
Chapter 53

On-Line Dynamic Programming with Applications
to the Prediction of RNA Secondary Structure

Lawrence L. Larmore*
Baruch Schieber#

Abstract 1. Introduction

We define an on-line problem to be a problem where
each input is available only after certain outputs have

been calculated. The usual kind of problem, where
all inputs are available at all times, is referred to as

an ofl-line problem. We present an efficient algorithm
for the on-line two dimensional dynamic programming
problem that is used for the prediction of RNA sec-
ondary structure. Our algorithm uses as a module
an algorithm for solving the on-line one dimensional
dynamic programming problem. The time complexity
of our algorithm is n times the complexity of the on-
line one dimensional dynamic programming problem.
For the concave case, we present a linear time algo-

rithm for the on-line one dimensional problem. This
yields an optimal O(n2) time algorithm for the on-line
two dimensional concave problem. The constants in
the time complexity of this algorithm are fairly small,

which make it practical. For the convex case, we use
an O(ncu(n)) time algorithm for the on-line one dimen-
sional problem, where a(.) is the functional inverse of
Ackermann’s function. This yields an O(n’cr(n)) time
algorithm for the on-line two dimensional convex prob-
lem. Both algorithms improve on previously known
algorithms.

* Dept. of Mathematics and Computer Science, Uni-
versity of California at Riverside, Riverside, CA 92521.

IBM Research Division, T.J. Watson Research Cen-
ter, P.O. Box 218, Yorktown Heights, NY 10598.

Dynamic programming is a widely used problem-
solving technique. It has many applications in
various fields, among them: Computer Science,
Operation Research and Molecular Biology. (See,
e.g., [3, 111.) In this paper we consider a variant
of dynamic programming that is used to predict
RNA secondary structure from the primary (lin-
ear) RNA sequence ([12,13]). An efficient method
for deducing the secondary structure directly from
the primary structure is very useful, since empir-
ical results are costly to obtain and can often be
interpreted in several ways.

Following the formulation given in [5], we con-
sider the problem of computing the two dimen-
sional recurrence

E[i,j] = min{F[?,jl + W(i’ + j’, i + j) 1

0 5 2 < i, 0 < j’ < j}, for 1 5 i, j 5 72,

(1)

under the following two assumptions:

1. The entries of the matrix F are easily com-
puted from the corresponding entries of the
the matrix E. That is, each input F[i, j]
is available only after the output E[i, j] has
been calculated. We define such a problem
where each input is available only after cer-

tain outputs have been calculated to be an

on-line problem. A problem where all inputs

503

are available at all times is defined to be an
ofiline problem.

2. The weight function W(., .) is either concave
or convex. We define a bivariate function
W(., .) to be concave if the quadrangle in-
equality: W(i,j) + W(i’,j’) 5 W(i,j’) +
W(i’, j) holds for all i < i’ < j < j’. Sim-
ilarly, a bivariate function W(., .) is defined
to be convex if the inverse quadrangle in-
equality holds for all i < i’ < j < j’.

We present an efficient algorithm for the on-
line two dimensional dynamic programming prob-
lem defined above. Our algorithm uses as a mod-
ule an algorithm for solving the following on-
line one dimensional dynamic programming recur-
rence:

E[i] = min{l”[i’] + W(i’, i)] 0 5 i’ 5 Ci), (2)

for 1 2 i 5 n, where 0 5 Cl 5 . . . 5 C, < n.

The assumptions are similar to the ones given for
the two dimensional case, namely:

1. The values of Flj], for j = C;-1 + 1,. . . , C;
are easily computed from the value of
E[i - 11. (For convenience, we define Co =

0-l

2. The weight function W(., .) is either concave
or convex.

The time complexity of our algorithm is n
times the complexity of the on-line one dimen-
sional dynamic programming problem.

We give an optimal linear time algorithm
for the on-line one dimensional concave problem.
This yields an O(n2) time algorithm for the on-line
two dimensional concave problem. Notice that the
size of the input in this problem is O(n2), and
thus, our algorithm is optimal. The constants in
the time complexity of the algorithms for both the
one and the two dimensional cases are fairly small,
which make them practical.

For the convex case, we use an O(na(n)) time
algorithm for the on-line one dimensional problem

given in [9], where a(.) is the functional inverse of
Ackermann’s function. This yields an O(n20(n))
time algorithm for the on-line two dimensional
convex problem. However, any improvement to
the on-line one dimensional algorithm will result
in a corresponding improvement to our algorithm.

