
Chapter 9

Linear and O(n log n) Time Minimum-Cost Matching
Algorithms for Quasi-convex Tours

Samuel R. BUSS*

Abstract
Let G be a complete, weighted, undirected, bipartite graph with
R red nodes, R’ blue nodes, and symmetric cost function ~(2, y) .
A maximum matching for G consists of min{n,n’} edges from
distinct red nodes to distinct blue nodes. Our objective is to find
a minimum-cost maximum matching, i.e. one for which the sum
of the edge costs has minimal value. This is the weighted bipartite
matching problem; or as it is sometimes called, the assignment
problem.

We report a new and very fast algorithm for an abstract special
case of this problem. Our first requirement is that the nodes of
the graph are given as a ‘quasi-convex tour’. This means that they
are provided circularly ordered as 21,. , z,v where N = n + n ,
and that for any z,,z~,z~, z(, not necessarily adjacent but in tour
order, with z,,, z, of one color and zk, z(of the opposite color,
the following mequality holds:

c(zt,zo) +c(z,,a) I C(Z,,Zk) + C(2,,2<)

If n = n’, our algorithm then finds a minimum-cost matching
in O(N log N) time. Given an additional condition of ‘weak
analyticity’, the time complexity is reduced to O(N .
cases only linear space is required. In certain cases t b

In both
ese results

apply even if n # n’.
Our algorithm is conceptually elegant, straightforward to imple-

ment, and free of large hidden constants. As such we expect that
it may be of practical value in several problem areas.

Many natural graphs satisfy the quasi-convexity condition.
These include graphs which lie on a line or circle with the canonical
tour ordering, and costs given by any concave-down function of
arclength - or graphs whose nodes lie on an arbitrary convex
planar figure with costs provided by Euclidean distance.

The weak-analyticity condition applies to points lying on a circle
with costs given by Euclidian distance, and we thus obtain the
first linear-time algorithm for the minimum-cost matching problem
in this setting (and also where costs are given by the Li or L,
metrics).

Given two symbol strings over the same alphabet, we may
imagine one to be red and the other blue, and use our algorithms
to compute string distances. In this formulation, the strings are
embedded in the real line and multiple independent assignment
problems are solved; one for each distinct alphabet symbol.

While these examples are somewhat geometrical, it is important
to remember that our conditions are purely abstract; so that our
algorithms may find application to problems in which no direct
connection to geometry is evident.

Keywords - Assignment problem, bipartite weighted matching,
computational geometry, concave penalty function, convexity, linear
time, Monge property, quadrangle inequality, string comparison.

1. Introduction
The abstract above gives a short overview of the contents

of the paper and we shall give an in-depth discussion of our
definitions, results and algorithm below. However, we first
give a quick review of prior related work on matching. We
shall consider graphs G which have N nodes, the nodes are
partitioned into a set of n red nodes and n’ blue nodes with

*Department of Mathematics, University of California, San Diego,
La Jolla, CA 92092-0112. Email: sbuss@ucsd.edu. Supported in part

by NSF grant DMS-9205181.
t NEC Research Institute, 4 Independence Way, Princeton, NJ 08540.

Email: pnyaresearch.nj.nec.com.

Peter N. Yianilost

N = n + n’. G is balanced if it has equal numbers of red
and blue nodes. There is a symmetric cost function c(z, y),
which gives the cost of an edge from node 2 to node y, with
2 and y of distinct colors. A matching is a set of edges
with no endpoints in common that match all the nodes of
one color with the same number of nodes of the opposite
color. The cost of a matching is the sum of the costs of its
edges. The problem of finding a minimal-cost matching for
a general bipartite graph is known to have an O(N3) time
algorithm (see Lawler [15] for this and other background on
matching), and for graphs with nodes in the plane with the
Euclidean distance as cost function, there is a O(N2.5 log N)
time algorithm, due to Vaidya [19].

The minimum-cost matching problem is substantially easier
in the case where the nodes are linearly or circularly ordered.
The simplest version of linear/circular ordering is where the
points lie on a line or on a curve homeomorphic to a circle,
and the cost c(z,y) of an edge between c and y is equal
to the shortest arclength distance between the nodes. The
matching problem for this arclength cost function has been
studied by Karp-Li [ll], Aggarwal et al. [l], Werman et al. [20]
and others, and is the ‘Skis and Skiers’ problem of Lawler [15].
Karp-Li have given linear time algorithms for this matching
problem; Aggarwal et al. have generalized the linear time
algorithm to the transportation problem.

A more general version of the matching problem for linearly
ordered graphs has been studied by Gilmore-Gomory [8]
(see [15]). In this version, the cost of an edge from a red
node z forward to a blue node y is defined to equal s,” f and

from a blue node 2 forward to a red node y to equal s,” g, for
some functions f and g This matching problem has a linear
time algorithm provided f + g 2 0.

Another version of the matching problem for linearly ordered
graphs is considered by Aggarwal et al.[l]: they use graphs
which satisfy a ‘LMonge” property which states that the
inequality (1) below holds except with the inequality sign’s
direction reversed. They give a linear time algorithm for the
matching problem for (unbalanced) Monge graphs.

In the prior work most closely related to this paper,
Marcotte and Suri [17] consider the matching problem for
a circularly ordered, balanced tour in which the nodes are the
vertices of a convex polygon and the cost function is equal to
Euclidean distance. This matching problem is substantially
more complicated than the comparatively simple ‘Skis and
Skiers’ type problems; nonetheless, Marcotte and Suri give an
O(N log N) time algorithm which solves this minimum-cost
matching problem. For the case where the nodes are the
vertices of a simple polygon and the cost function is equal to
the shortest Euclidean distance inside the polygon, they give
an O(N log’ N) time algorithm.

The main results of this paper apply to all the above
matching problems on circularly or linearly ordered tours,
except for the sole exception of the unbalanced, Monge
graphs. For the ‘Skis and Skiers’ and the Gilmore-Gomory

65

66 Buss AND YIANILOS

problems, Theorem 2 gives new linear time algorithms which
find minimum-cost matchings which are different than the
traditional minimum-cost matchings (and our algorithms are
more complicated than is necessary for these simple problems).
Our algorithms subsume those of Marcotte and Suri and
give some substantial improvements: First, with the weak
analyticity condition, we have linear time algorithms for many
important cases, whereas Marcotte and Suri’s algorithm takes
O(N log N) time. Second, our assumption of quasi-convexity
is considerably more general than their planar geometrical
setting and allows diverse applications. Third, our algorithms
are conceptually simpler than the divide-and-conquer methods
used by Marcotte and Suri, and we expect that our algorithms
are easier to implement.

We list some sample applications of our algorithms in
Examples 1-8 below.

Our quasi-convex property is equivalent to the “inverse
quadrangle inequality” used, for instance, by [6], but is weaker
than the similar “inverse Monge property” of [4].’ Dynamic
programming problems based on cost functions which satisfy
the (inverse) quadrangle inequality and some closely related
matrix-search problems have been studied by many authors,
including [2,3,4,5,6,7,10,12,13,14,16,21,22]. However, there
seems to be no direct connection between our quasi-convex
matching problem and the problems solved by these authors.

We now give the definitions necessary to state the main
results of this paper. We think of the nodes of the graph G as
being either a linear or circular tour of the graph; in the case
of a circular tour, we think of the node zi as following again
after ZN.

Definition A sequence of nodes xii, xi2, , xi! are in input
order if and only if ii < i2 < < il. The nodes are defined
to be in tour order if and only if there exists a k such that the
sequence zih,. , xi!, xi,, , zikel is in input order.

Definition The nodes zr,. , ZN form a quasi-convex tour
if and only if, whenever z;,xj,xk,z~ are in tour order, with
zi and xi of one color and XL and xe of the other color, then

CC%, Xi> - C(Xi, 4 I C(Xj 1 xe) - C(“j, Xk). (1)

Reordering terms in (1) gives

To give a geometric intuition to quasi-convexity, note that
when zi, xj, zt, xl are the vertices of a quadrilateral, the
inequality states that the sum of the lengths of diagonals is
greater than or equal to the sum of the lengths of two of the
sides.

Definition The tour xi,. , ZN of G is linear if and only if,
the following holds: For all i < j < k , we have

C(Xi , Xj) I 4%) Xk)

if xi is of opposite color from zj and xk; and we have

C(Xi, “k) 2 C(“j, Xk)

if zk is of opposite color from xi and xj

2Any Mange matching problem may be trivially transformed hto a
quasi-convex matching problem, but not vice-versa.

The property of quasi-convexity is defined independently of
the starting point of the tour; i.e., the nodes of the tour can
be ‘rotated’ without affecting quasi-convexity. Obviously, the
definition of linear tours is sensitive to the choice of starting
point of the tour.

