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Abstract 1. Introduction 

We define an on-line problem to be a problem where 
each input is available only after certain outputs have 

been calculated. The usual kind of problem, where 
all inputs are available at all times, is referred to as 

an ofl-line problem. We present an efficient algorithm 
for the on-line two dimensional dynamic programming 
problem that is used for the prediction of RNA sec- 
ondary structure. Our algorithm uses as a module 
an algorithm for solving the on-line one dimensional 
dynamic programming problem. The time complexity 
of our algorithm is n times the complexity of the on- 
line one dimensional dynamic programming problem. 
For the concave case, we present a linear time algo- 

rithm for the on-line one dimensional problem. This 
yields an optimal O(n2) time algorithm for the on-line 
two dimensional concave problem. The constants in 
the time complexity of this algorithm are fairly small, 

which make it practical. For the convex case, we use 
an O(ncu(n)) time algorithm for the on-line one dimen- 
sional problem, where a(.) is the functional inverse of 
Ackermann’s function. This yields an O(n’cr(n)) time 
algorithm for the on-line two dimensional convex prob- 
lem. Both algorithms improve on previously known 
algorithms. 
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# IBM Research Division, T.J. Watson Research Cen- 
ter, P.O. Box 218, Yorktown Heights, NY 10598. 

Dynamic programming is a widely used problem- 
solving technique. It has many applications in 
various fields, among them: Computer Science, 
Operation Research and Molecular Biology. (See, 
e.g., [3, 111.) In this paper we consider a variant 
of dynamic programming that is used to predict 
RNA secondary structure from the primary (lin- 
ear) RNA sequence ([12,13]). An efficient method 
for deducing the secondary structure directly from 
the primary structure is very useful, since empir- 
ical results are costly to obtain and can often be 
interpreted in several ways. 

Following the formulation given in [5], we con- 
sider the problem of computing the two dimen- 
sional recurrence 

E[i,j] = min{F[?,jl + W(i’ + j’, i + j) 1 

0 5 2 < i, 0 < j’ < j}, for 1 5 i, j 5 72, 

(1) 

under the following two assumptions: 

1. The entries of the matrix F are easily com- 
puted from the corresponding entries of the 
the matrix E. That is, each input F[i, j] 
is available only after the output E[i, j] has 
been calculated. We define such a problem 
where each input is available only after cer- 

tain outputs have been calculated to be an 

on-line problem. A problem where all inputs 
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are available at all times is defined to be an 
ofiline problem. 

2. The weight function W(., .) is either concave 
or convex. We define a bivariate function 
W(., .) to be concave if the quadrangle in- 
equality: W(i,j) + W(i’,j’) 5 W(i,j’) + 
W(i’, j) holds for all i < i’ < j < j’. Sim- 
ilarly, a bivariate function W( ., .) is defined 
to be convex if the inverse quadrangle in- 
equality holds for all i < i’ < j < j’. 

We present an efficient algorithm for the on- 
line two dimensional dynamic programming prob- 
lem defined above. Our algorithm uses as a mod- 
ule an algorithm for solving the following on- 
line one dimensional dynamic programming recur- 
rence: 

E[i] = min{l”[i’] + W(i’, i) ] 0 5 i’ 5 Ci), (2) 

for 1 2 i 5 n, where 0 5 Cl 5 . . . 5 C, < n. 

The assumptions are similar to the ones given for 
the two dimensional case, namely: 

1. The values of Flj], for j = C;-1 + 1,. . . , C; 
are easily computed from the value of 
E[i - 11. (For convenience, we define Co = 

0-l 

2. The weight function W(., .) is either concave 
or convex. 

The time complexity of our algorithm is n 
times the complexity of the on-line one dimen- 
sional dynamic programming problem. 

We give an optimal linear time algorithm 
for the on-line one dimensional concave problem. 
This yields an O(n2) time algorithm for the on-line 
two dimensional concave problem. Notice that the 
size of the input in this problem is O(n2), and 
thus, our algorithm is optimal. The constants in 
the time complexity of the algorithms for both the 
one and the two dimensional cases are fairly small, 
which make them practical. 