The on-line two dimensional dynamic pro-
gramming problem that is considered here was
first considered by Waterman and Smith [13].
They show its relevance to predicting the RNA
secondary structure and give an O(n3) time algo-
rithm for the problem. Eppstein, Galil, and Gi-
ancarlo [S] improve it to O(n2 log2 n) time. They
also give the formulation used in this paper (which
is implicit in 1131). The previously best known al-
gorithm for the problem is due to Aggarwal and
Park [2]. Their algorithm runs in O(n2 log n) time.
Notice that our algorithm is superior to the previ-
ous algorithms in both the concave and the convex
cases. We remark that Yao 1151 uses the quad-
rangle inequality to accelerate the computation of
another variant of two dimensional dynamic pro-
gramming.

An n x m triangular matrix M is defined to be
concave totally monotone if for all 1 5 i < if 2 n
and 0 < j, < j’ < m, the inequality M[i, j] >
M[i, j’l implies that M[i’, j] > M[i’, j’l. Similarly,
an n x m triangular matrix M is defined to be
convex totally monotone if for all 1 < i < i’ _< n
and 0 2 j < j’ < m, the inequality M[i, j] <
M[i, j’l implies that M[i’, j] < M[i’,jl. (To make
the presentation clearer we assume that all the
finite elements in M are distinct.)

An n x m matrix M is defined to be general-
ized upper triangular if there are 0 5 Cr 5 C2 5
. * . 5 C, = m - 1, such that M[i, j] = 00 for all
C; < j < m. A generalized upper triangular ma-
trix is concave (resp. convex) totally monotone if
the above concavity (resp. convexity) conditions
hold for any four non-infinity entries of M which
form a rectangular submatrix.

The on-line one dimensional dynamic pro-
gramming problem considered here can be viewed
as an on-line searching in a generalized upper tri-

504

angular totally monotone matrix. Define the n x m

upper triangular matrix M by M[i, ;‘j = F[i’] +
W(i’,i), for 1 5 i 2 n, 0 5 i’ 2 C;. (The rest of
the elements of M are defined to be oo.) Then,
solving the recurrence (2) is equivalent to finding
the minimum element in each row of the matrix
M. It is easy to see that the concavity assumption
on the weight function translates to the condition
that M is concave totally monotone. Similarly,
the convexity assumption translates to the condi-
tion that M is convex totally monotone. The on-
line assumption translates to the constraint that
the elements of columns C’i-r + 1,. . ., Ci of M
(that are not defined to be co) are available only
after the minimum element in row i - 1 has been
found.

Eppstein, Galil, and Giancarlo [5] give an
O(n log n) time algorithm for the on-line one di-
mensional dynamic programming. Their algo-
rithm is a generalization of the algorithm used
by Hirschberg and Larmore for the concave least
weight subsequence problem [7]. Wilber [14]
solves the concave least weight subsequence prob-
lem in O(n) time. However, his algorithm cannot
be used for the on-line one dimensional concave
dynamic programming since it does not satisfy the
on-line constraint. That is, in his algorithm some
entries of F are considered before the correspond-
ing entry of E is computed. Wilber’s algorithm
uses totally monotone matrix searching techniques
introduced in [l]. Eppstein [4] extended Wilber’s
algorithm for the on-line case. Our algorithm is
more general than Eppstein’s algorithm; it works
for a general on-line searching in a totally mono-
tone triangular matrix, while Eppstein’s algorithm
works only for the on-line one dimensional dy-
namic programming problem. Recently, indepen-
dent to our work, Galil and Park [6] give a lin-
ear time algorithm for the on-line one dimensional
concave problem. Also, Klawe [8] gives a linear
time algorithm for the same problem.

Searching in totally monotone matrices was
first considered by Aggarwal et al. in [I]. They
consider the off-line problem for full (i.e., non tri-
angular) matrices. Aggarwal et al. give an O(n)

time algorithm for that problem, now nicknamed
the SMAWK algorithm, and also show various ap-
plications of this algorithm to solving problems in
computational geometry and VLSI. It is not dif-
ficult to see that the same algorithm applies also
for off-line searching in an upper triangular con-
cave totally monotone matrix. Klawe and Kleit-
man [9] give an O(na(n)) time algorithm for off-
line searching in an upper triangular convex to-
tally monotone matrix. Their algorithm can be

used to solve the respective on-line problem. We
use this algorithm to achieve our algorithm for the
two dimensional convex case.