Examples: Our main theorems give either O(N log N) or
O(N) time algorithms for all of the following examples, with
the exception of (7):

(1) Let the nodes xi,, , XN be sequentially ordered points
on a line (e.g., they, are real numbers indicating points on the
x-axis), and let]]xj - xi]] be the Euclidean distance from 2;
to xj Let f be any concave down function, so f”(x) 5 0 for
all I. If the cost function is defined by

C(“i,“j) = f(llq - Xill), (2)

then xi, , IN are a qUaSi-COlIVeX tour. Prior work for
examples (1) and (2) gave linear time matching algorithms
only for the case where f(x) is a linear function [11,1].

(2) Now let the points xl,. ,XN lie on a smooth curve C
which is homeomorphic to a circle, with the points listed in,
say, counterclockwise order. And let]]zj - xi]] equal the
shortest arclength along C from xi to zj Again let f(x) be
any concave down function. With the cost function given by
equation (2), the nodes xi,. , ZN form a quasi-convex tour.

(3) Suppose xi,. , XN lie, in that order, on a circle. Let
c(xi, xj) equal the Euclidean distance from xi to xj Since
Euclidean distance is a concave down function of the circular
arclength, this is a special ca.se of Example (2) and the nodes
form a quasi-convex tour. In this case, the weak analyticity
condition always holds and Main Theorem 2 gives an O(N)
time algorithm. The best prior algorithm was O(N log N)
time [17].

(4) More generally, if 11, , zN are the vertices of a convex
polygon listed in, say, counterclockwise order, and if the cost
function is equal to Euclidean distance, then the nodes form
a quasi-convex tour. The prior algorithm for this case was
O(N log N) time [17] and our algorithms are either O(N) or
O(N log N) time depending on whether the weak analyticity
condition holds.

(5) Some non-convex polygons also have vertices which form
a quasi-convex tour. For example, in a polygon shaped as
below, the vertices A, B, C, D will form a quasi-convex tour,
provided the angle 8 not too large. (This is reason we
use ‘quasi-convex’ instead of ‘convex’ to describe tours which
satisfy equation (l).)

R

A

D

A e. c
(6) Examples (4) and (5) are also quasi-convex under other
distance metrics such as the Li and L, metrics.

(7) Marcotte and Suri consider graphs where the nodes are
the vertices of a simple polygon and the cost function is
equal to the length of the shortest connecting path inside the
polygon. The nodes of such a polygon form a quasi-convex
tour. The

5
rior algorithm and the algorithm of this paper

are O(N log N) time for this example, since the cost function
requires O(log N) time to compute.

(8) In string matching algorithms, the cost of shifting a
character’s position is specified as a function of the distance

LINEAR AND O(nlogn) TIME MINIMUM-COST MATCHING 67

shifted. The authors have worked in t,he past on string
matching algorithms [23,24] in which the cost function is a
linear function of distance. These prior algorithms have been
quite successfully used in commercial applications, especially
natural language search; and, we expect that the use of a
concave down distance function will significantly improve the
matching quality. As we discuss in section 5, the setting of
example (1) above is precisely what is needed to allow (near)
linear time string matching algorithms with concave-down
cost functions. A number of authors, including [5,6], have
studied concave down cost functions for string matching; their
string matching algorithms are based on least-edit-distance
and, in this regard, are quite different from ours. Least-edit-
distance string matching algorithms are widely used because
they provide rich and flexible string comparison functions; on
the other hand, the best general algorithms for computing
least-edit-distance require O(P) time (see [IS]). Our string
matching algorithms are not as flexible, but can be tailored to
work well for many applications: they have the advantage of
being linear time computable.

Main Theorem 1 (a) There is an O(N 1ogN) time a/go-
rithm for the minimum-cost matching problem for linear
quasi-convex tours.

(b) There is an O(N log N) time algorithm for the minimum-
cost matching problem for balanced quasi-convex tours.

Remark The running times of the algorithms are given in
terms of the number N of nodes, even though the input size
may in some cases need to be 0(N2) to fully specify the values
of the cost function. However, in all the examples above, the
input size is O(N) since the cost function is specified by the
nodes’ positions on a line, on a curve, or in the plane. In any
event, our runtime analysis assumes that any value c(z~,z~)
of the cost function can be computed in constant time. If this
is not the case, then the runtimes are to be multiplied by the
time needed to compute a value of the cost function (this is
the situation in Example (7) above).

We next define an “weak analyticity” condition which will
allow yet faster algorithms.

Definition Suppose that ~i and ~j are red (blue) nodes,
that 6 2 0, and that there is a blue (resp, red) node zk such
that

C(Xi, Xk) - C(“j, Xk) < 6,

The 6-crossover point of xi and xj is defined to be the first
such xk, where ‘first’ means in tour order starting from xj
and ending at xi. If no such XL exists, then the S-crossover
point does not exist.

It is not hard to see that the property of quasi-convexity
implies that, if the 6-crossover point xk exists, then
C(Xi, 21) - C(“j, ze) 2 6 whenever xi, xj, xl, x/, are in tour
order and c(xi,xe) - c(zcj,xe) < 6 whenever x;,xj,zk,x~ are
in tour order. Thus binary search provides an O(logN)-time
procedure which, given zi, xj and 6, will determine if xk
exists and, if so, which node xk is. This is the approach taken
in the algorithms of Theorem 1, and is the source of the log N
factor in the runtime. However, in some cases, xk can be
found in constant time and we define:

Definition A quasi-convex tour satisfies the strong analyticity
condition provided there is a constant time algorithm which
can determine if the 6-crossover point of x; and xi exists
and, if so, can determine which node it is.

A quasi-convex tour satisfies the analyticity condition pro-
vided there is a constant time algorithm which can answer the
following question (as a function of similarly colored nodes
xi, xi, 21, in tour order and of c,6 > 0, where the 6-crossover
of xi and xj is known to exist):

“Do xj and xk have an c-crossover point which
either equals or precedes in tour order the 6-crossover
point of zi and xj?”

Even the analyticity condition is too strong to be satisfied
in many situations, so we also define a ‘weak analyticity
condition’ as follows.

Definition Let z be a node and y and z be denotations of
nodes. We write y + z to denote that either (1) y and z
exist and are distinct and y precedes z in the tour order
beginning at x, or (2) y exists and z does not.

A relative crossover procedure is a procedure R such that,
given c , 6, xi, xj and xk as input, and letting y be the 6-
crossover of xi and xj , and z be the c-crossover of xj and xk,
then

(1) If Y -LC, Z, then R outputs “Yes”.

(2) If z +, y, then R outputs “No”.

(3) Otherwise 0 may output either answer.

Note that R is not required to determine y and z. The
difference between weak analyticity and ordinary analyticity
is that when condition (3) holds, Q may output either answer.

Definition The vrealc analyticity condition holds provided
there is a constant-time relative crossover procedure.

Clearly the strong analyticity condition implies the ana-
lyticity condition, which in turn implies the weak analyticity
condition. In most applications, we do not have the analyticity
or strong analyticity conditions, but the weak analyticity
condition does hold in many natural situations. In particular,
examples (l), (2), (3) and (4) do satisfy the weak analyticity
condition, provided that the concave-down function is suffi-
ciently natural. Consider, for instance, example (1) with the
concave-down function f(x) = I, f(x) = ,/E, or f(x) = logx,
etc. For example (l), the input nodes xl,. . . , ZN are given
with a sequence of real numbers ~1 5 rz 5 .. . 5 TN which
are the positions of the nodes on the real line. Given
nodes xi, xj and S > 0, the first possible position for
the 6-crossover of xi and xi can be found by solving the
equation f (y - ri) = 6 + f(y - rj) for y; since we assume that
arithmetic operations take constant time, the solution y can
be found in constant time. Note that y is only the theoretical
crossover point; the actual crossover is the first node XL such
that y < Q. Unfortunately, even after y is known, it will
not be possible to determine zk in constant time, unless
some additional information is given about the distribution of
the nodes on the real line. Thus, the analyticity condition
and strong analyticity conditions do not hold in general for
example (1). The reason the analyticity condition does not
hold is that, if the theoretical c-crossover point occurs after the
theoretical &crossover point, then the analyticity algorithm
must output ‘No’ if there is a node after the theoretical
6-crossover point and before or at the theoretical E-crossover
point, and must output ‘Yes’ otherwise (because in the latter
case the two actual crossover points coincide). Unfortunately,
there is no general way to decide this in constant time, so the
analyticity condition is false. However, the weak analyticity
condition does hold, since the function 0 may operate by

68 Buss AND YIANILOS

computing the theoretical 6-crossover of xi and ZC~ and the
theoretical c-crossover of xj and xk and outputting “Yes” if
the former is less than the latter.

