
Chapter 54

Sparse Dynamic Programming*

David Eppsteint
Zvi Galilt
Raffaele GiancarloS

Giuseppe F. It alianoy

Abstract
This paper provides a systematic study of the impact
of sparsity on the computation of many different dy-
namic programming recurrences whose applications
include sequence analysis. These recurrences are de-
fined over a number of points that is quadratic in
the input size. However, due to natural constraints
of the problems, only a sparse set matters for the re-
sult. Based on new algorithmic techniques, we obtain
algorithms that improve the best known time bounds
by a factor almost linear in the density of the prob-
lems. All our algorithms are based upon a common
unifying methodology.

1 Introduction
Sparsity is a phenomenon that has long been ex-
ploited in the design of efficient algorithms. For in-
stance, it is known how to take advantage of spar-
sity in graphs, and indeed most of the best graph
algorithms take time bounded by a function of the
number of actual edges in the graph, rather than the
maximum possible number of edges. Here we study
the impact of sparsity in sequence analysis problems,
which are typically solved by dynamic programming
in a matrix indexed by positions in the input se-
quences. In this paper we use the term sequence
analysis in a broad sense, to include sequence com-
parison problems and RNA structure computations

*Work partially supported by by NSF Grants CCR-86
05353 and CCR-88-14977.

t Xerox Palo Alto Research Center, 3333 Coyote Hill Road,
Palo Alto, CA 94304. Research performed while at Columbia
university.

*Columbia University, New York, NY 10027 and Tel Aviv
University, Israel.

SColumbia University, New York, NY 10027 and University
of Palermo, Italy.

ncolumbia University, New York, NY 10027 and Univer-
sity of Rome, Italy. Partially supported by an IBM Graduate
Fellowship.

in molecular biology. Although sparsity’ is inherent
in the structure of this class of problems, there have
been few attempts to exploit it and no general tech-
nique for dealing with it is available.

It is well known that a number of important com-
putational problems in computer science, information
retrieval, molecular biology, speech recognition, geol-
ogy and other areas have been expressed as sequence
analysis problems. Their common feature is that one
would like to find the distance between two given in-
put sequences under some cost assumptions. We are
aware of only one problem which is efficiently solvable
by previous algorithms taking advantage of sparsity:
finding the longest common subsequence of two se-
quences [12].

The main contribution of this paper is a unify-
ing methodology for designing algorithms which ef-
fectively exploits the sparsity of the dynamic pro
gramming matrix used for the solution of sequence
analysis problems. For each point of the sparse prob-
lem we define a range, which is a fixed geometric re-
gion of the dynamic programming matrix in which
that point might influence the values of other points.
Different ranges may intersect and therefore compete
in the computation of a value of a point lying in their
common region. Solving those range conflicts is a
nontrivial task even in the dense case, and dealing
efficiently with it has required the discovery of new
techniques and algorithmic tools [2, 3, 16, 271. Spar-
sity introduces further complication to this scenario,
which does not seem possible to tackle by means of
known techniques. In order to solve these problems,
we develop new algorithmic tools and apply several
known techniques in a variety of novel ways. For in-
stance, previous algorithms for some of the problems
we study have used either data structures [4, 7, 8, 111
or matrix searching [2, 3, 16, 271. No simple way of
combining these two approaches has been known. By
finding a way to combine both techniques in a suit-

513

able framework, we achieve better bounds than either
technique alone would give.

Based on our methodology, we show how to im-
prove the solution to nine sequence analysis problems
of practical importance. In what follows, the length
of the input sequence(s) is denoted by n (and m).
M is the number of points in the sparse problem.
It is bounded for the sequence comparison problems
by nm, and for the RNA structure problems by n2.
For the longest common subsequence problem D is
the number of dominant matches (as defined in [lo]),
which is again bounded by nm. We remark that given
the two input sequences, the M points of the sparse
problem can be computed in 0(m+ n + M) by means
of string matching techniques. We recall that a func-
tion r~(i, j) is said to be concise if it satisfies the
quadrangle inequality as defined by F. F. Yao [29],
and it is said to be convex if it satisfies the inverse
quadrangle inequality [29]. Furthermore, we say that
w(i, j) is a simple concave OF convex function when it
is possible to find a zero of the function in constant
time. We solve the following problems in the times
given.

1.

2.

3.

4.

5.

Longest common subsequence: O(n logs +
D log log min(D, nm/D)) l, which improves
upon the previous O(n logs + m logn +
D log(nm/D)) bound [4].

Circular longest common subsequence, and cir-
cular edit distance with linear cost functions:
O(n + m + Mlog M loglogmin(M, nm/M)),
which improves upon the previous O(nmlogm)
bound [15].

Circular edit distance with concave cost func-
tions: O(n + m + M log2 M).

Wilbur-Lipman sequence comparison prob-
lem with linear cost functions: O(n +
m + M log log min(M, nm/M)), which improves
upon the previous bounds of O(M2) [28] and
O(nm) 121, 251. The Wilbur-Lipman method
aligns sequences in fragments of consecutive sym-
bols; this leads to improved sparsity as well as
fewer spurious alignments.

