) - C(“j, Xk). (1) 

Reordering terms in (1) gives 

To give a geometric intuition to quasi-convexity, note that 
when zi, xj, zt, xl are the vertices of a quadrilateral, the 
inequality states that the sum of the lengths of diagonals is 
greater than or equal to the sum of the lengths of two of the 
sides. 

Definition The tour xi,. , ZN of G is linear if and only if, 
the following holds: For all i < j < k , we have 

C(Xi , Xj) I 4%) Xk) 

if xi is of opposite color from zj and xk; and we have 

C(Xi, “k) 2 C(“j, Xk) 

if zk is of opposite color from xi and xj 

2Any Mange matching problem may be trivially transformed hto a 
quasi-convex matching problem, but not vice-versa. 

The property of quasi-convexity is defined independently of 
the starting point of the tour; i.e., the nodes of the tour can 
be ‘rotated’ without affecting quasi-convexity. Obviously, the 
definition of linear tours is sensitive to the choice of starting 
point of the tour. 

Examples: Our main theorems give either O(N log N) or 
O(N) time algorithms for all of the following examples, with 
the exception of (7): 

(1) Let the nodes xi,, , XN be sequentially ordered points 
on a line (e.g., they, are real numbers indicating points on the 
x-axis), and let ]]xj - xi]] be the Euclidean distance from 2; 
to xj Let f be any concave down function, so f”(x) 5 0 for 
all I. If the cost function is defined by 

C(“i,“j) = f(llq - Xill), (2) 

then xi, , IN are a qUaSi-COlIVeX tour. Prior work for 
examples (1) and (2) gave linear time matching algorithms 
only for the case where f(x) is a linear function [11,1]. 

(2) Now let the points xl,. ,XN lie on a smooth curve C 
which is homeomorphic to a circle, with the points listed in, 
say, counterclockwise order. And let ]]zj - xi]] equal the 
shortest arclength along C from xi to zj Again let f(x) be 
any concave down function. With the cost function given by 
equation (2), the nodes xi,. , ZN form a quasi-convex tour. 

(3) Suppose xi,. , XN lie, in that order, on a circle. Let 
c(xi, xj) equal the Euclidean distance from xi to xj Since 
Euclidean distance is a concave down function of the circular 
arclength, this is a special ca.se of Example (2) and the nodes 
form a quasi-convex tour. In this case, the weak analyticity 
condition always holds and Main Theorem 2 gives an O(N) 
time algorithm. The best prior algorithm was O(N log N) 
time [17]. 

(4) More generally, if 11, , zN are the vertices of a convex 
polygon listed in, say, counterclockwise order, and if the cost 
function is equal to Euclidean distance, then the nodes form 
a quasi-convex tour. The prior algorithm for this case was 
O(N log N) time [17] and our algorithms are either O(N) or 
O(N log N) time depending on whether the weak analyticity 
condition holds. 

(5) Some non-convex polygons also have vertices which form 
a quasi-convex tour. For example, in a polygon shaped as 
below, the vertices A, B, C, D will form a quasi-convex tour, 
provided the angle 8 not too large. (This is reason we 
use ‘quasi-convex’ instead of ‘convex’ to describe tours which 
satisfy equation (l).) 

R 

A 

D 

A e. c 
(6) Examples (4) and (5) are also quasi-convex under other 
distance metrics such as the Li and L, metrics. 

(7) Marcotte and Suri consider graphs where the nodes are 
the vertices of a simple polygon and the cost function is 
equal to the length of the shortest connecting path inside the 
polygon. The nodes of such a polygon form a quasi-convex 
tour. The 

5 
rior algorithm and the algorithm of this paper 

are O(N log N) time for this example, since the cost function 
requires O(log N) time to compute. 

(8) In string matching algorithms, the cost of shifting a 
character’s position is specified as a function of the distance 



LINEAR AND O(nlogn) TIME MINIMUM-COST MATCHING 67 

shifted. The authors have worked in t,he past on string 
matching algorithms [23,24] in which the cost function is a 
linear function of distance. These prior algorithms have been 
quite successfully used in commercial applications, especially 
natural language search; and, we expect that the use of a 
concave down distance function will significantly improve the 
matching quality. As we discuss in section 5, the setting of 
example (1) above is precisely what is needed to allow (near) 
linear time string matching algorithms with concave-down 
cost functions. A number of authors, including [5,6], have 
studied concave down cost functions for string matching; their 
string matching algorithms are based on least-edit-distance 
and, in this regard, are quite different from ours. Least-edit- 
distance string matching algorithms are widely used because 
they provide rich and flexible string comparison functions; on 
the other hand, the best general algorithms for computing 
least-edit-distance require O(P) time (see [IS]). Our string 
matching algorithms are not as flexible, but can be tailored to 
work well for many applications: they have the advantage of 
being linear time computable. 

Main Theorem 1 (a) There is an O(N 1ogN) time a/go- 
rithm for the minimum-cost matching problem for linear 
quasi-convex tours. 

(b) There is an O(N log N) time algorithm for the minimum- 
cost matching problem for balanced quasi-convex tours. 

Remark The running times of the algorithms are given in 
terms of the number N of nodes, even though the input size 
may in some cases need to be 0(N2) to fully specify the values 
of the cost function. However, in all the examples above, the 
input size is O(N) since the cost function is specified by the 
nodes’ positions on a line, on a curve, or in the plane. In any 
event, our runtime analysis assumes that any value c(z~,z~) 
of the cost function can be computed in constant time. If this 
is not the case, then the runtimes are to be multiplied by the 
time needed to compute a value of the cost function (this is 
the situation in Example (7) above). 

We next define an “weak analyticity” condition which will 
allow yet faster algorithms. 

Definition Suppose that ~i and ~j are red (blue) nodes, 
that 6 2 0, and that there is a blue (resp, red) node zk such 
that 

C(Xi, Xk) - C(“j, Xk) < 6, 

The 6-crossover point of xi and xj is defined to be the first 
such xk, where ‘first’ means in tour order starting from xj 
and ending at xi. If no such XL exists, then the S-crossover 
point does not exist. 

It is not hard to see that the property of quasi-convexity 
implies that, if the 6-crossover point xk exists, then 
C(Xi, 21) - C(“j, ze) 2 6 whenever xi, xj, xl, x/, are in tour 
order and c(xi,xe) - c(zcj,xe) < 6 whenever x;,xj,zk,x~ are 
in tour order. Thus binary search provides an O(logN)-time 
procedure which, given zi, xj and 6, will determine if xk 
exists and, if so, which node xk is. This is the approach taken 
in the algorithms of Theorem 1, and is the source of the log N 
factor in the runtime. However, in some cases, xk can be 
found in constant time and we define: 

Definition A quasi-convex tour satisfies the strong analyticity 
condition provided there is a constant time algorithm which 
can determine if the 6-crossover point of x; and xi exists 
and, if so, can determine which node it is. 

A quasi-convex tour satisfies the analyticity condition pro- 
vided there is a constant time algorithm which can answer the 
following question (as a function of similarly colored nodes 
xi, xi, 21, in tour order and of c,6 > 0, where the 6-crossover 
of xi and xj is known to exist): 

“Do xj and xk have an c-crossover point which 
either equals or precedes in tour order the 6-crossover 
point of zi and xj?” 

Even the analyticity condition is too strong to be satisfied 
in many situations, so we also define a ‘weak analyticity 
condition’ as follows. 

Definition Let z be a node and y and z be denotations of 
nodes. We write y + z to denote that either (1) y and z 
exist and are distinct and y precedes z in the tour order 
beginning at x, or (2) y exists and z does not. 