For similar reasons, example (3) satisfies the weak analyt-
icity condition: in this case, since the nodes lie on a circle
and the cost function is Euclidean distance, the theoretical
crossover position is computed (in constant time) as the
intersection of a hyperbola and the circle. Likewise, the
weak analyticity condition also holds for Example (2) if the
concave-down function is sufficiently nice, and it holds for
Example (6), where nodes lie on a circle under the L1 and
L, metrics. Example (4), where the nodes form the vertices of
a convex polygon, does not seem to satisfy the weak analyticity
condition in general; however, some important special cases
do. For example, if the vertices of the convex polygon are
known to lie on a polygon with a bounded number of sides,
on an oval, or an a branch of a hyperbola, then the weak
analyticity condition does hold.

The analyticity condition has been implicitly used by
Hirschberg-Larmore [lo] who defined a Bridge function which
is similar to our R function: they give a special case in which
Bridge is constant-time computable and thus the analyticity
condition holds. Later, Galil-Giancarlo [6] defined a “closest
zero property” which is equivalent to our strong analyticity
condition. 3 As we illustrated above, the analyticity and
strong analyticity conditions rarely hold. Thus it is interesting
to note that the algorithms of Hirschberg-Larmore and of
Galil-Giancarlo will still work, with only minor modifications,
if only the weak analyticity condition holds.

Our second main theorem implies that these examples
which satisfy the weak analyticity condition have linear time
algorithms for minimum-cost matching:

Main Theorem 2 (a) There is an O(N) time algorithm
for the minimum-cost matching problem for linear quasi-
convex tours which satisfy the weak analyticity condition.

(b) There is an O(N) time algorithm for the minimum-cost
matching problem for balanced quasi-convex tours which
satisfy the weak analyticity condition.

Remark In order to achieve the linear time algorithms, it is
necessary that nodes of the graph be input in their tour order.
This assumption is necessary, since without it, is possible to
give a linear time reduction of sorting to the matching problem
for linear tours.

Our main theorems also apply to minimum-cost matchings
for some non-bipartite quasi-convex tours. If a non-bipartite
graph G has N nodes and has cost function c, then a
matching for G is a set of]fN] edges with all endpoints
distinct. Parts (a) of Main Theorems 1 and 2 hold also for
non-bipartite graphs which are linear quasi-convex tours. And
parts (b) of Main Theorems 1 and 2 hold also for non-bipartite
graphs which are quasi-convex tours with an even number of
nodes. The non-bipartite cases are discussed in section 4; the
algorithms are simple modifications of the algorithms for the
bipartite tours.

It is apparent that our algorithms can be parallelized but we
have not investigated the precise runtime and processor count
that is needed for a parallel implementation. He [9] has given
a PRAM implementation of Marcotte and Suri’s algorithm

3 The definition of the “closest zem property” is misstated in [6]: it
should be defined as saying that it is possible to find the first T such
that w(l,r) - w(~,T) - a 5 0 (note th e,r w corresponds to our cost
function c, and a is a real). However, their algorithm explicitly uses
the correct definition of “closest zem property” (see their Fact 2).

which uses N processors and O(log’N) time and it is clear
that our algorithm can be computed with the same number of
processors with the same time bounds using He’s methods.

We wish to thank Dina :Kravets, Dave Robinson and
Warren Smith for helpful discussions -and Dave Robinson
for implementing the algorithms described below.

2. Reductions and Lemmas
2.1 Reduction to tours of alternating colors The first
step to giving our minimum-cost matching algorithms is to
reduce to the special case of tours in which the colors of the
nodes alternate. In other words, we will be able to assume
w.1.o.g. that z~,zJ~,z~, are red and that XZ~,X~,Z~, are
blue.

Definition Let CCD and xj be nodes. We write [xi, xj] to
denote the sequence of nodes obtained by starting with xi and
advancing in tour order to xi We write (xi, ~j], [xi, ~j) and
(xi, xj) for this sequence minus the starting node, the ending
node, or both.

If x is a node, let d(z) denote the number of red nodes
in [xl, Z) minus the number of blue nodes in [XI, x). The
level of 3:) level(z), is equal to d(a) if 2 is red and is equal
to d(z) + 1 if z is blue. We write x - y to mean that
d(z) = d(y); obviously, - is an equivalence relation. It is
easy to see that if y is the first node after z in input order
such that I - y, then 2 and y are of opposite colors. Also, if
z - y and ~,y are in input order and are of opposite colors,
then (CC, y) contains equal number of red and blue nodes. For
balanced tours, the --equivalence relation is invariant under
circular rotation of the nodes in the tour.

Given a matching on the nodes of a graph, we write xi H Z?
to indicate the presence of an edge between xi and xj in the
matching. We say that xj immediately follows xi in tour
order if j = i + 1 or if i = N and j = 1. Two nodes xi
and xj are adjacent iff one of them immediately follows the
other. An edge xi H ~j is called a. jumper if Ni and xj are
not adjacent. Two jumpers are said to cross if they are of the
form xi H XL and xj t-i 21 with xi, xj, CCD, xe in tour order.

Lemma 3 Let G be either a linear quasi-convex tour or a
balanced quasi-convex tour. Then G has a minimum-cost
matching in which every edge xi +-+ xj satisfies xi - xj.
In other words, some minimum-cost match,ing for G can

be obtained as a union of minimum-cost matchings on the
--equivalence classes of G.

To prove Lemma 3 we use:

Lemma 4 G has a minrmum-cost matching in which no
jumpers cross.

Proof (Sketch) If a minimum-cost matching does have a
pair of jumpers which cross, the quasi-convexity property
allows them to be ‘uncrossed’ without increasing the total
cost. Repeatedly uncrossing ,jumpers will eventually yield
a minimum-cost matching with no crossing jumpers. (See
Lemma 1 of [l] for a detailed proof of this.)

Lemma 3 is proved by noting that a minimum-cost matching
with no crossing jumpers must respect the --equivalence
classes. This is because, if a jumper xi * xi is in a crossing-
free matching with i < j, then the nodes in the interval
(xi, xj) must be matched which each other and thus (xi, xj)
must have equal numbers of red and blue nodes. In the
unbalanced, linear case, this also depends on the fact that,
w.l.o.g., there is no jumper which crosses an unmatched node
(this is an immediate consequence of the linearity).

LINEAR AND O(nlogn) TIME MINIMUM-COST MATCHING

By Lemma 3, in order to find a minimum-cost matching,
it suffices to extract the w-equivalence classes, and find
minimum-cost matchings for each equivalence class indepen-
dently. It is an easy matter to extract the --equivalent
classes in linear time by using straightforward counting. Each
equivalence class consists of an alternating color subtour: in
the balanced case, there are an even number of nodes in each
equivalence class, and in the linear case, there may be an even
or odd number of nodes. Thus, to give (near) linear time
algorithms for finding matchings, it will suffice to restrict our
attention to tours in which the nodes are of alternating colors.

In view of Lemma 4, we may restrict our attention to match-
ings which contain no crossing jumpers. Such a matching will
be called crossing-free.

Finally, we can assume w.1.o.g. that the tour is balanced.
To see why we can assume this, suppose that ~1,. , XN is
an unbalanced, linear tour of alternating colors. This means
that 21 and 2~ are the same color, say red. We can add
a new node zN+l to the end of the tour, label it blue, and
let c(zi,zN+1) = 0 for all red zi. These N + 1 nodes no
longer form a linear tour; however, they do form a balanced
quasi-convex tour. Solving the matching problem for the N $1
nodes immediately gives a solution to the matching problem
on the original N nodes.
2.2 Some important lemmas Since we are now working only
with balanced quasi-convex tours of alternating colors, we shall
often change the names of the nodes to RI, B1, , RM, BM;
so Ri and Bj refer to the i-th red node and the j-th blue
node in the tour, respectively. (So x2i-l is the same as Ri
and zzi is the same as Bi .) Note that this means N = 2M.
To simplify notation, we define

Ni = c(Ri, Bi) and c; = c(B~,R~+~).

A greedy matching is a matching which contains no jumpers,
i.e., every node is matched to an adjacent node. There are
two greedy matchings, namely, the one containing all edges
Ri tf Bi and the one containing all edges Bi-1 (--i R; and
the edge BN * RI. For zi and xj nodes of opposite color,
a matching u is said to be greedy on (xi, xj) provided it
contains as a submatching the unique matching of adjacent
nodes contained in the interval (xi, xj). We similarly define
the notion of u being greedy on a balanced interval 1, for I
one of the intervals [xi, xj), [xi, xj] or (xi, xj] , but with the
additional provisos that xi H xi+l is in u in the first two
cases and that xi -1 * xi is in g in the second two cases. 4

The notation [R;, Bj] has already been defined. In addition,
the notation [i, f denotes the interval of integers i, i + 1, . , j
if i < j, or the (circular) interval i, i + 1,. _, M, 1,2,. , j if
j < i 2. M. We also use the notations (i, j] , [i, j) and (i, j)
for the Intervals with one or both of the endpoints omitted.