Wilbur-Lipman sequence comparison problem
with concave or convex cost functions: O(n +
m + M log M) for concave cost functions and

1 Throughout this paper, we assume that logz =
max(l , log, z) .

I

6,

7.

8.

9.

O(n + m + M log M cr(M)) (where a(M) is a
functional inverse of Ackermann’s function) for
convex cost functions, which improves upon the
previous O(M2) bound [28]. For simple con-
vex or concave cost functions the bound reduces
to O(n + m + M log M). The best bounds in
the dense case are O(nm) for concave cost func-
tions [6] and O(nmcu(n)) for convex cost func-
tions [16] as this problem reduces to sequence
alignment with gaps [8].

RNA structure with linear cost functions for
single loops: O(n + M log log min(M, n2/M)),
which improves upon the previous O(n2)
bound [14].

RNA structure with concave or convex cost func-
tions: O(n + M log M log min(M, n2/M)), or
O(n + M 1ogM log log min(M, n2/M)) for sim-
ple cost functions, which always improves upon
the O(n2 logn) bound of Aggarwal and Park [3]
and for sparse sets improves upon the O(n2a(n))
bound of Larmore and Schieber [18].

RNA structure with linear cost functions for
multiple loops O(Mn), which improves upon the
previous O(n3) bound [23]. The same algorithm
can be used to solve within the same time bounds
RNA structure with arbitrary cost functions for
single loops or RNA loop matching [22].

RNA structure with arbitrary cost functions for
multiple loops: O(Mn2), which improves upon
the previous O(n4) bound [26].

The terms of the form logmin(M,z/M) reduce to
O(1) for dense problems. As the above time bounds
show, all our algorithms will be asymptotically more
efficient than the previous best algorithms when the
problems are sparse. In addition, with the only ex-
ception of problems 5 and 7, they are always at least
as efficient as the best known dense algorithms.

The need for fast and practical algorithms for all
the above problems seems to be acute. For instance,
the fastp program [19] b ased on Wilbur-Lipman’s al-
gorithm [28] is an important tool used daily by molec-
ular biologists for similarity searches in huge protein
and nucleic acid data banks. Those data banks (such
as GenBank) contain millions of entries and their
size is doubling every 2 to 3 years. Improvements
to Wilbur-Lipman algorithm are therefore likely to
be of practical importance. Most previous attempts

514

to speed up their algorithm are heuristic in nature.
Our algorithms greatly reduce the worst case time to
solve this problem, while still allowing such heuristics
to be performed.

In the remainder of this paper we will concentrate
on RNA structure problems and Wilbur-Lipman’s
problem with linear, convex and concave cost func-
tions. For sake of brevity, some proofs are either
sketched or omitted.

2 Sparse RNA Structure

The following recurrence has been used to predict
RNA structure [7, 23, 261:

E[i, j] = mjni D[i’, j’] + w(i’ + j’, i + j) (1)

lZj’<j

Were D is taken to be some simple function of E.
The cost function w is the energy cost of a free loop
between the two base pairs. Recurrence 1 can be
computed in time O(n2) when w is linear [14], in
time O(n2 log n) when w is convex or concave [3] and
in time O(n3) for general functions [7, 261. The time
complexity of these algorithms depends on the length
of the input sequence. However, in RNA applications
one needs to compute recurrence 1 only for M << n2
points of the matrices E and D [23]. Thus it is quite
natural to investigate whether bounds depending on
it4 rather than on n can be achieved. We now show
how to design algorithms with this feature for linear
and then for convex and concave cost functions.

For brevity, let C(H, 1; i, j) stand for D[k, I] + w(E +
1, i + j). Define the range of a point (h, I) to be the
set of points (i, j) such that i > k and j > 1. By the
structure of recurrence 1, a point can only influence
the value of other points when those other points are
in its range. Two points (k, I) and (lc’, 1’) can have a
non-empty intersection of their ranges.

2.1 Linear Cost Functions

We now outline an O(n + M log log min(M, n2/M))
time algorithm for solving sparse RNA structure
when w is a linear function. Without loss of gener-
ality, we assume that there are no ties in range con-
flicts, since they can be broken consistently. In what
follows, we say that point (i’, j’) is better than point

(i”, j”) for point (i, j) if C(i’, j’; i, j) < C(i”, j”; i, j).
The following fact is useful for the computation of
recurrence 1.

Fact 1 Let (i, j) be a point in the range of both
(k,I) and (k’, 1’) and assume that C(k, Z;i, j) <
C(k’, I’; i, j). Th en, C(k,l;z,y) < C(k’, 1’;2, y) for
each point (z, y) common to the range of both (k, 1)
and (k’,l’). In other words, (k,l) is always better
than (k’, 1’) for all the points common to the range of

both.

