
Chapter 52

Selection and Sorting in Totally Monotone Arrays

Dina Kravets*+
James K. Park*+

Abstract
A twodimensional array A = {u[i, j]} is called totally
monotone if for all il < i2 and ji < j,, a[il, jt] < a[ir, ja]
implies a[iz, jr] < a[is, jg]. Totally monotone arrays
were introduced by Aggarwal, Klawe, Moran, Shor, and
Wilber [AKM+87], h h w o e owed that several problems in
computational geometry and VLSI river routing could
be reduced to the problem of finding a maximum entry
in each row of a totally monotone array. In this paper,
we consider several selection and sorting problems in-
volving totally monotone arrays and give a number of
applications of solutions for these problems. In particu-
lar, we obtain the following results for an m x n totally
monotone array A:

1. The k largest entries in each row of A can be com-
puted in O(k(rn + n)) time. This allows us to deter-
mine the k farthest (or nearest) neighbors of each
vertex of a convex n-gon in O(kn) time.

2. Provided the transpose of A is also totally mono
tone, the k largest entries overall in A cm be
computed in O(m + n + klg(st/k)) time, where
s = min{k,m) and t = min{ k, n}. This allows us
to find the k farthest (or nearest) pairs of vertices
of a convex n-gon in O(n + k lg(t2/k)) time, where
t = min{k,n}.

3. The rows of A can be sorted in O(mn + n”) time.
This allows us to solve the following problem in
O(n2(1 + lg1)) t* rme: given e convex polygons with
a total of n vertices, for all vertices u, sort the other
vertices by distance from u.

4. Sorting all the entries of A requires n(mnIgm)
time.

*Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, MA 02139

+Supported in part by the Air Force under Contract OSR86
0076, the Army under Contract DAAL-03-86-K-0171, the Defense
Advanced Research Projects Agency under Contracts N0001489-
J-1988 and NOOO1487-K-0825, the Office of Naval Research under
Contract NOO0148&K-0593, and au NSF Graduate Fellowship.

Figure 1.1: (a) In a totally monotone array, for no i1 < iz

ad jr < jz is a[G, jl] < a[il, is] and a[&, Jo] > a[&, jz]. (b)
For my quadrilateral pilpilpj,pj, where iI <-is < jl < j2,

dbirsPjs)+dhspja) >d(pi,,pjz)-td@i,,pj,).

1 Introduction

1.1 Motivation and Previous Work on
Totally Monotone Arrays

A twodirensional array A = {a[i, j]) is called monotone
if the maximum entry in its (i + 1)-at row lies directly
below or to the right of the maximum entry in its i-th
row. (If a row has several maxima, then we consider only
the leftmost one.) A is called totally monotone if every
2 x 2 subarray (i.e., every 2 X 2 minor) is monotone.
Equivalently, A is totally monotone if for all ir < i2 and
jr < j2, a[h,h] < &,j2] implies +2,jll < 42,j21,

as is suggested in Figure 1.1(a). Note that total mono-
tonicity implies monotonicity.

Although the notion of a totally monotone array may
seem rather odd at first glance, [AKM+87, AP89b,
APSSa] have shown that such arrays arise naturally in
connection with a wide variety of problems. As an ex-
ample of this phenomenon (borrowed from [AKM+87]),
consider a convex polygon P in the plane with vertices
pi, . . . ,p,, in counterclockwise order. The distances sep-
arating pairs of vertices of P form a totally monotone
array. Specifically, if we let d(pi,pj) denote the EU-
clidean distance from pi to pi, then the n x (2n - 1)

494

array A = {a[i,j]}, where

1

j-i ifl<j<i,

a[i, j] = d(Pi 3 Pj > ifi< j<n,
d(pi,pj-,) if n < j < i + n,
-1 ifi+n<j<2n,

is totally monotone, as shown in [AKM+87] and [AK89].
Furthermore, the transpose AT of A is also is totally
monotone’. We refer to A aa the distance away for P.
The total monotonicity of A and AT more or less follows
from the quadrangle inequality: given any four vertices

Pit t Pi2 j Pjl> andpj,suchthatlsil<il<jl<j2<n,
the sum of the lengths of the diagonals of the quadrilat-
eral formed by these vertices is strictly greater than the
sum of the lengths of two opposite sides. In particu-
lar, dCpi,,Pjt) + d(Pi,sPjo) > d(Pi,,Pjg) +d(Pia,Pj,), 88
suggested in Figure 1.1(b).

