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1. Introduction

We are concerned here with two problems in sequence analysis, both solvable
by dynamic programming. The first problem is alignment of sequences, and the
second is prediction of RNA secondary structure. In both cases, a cost function
is involved; for sequence alignment, this gives the cost of inserting or deleting a
consecutive group of symbols, and for RNA structure, this gives the cost of
forming a loop of a given length. Also, in both cases, the dynamic program has
some sparsity in its structure, which we would like to exploit in the design of
efficient algorithms for the problems. In a companion paper [8], we showed
how to do this for cost functions that are linear in the length of the insertion or
deletion, or in the length of the RNA loop. Here we extend these methods to
cost functions that may be either convex or concave. Many of the cost functions
that are likely to be used satisfy an additional property, which we define
following Hirschberg and Larmore [10] and Eppstein et al. [7] and Galil and
Giancarlo [9]. For such functions, our algorithms can be made even more
efficient.

Our algorithm for computing alignments from a sparse set of fragments runs
in time 0( n + m + M log M) for concave cost functions, and 0( n + m +
M log Mfa( &f)) for convex cost functions. Here n and m are the lengths of
the two input strings, &l is the number of fragments found, and a(x) is the
inverse Ackermann function, a very slowly growing function. The log func-
tion here, and throughout the paper, is assumed to be log x = logz(2 + x);
that is, when x is small, the logarithm does not become negative. For simple
convex cost functions, the time can be further reduced to match the con-
cave time bound. These bounds improve the previous best known time of
O(n + m +M’) [30].

Our algorithm for the prediction of RNA secondary structure with convex or
concave cost functions for single loops runs in time 0( n + M log M log
min( M, n2 /M)). In this case, n is the length of the input sequence, and A4 is
the number of possible base pairs under consideration. When the cost function
is simple, our bounds can be improved to 0( n + M log &f log log
min( A4, n2 /iW)). The previous best-known bound was 0( nz log n) [2]; our
bounds improve this by taking advantage of the sparsity of the problem.

Our algorithms are based on a common unifying framework, in which we
find for each point of the sparse problem a geometric region of the dynamic
programming matrix in which that point can influence the values of other
points. We then resolve conflicts between different points by applying several
algorithmic techniques in a variety of novel ways. In particular, previous
algorithms for many of the problems we study have used either data structures
[7, 9, 10] or matrix searching [1, 2, 3, 14, 28]. By combining both techniques,
we achieve better bounds than either technique alone would give.

First, let us define convexity and concavity as we are using it. Each of our
cost functions will be a two-parameter function W( i, j), where i and j are both
integer indices into the input sequences. We say that w is concave when, for
all i < i’ < j < f, the quadrangle inequality

w(i, j’) + w(i’, j) > w(i, j) + w(i’, j’) (1)

is satisfied. We say that w is convex when the reverse inequality, which we
call the inverse quadrangle in equality,, is satisfied. For most applications, the
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cost function will actually depend only on the difference between its two
parameters; in other words, W( i, j) = g(.j – i) for some function g. In this
case, w will be convex or concave by the above definition exactly when g is
convex or concave by the usual one-parameter definition.

The quadrangle inequality was introduced by Monge [19], and revived by
Hoffman [11], in connection with a planar transportation problem. Later, Yao
[31] used the inequality to solve a dynamic programming problem related to the
construction of optimal binary search trees. Recently, the quadrangle inequality
has seen use in a number of other dynamic programming algorithms for
sequence analysis [2, 6, 7, 9, 14, 28].

2. A Dynamic Minimization Problem

We now describe a data structure to solve a minimization with dynamically
changing input values. We later use this data structure in our solution of the
sparse sequence alignment problem. The data structure may also have indepen-
dent interest of its own. We consider the following equation:

E[i] = m~ll[j] + w(i, j). (2)

Each of the indices i and j are taken from the set of integers from 1 through
some bound n. The minimization for each E[ i] depends on all values of D[ j],
not just those for which j < i. The cost function W( i, j) is assumed to be either
convex or concave. The values of 11[ j] will initially be set to +m. At any time
step, one of the following two operations may be performed:

(1) Compute the value of 13[i], for some index i, as determined by Eq. (2)
from the present values of D[j].

(2) Decrease the value of D[ j], for some index j, to a new value that must be
smaller than the previous value, but may otherwise be arbitrary.

We give a data structure for this problem that will take O(log n) amortized
time per operation. For simple cost functions, this time can be reduced to
O(log log n) amortized time per operation.

Equation 2 generalizes a number of problems that have appeared in other
algorithms for sequence analysis, computational geometry, and other problems.

—Knuth and Plass [16] used a recurrence of the form 11[ i] = min~ <, D[ j] +
W( i, j) to break paragraphs into evenly spaced lines in the TEX program.
They used the naive 0( n2 ) dynamic program to solve the recurrence.
Hirschberg and Larmore [10] gave algorithms for solving the recurrence in
time 0( n log n), assuming a weaker form of the quadrangle inequality than
that used here. With the quadrangle inequality as we use it, the problem
becomes trivial to solve. This recurrence can be seen as an example of Eq.
(2), in which we consider the index i to range successively over the integers
from 1 to n; for each i, we first calculate 13[ i], and then include it in the
recurrence by reducing D[ i] from + m to the newly calculated value of
E[ i].

—Aggarwal et al. [3] considered the problem of finding the minimum value of
each row of an implicitly defined matrix, satisfying certain constraints. An
important special case of their problem is the static version of Eq. (2), in
which all values of D[ j] are specified before any value of E[ i] is computed.
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They gave a linear-time algorithm for the matrix-searching problem, and thus
also this special case.

–Galil and Giancarlo [9] considered a generalization of the problem of Knuth
and Plass, in which 11[ i] may be computed in some simple but arbitrary way
from the corresponding value of l?[ i]. This generalization can be applied
for sequence alignment problems with nonlinear gap costs. They gave an
0( n log n) algorithm for this problem, when W( i, j) is either convex or
concave; a version of their algorithm takes linear time for simple functions.

– Wilber [28] extended the matrix-searching techniques of Aggarwal et al. [3]
to matrices in which the entries in each row depend dynamically on previ-
ously solved row minima. He used this to achieve a linear-time solution to
the concave case of Galil and Giancarlo’s problem. However, Wilber’s
algorithm is not suitable for the application to sequence alignment, or to other
problems in which many instances of the problem are computed simultane-
ously. Eppstein [6] modified Wilber’s algorithm to avoid these difficulties,
while still taking only linear time.