Let ir, iz, . . . , i,, p 5 M, be the non-empty rows of
E and let ROW[s] be the sorted list of column in-
dices representing points for which we have to com-
pute E in row i,. Our algorithm consists of p steps,
one for each non-empty row. During step s 2 p, the
algorithm processes points in ROW[s] in increasing
order. Processing a point means computing the min-
imization at that point, and, if appropriate, adding
it to our data structures for later computations. For
each step s, we keep a list of active points. A point
(ir, j’) is active at step s if and only if r < s
and, for some maximal interval of columns v + 1, h],
(iv, j’) is better than all points processed during steps
1,2,.. ., s - 1. We call this interval the active inter-
val of point (i,, j’). Notice that the active intervals
partition [l, n].

Given the list of active points at step s, the pro-
cessing of a point (id, jq) can be outlined as follows.
The computation of the minimization at (id, j,) sim-
ply involves looking up which active interval con-
tains the column j,. The remaining part of pro-
cessing a point consists of updating the set of active
points, to possibly include (is, jn). This is done as
follows. Suppose (iY, j’), r < s, supplied the min-
imum value for (i,, ja) in recurrence 1. Then the
range of (i,, j’) contains that of (i,, j4). By fact 1, if
C(i,,j’;i, + I,j, + 1) < C(i,,j,;i, + 1, j, + 1) then
point (is, j,) will never be active. Therefore we do
not add it to the list. Otherwise, we must reduce
the active interval of (ir, j’) to end at column jg, and
add a new active interval for (is, jq) starting at col-
umn jq. Further, we must test (is, j*) successively
against the active points with greater column num-
bers, to see which is better in their active intervals.
If (id, j9) is better, the old active point is no longer
active, and (is, j,) takes over its active interval. We
proceed by testing against further active points. If
(is, j4) is worse, we have found the end of its active
interval by fact 1 and this interval is split as described
earlier.

The active points and active intervals can be main-
tained as a balanced search tree [17], sorted by the
column numbers of the active points. Processing a

515

point consists of searching such a tree, then if the
point is active adding it to the tree and possibly re-
moving other points from the tree. Using such a tree
scheme would yield an O(M log M) algorithm for the
computation of recurrence 1. However, since the val-
ues being searched for in the tree are simply fixed
column numbers from 1 to n, we may use the flat
tree data structure described by van Emde Boas [24].
By a simple preprocessing of the list of points, we
may remove from consideration those columns not
containing any points, and thus reduce the number
of columns in the flat tree to at most O(M). This
gives a total time of O(M log log M). This time can
be further improved by carefully exploiting the prop-
erties stated in the following lemma.

Lemma 1 For each nonempty row of matrix E, it is
possible to schedule the lookup, insert and delete op-
erations on the list of active points in three different
subsequences of homogeneous operations S1,&, S’s
consisting only of lookups, insertions and deletions
respectively.

We now implement the list of active points by using
Johnson’s improvement to flat trees [13]. We recall
that it takes O(loglogG) time to initialize Johnson’s
data structure, to insert or delete an item in the data
structure, or to look up for the neighbors of an item
not in the data structure. Here G denotes the length
of the gap between the nearest integers in the struc-
ture below and above the item being inserted, deleted
or searched for. Using lemma 1 and a novel analysis
of Johnson’s data structure, we can show:

Theorem 1 Sparse RNA structure with linear cost
finctions can be solved in a total of O(n +
M log log min(M, n2/M)) time.

2.2 Convex or Concave Cost Func-
tions

In this subsection we consider the sparse computation
of RNA secondary structure given by recurrence 1
when the cost function is either convex or concave.

We solve the problem by a divide and conquer re-
cursion on the rows of the dynamic programming ma-
trix. For each level of the recursion, having t points
in the subproblem for that level, we choose a row r
such that the numbers of points above r and below r
are each at most t/2. Such a row must always exist,
and it can be found in linear time. Thus we can par-
tition the points of the problem into three sets: those

above r, those on r, and those below r. Within each
level of the recursion, we will need the points of each
set, to be sorted by their column number. This can
be achieved by initially bucket sorting all points, and
then at each level of the recurrence performing a pass
through the sorted list to divide it into the three sets.
Thus the order we need will be achieved at a linear
cost per level of the recurrence.

We note that for any point above or on row T, the
minimum value in equation 1 only depends on the
values of other points above P. For points below r,
the value of equation 1 is the minimum between the
values from points above r, and points below r. Thus
we can compute all the minima by performing the
following steps: (1) solve the problem above r by
a recursive invocation of our algorithm, (2) use the
values given by this solution to solve the problem
for the points on r, (3) compute the influence of the
points above or on r, on the values of the points below
r, and (4) recursively solve the problem below r.

This divide and conquer technique is similar to the
dynamic-to-static reduction of Bentley and Saxe [5];
it differs from the RNA structure algorithm of Ag-
garwal and Park [3] in that we divide only by rows,
and not by columns. It does not seem possible to
modify the algorithm of Aggarwal and Park to run in
time depending on the sparsity of the problem, be-
cause at each level of their recursion they compute a
linear number of matrix search problems, the size of
each of which does not depend on the sparsity of the
problem.

The problem remaining after our recursion is as
follows. We are given a set A of points above a certain
row of the matrix, and a set, 13 of points below the
row. Both sets are sorted by column number. The
values of D in recurrence 1 are known for the points
in d, and we want to know their contributions to the
computation of E for each of the points in L3. Each
level of the divide and conquer recursion computes
the solution to two such problems, one with A the
points above row r and f? the points on row T, and
a second with A the points above or on row r and t3
the points below row r.