For the convex case, we use an O(na(n)) time 
algorithm for the on-line one dimensional problem 

given in [9], where a(.) is the functional inverse of 
Ackermann’s function. This yields an O(n20(n)) 
time algorithm for the on-line two dimensional 
convex problem. However, any improvement to 
the on-line one dimensional algorithm will result 
in a corresponding improvement to our algorithm. 

The on-line two dimensional dynamic pro- 
gramming problem that is considered here was 
first considered by Waterman and Smith [13]. 
They show its relevance to predicting the RNA 
secondary structure and give an O(n3) time algo- 
rithm for the problem. Eppstein, Galil, and Gi- 
ancarlo [S] improve it to O(n2 log2 n) time. They 
also give the formulation used in this paper (which 
is implicit in 1131). The previously best known al- 
gorithm for the problem is due to Aggarwal and 
Park [2]. Their algorithm runs in O(n2 log n) time. 
Notice that our algorithm is superior to the previ- 
ous algorithms in both the concave and the convex 
cases. We remark that Yao 1151 uses the quad- 
rangle inequality to accelerate the computation of 
another variant of two dimensional dynamic pro- 
gramming. 

An n x m triangular matrix M is defined to be 
concave totally monotone if for all 1 5 i < if 2 n 
and 0 < j, < j’ < m, the inequality M[i, j] > 
M[i, j’l implies that M[i’, j] > M[i’, j’l. Similarly, 
an n x m triangular matrix M is defined to be 
convex totally monotone if for all 1 < i < i’ _< n 
and 0 2 j < j’ < m, the inequality M[i, j] < 
M[i, j’l implies that M[i’, j] < M[i’,jl. (To make 
the presentation clearer we assume that all the 
finite elements in M are distinct.) 

An n x m matrix M is defined to be general- 
ized upper triangular if there are 0 5 Cr 5 C2 5 
. * . 5 C, = m - 1, such that M[i, j] = 00 for all 
C; < j < m. A generalized upper triangular ma- 
trix is concave (resp. convex) totally monotone if 
the above concavity (resp. convexity) conditions 
hold for any four non-infinity entries of M which 
form a rectangular submatrix. 

The on-line one dimensional dynamic pro- 
gramming problem considered here can be viewed 
as an on-line searching in a generalized upper tri- 

504 



angular totally monotone matrix. Define the n x m 

upper triangular matrix M by M[i, ;‘j = F[i’] + 
W(i’,i), for 1 5 i 2 n, 0 5 i’ 2 C;. (The rest of 
the elements of M are defined to be oo.) Then, 
solving the recurrence (2) is equivalent to finding 
the minimum element in each row of the matrix 
M. It is easy to see that the concavity assumption 
on the weight function translates to the condition 
that M is concave totally monotone. Similarly, 
the convexity assumption translates to the condi- 
tion that M is convex totally monotone. The on- 
line assumption translates to the constraint that 
the elements of columns C’i-r + 1,. . ., Ci of M 
(that are not defined to be co) are available only 
after the minimum element in row i - 1 has been 
found. 

Eppstein, Galil, and Giancarlo [5] give an 
O(n log n) time algorithm for the on-line one di- 
mensional dynamic programming. Their algo- 
rithm is a generalization of the algorithm used 
by Hirschberg and Larmore for the concave least 
weight subsequence problem [7]. Wilber [14] 
solves the concave least weight subsequence prob- 
lem in O(n) time. However, his algorithm cannot 
be used for the on-line one dimensional concave 
dynamic programming since it does not satisfy the 
on-line constraint. That is, in his algorithm some 
entries of F are considered before the correspond- 
ing entry of E is computed. Wilber’s algorithm 
uses totally monotone matrix searching techniques 
introduced in [l]. Eppstein [4] extended Wilber’s 
algorithm for the on-line case. Our algorithm is 
more general than Eppstein’s algorithm; it works 
for a general on-line searching in a totally mono- 
tone triangular matrix, while Eppstein’s algorithm 
works only for the on-line one dimensional dy- 
namic programming problem. Recently, indepen- 
dent to our work, Galil and Park [6] give a lin- 
ear time algorithm for the on-line one dimensional 
concave problem. Also, Klawe [8] gives a linear 
time algorithm for the same problem. 