—Aggarwal and Klawe [1] extended the matrix searching techniques of Aggar-
wal et al. [3] to staircase matrices, a class of matrices that includes as a
special case triangular matrices, and used this result to solve some further
computational geometry problems. Their algorithm for solving such matrices
takes time 0( n log log n). Klawe and Kleitman [14] improved this result to
0( n ci( n)), where a is the inverse Ackermann function. They further
allowed the rows of the matrix to depend dynamically on previously com-
puted row minima as in Wilber’s algorithm. This resulted in an improvement
of the convex case of Galil and Giancarlo’s problem to time 0( n Q( n)).

—Eppstein et al. [7] gave an algorithm for computation of RNA structure, in
which an important subproblem can be viewed as the computation of Eq. (2),
when the values of D[ j] may be reduced in any order, but in which the
values of 17[ i] are computed only in sequential order. They gave algorithms
for this subproblem which take amortized time O(log n) per operation; for
simple convex problems their algorithms take time O(log log n) per opera-
tion. Aggarwal and Park [2] later improved their algorithm, by using a
different method of computation based on the matrix searching techniques of
Aggarwal et al. [3].

Our algorithm for the general dynamic equation above is similar to those of
Galil and Giancarlo [9] and Eppstein et al. [7]. However, we later see how
these techniques can be combined with matrix searching algorithms to provide
further improvements.

We first show that we need only consider concave cost functions; the convex
case will turn out to be essentially the same.

LEMMA 1. If w(i, j) is convex, then w’(i, j) = w(i, n – j + 1) is
concave.

PROOF . Let ~(j) = n – j + 1. Then, f maps the interval 1 “ -- n into
itself. H j < j’, then clearly f ( j’) < f ( j). Therefore, if the inverse quadrangle
inequality holds for w ( i, j), the inequality formed by reversing the order of j
and j’ holds for w’( i, j) = W( i, f ( j)). But this is the same as the quadrangle
inequality of w’( i, j). ❑
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IXMMA 2. The dynamic minimization problem defined by Eq. 2, for
convex weight functions W( i. j), can be solved as a concave problem by
reversing the order of the second index j.

From now on, in this section, we assume without loss of generality that
w ( i, j) is concave. Our algorithm is based on the following fundamental fact:

LEMMA 3. For any i, j, and], with j < j’, if D[ j] + w(i, j) z D[ j’] +
w(i, j’), then for all i’ > i, D[j] + w(i’, j) > D[j’1 + w(i’, j?. Con-
versely, if D[j] + w(i, j) s D[j’] + w(i, j’), then for all i’ < i, D[j] +
w(i’, j) S D[j’1 + w(i’, j’).

PROOF. By the quadrangle inequality, w(i, j’) + w(i’, j) > w(i, j) +
w(i’, j’). Subtracting w(i, j’) + w(i’, j’) + D[j’] – D[j] from both sides and
rearranging gives

(D[j] + w(i, j)) - (D[j’] + w(i, j’))

< (D[j] -1- w(i’, j)) - (D[j’] + w(i’, j’)).

But by assumption (ll[j] + W( i. j)) – (11[ j’] + W( i, j’)) is positive, and
therefore (Zl[j] -t- W( i’, j)) – (D[j’] + W( i’, j’)) must also be positive and
the first statement holds. The proof of the converse statement is similar. ❑

For specificity, let us break ties in favor of the smaller index. That is, we say
that II[j] is better than 11[~] at i if either D[j] + w(i, j) < D[j ~ +
w(i, j’), or D[,j] + w(i, j) = D[l] + w(i, j’) and j < j’.

LEMMA 4. At any given time. the values of D[ j] supplying the minima
for the positions of E[i], with ties broken as above, partition the possible
indices i into a sequence of intervals. If j < j’, if i is in the interval in
which D[ j] is best, and i’ is in the interval in which D[ j’1 is best, then
i < i’.

Thus, our algorithm need simply maintain the interval in which each value
D[ j] is best, and a search structure of the interval boundaries, in which the
interval containing a given point i can be looked up. Such a search structure
can be maintained at a cost of O(log n) per modification or search, using any
form of balanced binary trees [4, 15, 23]. If we use the flat tree data structure
of van Erode Boas [24], this time can be reduced to O(log log n). Thus. it
remains to show how to decrease a given value of D[ j], while maintaining the
partition above and performing only 0(1) search-tree operations.

In fact, we may need to perform more than 0(1) search tree operations when
we reduce a value of 11[ ~“]. because many other values of D[ ~’] may have their
corresponding intervals reduced to nothing and thus will need to be removed
from the search tree. We avoid that difficulty by, whenever we insert a value of
D[ j] in the search tree, charging the operation with the time required to later
delete it. In this way, each reduction will perform 0(1) noncharged search-tree
operations. and will be charged for 0(1) further operations which may occur in
the future. The total is 0(1) operations per reduction, but the time bounds
become amortized over the lifetime of the data structure rather than worst-case
per operation.

We call an index j into the array D[ j] live if, for some 13[ i], D[ j] supplies
the minimum in Eq. (2). As well as finding the interval containing a given index
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i into array l?, we also need to search for the first live index before a given
index j into array D. This can be done by maintaining another search tree or
flat tree containing the live indices.

Let R [ j] be the rightmost (greatest) index in the interval corresponding to
index j, and similarly let L[ j] be the leftmost index. For brevity, let C( i, j)
stand for D[j] + w(i, j).

As in the algorithm of Galil and Giancarlo [9], we need a subroutine
border(j, j’). This will always be called with j < j’; it returns the greatest
index i such that C( i, j) s C( i, j’). If no such index exists, it returns O. For
arbitrary cost functions, Lemma 3 can be used to derive a binary search routine
that finds border( j, j’) in time O(log n). For many functions, border( j, j’)
can be calculated directly as the root of a functional equation; we say that such
a function has the closest zero property. Hirschberg and Larmore [10], and
later Eppstein et al. [7] and Galil and Giancarlo [9], used this property to derive
more efficient algorithms for the problems they solved. Most simple functions
that are likely to be seen in practice, such as logarithms and square roots, have
the closest zero property.

The steps performed to reduce the value of D[ j] are shown in Figure 1.
Clearly a change in D[j] can only affect the borders between it and its

neighbors in the interval partition, and not any of the borders between un-
changed values. Each iteration of the two loops above removes a point j’ from
the set of live points, exactly when the decrease in D[ j] expands the corre-
sponding interval to cover the remaining interval of j’; that is, when j’ no
longer supplies the minimum at any point. The remaining steps fix the borders
of the intervals between j and any remaining neighbors. It can be seen, using
Lemma 3, that the resulting partition is exactly that described by Lemma 4.
Thus, the algorithm correctly solves the dynamic minimization problem we are
interested in.

