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Abstract
In most of the known polynomially solvable cases of the
symmetric travelling salesman problem (TSP) which result
from restrictions on the underlying distance matrices, the
restrictions have the form of so-called four-point conditions
(the inequalities involve four cities). In this paper we
treat all possible (symmetric) four-point conditions and
investigate whether the corresponding TSP can be solved
in polynomial time. As a by-product of our classification
we obtain new families of exponential neighborhoods for the
TSP which can be searched in polynomial time and for which
conditions on the distance matrix can be formulated so that
the search for an optimal TSP solution can be restricted to
these exponential neighborhoods.

1 Introduction.

The travelling salesman problem (TSP) is a well known
problem of combinatorial optimization. In the sym-
metric TSP, given a symmetric n × n distance ma-
trix C = (cij), one looks for a cyclic permutation
τ of the set {1, 2, . . . , n} that minimizes the function
c(τ) =

∑n
i=1 ciτ(i). The value c(τ) is called the length

of the permutation τ . We will in the following refer to
the items in τ as points or cities.

The TSP is an NP-hard problem [10]. There exist,
however, special cases of the TSP which can be solved
in polynomial time. For a survey on so-called efficiently
solvable cases of the TSP see [4, 11, 15]. Many of the well
known efficiently solvable cases of the TSP result from
imposing special conditions on the underlying distance
matrix. A large subclass of such conditions is formed by
the so-called four-point conditions. Let i, j, k and l be
four points with 1 ≤ i < j < k < l ≤ n. A symmetric
distance matrix for these points contains six different
entries which correspond to the six edges connecting
these points. It is possible to form three sets of pairs
of non-incident edges: {(i, j), (k, l)}, {(i, k), (j, l)}, and
{(i, l), (j, k)}. We denote the lengths of these pairs as
A, B and C, correspondingly:

A = cij + ckl, B = cik + cjl, C = cil + cjk.
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A four-point condition defines relationships among
the values A, B and C, which have to be satisfied
for all possible choices of the indices i,j,k and l with
1 ≤ i < j < k < l ≤ n.

The typical approach to show that the TSP can be
solved in polynomial time for matrices which fulfill a
certain four-point condition works as follows. First, it
is shown that there exists an optimal TSP tour within
a set S of specially structured permutations. Second,
it is shown that an optimal permutation can be found
within this subset of permutations S.

The technique which is usually used to show that
an optimal TSP tour can be found in a special set, is
the so-called tour-improvement technique. The idea is
as follows. Starting from an arbitrary tour τ , a sequence
of tours τ1, τ2, . . . , τT is constructed, with τ1 = τ , such
that

c(τ1) ≥ c(τ2) ≥ · · · ≥ c(τT ),

where τT is a tour in the specially structured set.
Four-point conditions are used to prove the inequalities
c(τt) ≥ c(τt+1), (t = 1, . . . , T ). In some lucky cases, the
special subset of permutations contains only one tour
and thus no algorithm for finding an optimal tour is
needed in this case. As an example for such a case,
consider the Supnick TSP [25], i.e., the TSP restricted
to matrices that satisfy the conditions A ≤ B, B ≤ C.
An optimal tour for the Supnik TSP is given by σSmin =
〈1, 3, 5, 7, 9, . . . , 8, 6, 4, 2, 1〉.

Another well-known solvable case of the TSP is
the TSP restricted to Kalmanson matrices [16], i.e., to
matrices that satisfy the conditions A ≤ B, B ≥ C. An
optimal tour is given by τKmin = 〈1, 2, 3, . . . , n−1, n, 1〉.

Note that both Supnick and Kalmanson matri-
ces satisfy the condition A ≤ B. The TSP with
a distance matrix satisfying this condition is known
as the Demidenko TSP [9]. The Demidenko TSP
can be solved in O(n2) time ([9], see also [4, 11])
by finding an optimal pyramidal tour. A tour τ =
〈1, i1, i2, . . . , ir, n, j1, j2, . . . , jn−r−2, 1〉 is called a pyra-
midal tour if i1 < i2 < · · · < ir and j1 > j2 > · · · >
jn−r−2. The TSP restricted to a class of matrices is
called pyramidally solvable if for every matrix in this
class there is an optimal tour that is pyramidal.

The set of pyramidal tours is one of the first well
studied exponential neighborhoods that can be searched
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Figure 1: Specially structured tours: (a) σSmax –
optimal tour for Supnick MaxTSP with n = 2m+1 and
m odd; (b) σSmax1 – optimal tour for Supnick MaxTSP
with n = 2m and m odd.

in polynomial time. Studies of other exponential neigh-
borhoods have been extensively reported in the liter-
ature, not only for the TSP, but also for other com-
binatorial optimization problems (see [3, 6, 13, 21],
and the surveys [1, 7]). To the best of our knowl-
edge, until recently the pyramidal tours neighborhood
remained, however, the only exponential neighborhood
for the symmetric TSP for which classes of matrices
were known such that the search for an optimal solu-
tion of the resulting special cases of the TSP can be
restricted to the considered exponential neighborhood.

Outline of the extended abstract. In the next
section we will classify all possible four-point conditions
and summarize results related to the corresponding
TSPs. In Sections 3 we describe a new polynomially
solvable case of the TSP that can be solved in O(n2)
time. In Sections 4 and 5 we deal with the TSP
with relaxed Kalmanson and relaxed Supnick matrices,
respectively. As a result, we come up with families of
new exponential neighborhoods which can be searched
in polynomial time and for which conditions on the
distance matrix can be formulated so that the search
for an optimal TSP solution can be restricted to these
exponential neighborhoods.