Searching in totally monotone matrices was 
first considered by Aggarwal et al. in [I]. They 
consider the off-line problem for full (i.e., non tri- 
angular) matrices. Aggarwal et al. give an O(n) 

time algorithm for that problem, now nicknamed 
the SMAWK algorithm, and also show various ap- 
plications of this algorithm to solving problems in 
computational geometry and VLSI. It is not dif- 
ficult to see that the same algorithm applies also 
for off-line searching in an upper triangular con- 
cave totally monotone matrix. Klawe and Kleit- 
man [9] give an O(na(n)) time algorithm for off- 
line searching in an upper triangular convex to- 
tally monotone matrix. Their algorithm can be 

used to solve the respective on-line problem. We 
use this algorithm to achieve our algorithm for the 
two dimensional convex case. 

The off-line algorithms for both the one dimen- 
sional and two dimensional dynamic programming 
problems are recursive. These algorithms are not 
suitable for the on-line problems since the recur- 
sive processes access inputs before they become 
available. These inputs become available only af- 
ter the recursive processes are terminated. To 
overcome this problem we implement the recur- 
sion in a different way. When one process invokes 
another recursive process it does not wait until 
the recursive process terminates. Instead, both 
processes are active and intermediate values are 
communicated between the two. We believe that 
this technique is general, and can be used in other 
algorithms for on-line problems. 

The rest of the extended summary is organized 
as follows. In the next section we describe the al- 
gorithm for the on-line two dimensional dynamic 
programming. In Section 3 we overview the lin- 
ear time algorithm for the on-line one dimensional 
concave dynamic programming. The full descrip- 
tion of this algorithm can be found in the full pa- 
per [lo]. 

2. The two dimensional dynamic pro- 
gramming algorithm 

In this section we describe an algorithm for solv- 
ing the recurrence (1). The algorithm works for 
both the concave and the convex cases, the only 
difference is in the algorithm for the one dimen- 
sional problem that is used as a module. To make 
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the presentation clearer we assume in this section 

that n + 1 is a power of two. Our algorithm can 
be easily modified for the case where n + 1 is not 
a power of two. 

We start with some definitions. 

Consider the (n + 1) x (n + 1) grid with set 
of points (p = (i, j) 1 0 < i, j < n}. Define the 
natural partial order on the points of the grid. 
That is, the point p’ = (2,j’) -i p = (i, j) if i’ < i 
and j’ < j. The point p’ is called a predecessor of 

P* 

Let p = (i, j) be a point. Define i to be the 
row index of p, j to be the column index of p, and 
i + j to be the diagonal index of p, denoted d(p). 

For 0 5 Z < lo&n + l), define a square of level 
Z to be any 2’ x 2’ square of points whose upper 
left corner has both row and column indices that 
are multiples of 2 I. Let Sf,j be the square of level 
I whose upper left corner is at the point (i2’,j2’). 
Let Si,, be the set of squares of level I whose upper 
left corner is in row i2*. Similarly, let Sf,j be the 
set of squares of level I whose upper left corner is in 
column j2’. Notice that each square Sf,j consists 
of four squares of level I - 1. These are: the upper 
left sub square S!&, the upper right sub square 

S~;,$+l, the lower left sub square S~~~1,2j, and the 

lower right sub square S$:,,,j+I. Every point p 
lies within exactly one square of level 2. Let S’(p) 
be the square of level Z that contains the point p. 

We extend the relation “4” to be defined over 
the squares. For two squares S and S’ (of any 
levels), S’ 4 S if every point in S’ precedes every 
point in 5’. That is, if the lower right corner of 5” 
is a predecessor of the upper left corner of S. 

For 0 2 Z 5 log,(n + l), define 

rithm. First, we describe the algorithm for the 

off-line problem. Then, we show how to modify 
the algorithm for the on-line problem. 

2.1. The off-line algorithm 

Suppose that all the entries of the matrix F are 
available at all times. We describe an algorithm 
for computing the recurrence (1). The algorithm 
consists of logz(n + 1) phases. Starting from 1 = 
logz(n+l)-1 down to 2 = 0, in phase 1 we compute 
the matrix El given the matrix .&+I. Below, we 
describe phase 1 of the algorithm. 

Consider a point p, and let $f’ = S’+l(p). 
We distinguish between four cases depending on 
the position of the square S’(p) in the square 
9+1(p). 