A relative crossover procedure is a procedure R such that, 
given c , 6, xi, xj and xk as input, and letting y be the 6- 
crossover of xi and xj , and z be the c-crossover of xj and xk, 
then 

(1) If Y -LC, Z, then R outputs “Yes”. 

(2) If z +, y, then R outputs “No”. 

(3) Otherwise 0 may output either answer. 

Note that R is not required to determine y and z. The 
difference between weak analyticity and ordinary analyticity 
is that when condition (3) holds, Q may output either answer. 

Definition The vrealc analyticity condition holds provided 
there is a constant-time relative crossover procedure. 

Clearly the strong analyticity condition implies the ana- 
lyticity condition, which in turn implies the weak analyticity 
condition. In most applications, we do not have the analyticity 
or strong analyticity conditions, but the weak analyticity 
condition does hold in many natural situations. In particular, 
examples (l), (2), (3) and (4) do satisfy the weak analyticity 
condition, provided that the concave-down function is suffi- 
ciently natural. Consider, for instance, example (1) with the 
concave-down function f(x) = I, f(x) = ,/E, or f(x) = logx, 
etc. For example (l), the input nodes xl,. . . , ZN are given 
with a sequence of real numbers ~1 5 rz 5 .. . 5 TN which 
are the positions of the nodes on the real line. Given 
nodes xi, xj and S > 0, the first possible position for 
the 6-crossover of xi and xi can be found by solving the 
equation f (y - ri) = 6 + f(y - rj) for y; since we assume that 
arithmetic operations take constant time, the solution y can 
be found in constant time. Note that y is only the theoretical 
crossover point; the actual crossover is the first node XL such 
that y < Q. Unfortunately, even after y is known, it will 
not be possible to determine zk in constant time, unless 
some additional information is given about the distribution of 
the nodes on the real line. Thus, the analyticity condition 
and strong analyticity conditions do not hold in general for 
example (1). The reason the analyticity condition does not 
hold is that, if the theoretical c-crossover point occurs after the 
theoretical &crossover point, then the analyticity algorithm 
must output ‘No’ if there is a node after the theoretical 
6-crossover point and before or at the theoretical E-crossover 
point, and must output ‘Yes’ otherwise (because in the latter 
case the two actual crossover points coincide). Unfortunately, 
there is no general way to decide this in constant time, so the 
analyticity condition is false. However, the weak analyticity 
condition does hold, since the function 0 may operate by 
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computing the theoretical 6-crossover of xi and ZC~ and the 
theoretical c-crossover of xj and xk and outputting “Yes” if 
the former is less than the latter. 

For similar reasons, example (3) satisfies the weak analyt- 
icity condition: in this case, since the nodes lie on a circle 
and the cost function is Euclidean distance, the theoretical 
crossover position is computed (in constant time) as the 
intersection of a hyperbola and the circle. Likewise, the 
weak analyticity condition also holds for Example (2) if the 
concave-down function is sufficiently nice, and it holds for 
Example (6), where nodes lie on a circle under the L1 and 
L, metrics. Example (4), where the nodes form the vertices of 
a convex polygon, does not seem to satisfy the weak analyticity 
condition in general; however, some important special cases 
do. For example, if the vertices of the convex polygon are 
known to lie on a polygon with a bounded number of sides, 
on an oval, or an a branch of a hyperbola, then the weak 
analyticity condition does hold. 

The analyticity condition has been implicitly used by 
Hirschberg-Larmore [lo] who defined a Bridge function which 
is similar to our R function: they give a special case in which 
Bridge is constant-time computable and thus the analyticity 
condition holds. Later, Galil-Giancarlo [6] defined a “closest 
zero property” which is equivalent to our strong analyticity 
condition. 3 As we illustrated above, the analyticity and 
strong analyticity conditions rarely hold. Thus it is interesting 
to note that the algorithms of Hirschberg-Larmore and of 
Galil-Giancarlo will still work, with only minor modifications, 
if only the weak analyticity condition holds. 

Our second main theorem implies that these examples 
which satisfy the weak analyticity condition have linear time 
algorithms for minimum-cost matching: 

Main Theorem 2 (a) There is an O(N) time algorithm 
for the minimum-cost matching problem for linear quasi- 
convex tours which satisfy the weak analyticity condition. 

(b) There is an O(N) time algorithm for the minimum-cost 
matching problem for balanced quasi-convex tours which 
satisfy the weak analyticity condition. 

Remark In order to achieve the linear time algorithms, it is 
necessary that nodes of the graph be input in their tour order. 
This assumption is necessary, since without it, is possible to 
give a linear time reduction of sorting to the matching problem 
for linear tours. 

Our main theorems also apply to minimum-cost matchings 
for some non-bipartite quasi-convex tours. If a non-bipartite 
graph G has N nodes and has cost function c, then a 
matching for G is a set of ]fN] edges with all endpoints 
distinct. Parts (a) of Main Theorems 1 and 2 hold also for 
non-bipartite graphs which are linear quasi-convex tours. And 
parts (b) of Main Theorems 1 and 2 hold also for non-bipartite 
graphs which are quasi-convex tours with an even number of 
nodes. The non-bipartite cases are discussed in section 4; the 
algorithms are simple modifications of the algorithms for the 
bipartite tours. 

It is apparent that our algorithms can be parallelized but we 
have not investigated the precise runtime and processor count 
that is needed for a parallel implementation. He [9] has given 
a PRAM implementation of Marcotte and Suri’s algorithm 

3 The definition of the “closest zem property” is misstated in [6]: it 
should be defined as saying that it is possible to find the first T such 
that w(l,r) - w(~,T) - a 5 0 (note th e,r w corresponds to our cost 
function c, and a is a real). However, their algorithm explicitly uses 
the correct definition of “closest zem property” (see their Fact 2). 

which uses N processors and O(log’N) time and it is clear 
that our algorithm can be computed with the same number of 
processors with the same time bounds using He’s methods. 

We wish to thank Dina :Kravets, Dave Robinson and 
Warren Smith for helpful discussions -and Dave Robinson 
for implementing the algorithms described below. 

2. Reductions and Lemmas 
2.1 Reduction to tours of alternating colors The first 
step to giving our minimum-cost matching algorithms is to 
reduce to the special case of tours in which the colors of the 
nodes alternate. In other words, we will be able to assume 
w.1.o.g. that z~,zJ~,z~, are red and that XZ~,X~,Z~, are 
blue. 

Definition Let CCD and xj be nodes. We write [xi, xj] to 
denote the sequence of nodes obtained by starting with xi and 
advancing in tour order to xi We write (xi, ~j], [xi, ~j) and 
(xi, xj) for this sequence minus the starting node, the ending 
node, or both. 

If x is a node, let d(z) denote the number of red nodes 
in [xl, Z) minus the number of blue nodes in [XI, x). The 
level of 3:) level(z), is equal to d(a) if 2 is red and is equal 
to d(z) + 1 if z is blue. We write x - y to mean that 
d(z) = d(y); obviously, - is an equivalence relation. It is 
easy to see that if y is the first node after z in input order 
such that I - y, then 2 and y are of opposite colors. Also, if 
z - y and ~,y are in input order and are of opposite colors, 
then (CC, y) contains equal number of red and blue nodes. For 
balanced tours, the --equivalence relation is invariant under 
circular rotation of the nodes in the tour. 

Given a matching on the nodes of a graph, we write xi H Z? 
to indicate the presence of an edge between xi and xj in the 
matching. We say that xj immediately follows xi in tour 
order if j = i + 1 or if i = N and j = 1. Two nodes xi 
and xj are adjacent iff one of them immediately follows the 
other. An edge xi H ~j is called a. jumper if Ni and xj are 
not adjacent. Two jumpers are said to cross if they are of the 
form xi H XL and xj t-i 21 with xi, xj, CCD, xe in tour order. 