Notations. The set of all permutations of
{1, 2, . . . , n} will be denoted as Sn. For τ ∈ Sn,
we denote by τ−1 the inversion of τ , i.e., the per-
mutation for which τ−1(i) is the predecessor of i
in the permutation τ , for i = 1, . . . , n. For k >
1, we define τk(i) as τ(τ (k−1)(i)) and τ−k(i) as
τ−1(τ−(k−1)(i)). In what follows we use also a cyclic
representation of a cyclic permutation in the form τ =
〈i, τ(i), τ2(i), . . . , τ−2(i), τ−1(i), i〉, and we refer to it as
a tour. A pair (i, j) with j = τ(i) is referred as an arc
of the tour τ . For the symmetric TSP, tour τ has the
same length as τ−1. The orientation of the arcs is, how-

A ≤ B A ≥ B A ≤ C A ≥ C B ≤ C B ≥ C

A ≤ B :
O(n2)
[9]

O(1)
[11,28]

O(n2)
[9,27]

O(1)
[16]

O(1)
[25]

O(1)
[16]

A ≥ B :
NPhard

[8]
O(1)
[Sec 2.2]

NPhard

[8,26]
O(n)
[16,22,23]

O(n)
[25]

A ≤ C :
O(n2)
[27]

O(1)
[11,28]

O(1)
[Sec 2.3]

O(1)
[Sec 2.3]

A ≥ C :
NPhard

[26]
O(1)
[Sec 2.4]

O(1)
[Sec 2.4]

B ≤ C :
O(?)
[Sec 5]

O(n2)
[Sec 3]

B ≥ C :
O(n4)
[Sec 4]

Table 1: Classification of Four Point Conditions

ever, important for some operations on the tours. If the
orientation of an arc is not known (or not important),
we will use the term edge.

In what follows we will often refer to peaks and
valleys of a tour. An index i ∈ {1, . . . , n} is a peak of
a permutation τ if i > max{τ−1(i), τ(i)} and a valley if
i < min{τ−1(i), τ(i)}. An index which is neither a peak
nor valley is called intermediate.

In this paper we will also deal with the maximiza-
tion version of the TSP, where the objective is to max-
imize the function c(τ). This problem is called the
MaxTSP . Although the MaxTSP reduces to the TSP
(and vice versa) by replacing the matrix (cst) by the
matrix (−cst), the special combinatorial structure that
leads to a polynomially solvable case for the TSP does
not necessarily yield a polynomially solvable case for the
MaxTSP. For example, the MaxTSP restricted to Demi-
denko matrices is NP-hard [8]. To be consistent with the
terminology used in previously published papers, we will
use both, the TSP and its MaxTSP equivalent.

2 Four-point conditions: classification.

There are six possibilities to use the binary relations
”≤” and ”≥” to define pairwise relationships for the
sums A,B and C. As was mentioned above, for some
of the four-point conditions the corresponding TSP
is NP-hard. Therefore we also consider all possible
combinations of pairs of binary relations. The results
of our classification are summarized in Table 1.

2.1 A ≤ B. The TSP with a distance matrix
satisfying this condition is the Demidenko TSP, which is
pyramidally solvable [9]. Adding additional conditions
will lead in some cases to straightforward solutions.

A ≤ B, A ≥ B. These conditions yield cij + ckl =
cik + cjl, for all i,j,k and l, with i < j < k < l. It can
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be shown that in this case matrix (cst) is a sum matrix,
i.e. cst = us + vt, for some vectors u and v. So, the
corresponding TSP is trivial, with all tours having the
same length [11, 28].

A ≤ B, A ≤ C. It is an open question whether it
is possible to use these conditions to specify a subset
of the set of pyramidal tours such that an optimal tour
can be found faster than in O(n2) time.

A ≤ B, A ≥ C. It can easily be shown that in this
case the matrix belongs to a special subset of Kalmanson
matrices [16], with τKmin (see the Introduction) being
an optimal tour.

A ≤ B, B ≤ C. This is the Supnick TSP [25], with
σSmin being an optimal tour.

A ≤ B, B ≥ C. This is the well known Kalmanson
TSP [16], with τKmin being an optimal tour.

2.2 A ≥ B. This is the Demidenko MaxTSP, which
is NP-hard [8]. Adding additional conditions will lead
in some cases to polynomially solvable cases.

A ≥ B, A ≤ C. It can be shown that σSmin is an
optimal tour for the corresponding TSP.

A ≥ B, A ≥ C. It follows from [8] and [26] that the
TSP remains NP-hard.

A ≥ B, B ≤ C. This is the well-known Kalmanson
MaxTSP [16, 22, 23]. Kalmanson has shown that for
n odd, n = 2m + 1, the optimum TSP tour is τK =
〈1,m + 2, 2,m + 3, 3,m + 4, . . . ,m, n,m + 1, 1〉. If n is
even, then an optimum TSP tour can be found among m
specially structured tours τK0, τK1, . . . , τKi, . . . , τKm−1

(see [16, 8] for a formal definition of the tours).
A ≥ B, B ≥ C. This is the well-known Supnick

MaxTSP [25, 24, 19], which is solved by the tour
σSmax = 〈1, n, 2, n − 2, . . . ,m − 1,m + 2,m + 1,m,m +
3, . . . , 5, n − 3, 3, n − 1, 1〉 for n odd, n = 2m + 1 and
σSmax1 = 〈1, n, 2, n− 2, . . . ,m− 2,m + 2,m,m + 1,m−
1, . . . , 5, n − 3, 3, n − 1, 1〉 for n even, n = 2m (see
Figure 1(a),(b) for an illustration for odd m).