Case I. The square S’(p) is the upper left sub 
square of S’+’ (p); that is, S’(P) = S:;,,j. 
In this case it is easy to see that El(p) = 
a+1 (P). 

Case 2. The square S’(p) is the upper right sub 
square of S’+l (p); that is, S’(p) = Sii%2j+l. 
In this case there are entries of F that have 
to be considered when computing El(p) and 
were not considered in computing &+1(p). 
These entries correspond to the points in 
the squares in S!,,j that precede the square 

s;i,2j+1- 

For the points in the squares in Sf,,j+I, de- 
fine the following recurrence, called the col- 
umn recurrence 

COLfb] = min{F[p’] + W(d(p’), d(p)) I 

p’ E Sf,zj and S’(p’) + S’(P)}. (3) 

Q-4 = min@‘b’l + V%%W) 1 S’(P’) + S’(P)). Then, EZ[p] = min{El+r[p], CoLfib]}. 

Notice that E&I] = Eb] and that &,,(,+r)[p] = 
Case 3. The square S’(p) is the lower left sub 

00, for all points p. Also, for any 1 and for all 
square of S’+l (p); that is, S’(p) = Si;+,,,j. 

points p in squares that are in either the set Sh,, 
In this case there are entries of F that have 

or Z&, ElfpI = 00. 
to be considered when computing El(p) and 
were not considered in computing El+l(p). 

We now turn to the description of our algo- These entries correspond to the points in 
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the squares in Sli,* that precede the square 

$!i+l,2j* 

For the points in the squares in Sii+l,*, de- 
fine the following recurrence, called the row 
recuwence 

ROW&j = min{F[p’] + W(d(p’), d(p)) I 

p’ E Si,,, and S’(p’) 4 S’(p)}. (4) 

Then, Ellp] = min{El+lb], ROW&]}. 

Case 4. The square S’(p) is the lower right 
sub square of S’+l(p); that is, S’(p) =. 

sL!i+l,2j+ls Similar to the previous 
cases we get that in this case EI~] = 

min{&+l[p], Ro+f$~], COL$]}. 

We conclude that to compute El given El+1 we 
have to solve the (n+ 1)/2’+’ row recurrences and 
(n + 1)/2[+1 column recurrences. It fullows from 
Observation 1 below that the entries of El have 
only O((n + 1)2/2’) distinct values. Thus, overall 
we need to compute only O(n2) values. Below, we 
show how to solve each row and column recurrence 
by executing four instances of the one dimensional 
algorithm, 

The row and column recurrences. We show 
’ how to compute CO Lj . The algorithm for solving 

the row recurrences is analogous. 

We make the following two observations that 

are implied by the fact that the weight function 
W(., .) depends only on the diagonal index of its 
two argument points. 

OBSERVATION 1: The value of COL: b] (and of 
Elb]) is the same for all points p with the same 
diagonal index that are in the same square of level 
1. 

OBSERVATION 2: To compute COL$b] (and 
&[p]) it is sufficient to consider only a single value 
for all points p’ with the same diagonal index that 
are in the same square of level E that precedes 
S’(p). This value is the minimum F[p’] among all 
these points p’. 

Consider the diagonals that intersect the set 
of squares in Sf,,j. Note that the indices of these 
diagonals are in the range: j2’+l,. . . , j2’+l+ 2’ + 
n - 1. Each such diagonal intersects at most two 
squares in the set, one square with an even row in- 
dex, i.e., a square S:i,2j, and one with an odd row 
index. For j2 l+l < k’ < j2’+l+ n - 1, let Fe,,n[k’] 
be the minimal v&e 07 Fb] among all points p on 
the diagonal k’ that intersect the (unique) square 
with an even row index from the set S&. Sim- 
ilarly, for j2 Q-l + 2’ < k’ 5 j2’+l + 2’ + n - 1, 

let Fodd[k’] be the minimal value of F[pl among 
all points p on the diagonal k’ that intersect the 
(unique) square with an odd row index from the 
set Sf,,j. 

Let k be the index of a diagonal that inter- 
sects squares in S!,,j+l. Let S be the (unique) 
square in this set with an even row index that in- 
tersects the diagonal k. Consider all the points p 
in this intersection. By Observation 1 the value of 
COLiIp] is the same for all these points. We com- 
pute COL: b] for all these points in two stages. 
First, we compute the influence on COL: [p] of 
points from squares in Sf,2j with even row in- 
dices, then, we compute the influence of points 
from squares in Sf,2j with odd row indices. 