The off-line algorithms for both the one dimen-
sional and two dimensional dynamic programming
problems are recursive. These algorithms are not
suitable for the on-line problems since the recur-
sive processes access inputs before they become
available. These inputs become available only af-
ter the recursive processes are terminated. To
overcome this problem we implement the recur-
sion in a different way. When one process invokes
another recursive process it does not wait until
the recursive process terminates. Instead, both
processes are active and intermediate values are
communicated between the two. We believe that
this technique is general, and can be used in other
algorithms for on-line problems.

The rest of the extended summary is organized
as follows. In the next section we describe the al-
gorithm for the on-line two dimensional dynamic
programming. In Section 3 we overview the lin-
ear time algorithm for the on-line one dimensional
concave dynamic programming. The full descrip-
tion of this algorithm can be found in the full pa-
per [lo].

2. The two dimensional dynamic pro-
gramming algorithm

In this section we describe an algorithm for solv-
ing the recurrence (1). The algorithm works for
both the concave and the convex cases, the only
difference is in the algorithm for the one dimen-
sional problem that is used as a module. To make

505

the presentation clearer we assume in this section

that n + 1 is a power of two. Our algorithm can
be easily modified for the case where n + 1 is not
a power of two.

We start with some definitions.

Consider the (n + 1) x (n + 1) grid with set
of points (p = (i, j) 1 0 < i, j < n}. Define the
natural partial order on the points of the grid.
That is, the point p’ = (2,j’) -i p = (i, j) if i’ < i
and j’ < j. The point p’ is called a predecessor of

P*

Let p = (i, j) be a point. Define i to be the
row index of p, j to be the column index of p, and
i + j to be the diagonal index of p, denoted d(p).

For 0 5 Z < lo&n + l), define a square of level
Z to be any 2’ x 2’ square of points whose upper
left corner has both row and column indices that
are multiples of 2 I. Let Sf,j be the square of level
I whose upper left corner is at the point (i2’,j2’).
Let Si,, be the set of squares of level I whose upper
left corner is in row i2*. Similarly, let Sf,j be the
set of squares of level I whose upper left corner is in
column j2’. Notice that each square Sf,j consists
of four squares of level I - 1. These are: the upper
left sub square S!&, the upper right sub square

S~;,$+l, the lower left sub square S~~~1,2j, and the

lower right sub square S$:,,,j+I. Every point p
lies within exactly one square of level 2. Let S’(p)
be the square of level Z that contains the point p.

We extend the relation “4” to be defined over
the squares. For two squares S and S’ (of any
levels), S’ 4 S if every point in S’ precedes every
point in 5’. That is, if the lower right corner of 5”
is a predecessor of the upper left corner of S.

For 0 2 Z 5 log,(n + l), define

rithm. First, we describe the algorithm for the

off-line problem. Then, we show how to modify
the algorithm for the on-line problem.

2.1. The off-line algorithm

Suppose that all the entries of the matrix F are
available at all times. We describe an algorithm
for computing the recurrence (1). The algorithm
consists of logz(n + 1) phases. Starting from 1 =
logz(n+l)-1 down to 2 = 0, in phase 1 we compute
the matrix El given the matrix .&+I. Below, we
describe phase 1 of the algorithm.

Consider a point p, and let $f’ = S’+l(p).
We distinguish between four cases depending on
the position of the square S’(p) in the square
9+1(p).

Case I. The square S’(p) is the upper left sub
square of S’+’ (p); that is, S’(P) = S:;,,j.
In this case it is easy to see that El(p) =
a+1 (P).

Case 2. The square S’(p) is the upper right sub
square of S’+l (p); that is, S’(p) = Sii%2j+l.
In this case there are entries of F that have
to be considered when computing El(p) and
were not considered in computing &+1(p).
These entries correspond to the points in
the squares in S!,,j that precede the square

s;i,2j+1-

For the points in the squares in Sf,,j+I, de-
fine the following recurrence, called the col-
umn recurrence

COLfb] = min{F[p’] + W(d(p’), d(p)) I

p’ E Sf,zj and S’(p’) + S’(P)}. (3)

Q-4 = min@‘b’l + V%%W) 1 S’(P’) + S’(P)). Then, EZ[p] = min{El+r[p], CoLfib]}.