THEOREM 1. The data structure above can be implemented to take
0( log n) time, or 0( log log n) for functions with the closest zero property.
The latter version aiso requires a setup time of 0( n).

PROOF. The time for each reduction can be split into the time for each

iteration of the loops, and the remaining time. The loop time for an iteration
deleting point j’, as we have said, will be charged when we insert j’ rather than
when we delete it. This time is one search tree operation per iteration. Thus, the
time possibly charged to j will be one search tree operation. The remaining
time consists of at most four search tree operations, to remove the old interval
boundaries from the search tree and insert the new ones, and possibly to add
j to the list of live indices. We also make two calls to the border subroutine.
The total amortized time per operation is O(log n), or for simple functions
O(log log n). ❑

3. Sparse RNA Structure

The following recurrence has been used to predict RNA structure [7, 22,
25, 26] :

D[i, j]

=min{D[i– 1, j– 1] +b(i, j), ll[i, j], V[i, j], E[i, j]}, (3)
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begin
repeat

find j’ < j as large as possible with j’ live;
if no such j’ exists then L[j] + 1; break;
elseif C(I, [j’1, j) < C(I,[J’1, j’) then begin

Q.)] + L,[j’l;
make j’ no longer live;

end;
else break;

end;
if j’ still exists then begin

R[]] - border(j’, J);
L[j] - R[j’] + 1,

end;

repeat
find j’ > j as small as possible with j’ live:

if no such j’ exists then R[ j] + n; break;
elseif C(R[j’]. j) < C(R[j~, j? then begin

R[j] + R[j’];

make j’ no longer live:
end;
else break;

end;
if j’ still exists then begin

R[.1] - border (j, j’);
L[]] - R[j] + 1;

end;
if L[J] s R[ j] and j is not in the search structure then

add j to the search structure;

end

FIGURE 1

where

D. EPPSTEIN ET AL.

V[i, j] = orIlp<i D[kjj– 1] + W’(k, i),

H[i, j] == mi:JD[i– 1,1] +W’(l, j),

E[i, j] = min D[i’, j’] + w(i’ +~, i+j).
I< I’<j–l
Isj’ <j-l

(4)

(5)

(6)

The function w corresponds to the energy cost of a free loop between the two
base pairs, and w’ corresponds to the cost of a bulge. Both w and w’ typically
combine terms for the loop length and for the binding energy of bases i and j.
The function b( i, j) contains only the base pair binding energy term, and
corresponds to the energy gain of a stacked pair (see [22] for definitions of
these terms). The companion paper [8] describes why the number M of base
pairs (i, j) such that D[ i, j] < +CO may be taken to be significantly less than
n2, and uses this fact to improve the time for solving these recurrences when w
and w‘ are linear; here we instead allow them to be convex or concave.

In fact to compute the best structure for an RNA sequence, rather than simply
the best score for the structure, we need to also maintain for each pair (i, j) a
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pointer to the pair (i’, j’) supplying the minimum. It is not difficult to modify
our algorithm to maintain such pointers; we omit the details.

First note that the computation of V [ i, j] within a fixed column j does not
depend on that in other columns, except indirectly via the values of 11[ i, j].
We may perform this computation using the algorithm of Galil and Giancarlo
[9]; if the number of points i in column j such that D[ i, j] # +co is denoted
by pj, then the time for computing all values of V [ i, ~] for a fixed ~ will be

0(( pj + pj., )Iog M). The total time for these computations in all columns
will then be 0( Al log M). We could achieve even better bounds using the
more complicated algorithms of Klawe and Kleitman [14] or Eppstein [6], but
this would not affect our total time bound.

The computation of H[ i, j] is similar. Therefore, the remaining difficulty is
the computation of 17[ i, j], as defined by recurrence (6). For simplicity of
exposition, we relax the condition in the recurrence that i’ < i – 1 and instead
allow i’ < i; similarly with j and j’. However, the algorithm we describe
works essentially unchanged for the actual conditions on i’ and j’.

The obvious dynamic programming algorithm solves recurrence (6) for
sequences of length n in time 0( n4) [22]; this can be improved to 0( rz3) [26].
When w is a linear function of the distance between back diagonals (i’ + j’) –
(i + j), another easy dynamic program solves the problem in time O(n’) [13].
In the companion paper, we reduce this time bound to 0( n + k? log log
min(lvf, run /M)) [8].

Here we consider instead the case that the cost function is either convex or
concave. Eppstein et al. [7] found a 0( n2 log2 n) algorithm for such costs: this
was later improved to 0( n2 log n) [3]. We would like to again use the sparsity
of the possible base pairs to further reduce the time for the problem with convex
or concave costs. We assume that the possible base pairs have already been
enumerated; the companion paper [8] explains how this may be done.

Each point (possible base pair) may be considered as having a range of
influence consisting of the region of the dynamic programming matrix below
and to the right of it. Thus, the range of each point is a quarterplane with
vertical and horizontal boundaries. We first effectively remove the horizontal
boundaries, leaving half-planar ranges, at a logarithmic cost in execution time.
This is done as follows:

We solve the problem by a divide and conquer recursion on the rows of the
dynamic programming matrix. For each level of the recursion, having t points
in the subproblem for that level, we choose a row r such that the numbers of
points above r and below r are each at most t/2. Such a row must always
exist, and it can easily be found in linear time. Thus, we can partition the points
of the problem into three sets: those above r, those on r, and those below r. In
fact, it would be possible to partition the points into only two sets, by including
the first half of the points on r among the points below r, and including the
second half of the points on r among the points above r. However, the
correctness of the algorithm is easier to see with the three-part division; and
since the best way of computing the two-part division seems to be by first
computing the three-part division, we might as well just use the three-part
division.

Within each level of the recursion, we need the points of each set to be sorted
by their column number. This can be achieved by initially bucket sorting all
points, and then at each level of the recurrence performing a pass through the
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sorted list to divide it into the three sets. Thus, the order we need will be
achieved at a linear cost per level of the recurrence.

We note that for any point above or on r, the minimum value in Eq. (6) only
depends on the values of other points above r. For points below r, the value of
Eq. (6) is the minimum between the values from points above r, and the points
below r. Thus, we can compute all the minima by performing the following
steps: (1) solve the problem above r by a recursive invocation of our algorithm,
(2) use the values given by this solution to solve the problem for the points on
r, (3) compute the influence of the points above or on r, on the values of the
points below r, and (4) recursively solve the problem below r.