Lemma 3 Let G be either a linear quasi-convex tour or a 
balanced quasi-convex tour. Then G has a minimum-cost 
matching in which every edge xi +-+ xj satisfies xi - xj. 
In other words, some minimum-cost match,ing for G can 

be obtained as a union of minimum-cost matchings on the 
--equivalence classes of G. 

To prove Lemma 3 we use: 

Lemma 4 G has a minrmum-cost matching in which no 
jumpers cross. 

Proof (Sketch) If a minimum-cost matching does have a 
pair of jumpers which cross, the quasi-convexity property 
allows them to be ‘uncrossed’ without increasing the total 
cost. Repeatedly uncrossing ,jumpers will eventually yield 
a minimum-cost matching with no crossing jumpers. (See 
Lemma 1 of [l] for a detailed proof of this.) 

Lemma 3 is proved by noting that a minimum-cost matching 
with no crossing jumpers must respect the --equivalence 
classes. This is because, if a jumper xi * xi is in a crossing- 
free matching with i < j, then the nodes in the interval 
(xi, xj) must be matched which each other and thus (xi, xj) 
must have equal numbers of red and blue nodes. In the 
unbalanced, linear case, this also depends on the fact that, 
w.l.o.g., there is no jumper which crosses an unmatched node 
(this is an immediate consequence of the linearity). 
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By Lemma 3, in order to find a minimum-cost matching, 
it suffices to extract the w-equivalence classes, and find 
minimum-cost matchings for each equivalence class indepen- 
dently. It is an easy matter to extract the --equivalent 
classes in linear time by using straightforward counting. Each 
equivalence class consists of an alternating color subtour: in 
the balanced case, there are an even number of nodes in each 
equivalence class, and in the linear case, there may be an even 
or odd number of nodes. Thus, to give (near) linear time 
algorithms for finding matchings, it will suffice to restrict our 
attention to tours in which the nodes are of alternating colors. 

In view of Lemma 4, we may restrict our attention to match- 
ings which contain no crossing jumpers. Such a matching will 
be called crossing-free. 

Finally, we can assume w.1.o.g. that the tour is balanced. 
To see why we can assume this, suppose that ~1,. , XN is 
an unbalanced, linear tour of alternating colors. This means 
that 21 and 2~ are the same color, say red. We can add 
a new node zN+l to the end of the tour, label it blue, and 
let c(zi,zN+1) = 0 for all red zi. These N + 1 nodes no 
longer form a linear tour; however, they do form a balanced 
quasi-convex tour. Solving the matching problem for the N $1 
nodes immediately gives a solution to the matching problem 
on the original N nodes. 
2.2 Some important lemmas Since we are now working only 
with balanced quasi-convex tours of alternating colors, we shall 
often change the names of the nodes to RI, B1, , RM, BM; 
so Ri and Bj refer to the i-th red node and the j-th blue 
node in the tour, respectively. (So x2i-l is the same as Ri 
and zzi is the same as Bi .) Note that this means N = 2M. 
To simplify notation, we define 

Ni = c(Ri, Bi) and c; = c(B~,R~+~). 

A greedy matching is a matching which contains no jumpers, 
i.e., every node is matched to an adjacent node. There are 
two greedy matchings, namely, the one containing all edges 
Ri tf Bi and the one containing all edges Bi-1 (--i R; and 
the edge BN * RI. For zi and xj nodes of opposite color, 
a matching u is said to be greedy on (xi, xj) provided it 
contains as a submatching the unique matching of adjacent 
nodes contained in the interval (xi, xj). We similarly define 
the notion of u being greedy on a balanced interval 1, for I 
one of the intervals [xi, xj), [xi, xj] or (xi, xj] , but with the 
additional provisos that xi H xi+l is in u in the first two 
cases and that xi -1 * xi is in g in the second two cases. 4 

The notation [R;, Bj] has already been defined. In addition, 
the notation [i, f denotes the interval of integers i, i + 1, . , j 
if i < j, or the (circular) interval i, i + 1,. _, M, 1,2,. , j if 
j < i 2. M. We also use the notations (i, j] , [i, j) and (i, j) 
for the Intervals with one or both of the endpoints omitted. 

Definition Let R; and Bj be nodes; we write Ri + Bj to 
denote a directed edge going from Ri forward (in tour order) 
to Bj . That is, we think of Ri -+ Bj jumping over the nodes 
Ri, Bi, &+I,. , Rj, Bj. We say that Ri + Bj is a candidate 
(meaning, a candidate for a jumper), if 

c(Ri,Bj) + C CL < C CL 
W,j) f-e[i,jl 

The intuitive meaning Ri -+ Bj being a candidate is that it 
would be of lower cost to use the jumper Ri +-+ Bj plus the 
greedy matching of adjacent nodes in (Ri, Bj) in place ofjust 
the greedy matching of adjacent nodes in [Rd, Bj] 

Lemma 5 suggests an algorithm for finding a minimum-cost 
matching. Namely, if there is a minimal candidate, greedily 
assign edges in its interior according to Lemma 5. This induces, 
a matching problem on the remaining unassigned nodes, and 
it is clear that any minimum-cost matching on this smaller 
problem will lead to a minimum-cost matching for the original 
problem. Iterating this, one can continue removing nodes in 
the interiors of minimal candidates and reducing the problem 
size. Eventually a matching problem with no candidates will 

4Note that, of the two greedy matchings for G, one is greedy on 
. .~~ 

A similar definition is used to define what it means for an 
edge Bi + Rj to be a candidate; namely, Bi + Rj is a 
candidate iff 

c(Bi,$) + c ci < C c;. 
ec(i,j) W,j) 

Candidates always have endpoints of opposite colors and are 
directed. It is possible to have both Ri + Bj and Bj + Ra 
be (distinct) candidates, or to have one or neither of them 
candidates. 

It is an easy observation that if there are no candidates, 
then the greedy assignment(s) are minimum-cost matchings. 
To prove this, suppose u is a minimum-cost matching which 
contains a jumper: by Lemma 4, g may be picked to contain 
no crossing jumpers. Since there are no crossing jumpers, 
u must contain a jumper xi ++ xj such that u is greedy 
on (xi,Xj) (namely, pick the jumper so as to minimize the 
tour-order distance from xi to xj). Let u’ be the matching. 
which is the same as u, except greedy on [xi, xj] Clearly 
u’ has one fewer jumper than u, and since xi + xj is not 
a candidate, u’ has cost no greater than u. Iterating this 
construction shows that at least one of the jumper-less greedy 
matchings must be minimum-cost. To show they are both 
minimum-cost, let (TO and ~1 be the greedy matchings which 
contain the edges 21 +-+ x2 and 21 * ZN, respectively. Then 
uo can not have cost lower than (respectively, higher than) the 
cost of (~1 since otherwise, x2 + II (21 + ZN, respectively) 
would be a candidate. 

Definition A candidate xi -+ xj is a minimal candidate iff 
there is no other candidate XL + xe in its interior; that is 
to say, there is no candidate xk + xe with [zk,xe] a proper 
subset of [xi, xj] 

Lemma 5 Consider a balanced quasi-convex tour of alternat- 
ing colors. 

(4 

(b) 

Suppose R, + Bb is a minimal candidate. Then every 
minimum-cost, crossing-free matching is greedy on the 
interval (R,, Bb). That is to say, every minimum-cost, 
crossing-free matching contains the edges Be-1 H Re for 
all e E (u, b]. 

Suppose B, + Rb is a minimal candidate. Then every 
minimum-cost, crossing-free matching is greedy on the 
interval (B,, Rb). That is to say, every minimum-cost, 
crossing-free matching contains the edges Re - BL for all 
e E (a, b). 