Notice that E&I] = Eb] and that &,,(,+r)[p] =
Case 3. The square S’(p) is the lower left sub

00, for all points p. Also, for any 1 and for all
square of S’+l (p); that is, S’(p) = Si;+,,,j.

points p in squares that are in either the set Sh,,
In this case there are entries of F that have

or Z&, ElfpI = 00.
to be considered when computing El(p) and
were not considered in computing El+l(p).

We now turn to the description of our algo- These entries correspond to the points in

506

the squares in Sli,* that precede the square

$!i+l,2j*

For the points in the squares in Sii+l,*, de-
fine the following recurrence, called the row
recuwence

ROW&j = min{F[p’] + W(d(p’), d(p)) I

p’ E Si,,, and S’(p’) 4 S’(p)}. (4)

Then, Ellp] = min{El+lb], ROW&]}.

Case 4. The square S’(p) is the lower right
sub square of S’+l(p); that is, S’(p) =.

sL!i+l,2j+ls Similar to the previous
cases we get that in this case EI~] =

min{&+l[p], Ro+f$~], COL$]}.

We conclude that to compute El given El+1 we
have to solve the (n+ 1)/2’+’ row recurrences and
(n + 1)/2[+1 column recurrences. It fullows from
Observation 1 below that the entries of El have
only O((n + 1)2/2’) distinct values. Thus, overall
we need to compute only O(n2) values. Below, we
show how to solve each row and column recurrence
by executing four instances of the one dimensional
algorithm,

The row and column recurrences. We show
’ how to compute CO Lj . The algorithm for solving

the row recurrences is analogous.

We make the following two observations that

are implied by the fact that the weight function
W(., .) depends only on the diagonal index of its
two argument points.

OBSERVATION 1: The value of COL: b] (and of
Elb]) is the same for all points p with the same
diagonal index that are in the same square of level
1.

OBSERVATION 2: To compute COL$b] (and
&[p]) it is sufficient to consider only a single value
for all points p’ with the same diagonal index that
are in the same square of level E that precedes
S’(p). This value is the minimum F[p’] among all
these points p’.

Consider the diagonals that intersect the set
of squares in Sf,,j. Note that the indices of these
diagonals are in the range: j2’+l,. . . , j2’+l+ 2’ +
n - 1. Each such diagonal intersects at most two
squares in the set, one square with an even row in-
dex, i.e., a square S:i,2j, and one with an odd row
index. For j2 l+l < k’ < j2’+l+ n - 1, let Fe,,n[k’]
be the minimal v&e 07 Fb] among all points p on
the diagonal k’ that intersect the (unique) square
with an even row index from the set S&. Sim-
ilarly, for j2 Q-l + 2’ < k’ 5 j2’+l + 2’ + n - 1,

let Fodd[k’] be the minimal value of F[pl among
all points p on the diagonal k’ that intersect the
(unique) square with an odd row index from the
set Sf,,j.

Let k be the index of a diagonal that inter-
sects squares in S!,,j+l. Let S be the (unique)
square in this set with an even row index that in-
tersects the diagonal k. Consider all the points p
in this intersection. By Observation 1 the value of
COLiIp] is the same for all these points. We com-
pute COL: b] for all these points in two stages.
First, we compute the influence on COL: [p] of
points from squares in Sf,2j with even row in-
dices, then, we compute the influence of points
from squares in Sf,2j with odd row indices.

Let D,,,,[k] denote the influence of points
from squares in S~,,j with even row indices. To

compute D,,,,[k] it is sufficient to consider only
F,,,,[k’], for all diagonals k’ that intersect squares
with even row indices in S~,,j that precede the
square S. A simple calculation shows that these

diagonals are in the range j2[t1,. . . , $$ 21t1 - 1 J
2. Thus, we get

De,,, [kl = min{ Fe,,, [k’] + W(k’, k) I

j$+l < k’ < k-2’ 21-i-l _ 2},
-

1 J
-$+I

Similarly, let DJk] d enote the influence of points
from squares in s5,2j with odd row indices. Again,
it is sufficient to consider only &d[k’], for all di-
agonals k’ that intersect squares with odd row in-
dices in Sf,,j that precede the square S. We get

Dodd[kl = min{F,dd[k’] + W(k’, k) I

507

j21+1 + 2’ 5 k’ < 2’ + 1% J 21+1 - 2).

Clearly, coL:b] = min(Deuen[k], Dodd[k]},

for all points p on the diagonal k that intersect a
square with an even row index from the set Sf zj- >

Both recursions can be translated into one di-
mensional matrix searching problems as shown in
the full paper.