The “conquer step” of our divide and conquer ap-
proach is based upon the efficient solution of the min-
imization problem with dynamically changing input
values given by the following recurrence:

E[z] = mjnD[y] + ~(2, y).

Each of the indices x and y are taken from the set of

516

integers from 1 through some bound N. The mini-
mization for each E[x] depends on all values of D[y],
not just those for which y < t. The cost function
w(z, y) is assumed to be either convex or concave.
The values of ~[y] will initially be set to +oo. At
any time step, one of the following two operations
may be performed:

1. Compute the value of E[;c], for some index Z,
as determined by equation 2 from the present
values of D[y].

2. Decrease the value of D[y], for some index y,
to a new value that must be smaller than the
previous value but may otherwise be arbitrary.
This change may affect many values of E.

We refer to this problem as the dynamic minimiza-
tion problem. By using modified versions of the algo
rithm of Galil and Giancarlo [7, 81, it is possible to
show:

Lemma 2 The dynamic minimization problem can
be solved in O(logN) amortized time per operation.
For simple cost functions, this time can be reduced to
O(log log N) amortized time per operation.

Thus we can show the following theorem.

Theorem 2 The RNA structure computation of re-
currence I, for a sequence of length n, with M pos-
sible base pair, and convex or concave cost func-
tions, can be performed in time O(n + M log2 M).
For cost functions which satisfy the closest zero prop-
erty, the computation can be performed in time O(n+

M log M log log M) .

Proof (Sketch) : Denote the number of points
processed at a given level of the recurrence by t.
Then the time taken at that level is O(t), together
with O(t) operations from the data structure for the
dynamic minimization problem. The time per data
structure operation in this case is either O(logM) or
O(loglogM), as described in lemma 2. The latter
version also requires O(M) preprocessing time to set
up the flat tree search structures; however the same
structures can be re-used at different levels of the re-
cursion and so this setup time need only be paid once.
The divide and conquer adds another logarithmic fac-
tor to this bound. We also need another bucket sort
in a preprocessing stage taking time O(t). The to-
tal time to solve recurrence 1 is O(n + M log2 M)

in general, or O(n + M log A4 log log M) for simple
functions. 0

In the full version of this paper we will show
how these bounds can be further reduced to O(n +
M log M log min(M, n2/M)), or for simple functions
O(n + M log M log log min(M, n2/M)). For non-
simple functions, we must make a trade off between
the matrix searching algorithms of Aggarwal et al. [2]
and the dynamic programming algorithms of Galil
and Giancarlo [7, 81; either algorithm alone is not
enough to achieve our time bounds. In particular,
we need to solve an instance of equation 2, in which
there are Ic values of D[j] given. Each value of O[j]
supplies the minima for E[ij with i in some inter-
val of the range from 1 to n, and we need to find
the boundaries of these intervals. By using the algo-
rithm of Aggarwal et al., we can solve this problem in
time O(k: + n). By using that of Galil and Giancarlo,
we can solve it in time O(k logn). We find a way
to combine these two algorithms to achieve a bound
of O(1 log n/h), which is what we need to solve the
RNA structure problem in the given time bound as
the following theorem shows.

Theorem 3 The RNA structure computation of re-
currence 1, for a sequence of length n, with M
possible points, and convex or concave cost func-
tions, can be performed in a total of O(n +
M log M log min(M, n2/M)) time. For cost func-
tions which satisfy the closest zero property, the
computation can be performed in time O(n +
M log M loglogxnin(M, n2/M)).

3 Sparse Sequence Compari-
son

In this section we consider Wilbur-Lipman fragment
alignment problem. Given two sequences x and y
of length m and n, respectively, and a set of sub-
sequences (fragments) from the two sequences, the
problem consists of determining the best alignment
of z and y by using only the given fragments and
by introducing gaps in suitable positions in x and
y. A formal definition of this problem is given be-
low. In the special case that the fragments are all
possible matching and mismatching symbols from
the two input strings this is the edit distance with
gaps, for which many efficient algorithms have been
proposed 17, 8, 16, 20, 211. The reader is referred
to [28] for a discussion of the advantages of the

517

Wilbur-Lipman method over edit distance with gaps
in molecular biology applications.