2.3 A ≤ C. We will refer to the corresponding
matrices as Van der Veen matrices. If we consider
the inequalities defined by A ≤ C only for indices
i, j, k, l with k = j + 1, then the corresponding TSP,
as it was shown by Van der Veen [27], is pyramidally
solvable. It seems that adding additional constraints,
i.e. considering indices k, j with k > j + 1, does not
simplify the problem. Adding additional four-point
conditions will lead to straightforward solutions:

A ≤ C, A ≥ C. The corresponding matrix (cij) is a
sum matrix.

A ≤ C, B ≤ C. It can be shown that σSmin is an
optimal tour for the corresponding TSP.

A ≤ C, B ≥ C. Clearly, B ≥ A, and therefore the
class of the TSPs restricted to such matrices is a special
subclass of the Kalmanson TSP, with τKmin being an

optimal tour.

2.4 A ≥ C. The corresponding TSP remains NP-
hard, see [26].

A ≥ C, B ≤ C. It can be shown that the
corresponding TSP is a special case of the Kalmanson
MaxTSP. For n odd, n = 2m+1, the optimum TSP tour
is τK = 〈1,m + 2, 2,m + 3, 3,m + 4, . . . ,m, n,m + 1, 1〉.
It follows from Theorem 4.1 in [8] and condition A ≥ C,
that for n even, n = 2m, the set of tour-candidates
for an optimal tour is reduced to the unique tour τK0 =
〈1,m+1, 2,m+3, 4,m+5, 6, . . . , 7,m+6, 5,m+4, 3,m+
2, 1〉.

A ≥ C, B ≥ C. This is a special case of the MaxTSP
restricted to Van der Veen matrices. In Section 4 (see
Corollary 4.3) we will show that, for n even, n = 2m, the
optimal tour can be found by taking the longer tour of
the following two specially structured tours, tour σSmax1

which is an optimal tour for the Supnick MaxTSP (see
Figure 1(b)) and tour σSmax2. For n odd, the optimal
tour can be found as maximum among three specially
structured tours, σSmax (shown on Figure 1(a)), and
σSmax3, and σSmax4 (cf. the proof of Corollary 4.3).

2.5 B ≤ C. The status of the TSP restricted to this
set of matrices remains open. It is possible, however, to
identify polynomially solvable sub-cases when, as it is
shown in Section 5, an optimal tour can be found in a
special exponential neighborhood.

B ≤ C, B ≥ C. The corresponding TSP reduces to
the well-known Lawler TSP [17], and can therefore be
solved in O(n3) time by reduction to the assignment
problem. In Section 3 we show, however, that the
problem can be solved even in O(n2) time.

2.6 B ≥ C. This is a new case to which we will refer
as the TSP with a Relaxed Kalmanson matrix. We show
in Section 4 that an optimal tour can be found in O(n4)
time in the set of tours, which is a proper subset of the
well known twisted permutations [2].

3 Special Case of Lawler TSP.

Conditions B ≤ C and B ≥ C yield B = C. We show first
that the corresponding TSP is equivalent to a special
case of the well-known Lawler TSP [17] with an upper-
diagonal distance matrix. To show this, we transform
matrix (cij) into the matrix C ′ = (c′ij) by subtracting
constants from all rows and columns: c′ij = cij−c1j−ci1,
(we assume here that c11 = 0). We claim that if matrix
(cij) satisfies conditions B = C, then c′ij = aj for all
j > i, where a1(= 0), a2, . . . , an−1 are some constants.
Indeed, c′1j = 0 by construction. It follows from B = C,
that c′1j + c′2k = c′1k + c′2j , for all k > j > 2, i.e.
c′2k = c′2j(= a2). Having proved that c′2j = a2, we
immediately get c′3j = a3 by the same arguments, and
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so on. This proves the claim.
Matrix (c′ij) can be transformed into an upper diag-

onal matrix (dij), with dij = 0 for i > j, by subtracting
constant aj from column j for j = 2, 3, . . . , n − 1. It
was discovered by Lawler [17] that the TSP with an up-
per diagonal matrix can be solved in O(n3) time, by
reduction of the TSP to the assignment problem. This
complexity can be improved as shown in the following

Proposition 3.1. The TSP with the symmetric dis-
tance matrix (cij) with cij = ai, for i > j, can be solved
in O(n2) time.

Proof. Let π be an arbitrary tour with the set of peaks
P and the set of valleys V . Notice, that |P | = |V |. We
claim that the length of the tour can be calculated as
c(π) =

∑i=n
i=1 ai −

∑
j∈P aj +

∑
k∈V ak. Indeed, since

the matrix is symmetric, all arcs can be considered as
oriented from the smaller index to the bigger index, or,
from a valley to a peak. It means that for each valley k,
the corresponding length ak should be included in the
total length of the tour with the coefficient 2, and none
of the values aj , where j is a peak, is included. This
proves the claim.