Note that Lemma 5 says only that the edges connecting 
adjacent nodes in the interior of the minimal candidate are 
in every minimum-cost matching; it does not say that the 
minimal candidate itself is a jumper in any minimum-cost 
matching. The proof of Lemma 5 is fairly involved and we 
postpone it until section 2.3. Lemma 5 also holds for linear 
tours with alternating colors for candidates x + y with x,y 
in input order. 
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be rea.ched; in this case, it suffices 1.0 greedily match the Lemma 7 
remaining nodes. 

Unfortunately, this algorithm suggested by Lemma 5 is not (a) Bnft[R,, B,] > Bnft[Rb, A,] if and only if c(R,, B,) - 

linear time (yet); thus we need to refine Lemma 5 somewhat: C(Rbr &) < A[&, Rb]. 

Definition We define: (b) Bnft[B,, Re] > Bnft[&, R,] if and only if c(B,, R,) - 
c(Bb, &) < A[%, Bb]. 

and, for .r and y the same color, Bnft[z, y] = --co. 

It is immediate that Bnft[z, y] > 0 iff z + y is a candidate; 
in fact, Bnft[z,y] measures the benefit (i.e., the reduction in 
cost), of using I h y as a minimal jumper instead of the 
greedy matching on [z, y] 

The next lemma forms the basis for the correctness of the 
algorithm given in section 3 for the serial transitive closure 
problem. The general idea is that the algorithm will scan 
the nodes in tour order until at least one candidate is found 
and then, according to Lemma 6, the algorithm will choose an 
interval (ze,zk) to greedily match. Once the interval (!,Ic) 
has been greedily matched, the algorithm need only solve the 
induced matching problem on the remaining nodes. 

Lemma 6 Let G be a balanced quasi-convex tour matching 
problem. Let 1 < k < N and suppose Bnft[xi, xj] < 0 for all 

1 _< i < j < k Suppose m dGf max{Bnft[zi, zk] : i < /c} > 0 

and let e dsf max{i < k : Bnft[xi, x,J = m} Then every 
mznimum-cost, crossing-free matching is greedy on (xl, xt). 

Proof The proof is, in essence, an iteration of Lemma 5. We 
argue by induction on k. Let G, k, m and f? satisfy the 
hypothesis of the lemma. Let s = max{i < I; : Bnft[z,, zk] > O}, so 
z, - zrk is a minimal candidate. By Lemma 5, any minimum-cost, 
crossing-free solution for G is greedy on the interval (z$,zk). 
Hence, it will suffice to let G’ be the matching problem obtained 
from G by discarding the nodes %*+I,. , zk-1 and prove that any 
minimum-cost, crossing-free solution for G’ is greedy on (zP,z~]. 
If ! = s, there is nothing to prove, so we assume e < 3. Note that 
zk is now the (s + I)-st node in the G’ tour order. We use Bnft’ 
to denote the Bnft function for G’. 

(a) If 1 5 i < j 5 s, Bnft’[x,, x3] = Bnft[z,, z3]. 
(b) If 1 5 i 5 s, Bnft’[z,, xk] = Bnft[z,, zk] - Bnft[z,, 2~1. 

Claim (a) is immediate from the definition of Bnft. The intuitive 
meaning of (b) is that the benefit of using the jumper 2, - zh is 
reduced by the benefit already obtained from the jumper za ++ z,+. 
We formally prove (b) for the case that z, and z, are red and 
z,t is blue, the opposite colored case has a similar proof. Assume 
x, = Ra, z, = Rb and zk = B,. Then 

Bnft’[&, &I = xPEra,bj c, + 4% B,) 

-c (E[&,) C: - c(Ra> Bc) 

Bnft[h Bcl = Cpcra,cI G - ccEra cJ 4 - 4Rw Bc) 

From these three equations, Claim (b) follows immediately. 
Now let m’ = max{Bnft’[z,, xk] : i < 3). By Claim (b), 

m’ = m - Bnft[z,, zk] ; since e < s, m’ > 0. Likewise, 1 = max{i < 
s : Bnft’[x,, zk] = m’} Thus, by the induction hypothesis, any 
minimum-cost solution for G’ is greedy on (ze, zz] and Lemma 6 
is proved. 0 

Lemma 7 follows immediately from the definitions. 

Lemma 8 Let u, V,Z, y be in tour order with nodes-u and v 
of one color and x and y of the other color. Then 

Bnft[u, x] > Bnft[v, x] + Bnft[u, y] > Bnft[v, y] 

Proof By Lemma 7, Bnft[u,x] > Bnft[v,x] is equivalent 
to c(u, x) - c(w, x) < A[u, ~1, and Bnft[u,y] > Bnft[v, y] is 
equivalent to c(u,y) - c(v,y) < A[~,v]. Now, by quasi- 
convexity, c(u, x) - c(v, z) 2 c(u, y) - C(V, y), which suffices to 
prove the lemma. 0 

Let R, and Rg be distinct red nodes. The previous two 
lemmas show that if there is any node R, (with R,, Rb 
and R, in tour order) such that Bnft[R,, R,] is greater than 
Bnft[Rb, R,] , then the first such R, is the A[R,, Rb]-crossover 
point of R, and Rb. We shall denote this first R,, if it exists, 
by x[R~, Rb]; if it does not exist, then x[R,, Rb] is said to 
be undefined. Similarly, x[B,, &,] is defined to the be the 
A[B,, &]-crossover point of B, and &,, and, if defined, is 
the first R, where Bnft[B,, R,] is greater than Bnft[!?b, R,]. 

We now assume that we have a procedure Q(x, y, z), which 
given nodes x 1 y, z in tour order returns “True” if xix, yl +, 
i[y, z] and returus 

. - .  . - I  il 

“False” if x[y,z] +Y x[+,y]. (If neither 
condition holds. then 0(x. V. 2‘1 mav return an arbitrarv truth 
value.) If the ‘weak anaf&crty condition holds, then Q is 
constant time computable. Without this assumption, R is 
O(log N) time computable since Lemma 8 allows x[-, -1 to 
be computable by binary search. 

The general idea of the algorithm given in section 3 below 
is that it will scan the nodes in tour order searching for 
candidates. Whenever a node is reached that is the head of 
candidate, the algorithm will take the candidate specified in 
Lemma 6 (the one that was denoted xe + xh) and greedily 
match the nodes in its interior. The greedily matched nodes are 
then dropped from consideration and the algorithm resumes 
its search for a candidate. Suppose the u and v are two nodes 
already scanned in this process that are being remembered as 
potential endpoints of candidates. Lemma 7 tells us that if 
a node x is found where Bnft[u, x] > Bnft[v,x], then at all 
succeeding nodes y, Bnft[u, y] > Bnft[v, y]. By the criterion of 
Lemma 6, this means that after the node x is found, there is 
no further reason to consider candidates that begin at node v, 
since any candidate v - y would be subsumed by the better 
candidate u + y. 

To conclude this section we describe the algorithm in very 
general terms; in section 3 we give the precise specification 
of the algorithm. The algorithm scans nodes (starting with 
node x1, say) and maintains three lists. The first list, M, 
contains the nodes in tour order which have been examined so 
far. The second list, L -I, contains all the red nodes that need 
to be considered as potential endpoints of candidates (so L-r 
is guaranteed to contain all the nodes satisfying the criterion 
of Lemma 6). The third list. L1. similarlv contains all the 

Definition The A function is defined by: 

AiRa> Rbl = &a,b) ce - &[a,b) ci 

AlBaa Bd = .&a,b) ci - C@(a,b] Cl 

blue nodes that need to be considered as potential endpoints 
of candidates. At any point during the scan, the lists will be 
of the form: 

M = 21,. .,X,-l 
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Ll-’ = &,,...,Rap 

L1 = &,,...>Bb, 

with it-l and L1 subsequences of M. The following four 
conditions will be maintained during execution: 

(1) cl,. , z,-1 are the nodes scanned but not matched, are 
in tour order, and there are no candidates zi -+ xi with 
l<i<j<r. 