Let the two input sequences be denoted zlzr.. . a,
and ~1~2.. . yn. A flagmen2 is defined to be a triple
< i, j, k > such that the k-tuple of symbols at per
sitions i and j of the two strings exactly match
each other. That is, 2i = yj, ~i+l = yj+r, . . .,
zi+k-1 = Yj+k-l- The M fragments can be found
in time O(n + m + M) using standard string match-
ing techniques. A fragment < i’, jr, k’ > is said to be
below < i, j, k > if i + k 5 i’ and j + k s j’; i.e., the
substrings in fragment < i’, j’, k’ > appear strictly
after those of < i, j, k > in the input strings. Equiv-
alently we say that < i, j, k > is above < i’, j’, k’ >.
The length of fragment < i, j, k > is the number k.
The diagonal of a fragment < i, j, k > is the number
j - i. Then an alignme& of z and y is defined to be
a sequence of fragments such that, if < i, j, k > and
< i’, j’, k’ > are adjacent fragments in the alignment,
either < i’, j’, k’ > is below < i, j, k > on a differ-
ent diagonal (a gap), or the two fragments are on the
same diagonal, with i’ > i (a mismatch). The cost of
an alignment is taken to be the sum of the costs of the
gaps, minus the number of matched symbols in the
fragments, The number of matched symbols may not
necessarily be the sum of the fragment lengths, be-
cause two mismatched fragments may overlap. Nev-
ertheless it is easily computed as the sum of fragment
lengths minus the overlap lengths of mismatched frag-
ment pairs. The cost of a gap is some function of the
distance between diagonals UJ(](j - i) - (j’ - i’)]).

Wilbur and Lipman obtained the following recur-
rence [28], which is defined only for triples < i, j, k >
giving rise to fragments.

D[i, j, k] = -k + min(D’[i, j, k], D”[i,j, k]) (3)

where

< i, j, k 3 gives rise to two points, (i, j) and (i-f-k -
1, j + k - 1). We compute the best alignment for the
fragment at point (i, j). However, we do not add this
alignment to the data structure of already computed
fragments until we reach (i + k - 1, j + A - 1). In
this way, the computation for each fragment will only
see other fragments that it is below. From now on
we ignore the distinction between these two kinds of
points in the matrix, which can be easily dealt with by
our algorithms. Thus, we ignore k in recurrence 3 and
consider the following two-dimensional subproblem:
Compute

E[i, j] = min
(i’,j’) above (i,j)

D[i’, j’]+w(l(j-i)-(j’-i’)l).,

(4)

where D[i, j] is an easily computable function of
E[i, j]. As in the RNA structure computation, each
point has a range consisting of the points below and
to the left of it. For this problem we divide the range
into two portions, the lefl influence and the tight in-
fluence. The left influence of (i, j) consists of those
points in the range of (i, j) which are below and to
the left of the forward diagonal j - i, and the right
influence consists of the points above and to the right
of the forward diagonal. Within each of the two influ-

ences, w(lp- cd) = w(P - n) or w(lP- 4) = w(q - P);
i.e. the division of the range in two parts removes
the complication of the absolute value from the cost
function. Indeed, we can write recurrence 4 as

where

E[i, j] = min{ll[i, j], Rl[i, j]), (5)

Ll[i, j] = mm
(;‘.j’) above (i,j)

D[i’, j’]+w((j’-i’)-(j-i))

j- i< j'-i'

(6)
Rl[i, j] = min

(i’:j’) above (<.j)
D[i’, j’]+ul((j-i)-(j/-i’))

D’[i, j, kj = J~~;,~,, o[i - I, j - 1, k’] + m&O, k’ - 1)
-,

3 -$<j-i

(7)

D”[i, j, k] = min
<i’,j’,k’> above <i,j,k>

D[i’, j’, k’]

+w(l(j - i) - (i’ - i’)l)).

Since there are only M fragments, the naive dy-
namic programming algorithm for this computation,
given by Wilbur and Lipman, takes time O(M2).

We consider recurrence 3 as a dynamic program on
points in a two-dimensional matrix. Each fragment

Both recurrences 6 and 7 look very similar to re-
currence 1, except that they must be put together
to compute recurrence 4. Thus, the order of com-
putation of the points must be the same for the
two recurrences. Moreover, now we have two col-
lections of influences that are eighth-planar geomet-
ric regions while in the RNA structure computation
we had ranges that were quarter-planar geometric re-
gions. We describe our algorithm for gap cost func-
tions that are linear in the distance between diagonals

518

in section 3.1, and for convex and concave gap cost
functions in section 3.2.

3.1 Linear Cost Functions

We now outline an O(n + M log log min(M, nm/M))
time algorithm for computing recurrence 4 when 20 is
a linear function. For each point (i, j) for which recur-
rence 4 is defined, we perform the minimization sepa-
rately over the left influences containing (i, j) (recur-
rence 6) and the right influences containing (i, j) (re-
currence 7). The total minimum is then the smaller of
the left and right minima. We notice that the compu-
tation of recurrence 7 by rows is similar to that of re-
currence 1. The only difference is that now ranges are
bounded by forward diagonals instead of by columns.
However, the algorithm given in section 2.1 can be
adapted to solve (7) by rows without any loss in time
efficiency. If we could compute recurrence 6 in order
by columns, we would get the same time bound given
by theorem 1. However, this would conflict with the
order of computation of (7) and the two recurrences
could not be put together into a single algorithm. In-
stead we need a slightly more sophisticated approach,
so that we can compute (6) in order by rows. This
can be done as follows.