Definition Let R; and Bj be nodes; we write Ri + Bj to
denote a directed edge going from Ri forward (in tour order)
to Bj . That is, we think of Ri -+ Bj jumping over the nodes
Ri, Bi, &+I,. , Rj, Bj. We say that Ri + Bj is a candidate
(meaning, a candidate for a jumper), if

c(Ri,Bj) + C CL < C CL
W,j) f-e[i,jl

The intuitive meaning Ri -+ Bj being a candidate is that it
would be of lower cost to use the jumper Ri +-+ Bj plus the
greedy matching of adjacent nodes in (Ri, Bj) in place ofjust
the greedy matching of adjacent nodes in [Rd, Bj]

Lemma 5 suggests an algorithm for finding a minimum-cost
matching. Namely, if there is a minimal candidate, greedily
assign edges in its interior according to Lemma 5. This induces,
a matching problem on the remaining unassigned nodes, and
it is clear that any minimum-cost matching on this smaller
problem will lead to a minimum-cost matching for the original
problem. Iterating this, one can continue removing nodes in
the interiors of minimal candidates and reducing the problem
size. Eventually a matching problem with no candidates will

4Note that, of the two greedy matchings for G, one is greedy on
. .~~

A similar definition is used to define what it means for an
edge Bi + Rj to be a candidate; namely, Bi + Rj is a
candidate iff

c(Bi,$) + c ci < C c;.
ec(i,j) W,j)

Candidates always have endpoints of opposite colors and are
directed. It is possible to have both Ri + Bj and Bj + Ra
be (distinct) candidates, or to have one or neither of them
candidates.

It is an easy observation that if there are no candidates,
then the greedy assignment(s) are minimum-cost matchings.
To prove this, suppose u is a minimum-cost matching which
contains a jumper: by Lemma 4, g may be picked to contain
no crossing jumpers. Since there are no crossing jumpers,
u must contain a jumper xi ++ xj such that u is greedy
on (xi,Xj) (namely, pick the jumper so as to minimize the
tour-order distance from xi to xj). Let u’ be the matching.
which is the same as u, except greedy on [xi, xj] Clearly
u’ has one fewer jumper than u, and since xi + xj is not
a candidate, u’ has cost no greater than u. Iterating this
construction shows that at least one of the jumper-less greedy
matchings must be minimum-cost. To show they are both
minimum-cost, let (TO and ~1 be the greedy matchings which
contain the edges 21 +-+ x2 and 21 * ZN, respectively. Then
uo can not have cost lower than (respectively, higher than) the
cost of (~1 since otherwise, x2 + II (21 + ZN, respectively)
would be a candidate.

Definition A candidate xi -+ xj is a minimal candidate iff
there is no other candidate XL + xe in its interior; that is
to say, there is no candidate xk + xe with [zk,xe] a proper
subset of [xi, xj]

Lemma 5 Consider a balanced quasi-convex tour of alternat-
ing colors.

(4

(b)

Suppose R, + Bb is a minimal candidate. Then every
minimum-cost, crossing-free matching is greedy on the
interval (R,, Bb). That is to say, every minimum-cost,
crossing-free matching contains the edges Be-1 H Re for
all e E (u, b].

Suppose B, + Rb is a minimal candidate. Then every
minimum-cost, crossing-free matching is greedy on the
interval (B,, Rb). That is to say, every minimum-cost,
crossing-free matching contains the edges Re - BL for all
e E (a, b).

Note that Lemma 5 says only that the edges connecting
adjacent nodes in the interior of the minimal candidate are
in every minimum-cost matching; it does not say that the
minimal candidate itself is a jumper in any minimum-cost
matching. The proof of Lemma 5 is fairly involved and we
postpone it until section 2.3. Lemma 5 also holds for linear
tours with alternating colors for candidates x + y with x,y
in input order.

70 Buss AND YIANILOS

be rea.ched; in this case, it suffices 1.0 greedily match the Lemma 7
remaining nodes.

Unfortunately, this algorithm suggested by Lemma 5 is not (a) Bnft[R,, B,] > Bnft[Rb, A,] if and only if c(R,, B,) -

linear time (yet); thus we need to refine Lemma 5 somewhat: C(Rbr &) < A[&, Rb].

Definition We define: (b) Bnft[B,, Re] > Bnft[&, R,] if and only if c(B,, R,) -
c(Bb, &) < A[%, Bb].

and, for .r and y the same color, Bnft[z, y] = --co.

It is immediate that Bnft[z, y] > 0 iff z + y is a candidate;
in fact, Bnft[z,y] measures the benefit (i.e., the reduction in
cost), of using I h y as a minimal jumper instead of the
greedy matching on [z, y]

The next lemma forms the basis for the correctness of the
algorithm given in section 3 for the serial transitive closure
problem. The general idea is that the algorithm will scan
the nodes in tour order until at least one candidate is found
and then, according to Lemma 6, the algorithm will choose an
interval (ze,zk) to greedily match. Once the interval (!,Ic)
has been greedily matched, the algorithm need only solve the
induced matching problem on the remaining nodes.

Lemma 6 Let G be a balanced quasi-convex tour matching
problem. Let 1 < k < N and suppose Bnft[xi, xj] < 0 for all

1 _< i < j < k Suppose m dGf max{Bnft[zi, zk] : i < /c} > 0

and let e dsf max{i < k : Bnft[xi, x,J = m} Then every
mznimum-cost, crossing-free matching is greedy on (xl, xt).

Proof The proof is, in essence, an iteration of Lemma 5. We
argue by induction on k. Let G, k, m and f? satisfy the
hypothesis of the lemma. Let s = max{i < I; : Bnft[z,, zk] > O}, so
z, - zrk is a minimal candidate. By Lemma 5, any minimum-cost,
crossing-free solution for G is greedy on the interval (z$,zk).
Hence, it will suffice to let G’ be the matching problem obtained
from G by discarding the nodes %*+I,. , zk-1 and prove that any
minimum-cost, crossing-free solution for G’ is greedy on (zP,z~].
If ! = s, there is nothing to prove, so we assume e < 3. Note that
zk is now the (s + I)-st node in the G’ tour order. We use Bnft’
to denote the Bnft function for G’.

(a) If 1 5 i < j 5 s, Bnft’[x,, x3] = Bnft[z,, z3].
(b) If 1 5 i 5 s, Bnft’[z,, xk] = Bnft[z,, zk] - Bnft[z,, 2~1.

Claim (a) is immediate from the definition of Bnft. The intuitive
meaning of (b) is that the benefit of using the jumper 2, - zh is
reduced by the benefit already obtained from the jumper za ++ z,+.
We formally prove (b) for the case that z, and z, are red and
z,t is blue, the opposite colored case has a similar proof. Assume
x, = Ra, z, = Rb and zk = B,. Then

Bnft’[&, &I = xPEra,bj c, + 4% B,)

-c (E[&,) C: - c(Ra> Bc)

Bnft[h Bcl = Cpcra,cI G - ccEra cJ 4 - 4Rw Bc)

From these three equations, Claim (b) follows immediately.
Now let m’ = max{Bnft’[z,, xk] : i < 3). By Claim (b),

m’ = m - Bnft[z,, zk] ; since e < s, m’ > 0. Likewise, 1 = max{i <
s : Bnft’[x,, zk] = m’} Thus, by the induction hypothesis, any
minimum-cost solution for G’ is greedy on (ze, zz] and Lemma 6
is proved. 0

Lemma 7 follows immediately from the definitions.

Lemma 8 Let u, V,Z, y be in tour order with nodes-u and v
of one color and x and y of the other color. Then

Bnft[u, x] > Bnft[v, x] + Bnft[u, y] > Bnft[v, y]

Proof By Lemma 7, Bnft[u,x] > Bnft[v,x] is equivalent
to c(u, x) - c(w, x) < A[u, ~1, and Bnft[u,y] > Bnft[v, y] is
equivalent to c(u,y) - c(v,y) < A[~,v]. Now, by quasi-
convexity, c(u, x) - c(v, z) 2 c(u, y) - C(V, y), which suffices to
prove the lemma. 0

Let R, and Rg be distinct red nodes. The previous two
lemmas show that if there is any node R, (with R,, Rb
and R, in tour order) such that Bnft[R,, R,] is greater than
Bnft[Rb, R,] , then the first such R, is the A[R,, Rb]-crossover
point of R, and Rb. We shall denote this first R,, if it exists,
by x[R~, Rb]; if it does not exist, then x[R,, Rb] is said to
be undefined. Similarly, x[B,, &,] is defined to the be the
A[B,, &]-crossover point of B, and &,, and, if defined, is
the first R, where Bnft[B,, R,] is greater than Bnft[!?b, R,].

We now assume that we have a procedure Q(x, y, z), which
given nodes x 1 y, z in tour order returns “True” if xix, yl +,
i[y, z] and returus

. - . . - I il

“False” if x[y,z] +Y x[+,y]. (If neither
condition holds. then 0(x. V. 2‘1 mav return an arbitrarv truth
value.) If the ‘weak anaf&crty condition holds, then Q is
constant time computable. Without this assumption, R is
O(log N) time computable since Lemma 8 allows x[-, -1 to
be computable by binary search.