(2) z,-r precedes x[Rap-, , R+] in tour order. 

(3) For all 1 < i 5 p - 2, R(R,,, R,,+,, R,,+,) is false. 

(4) For all 1 5 i 5 q - 2, R(Bb,, Bb,+,, Bb,+z) is false. 

(5) At any possible future node xk following x,.-l such that 
xk is the first point where a candidate is discovered; if the 
xl which satisfies Lemma 6 is among ~1,. , x,-r then 
it is already on the list LC-l or t’ (depending on which 
color it is). 

When scanning the next node I,, the algorithm must do the 
following (we assume x, is blue, similar actions are taken for 
red nodes): 

(p) While p 2 2 and Bnft[R+,, I,] > Bnft[R+, z,] , pop 

R,, from L-l and decrement p. 

(Y) If Bnft[f&, xk] > 0, greedily match nodes in the interval 

(RQ,l xk). The matched nodes are discarded from the 

lists M , L-’ and LC1 (the remaining nodes are to be 
implicitly renumbered at this point). 

(a) While q >_ 2 and S1(Baqml, Baq, z,.), pop Ba4 from LC1 
and decrement q 
Then push x, onto the end of L,’ (and increment q). 

Sten (a) is iustified bv recalling that if 2, is past 
x[Rap’_,,‘~kdpl, t&n &,, ” may be removed from consideration 
as an endooint of a candidate (bv Lemma 6). 

Step (6*) is justified as follows~ suppose di = x[B,~-,, B,q] 
equals or precedes Rj = x[B, , c,.] (using tour order, begin- 
ning at Bap ). Then at any future candidate endpoint XL, 
either xb follows or equals Ri , in which case Bnft[Baq-, , xk] 
is greater than Bnft[Bag,xt], or xk precedes Rj, in which 
case, Bnft[x,,xJ is greater than Bnft[B,*,xk]. Thus Baq will 
never be the starting endpoint of a candidate satisfying the 
criteria of Lemma 6, and we may drop, it from consideration. 

To justify Step (y) we must show that the candidate 
R (Ip -+ x, satisfies the criteria from Lemma 6: in view of the 
correctness of the rest of the algorithm. for this it will suffice 
to show that Bnft[R,,, x,] 5 Bift[R, , if] for all 1 < i < p. 
For this. note that Sten (a) and co<dition (3) above ensure 
that 2,’ precedes x[R,‘,, R=:+,] for all 1 5 ‘i 2 p. This, in 
turn, implies Bnft[R,,, x,] 5 Bnft[R,,+,, x,.] for all i, which 
proves the desired inequality. 

After the algorithm has scanned all the nodes once, it 
will have found and processed all candidates xi + Zj where 
i < j. However, since the tour is circular, it is necessary to 
process candidates zi - xj with i > j. At the end of the 
first scan, the list M consists of all nodes, ~1,. , xn which 
have not been matched yet and LC-’ and icl contain nodes 
R,, , . , Rap and RbI,. , Bbg, as usual. During the second 
scan, the algorithm is searching for any candidates of the form 

- B. 
sd 

with 
onli f 

j < ai or of the form B,, -t Rj with j 5 ai 
or such candidates). To process a node during the 

second scan, the algorithm pops 21 off the left end of M, 
implicitly renames 21 to c, and the rest of the nodes zi to 
xiel, sets T = 71, does Step (cx): (still assuming x, is blue) 

(a) If xv equals Bb, , then pop Bb, from the list L1 and 
implicitly renumber ,!I,‘, decrementing q, 

and then does steps (p)-(6), except that in Step (6), the 
node 2, is not added to the end of Cl. The reason for 
Step (cr) is that once a node Bb, is encountered on the 
second scan, Bb, is no longer a possible starting endpoint 
for a candidate. The reason for not adding 2, to the end 
of icl in Step (S) is that can not be the starting endpoint of 
a candidate, because any such candidate would have already 
been found earlier. 

The second scan will stop as soon as both C lists become 
empty. At this point no candidates remain and a greedy 
matching may be used for the remaining nodes in the M list. 

The actual description of the algorithm with an efficient 
implementation is given in section 3, and it is there proved that 
the algorithm is linear time with the weak analyticity condition 
and O(N log N) time otherwise. Although we described steps 
(a)-(6) only for blue x,. above, the algorithm in section 3 
uses a toggle $ to handle both colors with the same code. 
Finally, one more important feature of the algorithm is the 
way in which it computes the values of the Bnft function and 
of the A[x, y] function: it uses intermediate values I[X] which 
are defined as follows. 

Definition The I[z] function is defined by 

WLI = A[RI, &I 
Wal = U&l + c(R,, B,). 

Note that I[R,+J = IIBa] - c(B,, R,+l). 

It is immediate from the definitions that, if z, y are tour order 
(starting from zr ), then 

Ak, ~1 = I[YI - +I for x and y red. 

Nx,YI = Ihl- 11~1 for z and y blue. 

Bnft[x, ~1 = I[YI - I[xl - 4x, Y/) for z red, y blue. 

Bnftb, ~1 = I[xl - I[YI - 4x, Y) for z blue, y red. 

These equalities permit the values of A and Bnft to be 
computed in constant time from the values of I[-]. Also, 
it is important to note that only the relative I[-] values 
are needed; in other words, it is OK if the I[-] values are 
shifted by a constant additive constant, since we always use 
the difference between two I[-] values. 

The I[-] function is not only easy to compute, but also 
provides an intuitive graphical means of understanding the 
above lemmas and algorithm description. For example, in 
Figure 1, RI - B3 is a (minimal) candidate whereas RI + B1 
and Rl -+ B2 are not candidates. In Figure 2(a), the node Bs 
is the relative crossover, x[Rl, Rz], of RI and R2; on the 
other hand, in Figure 2(b), the relative crossover does not 
exist. Figure 3(a) shows an example where R(R1, Rz, R3) is 
true and Figure 3(b) shows an example where R(R1, Rz, R3) 
is false. 
2.3 Proofof Lemma 5 We now prove Lemma 5 - by symmetry, 
it will suffice to prove part (a). Since the lemma is trivial in case 
a = b, we assume a # b. Let 0 be a crossing-free matching: we 
must prove that d is greedy on (I?,, &) . By the crossing-freeness 
of 0 and by the fact that R, -+ Bb is a minimal candidate, 
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rfu,l 

t 

Figure 1: RlfZl “A 8”,’ isBi caRnhida:z as I[Rr] + c(Rr, &) < 
I[&], which is equivalent to Bnft[R1, B4] > 0. 

. . . 

RI BI Rz B2 R3 B3 

Figure 2: Iiktrkio”,: ofB?the “,&ati,“a crossover, x[R1.&], of 
RI and Rz. In (a), B3 is x[Rl, Rz], since it is the first 
node z to satisfy I[Rz]+ c(Rz,z) > I[Rl]+ c(R~,z). In (b), 
the relative crossover does not exist. 

d does not contain any jumper with both endpoints in [R,,Rb], 
except possibly R, ++ &, itself. If R, - Rb is in 6, then the 
same reasoning shows that d is greedy on (R,, Bb) ; so we suppose 
that R, - Bt, is not in b. Since we are dealing (with no loss of 
generality) with balanced tours, we may assume that b = N, by 
renumbering nodes if necessary. 