Totally monotone arrays were introduced by Aggar-
wal, Klawe, Moran, Shor, and Wilber [AKM’87], who
showed that several problems in computational geome-
try and VLSI river routing could be reduced to the prob-
lem of finding a maximum entry in each row of a totally
monotone array. (These entries will be referred to 89
row matima.) Aggarwal et al. also gave a sequential al-
gorithm that finds the leftmost maximum in each row of
an m x n totally monotone array A in O(m) time when
m > n and in e(m(l+lg(n/m))) time when m < n, prc+
vided each entry of A can be computed in constant time.
Note that thii algorithm does not explicitly create the
entire array A (that would take n(mn) time); rather, it
computes an entry only when that entry is needed. We
will refer to this algorithm as the SMAWK algorithm,
following the convention of wi188].

Returning to our example of the convex polygon in the
plane, the SMAWK algorithm gives us a Q(n) time algc+
rithm for computing a farthest neighbor for each vertex
of a convex n-gon. In [AK89], Aggarwal and Kravets
extend this result, showing that all farthest neighbors
for each vertex of a convex n-gon can be computed in
Q(n) time using the SMAWK algorithm. (In fact, their
algorithm is easily modified to compute all maximum
entries in each row of an m x n totally monotone array
A in O(n + m + 8) time, where 8 is the output size, i.e.,
the total number of row maxima.)

Another application of the totally monotone array ab-
straction is given by Wilber mil88], who solves the con-
cave least-weight subsequence problem in linear time
using the SMAWK algorithm. Aggarwal and Park
[APSSb, APSSa] g eneralize the notion of totally mono-
tone arrays to higher dimensions, develop new sequential
and parallel algorithms for computing maxima in totally

‘As a technicd detail, we need the negative entries of A (i.e.,
those that do not correspond to distances) to make A and AT
totally monotone, though they render A’s definition somewhat
cumbersome.

monotone arrays, and apply these algorithms, along with
the SMAWK algorithm, to additional problems involving
computational geometry, dynamic programming, VLSI
river routing, and string editing. ([AP89b] presents se-
quential applications, while [APSSa] gives parallel appli-
cations.)

Note that SMAWK algorithm is easily adapted to
computing a minimum entry in each row of a totally
monotone array A. Conceptually, we need only negate
the entries of A and reverse the ordering of its columns.
The algorithms of [AP89b, AP89a, AK891 for two-
dimensional totally monotone arrays may be modified
in a similar fashion to solve the minimizing (rather than
maximizing) variants of the respective problems.

1.2 Our Results

As indicated in the last subsection, previous work re-
lating to totally monotone arrays was limited to max-
imization (or minimization) problems. In this paper,
we consider two more comparison problems in the con-
text of totally monotone arrays: selection and sorting.
Given n values al, . . . , a, and an integer k between 1
and n, the selection problem is that of finding a k-th
largest value, i.e., an ai such that I{aj : nj 2 ai}l 2 k
and I(aj : aj 5 ai)l 2 n - k + 1. Given n val-
ues al,...,a,, the sorting problem is that of finding
a permutation c : (1,. . . ,n} -+ (1,. . . ,n} such that
%7(l) 2 "+.) 2 -.- 2 G(n)-

For arbitrary values al, . . . , a,, the selection and sort-
ing problems are well understood: the general selection
problem can be solved in O(n) time [BFP+72] and the
general sorting problem in 8(nlg n) time (see [Knu73],
for example). Using the special structure of totally
monotone arrays, we obtain significantly better results
for certain selection and sorting problems involving such
arrays than are possible with the classical selection and
sorting algorithms. We then apply these results to a
number of problems involving convex polygons in the
plane.