The general idea of the algorithm given in section 3 below
is that it will scan the nodes in tour order searching for
candidates. Whenever a node is reached that is the head of
candidate, the algorithm will take the candidate specified in
Lemma 6 (the one that was denoted xe + xh) and greedily
match the nodes in its interior. The greedily matched nodes are
then dropped from consideration and the algorithm resumes
its search for a candidate. Suppose the u and v are two nodes
already scanned in this process that are being remembered as
potential endpoints of candidates. Lemma 7 tells us that if
a node x is found where Bnft[u, x] > Bnft[v,x], then at all
succeeding nodes y, Bnft[u, y] > Bnft[v, y]. By the criterion of
Lemma 6, this means that after the node x is found, there is
no further reason to consider candidates that begin at node v,
since any candidate v - y would be subsumed by the better
candidate u + y.

To conclude this section we describe the algorithm in very
general terms; in section 3 we give the precise specification
of the algorithm. The algorithm scans nodes (starting with
node x1, say) and maintains three lists. The first list, M,
contains the nodes in tour order which have been examined so
far. The second list, L -I, contains all the red nodes that need
to be considered as potential endpoints of candidates (so L-r
is guaranteed to contain all the nodes satisfying the criterion
of Lemma 6). The third list. L1. similarlv contains all the

Definition The A function is defined by:

AiRa> Rbl = &a,b) ce - &[a,b) ci

AlBaa Bd = .&a,b) ci - C@(a,b] Cl

blue nodes that need to be considered as potential endpoints
of candidates. At any point during the scan, the lists will be
of the form:

M = 21,. .,X,-l

LINEAR AND O(n logn) TIME MINIMUM-COST MATCHING 71

Ll-’ = &,,...,Rap

L1 = &,,...>Bb,

with it-l and L1 subsequences of M. The following four
conditions will be maintained during execution:

(1) cl,. , z,-1 are the nodes scanned but not matched, are
in tour order, and there are no candidates zi -+ xi with
l<i<j<r.

(2) z,-r precedes x[Rap-, , R+] in tour order.

(3) For all 1 < i 5 p - 2, R(R,,, R,,+,, R,,+,) is false.

(4) For all 1 5 i 5 q - 2, R(Bb,, Bb,+,, Bb,+z) is false.

(5) At any possible future node xk following x,.-l such that
xk is the first point where a candidate is discovered; if the
xl which satisfies Lemma 6 is among ~1,. , x,-r then
it is already on the list LC-l or t’ (depending on which
color it is).

When scanning the next node I,, the algorithm must do the
following (we assume x, is blue, similar actions are taken for
red nodes):

(p) While p 2 2 and Bnft[R+,, I,] > Bnft[R+, z,] , pop

R,, from L-l and decrement p.

(Y) If Bnft[f&, xk] > 0, greedily match nodes in the interval

(RQ,l xk). The matched nodes are discarded from the

lists M , L-’ and LC1 (the remaining nodes are to be
implicitly renumbered at this point).

(a) While q >_ 2 and S1(Baqml, Baq, z,.), pop Ba4 from LC1
and decrement q
Then push x, onto the end of L,’ (and increment q).

Sten (a) is iustified bv recalling that if 2, is past
x[Rap’_,,‘~kdpl, t&n &,, ” may be removed from consideration
as an endooint of a candidate (bv Lemma 6).

Step (6*) is justified as follows~ suppose di = x[B,~-,, B,q]
equals or precedes Rj = x[B, , c,.] (using tour order, begin-
ning at Bap). Then at any future candidate endpoint XL,
either xb follows or equals Ri , in which case Bnft[Baq-, , xk]
is greater than Bnft[Bag,xt], or xk precedes Rj, in which
case, Bnft[x,,xJ is greater than Bnft[B,*,xk]. Thus Baq will
never be the starting endpoint of a candidate satisfying the
criteria of Lemma 6, and we may drop, it from consideration.

To justify Step (y) we must show that the candidate
R (Ip -+ x, satisfies the criteria from Lemma 6: in view of the
correctness of the rest of the algorithm. for this it will suffice
to show that Bnft[R,,, x,] 5 Bift[R, , if] for all 1 < i < p.
For this. note that Sten (a) and co<dition (3) above ensure
that 2,’ precedes x[R,‘,, R=:+,] for all 1 5 ‘i 2 p. This, in
turn, implies Bnft[R,,, x,] 5 Bnft[R,,+,, x,.] for all i, which
proves the desired inequality.

After the algorithm has scanned all the nodes once, it
will have found and processed all candidates xi + Zj where
i < j. However, since the tour is circular, it is necessary to
process candidates zi - xj with i > j. At the end of the
first scan, the list M consists of all nodes, ~1,. , xn which
have not been matched yet and LC-’ and icl contain nodes
R,, , . , Rap and RbI,. , Bbg, as usual. During the second
scan, the algorithm is searching for any candidates of the form

- B.
sd

with
onli f

j < ai or of the form B,, -t Rj with j 5 ai
or such candidates). To process a node during the

second scan, the algorithm pops 21 off the left end of M,
implicitly renames 21 to c, and the rest of the nodes zi to
xiel, sets T = 71, does Step (cx): (still assuming x, is blue)

(a) If xv equals Bb, , then pop Bb, from the list L1 and
implicitly renumber ,!I,‘, decrementing q,

and then does steps (p)-(6), except that in Step (6), the
node 2, is not added to the end of Cl. The reason for
Step (cr) is that once a node Bb, is encountered on the
second scan, Bb, is no longer a possible starting endpoint
for a candidate. The reason for not adding 2, to the end
of icl in Step (S) is that can not be the starting endpoint of
a candidate, because any such candidate would have already
been found earlier.

The second scan will stop as soon as both C lists become
empty. At this point no candidates remain and a greedy
matching may be used for the remaining nodes in the M list.

The actual description of the algorithm with an efficient
implementation is given in section 3, and it is there proved that
the algorithm is linear time with the weak analyticity condition
and O(N log N) time otherwise. Although we described steps
(a)-(6) only for blue x,. above, the algorithm in section 3
uses a toggle $ to handle both colors with the same code.
Finally, one more important feature of the algorithm is the
way in which it computes the values of the Bnft function and
of the A[x, y] function: it uses intermediate values I[X] which
are defined as follows.

Definition The I[z] function is defined by

WLI = A[RI, &I
Wal = U&l + c(R,, B,).

Note that I[R,+J = IIBa] - c(B,, R,+l).

It is immediate from the definitions that, if z, y are tour order
(starting from zr), then

Ak, ~1 = I[YI - +I for x and y red.

Nx,YI = Ihl- 11~1 for z and y blue.

Bnft[x, ~1 = I[YI - I[xl - 4x, Y/) for z red, y blue.

Bnftb, ~1 = I[xl - I[YI - 4x, Y) for z blue, y red.

These equalities permit the values of A and Bnft to be
computed in constant time from the values of I[-]. Also,
it is important to note that only the relative I[-] values
are needed; in other words, it is OK if the I[-] values are
shifted by a constant additive constant, since we always use
the difference between two I[-] values.

The I[-] function is not only easy to compute, but also
provides an intuitive graphical means of understanding the
above lemmas and algorithm description. For example, in
Figure 1, RI - B3 is a (minimal) candidate whereas RI + B1
and Rl -+ B2 are not candidates. In Figure 2(a), the node Bs
is the relative crossover, x[Rl, Rz], of RI and R2; on the
other hand, in Figure 2(b), the relative crossover does not
exist. Figure 3(a) shows an example where R(R1, Rz, R3) is
true and Figure 3(b) shows an example where R(R1, Rz, R3)
is false.
2.3 Proofof Lemma 5 We now prove Lemma 5 - by symmetry,
it will suffice to prove part (a). Since the lemma is trivial in case
a = b, we assume a # b. Let 0 be a crossing-free matching: we
must prove that d is greedy on (I?,, &) . By the crossing-freeness
of 0 and by the fact that R, -+ Bb is a minimal candidate,

72 Buss AND YIANILOS

rfu,l

t

Figure 1: RlfZl “A 8”,’ isBi caRnhida:z as I[Rr] + c(Rr, &) <
I[&], which is equivalent to Bnft[R1, B4] > 0.

. . .

RI BI Rz B2 R3 B3

Figure 2: Iiktrkio”,: ofB?the “,&ati,“a crossover, x[R1.&], of
RI and Rz. In (a), B3 is x[Rl, Rz], since it is the first
node z to satisfy I[Rz]+ c(Rz,z) > I[Rl]+ c(R~,z). In (b),
the relative crossover does not exist.

d does not contain any jumper with both endpoints in [R,,Rb],
except possibly R, ++ &, itself. If R, - Rb is in 6, then the
same reasoning shows that d is greedy on (R,, Bb) ; so we suppose
that R, - Bt, is not in b. Since we are dealing (with no loss of
generality) with balanced tours, we may assume that b = N, by
renumbering nodes if necessary.