Claim (1): R, - B, is not in 0. 
Suppose, for a contradiction, that R, ++ B, is in 6. Let 2) be the 
least value such that R, ^-B, isin o forsome q<a<v. Note 
that such a 21, a < 2r 5 N, must exist since there are no jumpers 
in [R,, B.PJ] and since o is not greedy on [R,, BN] (it can not be 
greedy on [R,, BN], since R, + BN is a candidate). By choice 
of V, d is greedy on [R,, R,). Since R, - BN is a minimal 
candidate, Bnft[R,, BN] > Bnft[R,, B,v], so Lemma 7 implies 

c rE[a,v) c* - C&?,“) c: > c(Ra,B,v) - ~(&,BN). 

(b) 

Figur: 3:“Q(>r ,~z,nka~3is true in (a) and false in (b). 

implies 

c( R,, BN) - c( R,, BN) 2 c(Ra, Bq) - d&z BP). 

Combining these inequalities yields 

CiEfa,v) c, + c(Rv,B,) > &a,vl c: +c(fLB,). c3) 

Let O’ be the matching obtained from u by replacing the jumper 
B, * & and the greedy matching on [Ra, R,) with the edge 
B, - Ra and the greedy matching on (R,, R,]. By (3), 6’ has 
cost strictly less than the cost of 6, which is a contradiction. 

Claim (2): RN tt BN is not in O. 
Claim (2) is proved by an argument similar to Claim (1). 
Alternatively, reverse the colors and the tour order and Claim (2) 
is a version of Claim (1). 

Claim (5’): The matching 0 is greedy on (R,, Bb) 
Suppose, for a contradiction that o is not greedy on (R,, Bb). In 
view of Claims (1) and (2) and since o has no jumpers in [R,, BN], 
this means that there exist u and 21 such that u is the least value 
such that o contains B, ++ R, with T < a 5 u and u is the least 
value such that u contains R, ++ B, with q < a < u. Namely, let 
u be the least value 2 a such that B, e R,+I is not in 0 and e 
be the least value > u such that. R, ct B, is not in 6. For these 
choicesof u and v,it mustbethat q<T<a<u<v<N and 
that G is greedy on [Ba, R,] and on [R,+I, B,,-I]. 

Since R, - BN is a candidate, 

c ,Ela,w c* ’ c(Ra, BN) •t &a,N) C:. 

And since it is minimal, neither R, + B, nor R, - BN are 
candidates; i.e., 

c rE[a,u] c, 5 c(R-Bu) + &a,U) 4 

c ,,c[,,,N] c: 5 c(Rv, BN) + &v,N) d. 
Combining these three inequalities gives 

c tE(u,v) ct+c(Ra, Bu)+c(RwBN) > &,+) c:+c(Ra, BN). (4) 

Since R,, R,, BN, B, and R,, R,,, B,, B, are in tour order, quasi- 
convexity implies the two inequalities 

c(Ra,B,)+ ~(&,BN) I c(&,BN)+c(R,,B~) Since R,, R,, BN and B, are in tour order, quasi-convexity 
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c(R,, BP) + c(Ra, Bu) 5 c(Rr, B”) + c(Ra, 4) 
which combine to yield: 

c(Ra, BN) - c(&, &) - c(&, BN) 2 (5) 

c(R,,B,) --(fL,Bu) -c(Ru,&). 

Using (4) and (5) gives the inequality 

c tEcu,vj G + c(Rw Bu) + c(Rv, 4) > ,&u,v) 4 + c(R- 4). 

Let u’ be the matching obtained from d by replacing the jumpers 
R, ++ B, and R, ++ B, and the greedy matching on (B,,R,) 
with the edge R, * B, and the greedy matching on [E,,R,]. 
The final inequality says that u’ has cost strictly less than the 
cost of 0, which is a contradiction. •I 

3. The Algorithm 
In this section, we give the actual algorithm for the Main 

Theorems. The correctness of the algorithm follows from the 
development in section 2.2. 
3.1 Preliminaries As mentioned above, the algorithm main- 
tains three lists of nodes called deques (for “double ended 
queues”, since we will have to access both ends of the lists). 
The three deques ace the “main” deque M, and two “left” 
deques kc1 and .JY’ The latter two ace called “left deques” 
since they contain possible left endpoints for candidates. The 
deques will be updated by push-right operations which add a 
new node to the right end, by pop-right operations which pop 
the rightmost node off the deque, and by pop-le& operations. 
However, push-/e& operations ace never required. Deque 
operations can be efficiently implemented by using contiguous 
memory locations to store the deque elements and maintaining 
pointers to the left and right endpoints; each deque operation 
can then be performed in constant time. For our algorithm, 
it will suffice to reserve enough space for 2N deque elements 
(with no possibility that a deque will grow leftwacd since 
push-left’s ace not used). 

Subscripts R, L , and R - 1 ace used to select the rightmost 
item, leftmost item, and the item preceding the rightmost, 
respectively. So L-,l refers to the leftmost element of it-l, 
MR-~ refers to the item just before the rightmost member of 
M , etc. Each deque element is actually a pair, for example, 
MR = (X, I); the first entry X of the pair is a node and 
the second entry I is a numerical value, namely I = I[X] 
as defined in’ section 2.2. To simplify notation, we shall use 
the same notation for a deque element as for the node which 
is its first component. Thus, ML also denotes the node 
which is its first component. We write I[ML] to denote its 
second (numerical) component. Similar conventions apply to 
the L*’ deques. To simplify our presentation of the algorithm 
we deal with boundary effects by augmenting the definition 
of primitive operations as necessary. For example, accessing a 
non-existent deque element will return an undefined indicator 0 
and, in general, functions of undefined operands ace false or 
zeco (in particular, the cost function c(-, -) and the I[-] 
functions return zero if they have 0 as an argument). 

Function Input0 returns the next vertex from an imagined 
input tape which moves in the forward direction only; and is 
assumed to hold a balanced, alternating color tour. When the 
tape’s end is reached, ‘undefined’ is returned. Procedure 
Output0 is used to write an individual matching to an 
imagined output tape. They ace written as discovered; but can 
easily be output in tour order (with only an extra O(N)-time 
computation). 

To use the same code for red nodes and blue nodes, a 
variable $ tracks vertex color by toggling between -1 and 

1. Our convention is that 4 = 1 corresponds to blue, and 
T,!J = -1 to red. 
3.2 Narrative Description of the Algorithm. Initiahza- 
tion consists of setting the three deques to be empty and 
setting the color toggle $ := -1. 

The algorithm first reads nodes from the input and pushes 
them onto the right end of the M-deque, and then twice 
scans the nodes in tour order. During the two scans, nodes 
ace popped from the left end of M and then pushed onto its 
right end.5 In addition, while processing a node, some nodes 
may be popped off the right end of M to be matched. It will 
always be the case that M contains a sequence of contiguous 
nodes in tour order and that the node currently being scanned 
immediately follows the (formerly) rightmost element of M 

The variable $J will be maintained as a color toggle, SO that 
$J is equal to -1 if the node currently being processed is red 
and to 1 if the current node is blue. The algorithm used for 
pushing an element onto the right end of M is: 

Algorithm 1 This procedure pushes a vertex X onto the right 
of the M deque, and computes the corresponding I[X] value 
which is pushed along with X . 

procedure Push-Main(X) 
I := I[MR] + pb t c(MR, X) 
push-right (X,1) onto M 
return0 

Algorithm 1 merely computes the I[-] value for a node X 
and pushes the node and its Ir[-] value on the right end 
of A4. To justify the computation of the value of I[X] , note 
that if X is blue, then 4 = 1 and I[X] was defined to equal 
I[MR] - c(MR, X); whereas, if X is red then cp = -1 and 
I[X] equals I[MR] + c(,44~, X). (Unless M is empty, in 
which case, I[X] = 0 .) 