The considered special case of the TSP is thus
equivalent to the problem of finding a tour π� with set
of peaks P � and set of valleys V � (|P �|=|V �|) such that∑

k∈V � ak − ∑
j∈P � aj is minimal.

Given a tour with a set of peaks P and a set of
valleys V , there always exists a tour with the same sets
of peaks and valleys such that the peaks and valleys
are placed in increasing order in the tour. This means
that, without loss of generality, it is possible to restrict
the search for an optimal tour to the tours where the
peaks and valleys appear in ordered sequence. Thus
we may represent the sets P and V as two monotone
sequences of indices. Since n is always a peak and 1
is always a valley, we exclude these two indices from
further consideration. Let f [p, v] = minP,V {∑k∈V ak −∑

j∈P aj |P ⊆ {p, . . . , n − 1}, V ⊆ {v, . . . , n − 2}, |P | =
|V |}. We claim that the optimal sets P � \ {n} and
V � \ {1} can be found in O(n2) time as the sets
corresponding to f [3, 2]. The latter value can be
calculated using the following recursions

f [p, v] = min

⎧⎨
⎩

f [p + 1, v],
f [p, v + 1],
av − ap + f [p + 1, v + 1]

p = 3, 4, . . . , n − 2; v = p − 1, p − 2, . . . , 2;

f [n − 1, v] = min
{

f [n − 1, v + 1],
av − an−1

v = 2, 3, . . . , n − 2;
f [p, p] = ∞,

p = 3, 4, . . . , n − 1.

The recursions above do not prevent an index i
from appearing in both sets P and V . This obstacle,
however, can easily be overcome. Notice that including
an index i into both sets does not change the value of
the objective function. On the other hand, removing
all such indices from both sets will result in sets that
can be implemented as set of peaks and set of valleys,
respectively.

4 TSP with Relaxed Kalmanson Matrices.

4.1 A symmetric n × n matrix C = (cij) is called a
Relaxed Kalmanson matrix (RK-matrix) if it satisfies
the four-point condition B ≥ C, i.e. for all indices
i, j, k, l, with 1 ≤ i < j < k < l ≤ n, the inequalities
cik + cjl ≥ cil + cjk hold. The TSP with an RK-
matrix will be called the RK-TSP. Cyclic permutation
π will be called an N -permutation, if it does not contain
pairs of arcs (i, π(i)), (j, π(j)) such that either i < π(i),
j > π(i) > π(j) > i, or i < π(i), π(i) > j > i > π(j).

Proposition 4.1. An optimal tour for the RK-TSP
can be found among the N -permutations.

Proof. Let π = 〈1, . . . , i, π(i), . . . , j, π(j), . . .〉 with i <
π(i) and j > π(i) > π(j) > i. We transform π into
π1 = 〈1, . . . , i, j, π−1(j), . . . , π(i), π(j), . . .〉 by remov-
ing arcs (i, π(i)) and (j, π(j)), reversing subsequence
〈π(i), . . . , j〉 into 〈j, π−1(j), . . . , π(i)〉, and adding two
new arcs (i, j) and (π(i), π(j)). It follows from B ≥ C
that c(π) ≥ c(π1) in this case.

Proposition 4.2. Every N -permutation contains the
edge (1, n).

Proof. Let π = 〈1, . . . , i, n, j, . . .〉, with 1 < j <
i. There always exists an arc (x, y) in the path
from 1 to i with x < j < y, so that π =
〈1, . . . , x, y, . . . , i, n, j, . . .〉. We transform π into π1 =
〈1, . . . , x, n, π−1(n), . . . , y, j, π(j), . . .〉 by removing arcs
(x, y) and (n, j), reversing subsequence 〈y, π(y), . . . , n〉
into 〈n, π−1(n), . . . , y〉, and adding two new arcs (x, n)
and (y, j). It follows from B ≥ C that c(π) ≥ c(π1).

Proposition 4.3. A structure of the path from 1 to n
in an N -permutation, to which we will refer as the N -
structure, can recursively be defined as follows: If there
is no valley on the path from 1 to n, then this is the
path 〈1, 2, . . . , n− 1,n〉. Otherwise let j be the minimal
valley in the path from 1 to n. In this case the path
has the structure 〈1, 2, . . . , j − 1, k, {j + 1, j + 2, . . . , k−
1}, j, {k + 1, k + 2, . . . , n − 2, n − 1},n〉 where k is a
peak and the two paths – from j to k through the set
{j+1, j+2, . . . , k−2, k−1}, and from j to n through the
set {k+1, k+2, . . . , n−2, n−1}, have the N -structure.
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Figure 2: Illustration to N -permutations: (a) definition
of N -structure; (b) transformation step.

In the proposition above, the sets are meant to

be empty if the first index in the set is bigger than

the last one. Figure 2(a) illustrates the definition of

the N -structure. For example, in the permutation

〈1, 14, 10, 12, 11, 13, 3, 6, 5, 4, 8, 7, 9, 2, 15, 1〉, path 〈1, . . . , 15〉
has 2 as the minimal valley, so j = 2 and k = 14 in this

case; for the path 〈2, . . . , 14〉 the corresponding pair (j, k) is

(3, 9), and so on.