This divide and conquer technique is similar to the dynamic-to-static reduc-
tion of Bentley and Saxe [5]; it differs from the RNA structure algorithm of
Aggarwal and Park [3] in that we divide only by rows. and not by columns. It
does not seem possible to modify the algorithm of Aggarwal and Park to run in
time depending on the sparsity of the problem, because at each level of their
recursion, they compute a linear number of matrix search problems, the size of
each of which does not depend on the sparsity of the problem.

The problem remaining after our recursion is as follows: We are given a set
A of points above a certain row of the matrix, and a set B of points below the
row. Both sets are sorted by column number. The values of the points in A are
known, and we want to know their contributions to the minimizations for each
of the points in B. Each level of the divide and conquer recursion computes the
solution to two such problems. one with A the points above row r and B the
points on row r, and a second with A the points above or on row r and B the
points below row r.

We now write a recurrence equation for the reduced subproblem:

_E[i, j] = ~t,miiAD[i’, j’] + w(i’ +j’, i +j). (7)

1<J’ <j

The crucial difference between this and Eq. (6) is that now, the requirement
that i’ < i has been subsumed by the separation into sets A and B. In other
words, the horizontal boundaries of the quarter-planar regions of influence have
been removed, leaving only the vertical boundaries. Thus, the range of influ-
ence of each point in A is the subset of B to the right of the point, and points
in A are totally ordered by inclusion of the ranges. We use the total order to
add the points of A to the data structure described in the previous section, so
that when we process each point of B exactly the points that influence it will
have been added to the data structure.

In particular, we process the points of A and B in order by their column

numbers. The details of this processing will be given below. Within a given

column, we first process the points of B, and then the points of A. By
proceeding along the sorted lists of points in each set, we need only spend time
on columns that actually contain points, so there will be no time loss determin-
ing which points to process next. Clearly, if we use this order, then whenever
we process a point (i, j) from the set B, the points ( i’, j’) of -4 that will have
been processed will be exactly those with j’ <j.

We process points by maintaining a copy of the data structure described in the
previous section. To recall, the data structure maintains a matrix of values
11[ y], initially all +m. At each step, the algorithm may either decrease one
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such value, or it may answer a query of the form

E[x] = m~~[y] + w(y, x). (8)

It is easily seen that Eq. (8) is like Eq. (7), but with points (i, j) replaced by
the numbers i + j of their diagonals, and with the requirement that j’ < j
removed. As we have described above, this last requirement will be taken care
of by the order in which we process the points.

To process a point (i, j) from A, with value U, we let y = i + j be the
number of the diagonal containing the point, and reduce 11[ y] to min( 11[ y], u).

To process a point (i, j) from B, we let x = i + j be the number of the
diagonal containing the point, and compute the influence of the points in A on
the value at (i, j) to be E[x] as in Eq. (8).

This completes the solution of Eq. (7), and thus the solution of recurrence

(6). To summarize, the algorithm solving the recurrence can be written in
pseudo-code as follows:

procedure RNA( x, y):
begin

find sparse set X of possible base pairs from the two strings;

sort X by column numbers;
let arrays E and D be indexed by members of X;

for xeXdo J!7[x] = +m;
Recurse( X):

end

The recursive subprocedure called in this algorithm solves the problem within
the set of points given, assuming the influences of previous points have already
been included in the computation. The input set of points is assumed sorted by
column numbers, and the splitting of that set into subsets A, B, and C must
maintain that sorted order. Note that there is no call to Recurse( l?) because the

points in B, being all on the same row, cannot influence each other.

procedure Recurse( X):

begiu
let j be a row with at most I X \/2 points above and below it;

let A be the points above row j in X;
let B be the points on row j;

let C be the points below row j;
if A # @then begin

Recourse;
Influence( A, B);

end;
forxe Bdo

compute D[ x] from E[ x]:
if C # @then begin

Zrr@erzce(A U B, C’);

Recurse(C);

end;
end

Finally, we give pseudo-code for computing the influence of one set of points
on another, in which all the actual work of solving the recurrence is performed.
Again, the input sets are sorted by column.
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procedure Influence( A, B):

begin
/* let F’[i] = rein, G[.j] + w(j, i) be solved by the data */
/* structure of the previous section; *I
let X = A U B, maintaining sorted order; if A and B both

have points in the same column let those of B come first;
for x e X in order do begin

d + r~w( @ + c~~~~nn(x);
if x =A then G[d] + min(G[d], D[x])
else E[x] + min(E[X], F’[d]);

end;
end

Before we give the time bound, let us first note that the time for each data
structure operation can be taken to be O(log A4 ) or O(log log M) rather than
O(log n) or O(log log n). This is because we need only consider diagonals of
the dynamic programming matrix that actually contain some of the Al points in
the sparse problem. We number these nonempty diagonals in order by their real
diagonal numbers; it is easily seen that this change does not affect the convexity
or concavity of the cost function. However, the closest zero functions have the
complication that the computation of border( x, y) is defined in terms of actual
diagonal numbers. Therefore, we need to translate actual diagonal numbers into
the nearest nonempty diagonals; a table to perform this translation can be
created in 0( n + M) time, and used throughout the algorithm.

THEOREM 2. The RNA structure computation of recurrence (6), for a
sequence of length n. with M possible base pairs, and convex or concave
cost functions, can be performed in time 0( n + M log 2 M). For cost
functions with the closest zero property, the computation can be per-
formed in time O(n + Mlog A410g logikl).

PROOF. Denote the number of points processed at a given level of the
recurrence by t.Then the time taken at that level is 0(t), together with 0(t)
operations from the data structure of the previous section. The time per data
structure operation is either O(log M) or O(log log Af), as described above.
The latter version also requires 0( Al) preprocessing time to set up the flat tree
search structures; however, the same structures can be reused at different levels
of the recursion and so this setup time need only be payed once. The divide and
conquer adds another logarithmic factor to this bound. We also need to compute
the possible base pairs and bucket sort them, in a preprocessing stage taking
time 0(t). The details of this generation are given in the companion paper [8].
The total time to solve recurrence (6) is 0( n + M log? M) in general, or
0( n + M log M log log M) for simple functions. ❑

4. Improved RNA Structure Computation for Intermediate Density

In the introduction, we promised a time bound for the RNA structure computa-
tion of O(n + M log A4 log min(lbf, rz2/M?)) in generaI, and O(n + A4 log
M log log min( &f, n’ /M)) for simple cost functions. Yet, in the previous
section, the bounds we gave were only 0( n + M log z ~) or 0( n + AZ log
M log log M). Here, we describe how to improve our algorithms to run within
the time bounds we claimed. We assume without loss of generality that n < M;
otherwise, the bounds given in the previous section reduce to those here.
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First, let us examine the algorithm for simple functions. The algorithm for
arbitrary functions is similar but requires a few more ideas. Our algorithms will
be similar to those of the previous section, but the divide and conquer scheme
will be different. Instead of dividing only by rows, we divide alternately by
rows and columns, similarly to the divide and conquer technique used in the
nonsparse RNA structure algorithm of Aggarwal and Park [3]. More precisely,
at even levels of the divide and conquer recurrence, we divide the dynamic
programming matrix at some row i, as before; however, we choose i to be the
center of the matrix rather than the center of the sparse set of points in the
matrix. At odd levels we similarly divide by columns. In this way, each level of
the recursion performs a computation in a matrix that is either square or close
to square; there can be O(log n) levels before the recursion bottoms out at
single points.