The remainder of this paper is organized as follows.
In Section 2, we consider the problem of computing a

k-th largest entry in each row of a totally monotone array
A. We call this the row selection problem for A. For an
m x n array A, we show that the row selection problem
can be solved in O(k(m+n)) time. For small values of k,
this represents a significant improvement over the naive
O(mn) time algorithm obtained by applying the linear
time selection algorithm of [BFP+72] m times2. We also
show how our row selection algorithm can be used to
compute k farthest or k nearest neighbors for each ver-
tex of a planar convex n-gon in O(kn) time. Previous

‘Recently, Mansour, Schieber, and Sen [MSS89] have obtained
an O(m=n) time algorithm for the row selection problem, where
a is a constant slightly less than 1. However, for small values of
k, our algorithm remains the best known.

495

results for this problem include an O(n’/’ Ign) time al-
gorithm suggested by Chazelle [Cha87], an O(kn3i2 Ig n)
time algorithm based on the k-th order Voronoi diagram
algorithm of [Ede86], and an O(k2n + n lgn) time al-
gorithm bssed on the k-th order Voronoi diagram al-
gorithm of [Lee82, AGSS87]. All three of these results
apply to arbitrary sets of points in the plane; thus, they
are more general than our algorithm for computing k
farthest neighbors. However, for the vertices of a convex
polygon, our algorithm is superior when k = O(nQ/5).

In Section 3, we consider the problem of computing a
k-th largest entry overall in a totally monotone array A.
We call this the army selection problem for A. For an
m x n array A, we show that the array selection problem
can be solved in O(m f n + klg(st/k)) time, where s =
min{k,m} and t = min(k,n). For small values of k,
this again represents a significant improvement over the
naive O(mn) time algorithm obtained by applying the
linear time selection algorithm of pFP+72]. We also
show how our array selection algorithm can be used to
compute k farthest or k nearest pairs of vertices of a
planar convex n-gon in O(n + klg(t2/k)) time, where
t = min{k, n}. The best previous result for this problem
is the O(nQi5 Ign) time algorithm of Chazelle [Cha87].
His algorithm is again more general than ours, since it
applies to arbitrary sets of points in the plane. However,
for the vertices of a convex polygon, our algorithm is
superior when k = O(n’/‘).

In Section 4, we consider the problem of sorting the
rows of a totally monotone array A. We call this the row
sorting problem for A. For an m x n array A, we show
that the row sorting problem can be solved in 0(mn+n2)
time. For n = O(mlg m), this represents an improve-
ment over the naive O(mn lg n) time algorithm obtained
by applying a general sorting algorithm to each row of
A. As an application of our row sorting algorithm, we
show that, given a convex n-gon P in the plane, for all
vertices w of P, we can sort the other vertices by distance
from u in O(d) time. We then generalize this algorithm
to 1 polygons with a total of n vertices, showing that for
each vertex v, we can sort the other vertices by distance
from v in O(n2(1 + lge)) time. The A? = 1 result allows
us to find all triples of vertices from a convex polygon
forming isosceles triangles in O(n’) time, which settles
an open question raised by Guibaa [Gui88].

In Section 5, we consider the problem of sorting all the
entries of a totally monotone array A. We call this the
army sorting problem for A. For an m x n array A, we
show that the array sorting problem requires R(mn lg m)
time. Thus, for m = 0(n), the total monotonicity of A
does not make sort+g the entries of A any easier than
sorting mn arbitrary values. Note that this lower bound
implies there is no straightforward way of using totally
monotone arrays to sort in O(n2) time the (:) Euclidean
distances separating n points in the plane, even if the

points are the vertices of a convex polygon in counter-
clockwise order. This problem remains open. (If the L1
metric is used in place of the L2 metric, then an O(n2)
time solution for the problem is known be76].)

Finally, in Section 6, we present some open problems.
In the following discussion, we assume all the entries in

our totally monotone arrays are distinct. This is merely
to simplify our presentation; all the algorithms and anal-
yses presented in this paper are easily modified to handle
equalities.

2 Row Selection

2.1 A Row Selection Algorithm

In this subsection, we describe an algorithm that, given
an m x n totally monotone array A = {a[i, j]) and an
integer k between 1 and n, computes the k largest entries
in each row of A in O(k(m + n)) time. The algorithm
combines two previous results with an important prop-
erty of totally monotone arrays to achieve the specified
time bounds. The first of these previous results is the
SMAWK algorithm, described in the introduction. The
second is the selection algorithm of Frederickson and
Johnson [FJ82], that computes, as a special case, the
k largest elements overall in O(k) sorted lists in O(k)
time. The property of totally monotone arrays linking
these two algorithms is given in the following lemma.