Let D,,,,[k] denote the influence of points 
from squares in S~,,j with even row indices. To 

compute D,,,,[k] it is sufficient to consider only 
F,,,,[k’], for all diagonals k’ that intersect squares 
with even row indices in S~,,j that precede the 
square S. A simple calculation shows that these 

diagonals are in the range j2[t1,. . . , $$ 21t1 - 1 J 
2. Thus, we get 

De,,, [kl = min{ Fe,,, [k’] + W( k’, k) I 

j$+l < k’ < k-2’ 21-i-l _ 2}, 
- 

1 J 
-$+I 

Similarly, let DJk] d enote the influence of points 
from squares in s5,2j with odd row indices. Again, 
it is sufficient to consider only &d[k’], for all di- 
agonals k’ that intersect squares with odd row in- 
dices in Sf,,j that precede the square S. We get 

Dodd[kl = min{F,dd[k’] + W(k’, k) I 
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j21+1 + 2’ 5 k’ < 2’ + 1% J 21+1 - 2). 

Clearly, coL:b] = min(Deuen[k], Dodd[k]}, 

for all points p on the diagonal k that intersect a 
square with an even row index from the set Sf zj- > 

Both recursions can be translated into one di- 
mensional matrix searching problems as shown in 
the full paper. 

In a similar way we can define two one dimen- 
sional problems to compute CoL$b] for all points 
p on the diagonal k that intersect the (unique) 
square with an odd row index from the set Sf,zj. 

We conclude 

Theorem 2.1: An instance of the off-line two di- 
mensional dynamic programming of size 7t can be 
solved by solving at most 8n instances of the off- 
line one dimensional dynamic programming of size 
n. 

Corollary 2.2: The off-line two dimensional 
concave dynamic programming can be solved in 
O(n2) time. The off-line two dimensional convex 
dynamic programming can be solved in O( n2a( n)) 
time. 

2.2. The on-line algorithm 

In the on-line algorithm we compute the same ma- 
trices El; however, we do not do it serially. In- 
stead, we advance along the rows and at each time 
we compute the top part of all the matrices El. In 
this process we use the off-line one dimensional 
algorithm for computing the row recurrences and 
the on-line one dimensional algorithm for comput- 
ing the column recurrences. 

The algorithm computes the entries of E = EO 
row by row. Suppose that the T rows indexed 
0 , . . . , T- 1 of E have been computed already. This 
implies that rows 0,. . . , T - 1 of F are available. 
The invariant property maintained by the algo- 
rithm at this point is as follows. 

INVARIANT PROPERTY FOR T. 

1. 

2. 

For each 0 2 1 5 log,(n + l), the [~/2’1 2l 
first rows of El have been computed. 

For each 0 < I < log2(n + 1) and for each 
square S E Si,*, 0 <_ i < \7-/2’1, the min- 
imum value of Fb] among the points p on 
diagonal k in S has been computed, for each 
diagonal k in S. 

Notice that the Invariant Property for T = n + 
1 implies that the whole matrix E = EO has been 
computed. 

We prove the Invariant Property by induction. 
The Invariant Property is clearly satisfied for T = 
1. Suppose that the Invariant Property holds for 
T. We describe the computation required in order 
to advance to T + 1. 

MAINTAXNING PART (1) OF THE INVARIANT 
PROPERTY. Let k be the maximum inte er such 
that 2” divides r. Note that for I 5 k, $ ~/2[1 = 

[CT + w’l - 1, and for 1 > k, 1 1 r/2’ = 

[(r + 1)/2’]. Thus, to maintain part (1) of the 
Invariant Property for T + 1 we have to compute 
El[p=(i,j)],forrIi~r+2’-landO<j~n, 
for all 0 5 1 5 k. Since 2’ divides T, these 
points are exactly the points in the squares Sf,,, *, 

and hence, we have to compute Elk], for all p ‘in 

sf,zl** 1 

The computation consists of two steps. 

Step 1. Compute E~,lp], for all p in SF,2k,+. 