Proof. Since every N -permutation contains the edge
(1, n), and j is the minimal valley in the permutation,
the permutation contains the subpath 〈1, 2, ..., j−2, j−
1〉. First we transform the part of the permutation
which constitutes the path from j − 1 to j. Let p be
the maximal peak on the path from j − 1 to j (there
exists a peak, since j is a valley). By the same reasoning
as in Proposition 4.2, the path is transformed into the
path which contains the edge (j − 1, p).

If the path from p to j in the new permutation
contains all indices of the set P = {j + 1, j + 2, . . . , p −
2, p − 1}, then the proposition is proved. Otherwise,
consider the smallest index in P which is not on the
path from p to j. Let it be j + 1, which is a valley
in this case (see Figure 2(b)). Consider an edge (x, j),
x = π−1(j). There must be an edge (y, z) on the path
from j + 1 to n such that j + 1 ≤ y < x < z. We
transform the permutation by replacing the edges (x, j)
and (y, z) by the edges (x, y) and (j, z). Now the path
from j − 1 to valley j contains index j + 1. There could
be the case that the maximal peak on the path from j−1
to valley j has been changed. In this case we have to
repeat transformations from Proposition 4.2. On each
step we add a new index to the interval j, j + 1, . . .,
this guarantees the convergence of the process. After a
finite number of steps the path from peak p to valley j
consists only of indices {j + 1, j + 2, . . . , p − 2, p − 1}.
The proposition is proved.

It follows from the definition of the N -permutations
that they belong to the set of twisted permutations
[2]. Therefore an optimal tour could be found in O(n7)
time by an algorithm from [7]. This complexity can
be improved significantly as shown in the proposition
below.

Proposition 4.4. The RK-TSP can be solved in
O(n4) time.

Proof. Let L[p, q] be the length of the shortest path with
the N -structure from index p to index q through the
set of indices {p + 1, p + 2, ..., q − 2, q − 1}, p < q, and
V [j, p, q] be the length of the shortest path with N -
structure from index j to index q through the set of
indices {p, p + 1, ..., q − 2, q − 1}, j < p < q. It follows
from the definition of the N -structure that the values L
and V satisfy the following recursions:

L[p, q] = min

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q−1∑
t=p

ct,t+1

min
j<k

{ j−2∑
t=p

ct,t+1 + cj−1,k + L[j, k]+

+V [j, k + 1, q]
}

V [j, p, q] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cjp, if p > q,

min

⎧⎪⎪⎨
⎪⎪⎩

cjp + L[p, q]
min

k

{
cjk + L[p, k]+

+V [p, k + 1, q]
}

If in the formulae above the upper limit in a sum
is smaller than the lower limit, then the sum is zero.
The length of the optimal tour can be calculated as
L[1, n] + cn1. Each of the values L[ ] can be calculated
in O(n2) time, each of the values V [ ] can be calculated
in linear time. An overall time complexity of O(n4)
results.

4.2 One of the reasons why exponential neighbor-
hoods are interesting is the fact that they can be used
in local search algorithms. The complexity O(n4) seems
pretty high to make the RK-neighborhood useful for
these purposes. To address this concern, below we char-
acterize related neighborhoods which are searchable in
linear time. We also provide classes of distance matrices
for which an optimal tour can be found in the respective
neighborhoods.
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Figure 3: Specially structured tours: (a) structure of
tours from the neighborhood searchable in O(n + h4)
time; (b) structure of tours from the neighborhood
searchable in O(nh3) time.

Corollary 4.1. If an RK-matrix (cij) satisfies condi-
tions cji + ckl ≤ cjl + cki for all i < j, j + h ≤ k < l,
where h is a given constant, then the RK-TSP can be
solved in O(nh3) time.

Proof. Using the tour improvement technique, it is easy
to show that the additional property of the distance
matrix prevents long arcs (j−1, k) from appearing in an
optimal tour (see Figures 2(a) and 3(b)): k here cannot
be bigger than j + h. Incorporating this observation
into the dynamic programming recursions leads to a
time complexity of O(nh3) and to an optimal solution
being a specially structured tour from the set of N -
permutations.

Proposition 4.5. If an RK-matrix (cij) satisfies con-
ditions cji + ckl ≥ cjl + cki for all i < j, j + h ≤ k < l,
where h is a given constant, then an optimal tour for
the RK-TSP can be found among the tours that have all
indices s, s > �(n− 1)/2	+ h, as peaks, and all indices
t, t < 
(n − 1)/2� − h + 2, as valleys.

Proof. A pair of edges (i, j) and (k, l) in a tour τ is called
non-crossing, if i < j, j+h < k < l. Notice, that we use
the term “edge” here, meaning that the orientation does
not matter. First, we show that an optimal tour can be
found among the tours without non-crossing edges.

Suppose that edges (i, j) and (k, l) have the same
orientation, that is j = τ(i) and l = τ(k) (case of
i = τ(j) and k = τ(l) is symmetric). It follows then
from the inequalities cji + ckl ≥ cjl + cki that deleting
edges (i, j) and (k, l) and introducing two new edges
(i, k) and (j, l) will not increase the length of the tour,
and eliminates at the same time two non-crossing edges.

In the case of j = τ(i) and k = τ(l), we delete these
two edges and introduce two new edges (i, l) and (j, k).
The change in the length of the tour can be calculated as
cil+ckj−cij−ckl = cil+cjk−cij−ckl+cik−cik+cjl−cjl =

(cik +cjl−cij−ckl)−(cik +cjl−cil−cjk). It follows then
from the inequalities cji + ckl ≥ cjl + cki and from the
fact that (cij) is an RK-matrix, that the transformation
above will not increase the length of the tour.