In terms of the pseudo-code given in the previous section, we need two
versions of Recurse, one that divides by rows and one that divides by columns,
each of which calls the other. We also need two versions of Influence, one to
be called by each version of Recurse. All of these procedures keep the sets of
points they handle in two sorted orders: sorted by rows, and sorted by columns.
Unlike the code of the previous section, we divide into only two sets A and C;
the line of division between them will be halfway between two actual rows or
columns, and so there is no in-between set B. Further, this line of division is
chosen by halving the number of columns in the sets, instead of halving the
number of points.

As before, we compute the values of the points in A recursively, compute
the influence of these values on those of the points in C, and then finish the
computation of the values in C recursively. In the description that follows we
assume that the current level in the divide and conquer recursion is even, so that
as in the previous section the division between A and C’ occurs on a row
boundary; the computation for odd levels is similar.

In the previous section, we computed the value D from E for each point
when it was part of set B. Because here there is no such set, we must do so at
another time; in particular we do so when the recursion bottoms out, and all
points are on a single row or column. In this way, the value is computed exactly
once for each point, before it is needed.

Thus, the pseudo-code for the procedures can be written as follows: We have
merged the Influence procedure in with Recurse, because it would have been
called only in one place. We only show one of the two mutually recursive
procedures; the other can be found by replacing rows by columns and vice
versa.

procedure RecurseColurrzn( X):

begin
let i and k be the first and last rows occurring in X:
if i = k then

for xeXdo
compute D[ x] from E[ x];

else begin
j+[(i+k)/21;
let A be the points above row j in X;
let C be the points on or below row j;
RecurseRow(A);
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let F[ i] = mm, G[.j] + W( j, i) be solved by the data structure
of the first section, modified as described below;

for x e X in order by columns do begin
~ + ~~~(~) + C(j[llmn(x);
if XEA then G[d] + min(G[d]. D[x])
else 13[x] + min(17[x], F[d]);

end;
RecurseRow(C);

end;
end

In the data structure of the first section, in place of the flat trees of van Erode
Boas, we use Johnson’s improved flat trees [12]. This is again a structure in
which one can insert, delete, and search for points numbered from 1 to n.
However, whereas flat trees take time O(log log n) per operation, improved
flat trees take time O(log log D), where D is the length of the gap between
points in the structure containing the point being searched for, inserted, or
deleted. More importantly for our analysis, a sequence of k operations, all
of one type (insertions, deletions, or searches), can be performed in total time
0( k log log n /k). For insertions and deletions, this follows from Johnson’s
analysis of his algorithm.

For a sequence of searches in order by the positions being searched for, the
time bound follows because consecutive searches in the same gap can be
detected in constant time. by simply comparing each new search point with the
endpoints of the gap containing the previous search point. Therefore, we need
pay the O(log log D) cost at most once per gap. The cost of the sequence of
search operations is therefore ~ ~=, O(log log Di). Because the function

11X) = log log x is convex, any sum z f. I .fl x,) is maximized when the .x,
are all equal, and so the sum is bounded by k~( ~ ~=~ xl /k). In particular, the
cost of the search sequence can be reduced to

For a sequence of k searches in nonsorted order, we can use another instance
of Johnson’s flat trees to sort the search points, in time 0( k log
log n /k), and then perform the searches in sorted order as above; however. all
our sequences of searches will in fact be already in sorted order.

THEOREM 3. The RNA structure computation of recurrence (6), for a
sequence of length n, with M possible base pairs, and convex or concave
cost functions with the closest zero property, can be performed in time
O(n + Mlog Mlog log min( M, n’/M)).

PROOF . Consider the time for the top level of the recursion, which we
denote T(O). The algorithm from the previous section consists of, for each
column, performing a sequence of searches, and then a sequence of insertions
and deletions. Let the number of searches in column i be denoted Si, and the
number of insertions and deletions be denoted d,. Then, ~ d, is at most twice

the total number of points in set A, and ~ s, is the total number of points in
set C. The time taken is ~ s, log log n /S, + ~ d, log log n /d,. In the
function f(x) = x log log n /x, the log log n/x term decreases as x
increases, and so the function as a whole is sublinear and therefore convex.



Sparse and Dynamic Programming II 559

Because of this convexity the total time taken at the given recursive stage in the
algorithm can be reduced to

( (,=,J)=+ f(:)]
T(O) = ~ O(f(sl) +f(dZ))SO nf fi ~

i=l

(()

M
=0 n — loglog

n +)”O(MIOg’Og:l

An identical analysis applies to each even level recursive subproblem, with n
replaced in the bound by the size of the matrix for the subproblem. Similar
bounds hold for the odd levels.

Now let us consider the sum of the times for all stages at a given level 2 i. As
before, the analysis for odd levels is similar. Let &fj, for j from 1 to 22’, be
the number of points in subproblem j. Further. at the given level. there will be
2Z’ subproblems, each of having 2‘ rows and columns. Then, by convexity, the
total time for the level is

There are O(log M) levels in the recursion, and as we have shown above each
takes time bounded by 0(&f log log n2 /M), so the total time is 0( Al log i’vf
log log min(A4, rz2/iW)). ❑

For nonsimple functions, we must also take into account the binary searches
required to compute border( i, j) when including new values from A into the
data structure. Assume that k such computations need be performed for a given
column. If all the binary searches occurred in disjoint intervals of the range
from 1 to n, the total time would be 0( k log n /k) and a similar analysis to
that for simple functions would give a total time bound of 0(&f log &f log
min( M, n2 / M)). To force the search intervals to be disjoint, we first find the
borders among the points being inserted.