Once the current node has been pushed onto the right 
end of M, the following code implements Step (p) from 
section 2.2: 

whiIec(Cz-,, MR)-c(L$,MR)<$. (IIL~]-IIL$ml]) 
pop-right C-’ 

To justify the correctness of the while condition, 
suppose that the currently scanned node is red, so 

‘p = -1. By Lemma 7, Bnft[Lz’,, MR] > Bnft[L$,MR] iff 

+&,MR) - c(@, MR) < A[L$“_, , C$] Furthermore, 

A[kz-l,Lz] is equal to $ . (1[Lz] - I[Gz-,I) since C-’ 
contains blue nodes and $ = -1 (by the equalities at the end 
of section 2.2). In this case, MR is past the crossover point of 

@-, and Cz, so .Gz may be discarded from consideration 
as a left endpoint of a candidate. A similar calculation justifies 
the case when the current node is blue. 

To implement Step (y ), the following code is used: 

if c(MR,C~) < ti. (~[MR] - I[Cz]) 
X := pop-right M 
while MR # L$ 

Match_Pair() 
Push-Main(X) 

where Mat&Pair is defined below. The above if statement 
checks whether C$ + MR is a candidate; if so, the algorithm 
greedily assigns edges to node in the interior of the candidate 

5For linear tours, only the first scan is needed; however, we treat 

only the more general (circular) case. 
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(where ‘greedily’ means with respect to the nodes that have 
not already been assigned). Before the greedy assignment is 
started, the rightmost entry is popped from M and is saved 
as X to pushed back on the right end afterwards. There are 
two reasons for this: firstly, this gets the current node X out 
of the way of Match-Pair’s operation, and secondly and more 
importantly, when X is pushed back onto M, the I[-] value 
for the current node is recomputed so as to be correct for 
the reduced matching problem in which the greedily matched 
nodes are no longer present. Match-fair is the following 
procedure: 

procedure Match-P&() 
Output(“MR-1 c* Ma”) 
pop-right M 
if MR=LC;/; 

pop-right C’ 
pop-right M 
return() 

The procedure Match-Pair assigns a jumper MR-I u MR 
and discards a matched node from the deque LC” if appears 
there. Because of the while condition controlling calls to 
Match-Pair, it is not possible for a matched node to occur in 

L+ , so we do not check for this condition. 
To implement Step (a), the following code is used: 

while CI(Lg-,, Lg, MR) = “Yes” 

pop-right C’ 
push-right MR onto Lti (without popping MR) 

That completes the description of the how nodes are 
processed during the first scan. As mentioned earlier, the 
last instruction (the push-right) is omitted from Step (6) 
during the second scan. Other than this, the processing for 
Steps (/3)-( 6) is identical in the two scans. 

One potentially confusing aspect of the second scan is that 
the I[-] values are no longer actually the correct I[-] values: 
for example, it is no longer the case that I[ML] is necessarily 
equal to zero. Strictly speaking, the I[-] values all shift by an 
additive constant when an entry is popped from the left end 
of M; however, it is not necessary to implement this shift, 
since the algorithm only uses differences between I[-] values. 
The end result is that nothing special needs to be done to the 
I values when we pop-left M 

After both scans are completed, any remaining nodes may 
be greedily matched. As discussed above, there are two 
possible greedy matchings and both have the same (optimal) 
cost. Thus either one may be used: the algorithm below 
just calls Match-Pair repeatedly to assign one of these greedy 
matchings. 

The complete matching algorithm is shown as Algorithm 2. 
We claim that its runtime is either O(N) or O(NlogN) 
depending on whether the weak analyticity condition holds. To 
see this, note that the initialization and the windup processing 
both take O(N) time. The loops for the each of the two scans 
are executed 5 N times. Except for the while loops, each 
call to Process-Node takes constant time. The second while 
loop (which calls Match-Pair) is executed more than once only 
when edges are being output. If the first or third while loop 
is executed more than once, then vertices are being popped 
from the C stacks. Since ]%N] edges are output and since 
O(N) vertices are pushed onto the C stacks, each of these 
while loops are executed only O(N) times during the entire 
execution of the algorithm. An iteration of the first or second 

Algorithm 2 This is the matching algorithm for balanced 
quasi-convex tours. AlI variables are global. 

“Initialization” 

M,L-l,Ll := 0 
* := -1 

“Read Input into the M deque” 
while [X := Input()] # 0 

Push-Main (X) 
II, := -* 

“The First Scan” 

while ,Cti is empty or ML # Lf 
X := pop-left M 
Process-Node0 
push-right MR onto L’ 
?+h := -* 

“The Second Scan” 

while Lyl and L1 are not both empty 
X := pop-left M 
ifX = Gf 

pop-left L’ 
Process-Node0 
qb := -4 

“Windup Processing” 

while M is not empty 
Match-Pair() 

Exit. 
procedure Process-Node0 

Push-Main(X) 
whilec(Lz-_,,Mn)-c(Tjz,M~)<$, (l[L~]]-l[L~-l]) 

pop-right L-’ 
if c(MR, Lz) < 11. (~[MR] - I[Lz]) 

X := pop-right M 
while Mn # Lz 

Match-Pair0 
Push-Main(X) 

while fi(,Lz-, , L$, MR) = “Yes” 
pop-right L’ 

return 

while loop takes constant time, while an iteration of the 
third while loop takes either constant time or O(log N) time, 
depending on whether the weak analyticity property holds. 

Because of space limitations, this extended abstract does 
not include code for the R predicate. When the weak ana- 
lyticity condition holds, the R predicate typically operates by 
computing two theoretical relative crossovers and comparing 
their positions. Without the weak analyticity condition, the 
R-predicate runs in logarithmic time, by using a binary search 
of the M-deque. 

There are a couple of improvements that can be made 
to the algorithm which will increase execution speed by a 
constant factor. Firstly, the calls to Match-Pair made during 
the “Windup Processing” do not need to check if MR = Lg, 
since L$ is empty at this time. Secondly, if computing the cost 
function c(-, -) is more costly than simple addition, then it is 
possible for Push-Main0 to use an alternative method during 
the two scans to compute the cost c(MR,X) for nodes X 
which have just been popped from the left of M (except for 
the first one popped from the left in the first scan). Namely, 
the algorithm can save the old I[X] value for the node X as 
it is left-popped off the deque M Then the cost function can 
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be computed by computing the difference between the I[-] 
value of X and the I[--] of the previous node left-popped 
from M. This second improvement applies only to the first 
Push-Main call in Process-Node. 

4. Non-bipartite, quasi-convex tours 
In this section we show how the earlier algorithms can be 

applied to non-bipartite, quasi-convex tours. The principal 
observation is that non-bipartite tours may be made bipartite 
by the simple construction of making the nodes alternate in 
color. This is already observed by Marcotte-Suri [17] in a 
more restrictive setting; we repeat the construction here for 
the sake of completeness. 

First, it is apparent that the proof of Lemma 4 still works 
in the non-bipartite case, and thus any non-bipartite, quasi- 
convex tour has a minimum-cost matching in which no jumpers 
cross. This fact implies the following two lemmas: 

Lemma 9 Let 21,. .,ZN be a non-bipartite, quasi-convex 
tour with N even. Then there exists a minimum-cost matching 
such that every edge in the tour is of the form xi tt xi with 
i even and j odd. 