Lemma 2.1 Let B = (a[i, j]} be an m x n totally mono-
tone array, where m 1 n. If each column of B contains
at least one row maximum, then each row of B is bitonic.
Specifical@, for 1 5 i 5 m,

b[i,l] < -.. < b[i, c(i) - l] < b[i,c(i)J

and

6[i,c(i)] > b[i, c(i) + 1] > -. . > b[i, n],

where c(i) denotes fhe column containing the maximum
entry in row i.

Proof Suppose each column of B contains at least one
row maximum, but B is not bitonic. Since B is not
bitonic, there exist indices i, j,, and j2, such that 1 5
i 5 m, 1 5 j, < j2 5 n, and either

1. jl < j2 5 c(i) and b[i, jl] > b[i, jz], or

2. c(i) 5 jl < j2 and b[i,jl] < b[i, &I.

We consider only the first possibility; the proof for the
second possibility is analogous. Since each column of B
contains at least one row maximum, there exists an i’
such that c(i’) = j2. Furthermore, c(i’) # c(i), since
by assumption, b[i,jl] > b[i,c(i’)], but by definition,
b[i,c(i)] is the maximum entry in row i. We must also

496

Figure 2.1: If the maximum entry in row i’ lies in column is,
then by the total monotonicity of B, we cannot have a[;, jl] >
byi, jz].

have i’ < i, since total monotonicity implies monotonic-
ity. Now consider the 2 x 2 minor of B corresponding to
rows i’ and i and columns jl and j,. (This subarray is
depicted in Figure 2.1.) By definition, b[i’,c(i’)] is the
maximum entry in row i’. Thus, b[i’,jl] < b[i’,c(i’)].
By assumption, b[i, jl] > a[i, c(i’)]. This contradicts the
total monotonicity of B. n

We now sketch our algorithm for computing the k
largest entries in each row of A. The algorithm has
two parts. First, we decompose A into a series of m-
row subarrays B1, ,.., Bk. The first subarray B1 con-
sists of those columns of A that contain row maxima of
A. If we let A1 be the m-row subarray of A consisting
of those columns of A not in Bl, then B2 consists of
those columns of Al that contain row maxima of Al. In
general, if we let Al-1 be the m-row subarray of A con-
sisting of those columns of A not in any of BI, . . . , BL-1,
then Bt consists of those columns of At-1 that contain
row maxima of AL-I. Using the SMAWK algorithm, we
can compute B1 , . . . , Bk (or, more precisely, the columns
forming these arrays) in O(k(m + n)) total time.

Since the row maxima of BL, 1 5 I 5 k, are the row
maxima of AL-~ (where, by convention, A0 = A), each
column of Bf must contain at least one row maximum;
thus, by Lemma 2.1, the rows of BL are bitonic. Further-
more, if an entry is among the Z largest entries in some
row of A, 1 5 4! 5 k, then the entry must be contained
in one of B I,. . . , Bl. Thus, to compute the k largest
entries in row i of A, we merely need to compute the
k largest elements in the 2k sorted lists associated with
row i. (Each B f contributes two sorted lists, the first
consisting of those entries in the i-th row of BL to the
right of the row’s maximum and the second consisting
of those entries to the maximum’s left.) This can be ac-
complished in O(k) time using the selection algorithm
given by Frederickson and Johnson in [FJ82]. Since A
contains m rows, the total time for this second part of
the algorithm is O(km), which gives the entire row se-
lection algorithm a running time of O(k(m + n)).

Note that our algorithm does not output the k largest
entries in a row of A in sorted order, as the algorithm of
[FJ82] does not provide its output in sorted order. Also
note that the size of our algorithm’s output, km, is not

necessarily a lower bound on the time required for the
row selection problem; there may be a more concise rep-
resentation for the output, given the highly structured
nature of totally monotone arrays. Finally, note that
our row selection algorithm can also be used to find the
k smallest entries in each row of a totally monotone ar-
ray; as suggested in the introduction, we merely negate
each entry of the array and reverse the ordering of its
columns.