In particular, we need to solve an instance of Eq. (2), in which there are k
new values of D[ j] given. By Lemma 4, each value of D[ j] supplies the
minima for E[ i] with i in some interval of the range from 1 to n, and further
these intervals appear in the same order as the positions of 11[ j]. Clearly,
border( i, j) for a newly added point j need only be computed within the
interval in which D[ j] is better than the other new points. Further, all
computations of border( i, j) have at least one of the indices i or j being a
newly added point. If, given the set of new values to be inserted, we can
compute the partition of [1 “ “ “ n] into intervals in which each of these values is
best, guaranteed to exist by Lemma 4, we can use this partition to perform each
border( i, j) computation in a disjoint interval, and therefore the total time for
these computations for k new points will be 0( k log n /k).
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The algorithm of Aggarwal et al. [3] can find the minima at all n points, and
therefore the boundaries between the intervals, in time 0( k + n). That of
Eppstein et al. [7] and Galil and Giancarlo [9], which uses binary searches to
find interval borders as in the data structure of the first section, but which needs
only a stack instead of a more complicated search structure, can find the
boundaries in time 0( k log n). We combine these two algorithms to achieve a
bound of 0( k log n /k), which is what we need to solve the RNA structure
problem in the given time bound.

This is done as follows: We first select the points 13[n / k], E[2 n / k], etc.,
and find for each of these points which value of D[ j] supplies the minimum.
This computation involves only k points 13[ i], and so we can solve it in time
0(k) using the algorithm of Aggarwal et al. [3]. The remaining points in the
range from 1 to n are divided up by this computation into k segments, each of
length n /k. For each boundary between values Il[j – 1] and D[j], we know
from the above computation which segments it falls in. If the two endpoints of
an interval both have the same value of 11[ j] supplying their minima, there can
be no boundary within that interval. Otherwise, if D[ i] is the left minimum and
D[ j] the right minimum, the segments will contain only those boundaries of
intervals corresponding to positions between i and j.

Thus, for each segment we can perform a binary search, as used in the
computation of Galil and Giancarlo [9], for the boundaries that may fall within
that interval. Each binary search is thus limited to a range of n/k points, and
so it will take time O(log n /k). Each value of D[ j] is involved in the
computations for at most two segments, those to the left and to the right of the
segment border points for which it supplies the minima. If D[ j] does not
supply the minimum for any segment border point, it will be involved in the
computation for exactly one segment. The time for a segment containing b
boundaries will be b log n /k, and so the total time for computing boundaries
between new point intervals is 0( k log n /k) as desired.

Once we have computed the boundaries between the intervals of the new
points being inserted, we can insert the points into the data structure as before,
computing border( i, j) by a binary search that stays within the interval of the
point being inserted. The sum of the interval lengths is bounded by n, so the
time for insertion is bounded by 0( k log n /k).

THEOREM 4. The RNA structure computation of recurrence (6), for a
sequence of length n, with M possible base pairs, and arbitrary convex or
concave cost functions with the closest zero property, can be performed in
time O(n + Mlog Mlog min(M, n2/M)).

PROOF. As we have shown above, the time for computing borders in k

consecutive insertions in the data structure can be reduced to 0( k log n /k).
For k consecutive deletions, we delay recomputing any borders until all
deletions have been made, so that each recomputed border is between points
that will not be deleted. In this way the binary searches are again in disjoint
intervals and the time is again 0( k log n /k). Lookups, as well as the
remaining computations for insertions and deletions, can be handled with
Johnson’s data structure in time 0( k log log n /k) = 0( k log n /k). Thus,
for any sequence of consecutive operations of the same type, the time is
0( k log n /k). By a similar analysis as that for simple functions. the total time
is O(n + M log M log min(M, rz~/M)). ❑
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5. Sparse Sequence Comparison

In this section, we are concerned with the comparison of two sequences, of
lengths n and m, which differ from each other byanumber of mutations. An
alignment of the sequences is a noncrossing matching of positions in one with
positions in the other, such that the number of unmatched positions (insertions
and deletions) and matched positions with the symbol from one sequence not the
same as that from the other (point mutations) is kept to a minimum. This is a
well-known problem, and a standard dynamic programming technique solves it
in time 0( nrn) [20]. In a more realistic model, a sequence of insertions or
deletions would be considered as a unit, with the cost being some simple
function of its length; sequence comparisons in this more general model can be
solved in time 0( n3) [27]. The cost functions that typically arise are convex;
for such functions this time has been reduced to 0( n2 log n) [7, 9, 18] and
even 0( n2u( n)), where u is a very slowly growing function, the functional
inverse of the Ackermann function [14].

Since the time for all of these methods is quadratic or more than quadratic in
the lengths of the input sequences, such computations can only be performed for
fairly short sequences. Wilbur and Lipman [29, 30] proposed a method for
speeding these computations up, at the cost of a small loss of accuracy, by only
considering matchings between certain subsequences of the two input se-
quences. In particular, their algorithm finds the best alignment in which each
matched pair of symbols is part of a contiguous sequence of at least k matched
symbols, for some fixed number k.

Let the two input sequences be denoted xl Xz “ “ “ x,. and yl yz “ e“ y..
Wilbur and Lipman’s algorithm first selects a small number of fragments,
where each fragment is a triple (i, ~, k) such that the k-tuple of symbols at
positions i and ~ of the two strings exactly match each other; that is, x, = yj,

‘~+1 ‘Yj+l>. ..>xi+,l-l ‘Y~+&l. We do not describe here how such frag-
ments are found; such a description can be found in the companion paper [8]. It
suffices to mention that such fragments can be found in time 0( n + rn + M)
using standard string matching techniques.

A fragment (i’, j’, k’) is said to be below (i, ~, k) if i + k s i’ and
~ + k < j’; that is, the substrings in fragment (i’, j’, k? appear strictly after
those of (i, j, k) in the input strings. Equivalently, we say that (i, j, k) is
above (i’, j’, k?. The length of fragment (i, j, k) is the number k. The
forward diagonal of a fragment (i, j, k) is the number ~ – i. This differs
from the back diagonals i + j used for the RNA structure computation. Here
we use both back and forward diagonals.

An alignment of fragments is defined to be a sequence of fragments such
that, if (i, ~, k) and (i’, j’, k’) are adjacent fragments in the sequence, either
(i’, j’, k? is below (i, j, k) on a different forward diagonal (a gap), or the
two fragments are on the same forward diagonal, with i’ > i (a mismatch).
The cost of an alignment is taken to be the sum of the costs of the gaps, minus
the number of matched symbols in the fragments. The number of matched
symbols may not necessarily be the sum of the fragment lengths, because two
mismatched fragments may overlap. Nevertheless, it is easily computed as the
sum of fragment lengths minus the overlap lengths of mismatched fragment
pairs. The cost of a gap is some function of the distance between forward
diagonals g( 1(~ – i) – (J – i’) l).
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When the fragments are all of length 1, and are taken to be all pairs of
matching symbols from the two strings, these definitions coincide with the usual
definitions of sequence alignments. When the fragments are fewer, and with
longer lengths, the fragment alignment will typically approximate fairly closely
the usual sequence alignments, but the cost of computing such an alignment
may be much less.