Our algorithm can be thought of as building a par-
tition of the matrix LI into geometric regions while
proceeding row by row. For each region R in the par-
tition, there is a point (i, j) which is the best for the
computation of (6) for points in R. Obviously, R is
contained in (i, j)‘s left influence. We refer to (i, j) as
the owner of region R. A point may own more than
one region. However, all regions owned by a point are
disjoint. The boundaries of each region are composed
of rows, forward diagonals and columns. Thus, each
region is either a triangle or a convex quadrilateral.
A region R is said to be active at row i, 1 5 i 5 m, if
and only if R intersects row i. A point is said to be
active at row i if it is the owner of at least one active
region.

While processing matrix LI by rows, we dynam-
ically maintain the list of active regions. We can
think of active regions as keys and active points which
own them as the information associated to the corre-
sponding key. Indeed, given the list of active regions
at row i, we can compute the minimum in (6) for
point (i, j) by finding the active region that contains
j. The owner of such region provides the minimum for
LI[i, j]. The operations that we would like to perform

on the list of active regions are inserting a region,
deleting a region, splitting a region into two, and
lookups. Since the computation is by rows, the POS-

sible horizontal boundaries of active regions are not
meaningful. Each active region is completely charac-
terized by only two types of non-horizontal boundary
(i.e., forward diagonal or column boundaries). As a
result, we represent each active region by means of
two non-horizontal boundaries.

The main difficulty in efficiently maintaining the
list of active regions is that the boundaries of the re-
gions partitioning LI are not known in advance but
are actually discovered row by row. Indeed assume
that in the computation of (6) we are processing row
i. At this step, our algorithm has computed the par-
tition of the matrix LI up to row i, but we do not
know the behavior of the currently active regions af-
ter row i. It can happen that a new point (i’, j’),
i’ > i, contained in a region R active at i may split R
into two parts, depending on whether (i’, j’) is better
than the owner of R in their common left influence.
In such a case, we wait until row i’ before deciding
whether R should be split. Furthermore, when we
have a region bounded on the left by a forward diag-
onal and on the right by a column, we must remove
it when the row on which these two boundaries meet
is processed because such a region cannot be active
any longer. At this point we compare the two regions
on either side, to see whether their boundary should
continue as a diagonal or as a column. Once again,
we will decide it when considering the row in which
their boundaries meet.

Even though there are two types of boundary, it
can be shown that the active regions appear in a
linear order for the row we are computing. This
order can be maintained under the changes in the
set of active regions required by the insertion and by
the removal of regions. Therefore we may use a bi-
nary search tree to perform the computation in time
O(M log M). Because of the two types of boundary,
however, the items being searched for cannot be rep-
resented as a single set of fixed integers. Therefore the
algorithm sketched above does not seem to benefit di-
rectly from the use of the flat trees of van Emde Boas,
or Johnson’s improvement to flat trees, since the keys
in these data structures must be unchanging integers
in a fixed range. However, we show that it is pos-
sible to use only two Johnson’s data structures, one
for column boundaries and one for diagonal bound-
aries. The diagonal boundaries can be represented as

519

the integer numbers of the diagonals, and the column
boundaries can be represented as the integer numbers
of the columns. Searching for the region containing a
point is then accomplished by finding the rightmost
boundary to the left of the point, and choosing among
the two resulting column and diagonal boundaries the
one that is closer to the point. Moreover, all the in-
sert, delete, split and lookup operations that need to
be performed for a given row i have to be scheduled
so that we perform a homogeneous sequence of oper-
ations at a time.

Thus, we can show that recurrences 6 and 7
can be computed by rows in O(m + n +
M loglogmin(M,nm/M)) time when the cost func-
tion is linear. This implies the following theorem.

Theorem 4 Wilbur and Lipman’s fragment align-
ment problem, for sequences of length m and n, with
M fragments, and linear cost functions can be solved
in O(ri-z + n + M log log min(M, nm/M)) time.

3.2 Concave and Convex Cost F’unc-
tions

We now outline an algorithm for solving recurrence 4
when the cost function is either concave or convex.
The time we achieve is O(n + m + M 1ogM) for con-
cave cost functions and O(n + m + M log Ma(M)))
for convex cost functions. Our algorithm can be
viewed as a novel application of the Bentley-Saxe
dynamic-to-static reduction: we perform two such re-
ductions, in two different orders, one for each type
of eighth-plane geometric region of the point ranges.
The differing order leaves the problem dynamic, but
the reduction instead can be imagined as removing
the vertical or horizontal boundaries of the geomet-
ric regions, leaving only the forward-diagonal bound-
aries. The reduced subproblem can then be solved
with matrix-searching techniques.

We show now how to compute recurrences 6 and 7,
which cut the range of each point into right and left
influences. Since those two recurrences must be com-
puted according to the same order, we proceed for
both of them by back diagonals. This order is sym-
metric with respect to the two recurrences, so without
loss of generality from now on we need only consider
the computation of recurrence 7.