In a similar way we can define two one dimen-
sional problems to compute CoL$b] for all points
p on the diagonal k that intersect the (unique)
square with an odd row index from the set Sf,zj.

We conclude

Theorem 2.1: An instance of the off-line two di-
mensional dynamic programming of size 7t can be
solved by solving at most 8n instances of the off-
line one dimensional dynamic programming of size
n.

Corollary 2.2: The off-line two dimensional
concave dynamic programming can be solved in
O(n2) time. The off-line two dimensional convex
dynamic programming can be solved in O(n2a(n))
time.

2.2. The on-line algorithm

In the on-line algorithm we compute the same ma-
trices El; however, we do not do it serially. In-
stead, we advance along the rows and at each time
we compute the top part of all the matrices El. In
this process we use the off-line one dimensional
algorithm for computing the row recurrences and
the on-line one dimensional algorithm for comput-
ing the column recurrences.

The algorithm computes the entries of E = EO
row by row. Suppose that the T rows indexed
0 , . . . , T- 1 of E have been computed already. This
implies that rows 0,. . . , T - 1 of F are available.
The invariant property maintained by the algo-
rithm at this point is as follows.

INVARIANT PROPERTY FOR T.

1.

2.

For each 0 2 1 5 log,(n + l), the [~/2’1 2l
first rows of El have been computed.

For each 0 < I < log2(n + 1) and for each
square S E Si,*, 0 <_ i < \7-/2’1, the min-
imum value of Fb] among the points p on
diagonal k in S has been computed, for each
diagonal k in S.

Notice that the Invariant Property for T = n +
1 implies that the whole matrix E = EO has been
computed.

We prove the Invariant Property by induction.
The Invariant Property is clearly satisfied for T =
1. Suppose that the Invariant Property holds for
T. We describe the computation required in order
to advance to T + 1.

MAINTAXNING PART (1) OF THE INVARIANT
PROPERTY. Let k be the maximum inte er such
that 2” divides r. Note that for I 5 k, $ ~/2[1 =

[CT + w’l - 1, and for 1 > k, 1 1 r/2’ =

[(r + 1)/2’]. Thus, to maintain part (1) of the
Invariant Property for T + 1 we have to compute
El[p=(i,j)],forrIi~r+2’-landO<j~n,
for all 0 5 1 5 k. Since 2’ divides T, these
points are exactly the points in the squares Sf,,, *,

and hence, we have to compute Elk], for all p ‘in

sf,zl** 1

The computation consists of two steps.

Step 1. Compute E~,lp], for all p in SF,2k,+.

For 0 5 j 5 (n + 1)/2k+1, consider
the squares S:,2r 2j and Sf,2k 2j+1. These
squares are the lower left sub square and
the lower right sub square of S~~~_ikJ,2k+1 j.

(Notice that 2k+1 divides T - 2k.) By Case
3 above, E&l, for all p in S~,2k,2j, 0 5

j I (n + 1)/2”+‘, is given by computing
the row recurrence R0lV~-,,),,,+, [PI. The
Invariant Property for T implies that this
recurrence can be computed off-line. By
Case 4 above, Ek[p], for all p in Srk/2L,2j+l,

o _< j 5 (n + l)/Z”+l, is given by com-
puting the same row recurrence and the en-

508

tries COL$b]. Th ese entries can be com-
puted by activating the on-line algorithms
for computing each of these column recur-
rences. The Invariant Property for T implies
that the entries Fv], for p’ E S~,,j, 0 5
i’ < r/2” that are needed for the computa-
tion are available.

Step 2. For I = k - 1 downto 0, compute Elb], for
all p in Sf/z’ *.

For 0 5 > _< (n + 1)/2’+l, consider
the squares S:,zl 2j and Sr”/,, zj+I. These
squares are the upper left sub square and

the upper right sub square of S$~~+I j. (No-

tice that 2’+’ divides r.) By Case i above,

Erb] = Ei+ib], for all P in SL,2i zj, 0 5 j 5

(n + 1)/2’+1. By Case 2 above, E&l, for

all P in St,,, 2j+l, 0 5 j 2 (n + Q/2’+‘,

is given by computing the entries COLf b].
These entries can be computed by activating
the on-line algorithms for computing each of
these column recurrences. Again, the Invari-
ant Property for T implies that the entries
F[p’], for p’ E S:,,,j, 0 2 i’ < r/2’ that
are needed for the on-line computation are
available.