The method given by Wilbur and Lipman for computing the least cost
alignment of a set of fragments is as follows. Given two fragments, at most one
will be able to appear after the other in any alignment, and this relation of
possible dependence is transitive: therefore, it is a partial order. We process
fragments in the order of any topological sorting of this order. Some such
orders are by rows (i), columns (J, or back diagonals ( ~ + j).

For each fragment. the best alignment ending at that fragment is taken as the
minimum, over each previous fragment, of the cost for the best alignment up to
that previous fragment together with the gap or mismatch cost from that
previous fragment. The mismatch cost is simply the length of the overlap
between two mismatched fragments; if the fragment whose alignment is being
computed is (i, ~, k) and the previous fragment is ( i – x, j – x, k’) then this
length can be computed as max(O, k’ – x). From this minimum cost we also
subtract the length of the new fragment; thus, the total cost of any alignment
includes a term linear in the total number of symbols aligned. Formally, we
have

C(i, j,k)

{

min C(i – x,j – x, k’) + max(O, k’ – x),

–k+min
(i–x. j–.x, k’)

min C(i’, j’, k’) +g(l(~-i) -(j’ -i’) I).
(l’,~’, k’)above(z,~, k)

(9)

The naive dynamic programming algorithm for this computation, given by
Wilbur and Lipman, takes time 0(&12). If Al is sufficiently small, this will be
faster than many other sequence alignment techniques. However, we would like
to speed the computation up to take time linear or close to linear in lf: this
would make such computations even more practical for small &f. and it would
also allow more exact computations to be made by allowing Al to be larger.

In the companion paper [8], we show how to perform this computation for
linear functions g(x) in time 0( n + m + Jf log log min( ~, m-n /kT)). Here
we consider the problem for convex and concave cost functions.

We ccmsider recurrence (9) as a dynamic program on points in a two-
dimensional matrix. Each fragment (i, ~, k) gives rise to two points, (i, ~) and
(i + k – 1, ~ + k – 1). We compute the best alignment for the fragment at
point (i, j); however, we do not add this alignment to the data structure of
already computed fragments until we reach ( i + k – 1, ~ + k – 1). In this
way, the computation for each fragment will only see other fragments that it is
below. We compute separately the best mismatch for each fragment; this is
always the previous fragment from the same diagonal, and so this computation
can easily be performed in linear time. From now on we ignore the distinction
between the two kinds of points in the matrix, and the complication of the
mismatch computation.
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As in the RNA structure computation, each point has a range consisting of the

points below and to the left of it. However for this problem we divide the range
into two portions, the left influence and the right influence. The left influence
of (i, J consists of those points in the range of (i, j) that are below and to the
left of the forward diagonal ~ – i, and the right influence consists of the points
above and to the right of the forward diagonal. Within each of the two
influences, g(lp–ql) =g(p–q)org(l P–ql)=g(q –P); that is,
the division of the range in two parts removes the complication of the absolute
value from the cost function.

Thus, the computation looks very similar to that for RNA structure, except
that here we have two separate computations, and where in the RNA structure
computation we had ranges that were quarter-planar geometric regions, now we
have two collections of influences that are eighth-planar geometric regions. The
minimization over either the left or the right influences turns out to be an affine
transformation of the RNA structure problem, and so one would think that the
same methods apply. In fact, the algorithms for this problem are very similar,
but more complicated, because we must use the same evaluation order to solve
both the left and right subproblems.

Our algorithm for this problem can be viewed as a novel application of the
Bentley- Saxe dynamic-to-static reduction: We perform two such reductions, in
two different orders, one for each type of eighth-plane piece of the fragment
point ranges. The differing order leaves the problem dynamic, but the reduction
instead can be imagined as removing the vertical or horizontal boundaries of the
pieces, leaving only the forward-diagonal boundaries. The reduced subproblem
can then be solved with matrix-searching techniques.

We first cut the domains of each point into right and left pieces, as described
above. We divide the points into subproblems, and then proceed to compute the
values of the recurrence at each point. Each value we compute is derived from
the subproblems containing the given point, and once we have computed this
value we apply it in the subproblems depending on it. The order in which we
compute the values at each point will be by back diagonals. This order is
symmetric with respect to the two kinds of pieces, so without loss of generality
from now on we need only consider the subproblems derived from the right
pieces, that is, those eighth-plane pieces that are bordered on two sides by rows
and forward diagonals.

As in the RNA structure computation, we use divide-and-conquer to produce
the subproblems into which we divide the computation. Each point will be in set
A for O(log n) subproblems and set B for O(log n) subproblems. However,
within the divide-and-conquer, we only compute the structure of the subprob-
lems; that is, we determine for each subproblem its corresponding sets A and
B. We do not immediately attempt to solve the subproblems, because that
would violate the processing order by back diagonals. Instead, we produce a
data structure maintaining the state of each subproblem. Only after all subprob-
lems have been so constructed do we then proceed to solve the recurrence, in
order by back diagonals as stated above. After we begin solving the recurrence,
we maintain each subproblem dynamically, including the values from points in
set A as they become known, and computing the subproblem minima for points
in set B as they become available.

In each subproblem, as in the RNA structure computation, the points in A
are those above some row and the points in B are those below the same row.
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The minimization for point (i, j) in B depends on the value at a point (i’, j? in
A exactly when ~ – i’ < j – i.

More specifically, for a given subproblem composed of the right pieces for
point sets A and B determined as above. let 11[ x] be the minimum value of
C(i, j. k) for (i, j, k) in A with x = j – i. Let ~[y] be the minimum of
11[ x] + g( y – x) over all possible x < y. Then, C(i, j, k) will be computed
as the minimum value of ~[ j – i] for all subproblems in which fragment
(i, j, k) appears in set B, combined in the appropriate way with the results
from the left piece computation and the other terms in recurrence (9). The order
in which the divide-and-conquer was performed guarantees that the points on
which the value of C( i, j, k) depends in this computation are exactly those on
which the value should depend in the recurrence.