2.2 Applications of Row Selection

Using the row selection algorithm of the previous subsec-
tion, we can solve two selection problems involving con-
vex polygons in the plane. Given a set S = (PI,. . . ,p,,}
of n points in the plane and an integer k between 1 and n,
the k farthest neighbors problem for S is that of comput-
ing k farthest neighbors for each point pi. More precisely,
for all i between 1 and n, we must find a subset Si C S
such that ISil = k and for all Q E Si and p’ E S - Si,
d(pi, q) 2 d(pi, q’). The k neared neighbors problem for
S is defined analogouslp. If the points ~1,. . . ,pn are
the vertices of a convex n-gon in counterclockwise order,
then using our algorithm for computing the k largest en-
tries in each row of a totally monotone array, we can
solve both the k farthest neighbors problem and the k
nearest neighbors problem for ~1,. . . ,pn in O(kn) time.

To reduce the k farthest neighbors problem for
PI,--*,Pn to a row selection problem, we use the n x

(2~3 - 1) totally monotone distance array A defined in
Section 1. As the n largest entries in row i of A are
the n d&mces d(Pi,Pl),d(Pi,P2),...rd(Pi,Pn), we can
use our row selection algorithm to solve the k farthest
neighbors problem for ~1,. . . ,pn in O(kn) time.

To solve the k nearest neighbors problem for
~1,. . . , p,,, we would like to reuse the array A defined
above; however, to compute the k nearest neighbors of
pi, we need the n + k smallest entries in row i, since the
n smallest entries in this row are negative integers that
do not correspond to distances. For 1 2 k 5 [n/2], our
upper bound on the time to compute the n + k smallest
entries in A is O(n2). To obtain an O(kn) time algo-
rithm for the k nearest neighbors problem, we need a
slightly more complicated reduction. (Note that we can-
not circumvent this difficulty by replacing the negative
integers in A with large positive integers, as this destroys
the total monotonicity of A.)

In [LP78], Lee and Preparata consider the nearest
neighbor problem (the k = 1 special case of the k near-
est neighbors problem) for the vertices of a convex n-
gon. In obtaining an O(n) time solution to this prob-
lem, they introduce an interesting property of certain
convex polygons which they call the semicircle property.

.
3As the k nearest neighbors problem for S is equivalent to the

n - k farthest neighbors problem for S, we restrict our attention
to dues of k between 1 and [n/2] for both problems.

497

4a

Figure 2.2: Q1, 82, Q3, and Qb have the semi-&de prop
erty.

A convex polygon P with vertices pl, . . . ,p,, in counter-
clockwise order is said to possess the semicircle property
ifp2 , . . . ,p,,-1 lie inside the circle with diameter PIpn.

Lemma 2.2 ([LP78]) If P satisfies fhe semicircle
property, then for all i beiwecn 1 and n, the sequence
of distances d(pi, pl), d(pi, p2), . . . , d(pi,pn) is bifonic.
SpecijicaIZy,

d(pi,pl) > **. > d(piapi-1) > d(pi,Pi)

and

Lee and Preparata also showed how to decompose an
arbitrary convex n-gon into four convex polygons peg
sessing the semicircle property. We use a slightly simpler
decomposition, due to Yang and Lee wL79]:

Lemma 2.3 ([YL79]) Let men and p+,t be the uer-
iices of P with minimum and maximum x-coordinates,
respectively, and let hottom and pto,, be the vertices of
P wifk minimum and mazimum y-cootiinates, respec-
dive/y. Let &I be the polygon formed by vertices p,.+t
through ptop (i.e., p,.+t, ptop, and those vertices be-
tween ?‘right and Ptop in the counterclockwise ordering
of P ‘23 vertices). Similarly, let 92, Q3, and 94 be
the polygons formed by vertices ptop through men, neft
through aottom, and pt,ottom through p,.+, respectively,
as shown in Figure 2.2. &I, Q2, 93, and 94 possess the
semi-circle property.