Claim (1): R, - B, is not in 0.
Suppose, for a contradiction, that R, ++ B, is in 6. Let 2) be the
least value such that R, ^-B, isin o forsome q<a<v. Note
that such a 21, a < 2r 5 N, must exist since there are no jumpers
in [R,, B.PJ] and since o is not greedy on [R,, BN] (it can not be
greedy on [R,, BN], since R, + BN is a candidate). By choice
of V, d is greedy on [R,, R,). Since R, - BN is a minimal
candidate, Bnft[R,, BN] > Bnft[R,, B,v], so Lemma 7 implies

c rE[a,v) c* - C&?,“) c: > c(Ra,B,v) - ~(&,BN).

(b)

Figur: 3:“Q(>r ,~z,nka~3is true in (a) and false in (b).

implies

c(R,, BN) - c(R,, BN) 2 c(Ra, Bq) - d&z BP).

Combining these inequalities yields

CiEfa,v) c, + c(Rv,B,) > &a,vl c: +c(fLB,). c3)

Let O’ be the matching obtained from u by replacing the jumper
B, * & and the greedy matching on [Ra, R,) with the edge
B, - Ra and the greedy matching on (R,, R,]. By (3), 6’ has
cost strictly less than the cost of 6, which is a contradiction.

Claim (2): RN tt BN is not in O.
Claim (2) is proved by an argument similar to Claim (1).
Alternatively, reverse the colors and the tour order and Claim (2)
is a version of Claim (1).

Claim (5’): The matching 0 is greedy on (R,, Bb)
Suppose, for a contradiction that o is not greedy on (R,, Bb). In
view of Claims (1) and (2) and since o has no jumpers in [R,, BN],
this means that there exist u and 21 such that u is the least value
such that o contains B, ++ R, with T < a 5 u and u is the least
value such that u contains R, ++ B, with q < a < u. Namely, let
u be the least value 2 a such that B, e R,+I is not in 0 and e
be the least value > u such that. R, ct B, is not in 6. For these
choicesof u and v,it mustbethat q<T<a<u<v<N and
that G is greedy on [Ba, R,] and on [R,+I, B,,-I].

Since R, - BN is a candidate,

c ,Ela,w c* ’ c(Ra, BN) •t &a,N) C:.

And since it is minimal, neither R, + B, nor R, - BN are
candidates; i.e.,

c rE[a,u] c, 5 c(R-Bu) + &a,U) 4

c ,,c[,,,N] c: 5 c(Rv, BN) + &v,N) d.
Combining these three inequalities gives

c tE(u,v) ct+c(Ra, Bu)+c(RwBN) > &,+) c:+c(Ra, BN). (4)

Since R,, R,, BN, B, and R,, R,,, B,, B, are in tour order, quasi-
convexity implies the two inequalities

c(Ra,B,)+ ~(&,BN) I c(&,BN)+c(R,,B~) Since R,, R,, BN and B, are in tour order, quasi-convexity

LINEAR AND O(nlogn) TIME MINIMUM-COST MATCHING 73

c(R,, BP) + c(Ra, Bu) 5 c(Rr, B”) + c(Ra, 4)
which combine to yield:

c(Ra, BN) - c(&, &) - c(&, BN) 2 (5)

c(R,,B,) --(fL,Bu) -c(Ru,&).

Using (4) and (5) gives the inequality

c tEcu,vj G + c(Rw Bu) + c(Rv, 4) > ,&u,v) 4 + c(R- 4).

Let u’ be the matching obtained from d by replacing the jumpers
R, ++ B, and R, ++ B, and the greedy matching on (B,,R,)
with the edge R, * B, and the greedy matching on [E,,R,].
The final inequality says that u’ has cost strictly less than the
cost of 0, which is a contradiction. •I

3. The Algorithm
In this section, we give the actual algorithm for the Main

Theorems. The correctness of the algorithm follows from the
development in section 2.2.
3.1 Preliminaries As mentioned above, the algorithm main-
tains three lists of nodes called deques (for “double ended
queues”, since we will have to access both ends of the lists).
The three deques ace the “main” deque M, and two “left”
deques kc1 and .JY’ The latter two ace called “left deques”
since they contain possible left endpoints for candidates. The
deques will be updated by push-right operations which add a
new node to the right end, by pop-right operations which pop
the rightmost node off the deque, and by pop-le& operations.
However, push-/e& operations ace never required. Deque
operations can be efficiently implemented by using contiguous
memory locations to store the deque elements and maintaining
pointers to the left and right endpoints; each deque operation
can then be performed in constant time. For our algorithm,
it will suffice to reserve enough space for 2N deque elements
(with no possibility that a deque will grow leftwacd since
push-left’s ace not used).

Subscripts R, L , and R - 1 ace used to select the rightmost
item, leftmost item, and the item preceding the rightmost,
respectively. So L-,l refers to the leftmost element of it-l,
MR-~ refers to the item just before the rightmost member of
M , etc. Each deque element is actually a pair, for example,
MR = (X, I); the first entry X of the pair is a node and
the second entry I is a numerical value, namely I = I[X]
as defined in’ section 2.2. To simplify notation, we shall use
the same notation for a deque element as for the node which
is its first component. Thus, ML also denotes the node
which is its first component. We write I[ML] to denote its
second (numerical) component. Similar conventions apply to
the L*’ deques. To simplify our presentation of the algorithm
we deal with boundary effects by augmenting the definition
of primitive operations as necessary. For example, accessing a
non-existent deque element will return an undefined indicator 0
and, in general, functions of undefined operands ace false or
zeco (in particular, the cost function c(-, -) and the I[-]
functions return zero if they have 0 as an argument).

Function Input0 returns the next vertex from an imagined
input tape which moves in the forward direction only; and is
assumed to hold a balanced, alternating color tour. When the
tape’s end is reached, ‘undefined’ is returned. Procedure
Output0 is used to write an individual matching to an
imagined output tape. They ace written as discovered; but can
easily be output in tour order (with only an extra O(N)-time
computation).

To use the same code for red nodes and blue nodes, a
variable $ tracks vertex color by toggling between -1 and

1. Our convention is that 4 = 1 corresponds to blue, and
T,!J = -1 to red.
3.2 Narrative Description of the Algorithm. Initiahza-
tion consists of setting the three deques to be empty and
setting the color toggle $:= -1.

The algorithm first reads nodes from the input and pushes
them onto the right end of the M-deque, and then twice
scans the nodes in tour order. During the two scans, nodes
ace popped from the left end of M and then pushed onto its
right end.5 In addition, while processing a node, some nodes
may be popped off the right end of M to be matched. It will
always be the case that M contains a sequence of contiguous
nodes in tour order and that the node currently being scanned
immediately follows the (formerly) rightmost element of M

The variable $J will be maintained as a color toggle, SO that
$J is equal to -1 if the node currently being processed is red
and to 1 if the current node is blue. The algorithm used for
pushing an element onto the right end of M is:

Algorithm 1 This procedure pushes a vertex X onto the right
of the M deque, and computes the corresponding I[X] value
which is pushed along with X .

procedure Push-Main(X)
I := I[MR] + pb t c(MR, X)
push-right (X,1) onto M
return0

Algorithm 1 merely computes the I[-] value for a node X
and pushes the node and its Ir[-] value on the right end
of A4. To justify the computation of the value of I[X] , note
that if X is blue, then 4 = 1 and I[X] was defined to equal
I[MR] - c(MR, X); whereas, if X is red then cp = -1 and
I[X] equals I[MR] + c(,44~, X). (Unless M is empty, in
which case, I[X] = 0 .)

Once the current node has been pushed onto the right
end of M, the following code implements Step (p) from
section 2.2:

whiIec(Cz-,, MR)-c(L$,MR)<$. (IIL~]-IIL$ml])
pop-right C-’

To justify the correctness of the while condition,
suppose that the currently scanned node is red, so

‘p = -1. By Lemma 7, Bnft[Lz’,, MR] > Bnft[L$,MR] iff

+&,MR) - c(@, MR) < A[L$“_, , C$] Furthermore,

A[kz-l,Lz] is equal to $. (1[Lz] - I[Gz-,I) since C-’
contains blue nodes and $ = -1 (by the equalities at the end
of section 2.2). In this case, MR is past the crossover point of

@-, and Cz, so .Gz may be discarded from consideration
as a left endpoint of a candidate. A similar calculation justifies
the case when the current node is blue.

To implement Step (y), the following code is used:

if c(MR,C~) < ti. (~[MR] - I[Cz])
X := pop-right M
while MR # L$

Match_Pair()
Push-Main(X)

where Mat&Pair is defined below. The above if statement
checks whether C$ + MR is a candidate; if so, the algorithm
greedily assigns edges to node in the interior of the candidate

5For linear tours, only the first scan is needed; however, we treat

only the more general (circular) case.