As in the RNA structure computation, we use di-
vide and conquer to produce the subproblems into
which we divide the computation of recurrence 7. Us-
ing the same terminology as in section 2.2, in each

subproblem the points in A are those above some
row and the points in B are those below the same
row. The minimization for point (i, j) in g depends
on the value at a point (i’, j’) in A exactly when
‘I

3 -ii’< j- i. Thus we order the points in the sub-
problems by the numbers of their forward diagonals.
Such an order can be maintained by initially bucket
sorting all points, and then splitting the sorted list at
each level of the recursion. Each point will be in set A
for O(log n) subproblems and set I3 for O(log n) sub-
problems. However within the divide and conquer we
only compute the structure of the subproblems; that
is, we determine for each subproblem its correspond-
ing sets A and f3. We do not immediately attempt to
solve the subproblems, because that would violate the
processing order by back diagonals. Instead we pro
duce a data structure maintaining the state of each
subproblem. Only after all subproblems have been so
constructed we then proceed to solve the recurrence,
in order by back diagonals as stated above. After we
begin solving the recurrence, we maintain each sub-
problem dynamically. This is done by including the
values of matrix D for points in set A as they become
known, and by computing the subproblem minimum
for each point in set B as all the information it de-
pends upon becomes available.

The actual order in which the subproblems receive
the values of D[i’, j’] for points (3, j’) in set A will
be more arbitrary than that described above, as will
be the order in which the values that have been de-
termined within the subproblem for points in set f?
are requested by the main program. However the
forward diagonals totally order the points by their
dependence on each other. The subproblem solution
proceeds by saving each given value of D[i’, j’] un-
til all previous values in the dependence order are
known, and then computing as many derived values
as possible with the known values and saving these
derived values until the main program asks for them.
In this way each subproblem solution operates asyn-
chronously of the main program. All we require is
that, whenever the main program asks for the sub-
problem’s value at a point (a-, j) in set f3, all values
D[;‘, j’] for points (i’, j’) on previous forward diag-
onals of set A will have already been given to the
subproblem.

It turns out that, with the forward diagonal de-
pendence order, each subproblem is exactly a dy-
namic monotone staircase matrix problem as defined
by Aggarwal and Klawe [l]. In the language of the

520

data structure we gave in the section 2.2 for the dy-
namic minimization problem, once we have reduced
the value at Db], we never reduce any Or] with
j’ < j, and once we have computed E[i], we never
compute any Eli’] with i’ < i.

If w(i, j) is convex, the algorithm of Klawe and
Kleitman [16] solves the problem for t points in time
O(to(t)); here CY is the inverse Ackermann function,
a very slowly growing function. If w(i, j) is concave,
the algorithm of Wilber [27] solves a single instance
of the problem in linear time. However we need to
solve many such problems with the inputs to some de-
pending on the outputs of others, and Wilber’s anal-
ysis breaks down for this case. Eppstein [6] has ex-
tended Wilber’s algorithm to allow such interleaved
computations, while remaining within the linear time
bound. For more recent results in this area see 19, 181.

Each subproblem can be solved independently, in-
cluding values from the points in A in the order they
are needed and as they are available, and comput-
ing values for points in f3 when all the points they
depend on have been included. When we split the
computation into subproblems, we also keep for each
point a list of the subproblems for which that point is
in set A; thus when the point’s value is computed we
need only look at the list to determine which subprob-
lems can proceed in their computation. Along with
these subproblem computations, we also proceed as
we have said along back diagonals; for each point on
a given back diagonal we compute the value as the
minimum of the O(logn) values from the subprob-
lems for which the point is in set B, and then include
the computed value in the computations for which
the point is in set A.

It remains to show that, when the back diago-
nal computation reaches each point, the subprob-
lems giving the point’s value will all have computed
their separate minimizations for that point, so that
the final value for that point can in fact be com-
puted. We need to show that each subproblem S
with (i, j) E a(S) is ready to supply the value at
(i, j) when the computation reaches the back diago-
nal containing point (i, j). Assume the subproblem
S is one involving right influences; the assertion for
left influence subproblems follows by symmetry. If a
point (i, j) in set B(S) for some subproblem S de-
pends on the value at a point (i’, j’) in set d(S),
then clearly i’ < i and j’ - i’ < j - i. But then
j’+i’= (j’-i’)+2i’ < (j-i)+2i = j+i; that is, the

back diagonal containing (i’+ j’) appears before that

containing (i, j). Because we process points in order
by back diagonals, D[(i’, j’)] will already have been
computed and included in subproblem S. Therefore
all subproblem results will in fact be computed in
time for them to be combined by the back diagonal
computation, and the algorithm correctly computes
recurrence 3.

Theorem 5 The problem of sequence alignment
from a sparse set of fragments can be solved in time
O(n + m + M logMcu(M)) for convex gap cost func-
tions, and time O(n+m+M log M) for concave func-
tions.

Proof (Sketch) : As we have said, the time for each
subproblem of size t is O(ta(t)) in the convex case,
and O(t) in the concave case. The divide and conquer
adds a logarithmic factor to these time bounds, giving
O(n + m + M log M) in the concave case, and O(n +
m + M log&f a(M)) in the convex case. 0

References

PI

PI

PI

141

PI

161

PI

Alok Aggarwal, and Maria M. Klawe, Applica-
tions of Generalized Matrix Searching to Ge-
ometric Algorithms, Discrete Applied Mathe-
matics, to appear.