For 0 5 j 5 (n + 1)/2k+1, consider 
the squares S:,2r 2j and Sf,2k 2j+1. These 
squares are the lower left sub square and 
the lower right sub square of S~~~_ikJ,2k+1 j. 

(Notice that 2k+1 divides T - 2k.) By Case 
3 above, E&l, for all p in S~,2k,2j, 0 5 

j I (n + 1)/2”+‘, is given by computing 
the row recurrence R0lV~-,,),,,+, [PI. The 
Invariant Property for T implies that this 
recurrence can be computed off-line. By 
Case 4 above, Ek[p], for all p in Srk/2L,2j+l, 

o _< j 5 (n + l)/Z”+l, is given by com- 
puting the same row recurrence and the en- 
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tries COL$b]. Th ese entries can be com- 
puted by activating the on-line algorithms 
for computing each of these column recur- 
rences. The Invariant Property for T implies 
that the entries Fv], for p’ E S~,,j, 0 5 
i’ < r/2” that are needed for the computa- 
tion are available. 

Step 2. For I = k - 1 downto 0, compute Elb], for 
all p in Sf/z’ *. 

For 0 5 > _< (n + 1)/2’+l, consider 
the squares S:,zl 2j and Sr”/,, zj+I. These 
squares are the upper left sub square and 

the upper right sub square of S$~~+I j. (No- 

tice that 2’+’ divides r.) By Case i above, 

Erb] = Ei+ib], for all P in SL,2i zj, 0 5 j 5 

(n + 1)/2’+1. By Case 2 above, E&l, for 

all P in St,,, 2j+l, 0 5 j 2 (n + Q/2’+‘, 

is given by computing the entries COLf b]. 
These entries can be computed by activating 
the on-line algorithms for computing each of 
these column recurrences. Again, the Invari- 
ant Property for T implies that the entries 
F[p’], for p’ E S:,,,j, 0 2 i’ < r/2’ that 
are needed for the on-line computation are 
available. 

All the computations can be done by the one 
dimensional dynamic programming algorithm us- 
ing the minimum elements in each diagonal com- 
puted to maintain part (2) of the Invariant Prop- 
erty for 7‘. 

MAINTAINING PART (2) OF THE INVARIANT 
PROPERTY. Let k be the maximum integer such 
that 2” divides r + 1. Note that for I 5 k, 
IT/~‘] = [(r + 1)/2’] - 1, and for I > k, [r/2’] = 

[(r + 1)/2’1. Thus, to maintain part (2) of the 
Invariant Property for T + 1 we have to com- 
pute the minimal value of Cb] in each diagonal 
of each of the squares in S;‘,,, for 0 2 2 < k and 
i = (T + 1)/2’ - 1. The computation can be done 
in constant time per diagonal, starting from 2 = 0, 
and using the precomputed minimum elements. 

3. The one dimensional dynamic pro- 
gramming algorithm 

In this section we describe a linear time algorithm 
for solving the on-line recurrence (2) under the as- 
sumption that W( ., .) is concave. Instead of solv- 
ing the recurrence we solve the following equiva- 
lent on-line matrix searching problem. 

THE MATRIX SEARCHING PROBLEM. Let kf be 
an n x m generalized upper triangular concave 
totally monotone matrix. The rows of M are 
indexed in the range 1,. . . , n, and the columns 
are indexed in the range 0,. . . , m - 1. For each 
1 < i _< n there is a column index C-1 5 C; < m 
such that M[i,j] = oo for all j > C;. Find the 
minimum element in each row of the matrix M, 
under the constraint that, for i > 1, the value of 
C; and the elements of columns Q-1 + 1,. . . , C; 
of M (that are not defined to be oo) are available 
only after the minimum element in row i - 1 has 

been found. 

We show that the Matrix Searching Problem 
can be solved in linear time. We give two different 

reductions of an instance of the Matrix Searching 
Problem to a smaller instance of the same prob- 
lem. Using just one of these reductions does not 
give a linear bound for the problem, but if they are 
interleaved, linearity is achieved. The technique is 
similar to that used for the off-line SMAWK algo- 
rithm [l]. The two reductions are as follows: 

1. An instance of size n x m of the Matrix 
Searching Problem can be reduced to an in- 
stance of size Ln/2J x m of the same problem 
in O(n + m) time. 