74 Buss AND YIANILOS

(where ‘greedily’ means with respect to the nodes that have
not already been assigned). Before the greedy assignment is
started, the rightmost entry is popped from M and is saved
as X to pushed back on the right end afterwards. There are
two reasons for this: firstly, this gets the current node X out
of the way of Match-Pair’s operation, and secondly and more
importantly, when X is pushed back onto M, the I[-] value
for the current node is recomputed so as to be correct for
the reduced matching problem in which the greedily matched
nodes are no longer present. Match-fair is the following
procedure:

procedure Match-P&()
Output(“MR-1 c* Ma”)
pop-right M
if MR=LC;/;

pop-right C’
pop-right M
return()

The procedure Match-Pair assigns a jumper MR-I u MR
and discards a matched node from the deque LC” if appears
there. Because of the while condition controlling calls to
Match-Pair, it is not possible for a matched node to occur in

L+ , so we do not check for this condition.
To implement Step (a), the following code is used:

while CI(Lg-,, Lg, MR) = “Yes”

pop-right C’
push-right MR onto Lti (without popping MR)

That completes the description of the how nodes are
processed during the first scan. As mentioned earlier, the
last instruction (the push-right) is omitted from Step (6)
during the second scan. Other than this, the processing for
Steps (/3)-(6) is identical in the two scans.

One potentially confusing aspect of the second scan is that
the I[-] values are no longer actually the correct I[-] values:
for example, it is no longer the case that I[ML] is necessarily
equal to zero. Strictly speaking, the I[-] values all shift by an
additive constant when an entry is popped from the left end
of M; however, it is not necessary to implement this shift,
since the algorithm only uses differences between I[-] values.
The end result is that nothing special needs to be done to the
I values when we pop-left M

After both scans are completed, any remaining nodes may
be greedily matched. As discussed above, there are two
possible greedy matchings and both have the same (optimal)
cost. Thus either one may be used: the algorithm below
just calls Match-Pair repeatedly to assign one of these greedy
matchings.

The complete matching algorithm is shown as Algorithm 2.
We claim that its runtime is either O(N) or O(NlogN)
depending on whether the weak analyticity condition holds. To
see this, note that the initialization and the windup processing
both take O(N) time. The loops for the each of the two scans
are executed 5 N times. Except for the while loops, each
call to Process-Node takes constant time. The second while
loop (which calls Match-Pair) is executed more than once only
when edges are being output. If the first or third while loop
is executed more than once, then vertices are being popped
from the C stacks. Since]%N] edges are output and since
O(N) vertices are pushed onto the C stacks, each of these
while loops are executed only O(N) times during the entire
execution of the algorithm. An iteration of the first or second

Algorithm 2 This is the matching algorithm for balanced
quasi-convex tours. AlI variables are global.

“Initialization”

M,L-l,Ll := 0
* := -1

“Read Input into the M deque”
while [X := Input()] # 0

Push-Main (X)
II, := -*

“The First Scan”

while ,Cti is empty or ML # Lf
X := pop-left M
Process-Node0
push-right MR onto L’
?+h := -*

“The Second Scan”

while Lyl and L1 are not both empty
X := pop-left M
ifX = Gf

pop-left L’
Process-Node0
qb := -4

“Windup Processing”

while M is not empty
Match-Pair()

Exit.
procedure Process-Node0

Push-Main(X)
whilec(Lz-_,,Mn)-c(Tjz,M~)<$, (l[L~]]-l[L~-l])

pop-right L-’
if c(MR, Lz) < 11. (~[MR] - I[Lz])

X := pop-right M
while Mn # Lz

Match-Pair0
Push-Main(X)

while fi(,Lz-, , L$, MR) = “Yes”
pop-right L’

return

while loop takes constant time, while an iteration of the
third while loop takes either constant time or O(log N) time,
depending on whether the weak analyticity property holds.

Because of space limitations, this extended abstract does
not include code for the R predicate. When the weak ana-
lyticity condition holds, the R predicate typically operates by
computing two theoretical relative crossovers and comparing
their positions. Without the weak analyticity condition, the
R-predicate runs in logarithmic time, by using a binary search
of the M-deque.

There are a couple of improvements that can be made
to the algorithm which will increase execution speed by a
constant factor. Firstly, the calls to Match-Pair made during
the “Windup Processing” do not need to check if MR = Lg,
since L$ is empty at this time. Secondly, if computing the cost
function c(-, -) is more costly than simple addition, then it is
possible for Push-Main0 to use an alternative method during
the two scans to compute the cost c(MR,X) for nodes X
which have just been popped from the left of M (except for
the first one popped from the left in the first scan). Namely,
the algorithm can save the old I[X] value for the node X as
it is left-popped off the deque M Then the cost function can

LINEAR AND O(nlogn) TIME MINIMUM-COST MATCHING 75

be computed by computing the difference between the I[-]
value of X and the I[--] of the previous node left-popped
from M. This second improvement applies only to the first
Push-Main call in Process-Node.

4. Non-bipartite, quasi-convex tours
In this section we show how the earlier algorithms can be

applied to non-bipartite, quasi-convex tours. The principal
observation is that non-bipartite tours may be made bipartite
by the simple construction of making the nodes alternate in
color. This is already observed by Marcotte-Suri [17] in a
more restrictive setting; we repeat the construction here for
the sake of completeness.

First, it is apparent that the proof of Lemma 4 still works
in the non-bipartite case, and thus any non-bipartite, quasi-
convex tour has a minimum-cost matching in which no jumpers
cross. This fact implies the following two lemmas:

Lemma 9 Let 21,. .,ZN be a non-bipartite, quasi-convex
tour with N even. Then there exists a minimum-cost matching
such that every edge in the tour is of the form xi tt xi with
i even and j odd.

Proof It will suffice to show that any crossing-free matching
has this property. Suppose zi (--f xi is a jumper in a crossing-
free matching, with i < j. Since N is even, the matching
is complete in that every node is matched. The crossing free
property thus implies that the nodes in (xi, xj) are matched
with each other; so there are an even number of such nodes,
i.e., one of i and j is even and the other is odd. 0

Lemma 10 Let x1,. , IN be a non-bipartite linear quasicon-
vex tour. Then there exists a minimum-cost matching such
that every edge in the tour is of the form xi +P xj with i even
and j odd.

Proof If N is even then this lemma is just a special case of
the former lemma. If N is odd, then add an additional node
z~+l to the end of the tour, with c(xi,x~+l) = 0 for all i.
The resulting tour is again quasi-convex and of even length; so
the lemma again followsimmediately from the former lemma.

When Lemmas 9 and 10 apply, we may color the even nodes
red and the odd nodes blue and reduce the non-bipartite
matching problem to a bipartite matching problem. As an
immediate corollary, we have that the two Main Theorems also
apply in the non-bipartite setting; namely, for non-bipartite,
quasi-convex tours of even length and for non-bipartite, linear,
quasi-convex tours, the matching problem can always be solved
in O(N log N) time and it can be solved in O(N) time if the
weak analyticity condition holds.

We do not know whether similar algorithms exist for the
case of general (i.e., non-linear) quasi-convex tours of odd
length. Similarly, we do not know any linear or near-linear
time algorithms for bipartite, quasi-convex tours which are
neither balanced nor linear.

We conclude this section by mentioning a tantalizing con-
nection between our work and the work of F. F. Yao[22]. Yao
gave a quadratic runtime algorithm for solving the dynamic
programming problem

d(i, j) = c(i, j) + min{d(i, Ic - 1) + d($, j) : i < k 5 j}

for linear quasi-convex tours with cost function c (improving
on the obvious cubic-time algorithm). Our non-bipartite
matching problem can be stated as a similar dynamic pro-
gramming problem; namely, the minimum-cost, MC(i, j), of

a complete matching on the nodes in [xi, xj] can be recursively
defined to equal

min{c(i, Ic) + MC(i + 1, k - 1) + MC(k + l,j) : i < k 5 j}.

(A similar dynamic programming algorithm can be given for
the bipartite matching problem.) The obvious naive algorithm
for computing MC(-,-) is cubic-time, however, our main
results give (near) linear time algorithms for linear quasi-
convex tours. This raises the possibility that the dynamic
programming problem considered by Yao may also have a
near-linear time solution.

5. Applications to String Matching
As a final topic we briefly discuss the application of our

matching results to string comparison - but a full treatment
is beyond the scope of this paper. Given two symbol strings
v = ala2 ‘a, and ‘w = blbz . . . b, , our goal is to measure
a particular notion of distance between them. Intuitively,
distance acts as a measure of similarity, i.e. strings that are
highly similar (highly dissimilar) are to have a small (large)
distance between them. The purpose of such formulations is
usually to approximate human similarity judgements within a
pattern classification or information retrieval system.