All the computations can be done by the one
dimensional dynamic programming algorithm us-
ing the minimum elements in each diagonal com-
puted to maintain part (2) of the Invariant Prop-
erty for 7‘.

MAINTAINING PART (2) OF THE INVARIANT
PROPERTY. Let k be the maximum integer such
that 2” divides r + 1. Note that for I 5 k,
IT/~‘] = [(r + 1)/2’] - 1, and for I > k, [r/2’] =

[(r + 1)/2’1. Thus, to maintain part (2) of the
Invariant Property for T + 1 we have to com-
pute the minimal value of Cb] in each diagonal
of each of the squares in S;‘,,, for 0 2 2 < k and
i = (T + 1)/2’ - 1. The computation can be done
in constant time per diagonal, starting from 2 = 0,
and using the precomputed minimum elements.

3. The one dimensional dynamic pro-
gramming algorithm

In this section we describe a linear time algorithm
for solving the on-line recurrence (2) under the as-
sumption that W(., .) is concave. Instead of solv-
ing the recurrence we solve the following equiva-
lent on-line matrix searching problem.

THE MATRIX SEARCHING PROBLEM. Let kf be
an n x m generalized upper triangular concave
totally monotone matrix. The rows of M are
indexed in the range 1,. . . , n, and the columns
are indexed in the range 0,. . . , m - 1. For each
1 < i _< n there is a column index C-1 5 C; < m
such that M[i,j] = oo for all j > C;. Find the
minimum element in each row of the matrix M,
under the constraint that, for i > 1, the value of
C; and the elements of columns Q-1 + 1,. . . , C;
of M (that are not defined to be oo) are available
only after the minimum element in row i - 1 has

been found.

We show that the Matrix Searching Problem
can be solved in linear time. We give two different

reductions of an instance of the Matrix Searching
Problem to a smaller instance of the same prob-
lem. Using just one of these reductions does not
give a linear bound for the problem, but if they are
interleaved, linearity is achieved. The technique is
similar to that used for the off-line SMAWK algo-
rithm [l]. The two reductions are as follows:

1. An instance of size n x m of the Matrix
Searching Problem can be reduced to an in-
stance of size Ln/2J x m of the same problem
in O(n + m) time.

2. An instance of size n x m of the Matrix
Searching Problem can be reduced to an in-
stance of size n x n of the same problem in
O(n + m) time.

Interleaving the reductions and solving the result-
ing recurrence, we get that the Matrix Searching
Problem can be solved in O(n + m) time.

509

Reduction 1

Let M be an 7t x m input matrix for the Ma-
trix Searching Problem. Define M’ to be the sub-
matrix consisting of all entries M[2i,j] for which
0 5 j 5 Cs;-1; that is, M’ consists of all entries in
each even row of M that lie under a non-infinity
element in the previous odd row. It is easy to see
that M’ is an input matrix for an instance of the
Matrix Searching Problem of size [n/2] x m’, for
some m’ 2 m. The sequence Ci, . . . , C[n,2,, that
corresponds to M’, is given by Ci = C&r, for
i = l,..., Ln/2]. (See Figure 1.)

Figure 1: The result from Reduction 1.

Suppose that we are given an algorithm A’
that computes on-line the row minima of M’. We
describe an algorithm that computes on-line the
row minima of M by interleaving its computations
with the computations of the algorithm A’.

Let Jo be the column index of the minimum
element in row i of M. Similarly, Let Jo, be the
column index of the minimum element in row i of
M’.

When the algorithm starts columns 0,. . .Cr
are available, and hence row 1 of M and row
1 of M’ are available. Algorithm A’ is acti-
vated to compute jut. Recall that the first
row of M’ consists of all entries in the second
row of M that lie under a non-infinity element
in the first row. From this and from the total
monotonicity of M it follows that 0 2 Jo 5
Jo,. Thus, j~(1) is that j E (0,. . .j&l)}

for which M[l,j] is minimum. After comput-
ing j~(1) columns Cr + 1, . . . , C’s, and hence row
2 of M become available. We set jn,1(2) to be
that j E {j&l), Cr + 1,. . .Cs} for which M[2,j]
is minimum. After computing j, (2) columns

(72 + I,..., Cs, and hence row 3 of M and row 2
of M’ become available. We continue in a similar
manner; that is, for i = 2,. . . , [n/2J, algorithm A’
is activated to compute j~l(i>. Then, j~(2i - 1)
is set to be that j E (j~(2i - 2), . . .j&i)) for
which Mf2i - l,j] is minimum, and Jo is set
to be that j E (Jo,, Czi-r + 1,. . . Czi) for which

ML% A is minimum.