2. An instance of size n x m of the Matrix 
Searching Problem can be reduced to an in- 
stance of size n x n of the same problem in 
O(n + m) time. 

Interleaving the reductions and solving the result- 
ing recurrence, we get that the Matrix Searching 
Problem can be solved in O(n + m) time. 
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Reduction 1 

Let M be an 7t x m input matrix for the Ma- 
trix Searching Problem. Define M’ to be the sub- 
matrix consisting of all entries M[2i,j] for which 
0 5 j 5 Cs;-1; that is, M’ consists of all entries in 
each even row of M that lie under a non-infinity 
element in the previous odd row. It is easy to see 
that M’ is an input matrix for an instance of the 
Matrix Searching Problem of size [n/2] x m’, for 
some m’ 2 m. The sequence Ci, . . . , C[n,2,, that 
corresponds to M’, is given by Ci = C&r, for 
i = l,..., Ln/2]. (See Figure 1.) 

Figure 1: The result from Reduction 1. 

Suppose that we are given an algorithm A’ 
that computes on-line the row minima of M’. We 
describe an algorithm that computes on-line the 
row minima of M by interleaving its computations 
with the computations of the algorithm A’. 

Let Jo be the column index of the minimum 
element in row i of M. Similarly, Let Jo, be the 
column index of the minimum element in row i of 
M’. 

When the algorithm starts columns 0,. . .Cr 
are available, and hence row 1 of M and row 
1 of M’ are available. Algorithm A’ is acti- 
vated to compute jut. Recall that the first 
row of M’ consists of all entries in the second 
row of M that lie under a non-infinity element 
in the first row. From this and from the total 
monotonicity of M it follows that 0 2 Jo 5 
Jo,. Thus, j~( 1) is that j E (0,. . .j&l)} 

for which M[l,j] is minimum. After comput- 
ing j~( 1) columns Cr + 1, . . . , C’s, and hence row 
2 of M become available. We set jn,1(2) to be 
that j E {j&l), Cr + 1,. . .Cs} for which M[2,j] 
is minimum. After computing j, (2) columns 

(72 + I,..., Cs, and hence row 3 of M and row 2 
of M’ become available. We continue in a similar 
manner; that is, for i = 2,. . . , [n/2J, algorithm A’ 
is activated to compute j~l(i>. Then, j~(2i - 1) 
is set to be that j E (j~(2i - 2), . . .j&i)) for 
which Mf2i - l,j] is minimum, and Jo is set 
to be that j E (Jo,, Czi-r + 1,. . . Czi) for which 

ML% A is minimum. 

In the full paper, we give a formal description 

of the algorithm. 

Reduction 2 

Let M be an n x m input matrix for the Matrix 
Searching Problem. We show how to reduce the 
Matrix Searching Problem for M to the Matrix 
Searching Problem for an n x m’ sub-matrix M’ 
of M, for some m’ 5 n. Notice that this reduction 
is meaningful only if m > n, since otherwise no 
advancement is made. 

The sub-matrix M’ is defined by headers. Each 
header is an entry of M. Each column of M’ con- 
sists of one header together with all entries be- 
low it in the same column; that is, it contains 
the header together with all entries in the same 
column with higher row index. Headers are stag- 
gered down and to the right, i.e., no two headers 
are in the same row, and a header with a higher 
row index has also a higher column index. Figure 
2 shows an example of a sub-matrix M’ within a 
matrix M. 

The sub-matrix M’ is constructed in such a 
way that the minimum element in each row of M 
lies in the same row in M’. Thus, the row min- 
ima of M can be computed from the row minima 
of M’, simply by translating the column index of 
these minima in M’ to the corresponding column 
index in M. The hard part of the reduction is the 
construction of the sub-matrix M’; that is, the 
computation of the headers. This construction is 
interleaved with the execution of an algorithm A’ 
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Figure 2: The result from Reduction 2. 

that computes on-line the row minima of M’. 

The computation of the headers is done by 
processing the columns of M one by one. In the 
computation we use an array S to store the ten- 
tative headers. The array S can be viewed as a 
stack, similar to the algorithms [5, 71. The entry 
S(i) is either undefined or consists of the row and 
column index of the i-th tentative header. We 
refer to these indices as S,,,(i) and S,,l(i). As 
the computation proceeds a header may either be 
popped out from the stack S, or become a per- 
manent header. In case it becomes a permanent 
header it defines a column in M’. This column 
can be passed to algorithm A’. 