Suppose now that we have a tour τ without non-
crossing edges and there is an edge (x, j), x < j, in the
tour. It means that any index y, y ≥ j + h, can only be
a peak in the tour (otherwise, (x, j) and (y, z), z > y,
would be a pair of non-crossing edges). So, we have at
least n − j − h + 1 peaks in the tour. If j is also a
peak, then, taking into account the fact that the total
number of peaks cannot be bigger than �n/2	, we have
the following inequality for a maximal possible value of
j: j ≥ n−�n/2	−h+2 = 
n/2�−h+2. So, all indices
t, t < 
n/2�−h+2 are valleys in the tour (there are no
edges (x, t) with x < t). If index j is not a peak, then
the total number of peaks in the tour cannot be bigger
than �(n − 1)/2	. This yields the following inequality
for maximal possible value of j: j ≥ 
(n−1)/2�−h+2.

Summarizing, all indices t, t < min{
n/2� − h +
2, 
(n− 1)/2�− h + 2} = 
(n− 1)/2�− h + 2 are valleys
in the tour τ .

Using the same reasoning, it can be shown that all
indices s, s > �(n − 1)/2	 + h, are peaks in the tour.
This completes the proof.

Corollary 4.2. If an RK-matrix (cij) satisfies condi-
tions cji + ckl ≥ cjl + cki for all i < j, j + h ≤ k < l,
where h is a given constant, then the RK-TSP can be
solved in O(n + h4) time.

Proof. Positions of all indices s, s > �(n − 1)/2	 + h,
which are peaks, and all indices t, t < 
(n−1)/2�−h+2,
which are valleys, are identified according to the N -
structure: valley 2 precedes peak n, peak n − 1 follows
valley 1 and precedes valley 3, peak n−2 precedes valley
2, and so on (see Figure 3(a)). There are only O(h)
indices left the positions of which are not fixed. An
optimal placement of these indices can be found using
the recursions for finding an optimal N -structure, confer
Proposition 4.4.

Corollary 4.3. For the TSP with an n × n dis-
tance matrix (cij) satisfying conditions A ≥ B,
B ≥ C there exists an optimal tour within the fol-
lowing small set of tours: these are specially struc-
tured tours σSmax1, σSmax2 for n even, and tours
σSmax, σSmax3, σSmax4, for n odd.

Proof. A distance matrix (cij) satisfying conditions
A ≥ B, B ≥ C is an RK-matrix satisfying additional
constraints cij + ckl ≥ cil + ckj for i < j < k < l. The
latter inequalities yield inequalities ciu + ckl ≥ cil + cku

for u < i < i + 2 ≤ k < l. Indeed, this fact
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follows immediately from the simple transformations
ciu + ckl − cil − cku = ciu + ckl − cil − cku + cij − cij +
ckj −ckj = (cij +ckl−cil−ckj)+(ciu +ckj −cij −cki) =
(cij + ckl − cil − ckj) + (cui + cjk − cji − cik), where j
is an index between i and k: i < j < k (existence of j
follows from the inequality i + 1 < k).

It follows from Proposition 4.5, that only for small
number of indices, their positions in an optimal tours
are not finalized. For n even, n = 2m, these are
indices m and m + 1. There are only two possibilities:
either m is a valley and m + 1 is a peak, or both are
intermediate indices. These two options lead to two
tours, σSmax1 and σSmax2: σSmax1 = 〈1, n, 2, . . . ,m +
3,m−1,m+1,m,m+2,m−2, . . . , 3, n−1, 1〉, σSmax2 =
〈1, n, 2, . . . ,m+3,m−1,m,m+1,m+2,m−2, . . . , 3, n−
1, 1〉 if m is odd, and σSmax1 = 〈1, n, 2, . . . ,m − 2,m +
2,m,m + 1,m − 1,m − 2, . . . , 3, n − 1, 1〉, σSmax2 =
〈1, n, 2, . . . ,m−2,m+2,m+1,m,m+2,m−2, . . . , 3, n−
1, 1〉 if m is even.

For n odd, n = 2m + 1, positions of indices
m,m + 1,m + 2 are not yet finalized. If m is a
valley and m + 2 is a peak, then it gives the tour
σSmax, which is also an optimal tour for the Supnick
MaxTSP. There are other two options to place indices
m,m + 1,m + 2 as prescribed by the N -structure.
These two options lead to two tours σSmax3 and σSmax4:
σSmax3 = 〈1, . . . , m + 3,m + 2,m,m + 1,m − 1, . . . , 1〉,
σSmax4 = 〈1, . . . , m + 3,m + 1,m + 2,m,m − 1, . . . , 1〉.