Using this decomposition of P, we can compute the
k nearest neighbors of each vertex of P. We restrict
our attention to the vertices of &I, showing that their k
nearest neighbors in P can be computed in O(kn) time
- the computation of the k nearest neighbors of the
vertices of Q2, Qs, and &a is analogous. For each v in
&I, the k nearest neighbors of v in Qr can be computed
in O(k) time, since by the semi-circle property, these k

nearest neighbors must be within k of v in the original
ordering of P’s vertices. We can also compute for each
v in &I its k nearest neighbors in Qp. To do this, we
consider the IQ11 x (IQ21 - 1) array A = {a[i,j]} where
a[i,f is the distance from the i-th vertexof &I to the (j-
1)-st vertex of Q2. (We ignore the first vertex of Qr since
it is also the last vertex of Qr .) It is readily verified that
A is totally monotone; moreover, the k smallest entries
in row i of A correspond to the k nearest neighbors in Q2
of the i-th vertex of Qr. Thus, using our row selection
algorithm, we can find the k nearest neighbors in QZ of
all the vertices in Qi in O(kn) total time. In a similar
manner, we csn compute for each v in Qi its k nearest
neighbors in Qs and its k nearest neighbors in 94. We
now have 4k neighbors for each v in 91; using the linear
time selection algorithm of [BFP+72], we can select the k
nearest of these neighbors in O(k) additional time. This
gives the k nearest neighbors in P of each v in Qi in
O(kn) total time.

3 Array Selection

3.1 An Array Selection Algorithm

In this subsection, we describe an algorithm that, given
an m x n array A = (u[i, j]}, such that both A and
its transpose AT are totally monotone, and an integer k
between 1 and mn, computes the k largest entries overall
in A in O(m+n+klg(st/k)) time, where s = min{m, k)
and t = min{n, k}. We first present an algorithm for
those values of k that are greater than or equal to both
m and n and then show how to modify this algorithm to
handle smaller values of k.

To compute the k largest entries of A, max(m,n} 5
k _< mn, we begin by checking the relative magnitudes
of k and mn. If k >_ mn/2 (the “easy” case), we use the
linear time selection algorithm of BFP+72] to compute
the k-th largest entry of A in O(k) time. If, on the other
hand, k < mn/2, we consider two subcases.

If m 2 ~1, we use the row selection algorithm of Sec-
tion 2 to compute the 2k/m largest entries in each row of
A in 0((2k/m)(n + m)) = O(k) time. Let bi denote the
(2k/m)-th 1 ar es entry in row i of A. Using the linear g t
time selection algorithm, we can compute the median b’
of bl , . . . , b, in O(m) time. Let B denote the m/2 x n
subarray of A consisting of those rows i such that ki 3 b*,
and let L denote the list of (2k/m)(m/2) = k entries
formed from the 2k/m largest entries of each row of A
notinB. NowifrowiofAisnotinB,i.e.,bi<b’,then
the n - (2k/m) smallest entries in row i are all smaller
than b’, which means they are all smaller than the 2k/m
largest entries in each row of B. Since B has m/2 rows,
this means that the n - (2k/m) smallest entries in row
i are all smaller than at least (m/2)(2k/m) = k other
entries, i.e., these entries need not be considered as can-

498

didates for the k largest entries overall of A. Thus, if we
recursively compute the k largest entries in B and then
use the linear time selection algorithm to compute in
O(k) time the k largest of these entries and the k entries
of L, we obtain the k largest entries in A.

If m < n, we apply the procedure described in the
last paragraph to AT rather than A. This requires O(k)
time plus the time needed to recursively compute the k
largest entries in an m x n/2 subarray of A.

Letting T(k,m,n) denote our algorithm’s running
time in computing the k largest entries in an m x n array
A, where max{m, n} 2 k 5 mn and both A and AT are
totally monotone, we have

T(k,m,n) =

’ O(k) if k 2 mn/2,
T(k, m/2, n)
+w if k < mn/2

andmzn,

TV, m, 42)
+0(k) ifk <mn/2

L and m < n.

The solution to this recurrence is

T(k,m,n) = O(klg(mn/k)).