Informal description of the algorithm: The stack 
is initially empty. Columns are processed one at 
a time, from 0 to m - 1. When column j is pro- 
cessed, this column “challenges” tentative head- 
ers on the top of the stack S. Column j “wins” 
the challenge if its entry in the same row as the 
top tentative header is smaller than the header. 
In other words, let t denote the index of the top 
of the stack S. Column j “wins” the challenge 

if M[S,,,(t),j] < M[S,-&t), &l(t)]. In this case 
the stack is popped (and t is decremented by one). 
We show in the full paper that when the stack 
is popped none of the elements in column S,,r(t) 
are candidates for the minimum elements in their 
rows. 

Challenges continue until the stack is empty or 
until column j “loses” a challenge. If the stack is 

empty then the header (1,j) is pushed into the 
stack. Otherwise, i.e., in case M[S,,,(t),j] > 

M[Sw&), sc&>l, implying that column j “lost” 
the challenge with the header on the top of the 
stack, the entry (9,j) is pushed onto the stack, 
where i’ is the row index of the highest entry just 
below (Srow(t),j) that consists of a non-infinity el- 
ement. (Notice that in case M[S,,,(t),j] = 00, i’ 
is not necessarily S,,,(t) + 1.) If S,,,(t) = n, i.e., 
S,,,(t) is the last row in M then i’ is undefined 
(since there are no rows below row n), in this case 
no entry is pushed onto the stack. 

From the above description it can be seen that 
a tentative header (i, j) may be replaced only by 
tentative headers whose column index is less or 
equal to C;. Thisis, since for Ic > Ci, M[i,k] = 00, 
and thus the tentative header will always “win” 
the challenge with entries from these columns. 
This implies that after C; columns of M have been 
processed the tentative header in row i, if such ex- 
ists, becomes permanent. At this time the headers 
that define all the entries in row i of M’ are per- 
manent. Thus, we can set C;l to be the number of 
these permanent headers, and activate algorithm 
A’ to report the minimum of row i of M’. It is 
important to note that tentative headers become 
permanent headers at the last possible moment 
before they are needed by algorithm A’. Thus, 
the columns of M’ become visible to algorithm A’ 
just when it needs them. 

A formal description of the algorithm and its 
correctness proof are given in the full paper. 

The complexity of the whole algorithm 

We solve the one-dimensional on-line dynamic 
programming problem by alternation of the two 
reductions, just as in the SMAWK algorithm [l]. 

Let C( n, m) denote the number of comparisons 
required for a problem of size n x m. Similarly, let 
F(n, m) denote the number of fetches required for 
a problem of size n x m. 

Reduction 1 gives the recurrences: 

Ch m) I 2m + C( 1421 , m) 
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While Reduction 2 gives the recurrences: 

C(n, m> 5 2m + C(n, n) 
F(n, m) 5 3m + F(n,n). 

Using these reductions we get: 
(1) For n < m, C(n, m) 5 2m+8n, and F(n, m) 5 
3m + lln. 
(2) For m 5 n < 2m, C(n, m) 5 4m + 4n and 

F(n, m) 2 5m + 6n. 
(3) For 2m 5 n, C(n,m) 5 12m + 2n and 
F(n, m) 5 17m + 3n. 

The Regular ProbIem 

In order to more fairly compare our algorithm 
with the (off-line) SMAWK algorithm and with 
other existing on-line algorithms by Galil and 
Park [6], and Klawe [8], we give in the full paper 
an accurate count of the comparisons and fetches 
in what we call the Regvtar Problem. The Regular 
Problem is the special case of the Matrix Search- 
ing Problem where n = mandCi =i-lforalli. 
We show that the number of comparisons needed 
by our algorithm in that case is only 6n, and the 
number of fetches is 8.5n. These constants are su- 
perior to the constants achieved by other linear 

time on-line algorithms for the problem. For com- 
parison, the (off-line) SMAWK algorithm, when 
applied to an off-line Regular Problem, performs 
5n comparisons and 8n fetches. 
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