5 TSP with Relaxed Supnick Matrices

A symmetric n× n matrix C = (cij) is called a Relaxed
Supnick matrix (RS-matrix) if it satisfies the four-point
condition B ≤ C, i.e. for all indices i, j, k, l, 1 ≤ i <
j < k < l ≤ n, the inequalities cik + cjl ≤ cil + cjk

hold. The TSP with an RS-matrix will be called the
RS-TSP. Two well known examples related to the RS-
TSP are the Supnick TSP (B ≤ C, A ≤ B) and the
Kalmanson MaxTSP (B ≤ C, A ≥ B). The optimal
tour σSmin for the Supnick TSP has the property that
indices in the tour are evenly spread on the slopes of
the tour. Motivated by this observation, we introduce
the following definition. The cyclic permutation π is
called a balanced permutation, if it does not contain
pairs of arcs (i, π(i)), (j, π(j)) such that either i <
π(j) < j < π(i), or i > π(j) > j > π(i); and it does
not contain chains i, π(i), π2(i) and j, π(j), π2(j) such
that either i < j < π(j) < π(i) < π2(i) < π2(j) or
i > j > π(j) > π(i) > π2(i) > π2(j).

Proposition 5.1. An optimal tour for the RS-TSP
can be found among the balanced permutations.

Proof. The proof is based on the tour-improvement
technique. Suppose that there is a pair of arcs (i, π(i)),

(j, π(j)) such that i < π(j) < j < π(i). It is easy to see
that deleting these two arcs and introducing two new
arcs (i, j) and (π(i), π(j)) will not increase the length of
the tour. For the chains i, π(i), π2(i) and j, π(j), π2(j)
with either i < j < π(j) < π(i) < π2(i) < π2(j), or
i > j > π(j) > π(i) > π2(i) > π2(j), the corresponding
transformation of the tour is a swap of π(i) and π(j).

The status of the RS-TSP remains unknown: we
do not know whether it is possible to find an optimal
balanced tour in polynomial time. We can, however, de-
scribe an alternative characterization of balanced tours.
This characterization can be used to introduce new ex-
ponential neighborhoods and to identify corresponding
structures in the distance matrix for new solvable cases.
To simplify the situation, we consider a special subset of
the balanced tours and describe additional constraints
on the distance matrix when an optimal tour can be
found in this special subset.

We will consider partially constructed tours on
the sets of indices {1, 2, 3, . . . ,m − 1,m} with m =
1, 2, . . . , n. For a fixed m, a partially constructed
tour will consist of a set of subsets of indices; indices
from each subset are placed in the tour on consecutive
positions. We refer to each of these subsets {i1, . . . , j1}
as fragment [i1, j1], stressing that i1 is the first, and j1
is the last element in the corresponding sub-sequence.
Notice that it is not necessarily the case that fragment
[i1, j1] with i1 < j1 contains, for example, i1 + 1. For
a one element fragment we still use the same notation
[i, i]. For example, if we start with a tour, where 1 and
2 are two valleys, this initial tour can be represented by
the two fragments [1, 1] and [2, 2].

Mutual placement of fragments is not fixed, i.e.,
they can be permuted. The fragments can also be
inverted, i.e. fragment [i, j] can be replaced by the
fragment [j, i].

Definition 5.1. A tour will be called a strongly bal-
anced tour if it can be constructed using the procedure
described below.

Start with an initial tour [1, 1] and repeat the next
step for m = 2, . . . , n − 1:

• Given a partial tour on the set of indices
{1, . . . , m − 1}, the tour is represented by the
fragments [i1, j1], [i2, j2], . . ., [ip, jp]. Let
imin1 = min{i1, j1, i2, j2, . . . , ip, jp}, imin2 =
min {i1, j1, i2, j2, . . . , ip, jp} \ {imin1}, imin3 =
min {i1, j1, i2, j2, . . . , ip, jp} \ {imin1, imin2}.
Choose one of the options below and add index m
to the partial tour:

– m is placed as a new valley; this creates a new
fragment [m,m];
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– m is placed as an intermediate index and is
adjacent to imin1; fragment [imin1, s] in the
partially constructed tour is replaced by the
new fragment [m, s] in this case.

– m is placed as a new peak merging two frag-
ments; m is adjacent to imin1 and to ei-
ther imin2 or to imin3. In the first case, the
fragments [imin1, j] and [imin2, s] are merged
into [j, s], in the second case, the fragments
[imin1, imin2] and [imin3, s] are merged into
[imin2, s].

The last node n can be added only to a partial tour
consisting of one fragment.

It can be shown that the set of strongly balanced
tours is a special subset of the balanced tours. In
particular, it can be shown that the definition above
excludes from consideration tours that contain either an
arc (i, π(i)) and chain j, π(j), π2(j) with i < j < π(j) <
π(i) < π2(j), or an arc (i, π(i)) and chain j, π(j), π2(j)
with j > i > π(j) > π2(j) > π(i).

Definition 5.2. An RS-matrix (cij) which satisfies
additional constraints cil + cjk + ckm ≥ cik + cjm + ckl

for all i < j < k < l < m is called strong RS-matrix.

It can be shown that the system of inequalities above
is equivalent, for an RS-matrix (cij), to the system of
inequalities cj−1,k + cj,k−1 + ck−1,n ≥ cj−1,k−1 + cjn +
ck−1,n, and therefore can be checked in O(n2) time.

Proposition 5.2. An optimal tour for the TSP re-
stricted to the class of strong RS-matrices can be found
within the set of strongly balanced tours.

The status of the TSP with a strong RS-matrix still
remains unknown. We need a bit more structure in
an RS-matrix in order to identify a new polynomially
solvable case, as shown in the proposition below.

Corollary 5.1. If a strong RS-matrix (cij) satisfies
conditions cji+ckl ≤ cjl+cki for all i < j, j+h ≤ k < l,
where h is a given constant, then the TSP with such
matrix can be solved in polynomial time.