Suppose f(x) is a monotonely increasing, concave-down
function with f(0) = 0. Let symbols al,. , a, in v be a
graph’s red nodes, bl, , b, in w be its blue nodes, and
consider bipartite matchings of these 2n symbols. In the
simplest formulation we define the cost of an edge ai * bj as
f (]j - i]) if ai and bj are the same symbol, and as f(n) if
ai and bj are distinct symbols. The cost of matching unequal
characters can also be set to be any other fixed value instead
of f(n). Our distance, ‘T(v, w), between strings v and w is
then the minimum cost of any such bipartite matching.

As an example, consider the two strings “delve” and “level”
and let f(x) = 6. Then the distance between these two
strings is fi + 4 + fi + fi + fi x 5.65.

As we have set up our problem above, the computation
of a(v, w) is not directly an instance of the quasi-convex
matching problem. However we can compute the (T function
by considering each alphabet symbol o separately, and solving
the quasi-convex matching problem (T, which results from
restricting attention to occurrences of a single alphabet symbol
at a time. To make this clear, we introduce a special symbol “-”
which indicates the absence of an alphabet symbol. The value
of u(“delve”, “level”) can be expressed as the sum

(Td(“d---“,“----“) +a,(“-e-e”,“-e-e-“)
+al(‘~--~--“,“~-~~“)+cr,(“---v-“,“-v--”)

To make the summed (T, terms equal cr as originally defined,
each ca is defined to be the subproblem’s minimum matching
cost, plus f(n)/2 times the number of unmatched symbols.

We will loosely refer to distance functions that result from
this kind of formulation as u-distances. Assuming that f(x)
satisfies the weak analyticity condition, it is not too difficult to
show that it is possible to compute (T(v, w) in linear time. If
the weak analyticity condition does not hold, then our results
give an O(n log n) time algorithm.

A novel feature of our u-distances is that distinct alphabet
symbols are treated independently. This is in contrast to
most prior work which has used ‘least edit distance’ for string
comparison (see [18] for a survey). As an illustration of
the difference between our distance measure and the ‘edit
distance’ approach, consider comparing the word “abcde” with
its mirror image “edcba”. Our approach recognizes some

76

similarity between these two forms, while the most standard
‘edit distance’ approach sees only that the two strings have
“c” in common - in essence substituting the first two and
last two symbols of the string without noticing the additional
occurrences of the same symbols at the other end of the other
string.

A special form of our a-distance measure in which f(z) = z
was introduced earlier by the authors and shown to have a
simple linear time algorithm [23,24]. This earlier algorithm has
been successfully used in commercial applications, especially
for spelling correction in word processing software, typewriters,
and hand-held dictionary devices (we estimate that that over
15,000,OOO such software/hardware units have been sold by
Proximity Technology, Franklin Electronic Publishers and
their licensees). Other less prominent commercial applications
include database field search (e.g. looking up a name or
address), and the analysis of multi-field records such as mailing
addresses, in order to eliminate near-duplicates. In both of
these applications, the strict global left-right ordering imposed
by O(n2) time ‘edit distance’ methods, can be problematic.
On the other hand, very local left-right order preservation
seems to be an important part of similarity perception in
humans. One simple adaptation of our a-distance methods
which goes a long way towards capturing this characteristic,
consists of extending the alphabet beyond single symbols to
include digraphs or multi-graphs. The result is increased
sensitivity to local permutation. Another effective alphabet
extension technique involves the addition of feature symbols to
the alphabet to mark events such as likely phonetic transitions.
We expect that the use of general concave-down distance
functions (as opposed to f(z) = z) will improve the quality
of the similarity judgements possible within the u-distance
framework.

The development above considers strings of equal length
only. The unequal length case is not a difficult generalization;
but considering it does highlight the issue of embedding. By
this we mean that it is implicit in our formulation that the
two strings are in a sense embedded into the real line. The
particular rather natural embedding we’ve assumed so far,
maps ai and bi to value i on the real line - but others are
possible.

A detailed comparison of our methods with ‘edit distance’
approaches is beyond the scope of this paper. But we must
point out that the ‘edit distance’ formulation is in several
senses richer than ours. First, the cost of matching different
alphabet members need not be fixed. Also, our distance
formulation depends on a designated embedding while the ‘edit
distance’ methbd requires no such specification. Finally, for
some problems, left-right order preservation may be desirable.
On the other hand, even the simplest ‘edit distance’ approach
is O(n’); compared with the O(n) or O(n logn) complexity of
our method. We therefore feel that additional work is needed
to better understand the applications of - and perhaps extend
our approach.

References

[l] A. AGGARWAL, A. BAR-N• Y, S. KHULLER, D. KRAVETS,
AND B. SCHIEBER, Eficient minimum cost matching using
quadrangle inequality, in Proceedings of the 33th Annual
IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society, 1992, pp. 583-592.

[2] A. AGGARWAL AND M. KLAWE, Applications of generalized
matrix searching to geometric algorithms, Discrete Applied
Mathematics, (1990), pp. 3-23.

[31

[41

[51

P1

[71

P1

PI

[lOI

[ill

I121

[131

[141

t151

[If51

t171

iI81

WI

PO1

WI

P4

1231

1241

Buss AND YIANILOS

A. AGGARWAL, M. KLAWE, S. MORAN, P. SHOR, AND
R. WILBER, Geometric applications of a matrix-searching
algorithm, Algorithmica, 2 (1987), pp. 195-208.

A. ACCARWAL AND J. PARK, Notes on searching in multidi-
mensional monotone arrays, in Proceedings of the 29th Annual
IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society, 1988, pp. 497-512.

D. EPPSTEIN, Sequence comparison with mixed convex and
conca2)e costs, Journal of Algorithms, 11 (1990), pp. 85-101.

Z. GALIL AND R. GIANCARLO, Speeding up dynamic pro-
gramming with applications to molecular biology, Theoretical
Computer Science, 64 (1989), pp. 107-118.

Z. GALIL AND K. PARK, A linear-time algorithm for concave
one-dimensional dynamic programming, Inf. Process. Lett., 33
(1990), pp. 309-311.

P. GILMORE AND R. GOMORY, Sequencing a one state-variable
machine: A solvable case of the traveling salesman problem,
Operations Research, 12 (1964), pp. 655-679.

X. HE, An efficient parallel algorithm for finding minimum
weight matching for points on a convex polygon, Inf. Process.
Lett., 37 (1991), pp. 111-116.

D. S. HIRSCHBERG AND L. L. LARMORE, The least weight
subsequence problem, SIAM J. Comput., 16 (1987) 628-638.

R. M. KARP AND S.-Y. R. LI, Two special cases of the assign-
ments problem, Discrete Mathematics, 13 (1975), pp. 129-142.

M. M. KLAWE AND D. J. KLEITMAN, An almost linear time
algorithm for generalized matrix searching, SIAM J. Disc.
Math., 3 (1990), pp. 81-97.

D. KRAVETS AND J. K. PARK, Selection and sorting in totally
monotone arrays, Math. Systems Theory, 24 (1991) 201-220.

L. L. LARMORE AND B. SCHIEBER, On-line dynamic program-
ming with applications to the prediction of RNA secondary
structure, Journal of Algorithms, (1991), pp. 490-515.

E. LAWLER, Combinatorial Optimization: Networks and
Matroida, Holt, Rinehart dnd Winston, 1976.

Y. MANSOUR, J. K. PARI<, B. SCHIEBER, AND S. SEN,
Improved selection in totally monotone arrays, in Proceedings,
11th Conf. on Foundations of Software Technology and
Theoretical Computer Science, 1991, pp. 347-359.

0. MARCOTTE AND S. SURI, Fast matching algorithms for
points on a polygon, SIAM J. Comput., 20 (1991), pp. 405-422.

D. SANKOFF AND J. B. KRTSKAL, Time Warps, String Edits
and Macromolecules: The Theory and Practice of Sequence
Comparison, Addison-Wesley, 1983.

P. M. V.UDYA, Geometry helps in matching, SIAM J. Comput.,
18 (1989), pp. 1201-1225.

M. WERMAN,S.PELEG,R.MELTER, ANDT.KONG, Bipartite
graph matching for points on a line or a circle, Journal of
Algorithms, 7 (1986), pp. 277-284.

R. WILBER, The concave least-weight subsequence problem
revisited, Journal of Algorithms, 9 (1988), pp. 418-425.

F. F. YAO, Speed-up in dynamic progmmming, SIAM J. Alg.
Disc. Meth., 3 (1982), pp. 523-540.

P. N. YIANILOS, The definition, computation and application
of symbol string similarity functions, Master’s thesis, Emory
University, 1978.

P. N. YIANILOS AND S. R. Buss, Associative memory
circuit system and method, continuation-in-part. U.S. Patent
#4490811, December 1984.