Alok Aggarwal, Maria M. Klawe, Shlomo
Moran, Peter Shor, and Robert Wilber, Geo-
metric Applications of a Matrix-Searching Al-
gorithm, Algorithmica 2, 1987, 209-233.

Alok Aggarwal and James Park, Searching
in Multidimensional Monotone Matrices, 29th
FOCS, 1988, 497-512.

A. Apostolic0 and C. Guerra, The Longest
Common Subsequence Problem Revisited, Al-
gorithmica 2, 1987, 315-336.

J.L. Bentley and J.B. Saxe, Decompos-
able Searching Problems I: Static-to-Dynamic
Transformation. J. Algorithms f(4), December
1980, 301-358.

David Eppstein, Sequence Comparison with
Mixed Convex and Concave Costs, J. Algo-
rithms, to appear.

David Eppstein, Zvi Gal& and Raffaele Gi-
ancarlo, Speeding Up Dynamic Programming,
29th FOCS, 1988, 488-496.

521

PI

Fl

[lOI

WI

1121

1131

M

PI

PI

P71

PI

PI

Zvi Galil and Raffaele Giancarlo, Speeding Up
Dynamic Programming with Applications to
Molecular Biology, Theor. Comput. Sci. 64,
1989, 107-118.

Zvi Galil and Kunsoo Park, A linear-time al-
gorithm for concave one-dimensional dynamic
programming, Inform. Process. Letters, to ap-
pear.

D.S. Hirschberg, Algorithms for the Longest
Common Subsequence Problem, J. ACM 24,
1977, 341-343.

D.S. Hirschberg and L.L. Larmore, The Least
Weight Subsequence Problem, SIAM J. Com-
put. 16, 1987, 628-638.

J.W. Hunt and T.G. Szymanski, A Fast Algc+
rithm for Computing Longest Common Subse-
quences, C. ACM 20(5), 1977, 350-353.

Donald B. Johnson, A Priority Queue in
Which Initialization and Queue Operations
Take O(loglog D) Time, Math. Sys. Th. 15,
1982, 295-309.

M.I. Kanehisi and W.B. Goad, Pattern Recog-
nition in Nucleic Acid Sequences II: An Effi-
cient Method for Finding Locally Stable Sec-
ondary Structures, Nucl. Acids Res. 10(l),
1982, 265-277.

Zvi M. Kedem and Henry Fuchs, On Finding
Several Shortest Paths in Certain Graphs, 18th
Allerton Conf., 1980, 677-686.

Maria M. Klawe and D. Kleitman, An Al-
most Linear Algorithm for Generalized Matrix
Searching, preprint, 1987.

Donald E. Knuth, The Art of Computer Pro-
gramming, Volume 3: Sorting and Searching,
Addison-Wesley, 1973.

L. Larmore and B. Schieber, On-line dynamic
programming with applications to the predic-
tion of the RNA secondary structure, These
Proceedings.

D.J. Lipman and W.L. Pearson, Rapid and Sen-
sitive Protein Similarity Searches, Science 2,
1985, 1435-1441.

PO1

WI

P21

PI

WI

PI

P-I

WI

[=I

PI

Webb Miller and Eugene W. Myers, Sequence
Comparison with Concave Weighting Func-
tions, Bull. Math. Biol. 50(2), 1988, pp. 97-120.

S.B. Needleman and C.D. Wunsch, A General
Method applicable to the Search for Similarities
in the Amino Acid Sequence of Two Proteins,
J. Mol. Biol. 48, 1970, p. 443.

Ruth Nussinov, George Pieczenik, Jerrold R.
Griggs, and Daniel J. Kleitman, Algorithms for
Loop Matchings, SIAM J. Appl. Math. 35(l),
1978, 68-82.

David Sankoff, Joseph B. Kruskal, Sylvie
Mainville, and Robert J. Cedergren, Fast Al-
gorithms to Determine RNA Secondary Struc-
tures Containing Multiple Loops, in D. Sankoff
and J.B. Kruskal, editors, Time Warps, String
Edits, and Macromolecules: The Theory and
Practice of Sequence Comparison, Addison-
Wesley, 1983, 93-120.

Peter van Emde Boas, Preserving Order in a
Forest in Less Than Logarithmic Time, 16th
FOCS, 1975, and Info. Proc. Lett. 6, 1977, 80-
82.

R. Wagner and M. Fischer, The String to String
Correction Problem, J. ACM 21(l), 1974, 168-
178.

Michael S. Waterman and Temple F. Smith,
Rapid Dynamic Programming Algorithms for
RNA Secondary Structure, in Adv. Appl.
Math. 7, 1986, 455464.

Robert Wilber, The Concave Least Weight
Subsequence Problem Revisited, J. Algo-
rithms 9(3), 1988, 418-425.

W.J. Wilbur and David J. Lipman, The Con-
text Dependent Comparison of Biological Se-
quences, SIAM J. Appl. Math. 44(3), 1984,557-
567.

F.F. Yao, Speed-up in dynamic programming,
SIAM J. Alg. Disc. Methods 3, 1982, 532-540.

522