Proof It will suffice to show that any crossing-free matching 
has this property. Suppose zi (--f xi is a jumper in a crossing- 
free matching, with i < j. Since N is even, the matching 
is complete in that every node is matched. The crossing free 
property thus implies that the nodes in (xi, xj) are matched 
with each other; so there are an even number of such nodes, 
i.e., one of i and j is even and the other is odd. 0 

Lemma 10 Let x1,. , IN be a non-bipartite linear quasicon- 
vex tour. Then there exists a minimum-cost matching such 
that every edge in the tour is of the form xi +P xj with i even 
and j odd. 

Proof If N is even then this lemma is just a special case of 
the former lemma. If N is odd, then add an additional node 
z~+l to the end of the tour, with c(xi,x~+l) = 0 for all i. 
The resulting tour is again quasi-convex and of even length; so 
the lemma again followsimmediately from the former lemma. 

When Lemmas 9 and 10 apply, we may color the even nodes 
red and the odd nodes blue and reduce the non-bipartite 
matching problem to a bipartite matching problem. As an 
immediate corollary, we have that the two Main Theorems also 
apply in the non-bipartite setting; namely, for non-bipartite, 
quasi-convex tours of even length and for non-bipartite, linear, 
quasi-convex tours, the matching problem can always be solved 
in O(N log N) time and it can be solved in O(N) time if the 
weak analyticity condition holds. 

We do not know whether similar algorithms exist for the 
case of general (i.e., non-linear) quasi-convex tours of odd 
length. Similarly, we do not know any linear or near-linear 
time algorithms for bipartite, quasi-convex tours which are 
neither balanced nor linear. 

We conclude this section by mentioning a tantalizing con- 
nection between our work and the work of F. F. Yao[22]. Yao 
gave a quadratic runtime algorithm for solving the dynamic 
programming problem 

d(i, j) = c(i, j) + min{d(i, Ic - 1) + d($, j) : i < k 5 j} 

for linear quasi-convex tours with cost function c (improving 
on the obvious cubic-time algorithm). Our non-bipartite 
matching problem can be stated as a similar dynamic pro- 
gramming problem; namely, the minimum-cost, MC(i, j), of 

a complete matching on the nodes in [xi, xj] can be recursively 
defined to equal 

min{c(i, Ic) + MC(i + 1, k - 1) + MC(k + l,j) : i < k 5 j}. 

(A similar dynamic programming algorithm can be given for 
the bipartite matching problem.) The obvious naive algorithm 
for computing MC(-,-) is cubic-time, however, our main 
results give (near) linear time algorithms for linear quasi- 
convex tours. This raises the possibility that the dynamic 
programming problem considered by Yao may also have a 
near-linear time solution. 

5. Applications to String Matching 
As a final topic we briefly discuss the application of our 

matching results to string comparison - but a full treatment 
is beyond the scope of this paper. Given two symbol strings 
v = ala2 ‘a, and ‘w = blbz . . . b, , our goal is to measure 
a particular notion of distance between them. Intuitively, 
distance acts as a measure of similarity, i.e. strings that are 
highly similar (highly dissimilar) are to have a small (large) 
distance between them. The purpose of such formulations is 
usually to approximate human similarity judgements within a 
pattern classification or information retrieval system. 

Suppose f(x) is a monotonely increasing, concave-down 
function with f(0) = 0. Let symbols al,. , a, in v be a 
graph’s red nodes, bl, , b, in w be its blue nodes, and 
consider bipartite matchings of these 2n symbols. In the 
simplest formulation we define the cost of an edge ai * bj as 
f (]j - i]) if ai and bj are the same symbol, and as f(n) if 
ai and bj are distinct symbols. The cost of matching unequal 
characters can also be set to be any other fixed value instead 
of f(n). Our distance, ‘T(v, w), between strings v and w is 
then the minimum cost of any such bipartite matching. 

As an example, consider the two strings “delve” and “level” 
and let f(x) = 6. Then the distance between these two 
strings is fi + 4 + fi + fi + fi x 5.65. 

As we have set up our problem above, the computation 
of a(v, w) is not directly an instance of the quasi-convex 
matching problem. However we can compute the (T function 
by considering each alphabet symbol o separately, and solving 
the quasi-convex matching problem (T, which results from 
restricting attention to occurrences of a single alphabet symbol 
at a time. To make this clear, we introduce a special symbol “-” 
which indicates the absence of an alphabet symbol. The value 
of u( “delve”, “level”) can be expressed as the sum 

(Td(“d---“,“----“) +a,(“-e-e”,“-e-e-“) 
+al(‘~--~--“,“~-~~“)+cr,(“---v-“,“-v--”) 

To make the summed (T, terms equal cr as originally defined, 
each ca is defined to be the subproblem’s minimum matching 
cost, plus f(n)/2 times the number of unmatched symbols. 

We will loosely refer to distance functions that result from 
this kind of formulation as u-distances. Assuming that f(x) 
satisfies the weak analyticity condition, it is not too difficult to 
show that it is possible to compute (T(v, w) in linear time. If 
the weak analyticity condition does not hold, then our results 
give an O(n log n) time algorithm. 

A novel feature of our u-distances is that distinct alphabet 
symbols are treated independently. This is in contrast to 
most prior work which has used ‘least edit distance’ for string 
comparison (see [18] for a survey). As an illustration of 
the difference between our distance measure and the ‘edit 
distance’ approach, consider comparing the word “abcde” with 
its mirror image “edcba”. Our approach recognizes some 
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similarity between these two forms, while the most standard 
‘edit distance’ approach sees only that the two strings have 
“c” in common - in essence substituting the first two and 
last two symbols of the string without noticing the additional 
occurrences of the same symbols at the other end of the other 
string. 

A special form of our a-distance measure in which f(z) = z 
was introduced earlier by the authors and shown to have a 
simple linear time algorithm [23,24]. This earlier algorithm has 
been successfully used in commercial applications, especially 
for spelling correction in word processing software, typewriters, 
and hand-held dictionary devices (we estimate that that over 
15,000,OOO such software/hardware units have been sold by 
Proximity Technology, Franklin Electronic Publishers and 
their licensees). Other less prominent commercial applications 
include database field search (e.g. looking up a name or 
address), and the analysis of multi-field records such as mailing 
addresses, in order to eliminate near-duplicates. In both of 
these applications, the strict global left-right ordering imposed 
by O(n2) time ‘edit distance’ methods, can be problematic. 
On the other hand, very local left-right order preservation 
seems to be an important part of similarity perception in 
humans. One simple adaptation of our a-distance methods 
which goes a long way towards capturing this characteristic, 
consists of extending the alphabet beyond single symbols to 
include digraphs or multi-graphs. The result is increased 
sensitivity to local permutation. Another effective alphabet 
extension technique involves the addition of feature symbols to 
the alphabet to mark events such as likely phonetic transitions. 
We expect that the use of general concave-down distance 
functions (as opposed to f(z) = z) will improve the quality 
of the similarity judgements possible within the u-distance 
framework. 

The development above considers strings of equal length 
only. The unequal length case is not a difficult generalization; 
but considering it does highlight the issue of embedding. By 
this we mean that it is implicit in our formulation that the 
two strings are in a sense embedded into the real line. The 
particular rather natural embedding we’ve assumed so far, 
maps ai and bi to value i on the real line - but others are 
possible. 

A detailed comparison of our methods with ‘edit distance’ 
approaches is beyond the scope of this paper. But we must 
point out that the ‘edit distance’ formulation is in several 
senses richer than ours. First, the cost of matching different 
alphabet members need not be fixed. Also, our distance 
formulation depends on a designated embedding while the ‘edit 
distance’ methbd requires no such specification. Finally, for 
some problems, left-right order preservation may be desirable. 
On the other hand, even the simplest ‘edit distance’ approach 
is O(n’); compared with the O(n) or O(n logn) complexity of 
our method. We therefore feel that additional work is needed 
to better understand the applications of - and perhaps extend 
our approach. 
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