Sketch of the proof. It can be shown that the
additional property of the distance matrix prevents
pairs of arcs (i, k) and (j, l) with j + h ≤ k (i <
j, k < l) from appearing in an optimal tour. For the
balanced tours this is possible only, if the number of
fragments p on each step of the construction procedure
in Proposition 5.2 does not exceed a constant d =
�h/2	 + 1. It is shown in [20] that an optimal tour

with this structure can be found in O(nd+1) time. This
proves the corollary.

The algorithm in [20] does not use the additional
property of an optimal tour being strongly balanced.
Careful analysis of balanced tours with a bounded
number of fragments may lead to algorithms with
much better performance as illustrated in the statement
below.

Corollary 5.2. If a strong RS-matrix (cij) satisfies
conditions cji+ckl ≤ cjl+cki for all i < j, j+3 ≤ k < l,
then an optimal TSP tour can be found in O(n) time
among Θ(2n) strongly balanced tours.

Sketch of the proof. An optimal tour for the
corresponding TSP can be found among the strongly
balanced tours containing no more than two fragments
at each step of the construction procedure described in
Definition 5.1. Construction of any of these tours starts
either from a partial tour (fragment) [1, 2], or from a
tour with two valleys – 1 and 2 (fragments [1, 1] and
[2, 2]). There are two options to extend each of these
fragments by adding index 3.

For fragment [1, 2], index 3 can either be adjacent
to 1 (it gives a new fragment [2, 3], to which we will
refer to as fragment of type F1), or be defined as a new
valley (it gives the fragment [1, 2], [3, 3] of a new type,
to which we will refer as type F2).

For the initial tour [1, 1], [2, 2], index 3 can either
be adjacent to 1 (it gives the fragments [1, 3],[2, 2] of
type F3), or be defined as a new peak (it gives the
fragment [1, 3, 2] of type F4). In total, there are thirteen
possible types of patterns listed in Figure 4. These
fragments can be combined together in a way which can
easily be used in dynamic programming recursions for
finding an optimal strongly balanced tour. Schematic
representation of the relations among all possible types
of the fragments is represented as a rooted tree in
Figure 4.

Given a constant h, a procedure described in Propo-
sition 5.2 can be used in a computer program to iden-
tify types of possible tour fragments and the relationship
among them to be used in a dynamic programming algo-
rithm. To our best knowledge, this idea to first identify
relationships to be used in a dynamic programming re-
cursions by a computer-based approach and to use the
obtained relationships in a second step in a dynamic
programming routine as input, is new in the area of
combinatorial optimization.

6 Conclusions

In this note we have classified all possible four-point con-
ditions for the symmetric TSP. Our analysis allowed us
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Tour Fragments
F1 [i, i + 1]

F2 [i, i + 1], [i + 2, i + 2]

F3 [i, i + 2], [i + 1, i + 1]

F4 [i, . . . , i + 2, . . . , i + 1]

F5 [i, i], [i + 1, i + 2]

F6 [i, i + 2]

F7 [i, i + 1], [i + 3, i + 3]

F8 [i, i + 3], [i + 1, i + 2]

F9 [i, . . . , i + 3, . . . , i + 2]

F10 [i, i + 2], [i + 3, i + 3]

F11 [i, i + 3], [i + 2, i + 2]

F12 [i, i + 1], [i + 2, i + 3]

F13 [i, i + 2], [i + 4, i + 4]

(a)

F1

F1 F2

F3 F4

Dynamic Programming Recursions

F3

F5

F8

F4

F8 F9

F6

F4

F4

F3

F10F1

F7

F11

F4

F9

F5F12 F13 F4

F9

F6

F11 F9

(b)

Figure 4: Schematic representation of dynamic pro-
gramming recursions: (a) list of possible types of frag-
ments; (b) relationship among the types of fragments in
the dynamic programming recursions.

to describe families of new exponential neighborhoods
searchable in polynomial time. Given, that a distance
matrix satisfies specified conditions, an optimal TSP
tour can be found in one of these neighborhoods.

There is a nice connection of the four-point condi-
tions with the well known 2-opt heuristic (see, e.g. [12]).
Given a TSP tour, the 2-opt heuristic looks for a pair
of arcs (j, l) and (i, k) such that cji + ckl < cjl + ckj .
If such a pair is found, then the tour is transformed
into the new tour by replacing arcs the (j, l) and (i, k)
with the pair of new arcs (i, j) and (k, l). If we consider
distance matrices such that the 2-opt procedure always
improves the tour, if 1 ≤ i < j < k < l ≤ n, then
this is a specially structured matrix which satisfies the
four-point condition A < B. If we fix i to be the min-
imal element in the 4-tuple {i, j, k, l} and consider all
6 possible ordering for the triple of indices {j, k, l} and
corresponding conditions on the distance matrix, then
we will end up with the main four-point conditions dis-
cussed in this paper.

The straightforward generalization is to consider
the 3-opt procedure and corresponding six point con-
ditions. The obvious difficulty is the number of all pos-
sible six point conditions, which is 480. If we add all
possible pairs of the conditions, then we end up with
115440 cases to be considered and analyzed. A poten-
tial approach to cope with this vast number of cases
would be to use computer support to classify the cases.
The computer based technique discussed in the previ-
ous section (which is to be used for generating dynamic
programming recursions) is a first example of a possible
computer based approach to research in this exciting
area.
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