In the full paper, we give a formal description

of the algorithm.

Reduction 2

Let M be an n x m input matrix for the Matrix
Searching Problem. We show how to reduce the
Matrix Searching Problem for M to the Matrix
Searching Problem for an n x m’ sub-matrix M’
of M, for some m’ 5 n. Notice that this reduction
is meaningful only if m > n, since otherwise no
advancement is made.

The sub-matrix M’ is defined by headers. Each
header is an entry of M. Each column of M’ con-
sists of one header together with all entries be-
low it in the same column; that is, it contains
the header together with all entries in the same
column with higher row index. Headers are stag-
gered down and to the right, i.e., no two headers
are in the same row, and a header with a higher
row index has also a higher column index. Figure
2 shows an example of a sub-matrix M’ within a
matrix M.

The sub-matrix M’ is constructed in such a
way that the minimum element in each row of M
lies in the same row in M’. Thus, the row min-
ima of M can be computed from the row minima
of M’, simply by translating the column index of
these minima in M’ to the corresponding column
index in M. The hard part of the reduction is the
construction of the sub-matrix M’; that is, the
computation of the headers. This construction is
interleaved with the execution of an algorithm A’

510

Figure 2: The result from Reduction 2.

that computes on-line the row minima of M’.

The computation of the headers is done by
processing the columns of M one by one. In the
computation we use an array S to store the ten-
tative headers. The array S can be viewed as a
stack, similar to the algorithms [5, 71. The entry
S(i) is either undefined or consists of the row and
column index of the i-th tentative header. We
refer to these indices as S,,,(i) and S,,l(i). As
the computation proceeds a header may either be
popped out from the stack S, or become a per-
manent header. In case it becomes a permanent
header it defines a column in M’. This column
can be passed to algorithm A’.

Informal description of the algorithm: The stack
is initially empty. Columns are processed one at
a time, from 0 to m - 1. When column j is pro-
cessed, this column “challenges” tentative head-
ers on the top of the stack S. Column j “wins”
the challenge if its entry in the same row as the
top tentative header is smaller than the header.
In other words, let t denote the index of the top
of the stack S. Column j “wins” the challenge

if M[S,,,(t),j] < M[S,-&t), &l(t)]. In this case
the stack is popped (and t is decremented by one).
We show in the full paper that when the stack
is popped none of the elements in column S,,r(t)
are candidates for the minimum elements in their
rows.

Challenges continue until the stack is empty or
until column j “loses” a challenge. If the stack is

empty then the header (1,j) is pushed into the
stack. Otherwise, i.e., in case M[S,,,(t),j] >

M[Sw&), sc&>l, implying that column j “lost”
the challenge with the header on the top of the
stack, the entry (9,j) is pushed onto the stack,
where i’ is the row index of the highest entry just
below (Srow(t),j) that consists of a non-infinity el-
ement. (Notice that in case M[S,,,(t),j] = 00, i’
is not necessarily S,,,(t) + 1.) If S,,,(t) = n, i.e.,
S,,,(t) is the last row in M then i’ is undefined
(since there are no rows below row n), in this case
no entry is pushed onto the stack.

From the above description it can be seen that
a tentative header (i, j) may be replaced only by
tentative headers whose column index is less or
equal to C;. Thisis, since for Ic > Ci, M[i,k] = 00,
and thus the tentative header will always “win”
the challenge with entries from these columns.
This implies that after C; columns of M have been
processed the tentative header in row i, if such ex-
ists, becomes permanent. At this time the headers
that define all the entries in row i of M’ are per-
manent. Thus, we can set C;l to be the number of
these permanent headers, and activate algorithm
A’ to report the minimum of row i of M’. It is
important to note that tentative headers become
permanent headers at the last possible moment
before they are needed by algorithm A’. Thus,
the columns of M’ become visible to algorithm A’
just when it needs them.

A formal description of the algorithm and its
correctness proof are given in the full paper.

The complexity of the whole algorithm

We solve the one-dimensional on-line dynamic
programming problem by alternation of the two
reductions, just as in the SMAWK algorithm [l].