Thus, we have reduced the subproblems from being defined in terms of the
sparse set of points to being defined on the diagonals containing those points. It
turns out that, with the forward diagonal dependence order, each subproblem
is exactly a dynamic monotone staircase matrix problem as defined by
Aggarwal and Klawe [1]. In the language of the data structure we gave in the
first section, once we have reduced the value at 11[ j], we never reduce any
~[ j’1 with j’ <j, and once we have computed ~[ i], we never compute any
E[i’1 with i’ < i.

Such problems could of course be solved by our more general data structure,
which does not depend on the order of reductions and computations; however,
because of the staircase ordering, we can use matrix searching techniques to
solve the problem more quickly. If g(x) is convex, the algorithm of Klawe and
Kleitman solves the problem for t points in time 0( ta( t));here a is the
inverse Ackermann function, a very slowly growing function. If g(x) is
concave, the algorithm of Wilber [28] solves a single instance of the problem in
linear time. However, we need to solve many such problems with the inputs to
some depending on the outputs of others, and Wilber’s analysis breaks down for
this case. Eppstein [6] has extended Wilber’s algorithm to allow such inter-
leaved computations, while remaining within the linear time bound.

Another possible solution to these monotone staircase problems is to use the
algorithms of Galil and Giancarlo [9]. These solve both the convex and concave
problems in time 0( t log t), or for functions with the closest zero property in
time 0(t). However, they are much simpler than the matrix searching algo-
rithms, and so even the 0( t log t)version of the algorithms will likely be better
than matrix searching in practice.

In order to apply any of those solutions, we need to know which diagonals in
a subproblem actually contain any points of the subproblem, and further, which
points are so contained. Thus, we order the points in the subproblems by the
numbers of their forward diagonals. As in the RNA structure computation, such
an order can be maintained by initially bucket-sorting all points, and then
splitting the sorted list at each level of the recursion.

The actual order in which the subproblems receive the values of D[ x] for
points in set A will be more arbitrary than that described above, as will be the
order in which the values that have been determined within the subproblem for
points in set B are requested by the main program. Therefore, we maintain
separate simulations of the algorithms for each subproblem, with their own
control stacks and data structures. When a simulation requests to input a
fragment value, it is blocked until that value has been computed, and its name
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placed on a list of subproblems blocked for that fragment. When a simulation
requests to output a value, that value is included in the minimization of values
for the corresponding fragment. In this way, each subproblem solution operates
asynchronously of the main program. All we require is that, whenever the main
program asks for the subproblem’s value at a point x in set B, all values D[ y]
for points y on previous forward diagonals of set A will have already been
given to the subproblem. When we compute the value of a fragment, we
unblock all simulations that were requesting that value.

Although we describe this collection of simulations as a concurrent collection
of parallel processes, the algorithm may be easily performed by a single
processor. All that is required is a list of all simulations that are not blocked.
We periodically run all processes until they block or terminate; this may be
done simply by repeatedly picking a simulation from the list, and running it
until it requests a value that causes it to block, or until it terminates. When the
list is empty, all processes have blocked. The total work for performing all of
these simulations is clearly proportional to the sum of the time bounds for the
monotone staircase matrix searching algorithms we simulate.

Along with these subproblem computations, we also proceed as we have said
along back diagonals; for each point on a given back diagonal, we wait until all
subproblems have either blocked or terminated, then compute the value as the
minimum of the O(log n) values from the subproblems for which the point is in
set B, and then include the computed value in the computations for which the
point is in set A.

Let us now summarize the outline of the sparse alignment algorithm in
pseudo-code:

begin
find sparse set X of fragments;

divide-and-conquer by rows to produce subproblems for right influences;
divide-and-conquer by columns for left influences;
for diag * 2 to 2n do

for x e X with row(x) + column(x) = diag do begin
E[x] + +’=;
for subproblem S with x e B(S) do

13[x] + min(-li[ x], value at X in S):
compute D[ x] from E[ x];
for subproblem S with x e A(S) do

include value of D[ x] in S:
end

end
end

It remains to show that, when the back diagonal computation reaches each
point, the subproblems giving the point’s value will all have computed their
separate minimizations for that point, so that the total value for that point can in
fact be computed. In terms of the pseudo-code above, we need to show that
each subproblem S with x c B( S) is ready to supply the value at x when the
computation reaches the back diagonal containing point x; the subproblem can
not have blocked waiting for the value of some other point.

For clarity of explanation, assume the subproblem S is one involving right
influences; the assertion for left influence subproblems follows by symmetry. If
a point (i, j) in set B(S) for some subproblem S depends on the value at a
point (i’, j’) in set A(S), then clearly i’ < i and 1 – i’ < j – i. But then
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j’ + i’ = (j’ – i~ + 2i’ < (j – i) + 2i =j + i; that is, the back diagonal
containing (i’ + j’) appears before that containing (i, j). Because we process
points in order by back diagonals, D[( i’, j’)] will already have been computed
and included in subproblem S. Therefore, all subproblem results will in fact be
computed in time for them to be combined by the back diagonal computation,
and the algorithm correctly computes recurrence (9).

THEOREM 5. The problem of sequence alignment from a sparse set of
fragments can be solved in time O(n + m + MlogMa( M)) for convex
gap cost functions, and time 0( n + m + M log M) for concave functions.

PROOF. As we have said, the time for each subproblem of size t is 0( t d t))
in the convex case, and 0(t) in the concave case. The divide-and-conquer adds
a logarithmic factor to these time bounds, giving 0( n + m + M log M) in the
concave case, and 0( n + m + M log Nfo4 &f)) in the convex case. ❑

If we use the algorithms of Galil and Giancarlo, the bound for fragment
alignment with simple functions is 0( n + m + M log M), for both the
convex and concave cases. For arbitrary convex and concave functions, the
time rises to 0( n + m + M log2 M). However, the latter algorithms do not
use matrix searching and are therefore likely to be more efficient in practice.

6. Conclusions

We have described algorithms for two dynamic programming problems, se-
quence alignment from a sparse set of fragments, and RNA structure predic-
tion. We use the fairly general assumption that an associated cost function in the
dynamic programming problems is either convex or concave.

In each case, the dynamic programming matrix is sparse, and our algorithms
take advantage of that sparsity. Our algorithms have time bounds that vary
almost linearly in the number of points that need to be considered. For the
sequence alignment problem, the previous solution already assumed sparsity;
however, our algorithm improves on it by almost an order of magnitude. For
the RNA structure problem, no sparse solution was previously known. Even
when the problem is dense. our algorithms for this problem are no worse than
the best-known algorithms; when the problem is sparse our time bounds become
much better than those of previous algorithms.
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