Let C(n, m) denote the number of comparisons
required for a problem of size n x m. Similarly, let
F(n, m) denote the number of fetches required for
a problem of size n x m.

Reduction 1 gives the recurrences:

Ch m) I 2m + C(1421 , m)

511

While Reduction 2 gives the recurrences:

C(n, m> 5 2m + C(n, n)
F(n, m) 5 3m + F(n,n).

Using these reductions we get:
(1) For n < m, C(n, m) 5 2m+8n, and F(n, m) 5
3m + lln.
(2) For m 5 n < 2m, C(n, m) 5 4m + 4n and

F(n, m) 2 5m + 6n.
(3) For 2m 5 n, C(n,m) 5 12m + 2n and
F(n, m) 5 17m + 3n.

The Regular ProbIem

In order to more fairly compare our algorithm
with the (off-line) SMAWK algorithm and with
other existing on-line algorithms by Galil and
Park [6], and Klawe [8], we give in the full paper
an accurate count of the comparisons and fetches
in what we call the Regvtar Problem. The Regular
Problem is the special case of the Matrix Search-
ing Problem where n = mandCi =i-lforalli.
We show that the number of comparisons needed
by our algorithm in that case is only 6n, and the
number of fetches is 8.5n. These constants are su-
perior to the constants achieved by other linear

time on-line algorithms for the problem. For com-
parison, the (off-line) SMAWK algorithm, when
applied to an off-line Regular Problem, performs
5n comparisons and 8n fetches.

References

PI

PI

PI

A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, and
R. Wilber. Geometric applications of a matrix-
searching algorithm. Algorithmica, 2:209-233,
1987.

A. Aggarwal and J. Park. Notes on searching
in multidimensional monotone arrays. In Proc.
29th IEEE Symp. on Foundations of Computer
Science, pages 497-512, October 1988.

K.Q. Brown. Dynamic programming in computer
science. Technical Report CMU-CS-79-106, Dept.

[41

PI

PI

PI

PI

191

PO1

Pll

P21

[I31

Ml

PI

of Computer Science, Carnegie-Mellon University,
February 1979.

D. Eppstein. Sequence comparison with mixed
convex and concave costs, October 1988. To ap-
pear in Journal of Algorithms.

D. Eppstein, Z, Galil, and R. Giancarlo. Speed-
ing up dynamic programming. In Proc. 29th
IEEE Symp. on Foundations of Computer Sci-
ence, pages 488-496, October 1988.

Z. Galil and K. Park. A linear time algorithm
for concave one dimensional dynamic program-
ming. Manuscript, Dept. of Computer Science,
Columbia University, NY, 1989.

D.S. Hirschberg and L. L. Larmore. The least
weight subsequence problem. SIAM Journal on
Computing, 16:628-638, 1987.

M.M. Klawe. A simple linear time algorithm for
concave one-dimensional dynamic programming.
Technical Report 89-16, The University of British
Columbia, Vancouver, BC, 1989.

M.M, Klawe and D.J. Kleitman. An almost linear
time algorithm for generalized matrix searching.
Technical Report RJ 6275, IBM - Research Divi-
sion, Almaden Research Center, 1988.

L.L. Larmore and B. Schieber. On-line dynamic
programming with applications to the prediction
of RNA secondary structure, 1989. Submitted for
journal publication.

D. Sankoff and J.B. Kruskal, editors. Time Wraps,
String Edits, and Macromolecules: The Theory
and Practice of Sequence Comparison. Addison-
Wesley, Reading, Ma, 1983.

D. Sankoff, J.B. Kruskal, S. Mainville, and R.J.
Cedergren. Fast algorithms to determine RNA
secondary structures containing multiple loops. In
D. Sankoff and J .B. Kruskal, editors, Time Wraps,
String Edits, and Macromolecules: The Theory
and Practice of Sequence Comparison, pages 95-
120. Addison-Wesley, Reading, Ma, 1983.

MS. Waterman and T.F. Smith. Rapid dy-
namic programming algorithms for RNA sec-
ondary structure. Advances in Applied Math.,
7:455-464, 1986.

R. Wilber. The concave least weight subse-
quence problem revisited. Journal of Algorithms,
9(3):4X%-425, September 1988.

F.F. Yao. Efficient dynamic programming using
quadrangle inequalities. In Proc. of the 12th ACM
Symp. on Theory of Computing, pages 429-435,
May 1980.

512