Now suppose k < m. We can eliminate all but k of A’s
rows from consideration as follows. In O(n + m) time,
we can compute the row maxima of A. Then, using
the linear timi: selection algorithm, we can select the
k largest of these maxima in an additional O(m) time.
Now consider the m - k rows of A corresponding to the
m-k smallest row maxima. The entries in these rows are
all smaller than the k largest row maxima, which means
they are not among the k largest entries of A. Thus,
we can eliminate these m - k rows from consideration.
Similarly, if k < n, we can eliminate all but k of A’s
columns in O(n + m) time.

Once the number of rows in A has been reduced to k
or less and the number of columns in A has been reduced
to k or less, we can apply our O(klg(mn/k)) time selec-
tion algorithm for arrays with m 5 k rows and n 5 k
columns. This gives an algorithm for computing the k
largest entries in A that works for all values of k between
1 and mn and runs in O(m + n+ k lg(st/k)) time, where
8 = min(m, k) and t = min{n, k).

Note that the only lower bound we have on the time
required for the array selection problem is n(n). Also
note that our array selection algorithm can also be used
to compute the k smallest entries overall in a totally
monotone array, just aa our row selection algorithm can
be used to compute the k smallest entries in each row of
a totally monotone array.

3.2 AppIications of Array Selection

Using the array selection algorithm of the previous sub-
section, we can solve two more selection problems in-

volving convex polygons in the plane. Given a set
s = (PI,... ,p,,} of n points in the plane and an in-
teger k between 1 and (:), the k farthest pairs problem
for S is that of computing k largest values of d(pi,pj)
over all unordered pairs (pi,pi) of points. The k nearest
pairs problem for S is defined analogously. If the points
Pl,-*-,Pn are the vertices of a convex n-gon in counter-
clockwise order, then using our algorithm for computing
the k largest entries overall in a totally monotone array,
we can solve both the k farthest pairs problem and the k
nearest pairs problem for pl, . . . , p,, in O(n + k lg(t’/k))
time, where t = min(n, k}.

To reduce the k farthest pairs problem and the k near-
est pairs problem for ~1,. . . ,pn to row selection prob-
lems, we use constructions similar to those used in the
last section. (Here we make use of the total monotonic-
ity of the transpose of the distance array associated with
a convex polygon.) For the sake of brevity, we omit the
details of these reductions.

4 Row Sorting

4.1 A Row Sorting Algorithm

In this subsection, we sketch an algorithm for sorting the
rows of an m x n totally monotone array A = {a[;, j]}
in O(mn + n2) time.

For 1 5 i 2 m and 1 5 r 5 n, let ~+[fl denote the
column of the entry in row i of A with rank r in row i.
Furthermore, for 1 5 P 5 n, let cr[O] = n - r + 1. Our
algorithm consists of m phases, where in the i-th phase,
we sort row i of A by computing cl[s’], ca[d, . . . , cn[~ using
cl[i - 11, cz[i - 11,. . . , cn[i - 11. Specifically, we use an
insertion sort (such as the one described in [Knu73]) to
sort row i, inserting first u[i, cl[i- l]], then a[;, cz[i - I]],
then a[i, cs[i - l]], and so on through u[i, c,, [i - 11.

As noted in [Knu73], the insertion sort algorithm sorts
n values in O(n + I) time, where I is the number of
inversions separating the insertion order and the final
sorted order for the values. An inversion is a pair of
values (a, a) such that a is inserted before b but a < b (or
vice-versa). It is not hard to verify that the total number
of inversions encountered in stepping through the rows of
an m x n totally monotone array A = (a[i,j]} is O(n2),
since for each pair of columns in A, corresponding to
indices jl and j2, 1 5 j, < j2 5 n, there exists at most
one index i, 1 5 i < m, such that a[i, jl] > a[i, j2] and
a[i + 1, jl] < a[i + 1, jz]. Thus, our algorithm’s running
time is O(mn + n2).

Note that the size of our algorithm’s output, mn, is not
necessarily a lower bound on the time required for the
row sorting problem; there may be a more concise rep-
resentation for the output, given the highly structured
nature of totally monotone arrays.

499

Figure 4.1: The perpendicular bisector of any pair of points
gj, and gjp cm intersect P at most twice.

4.2 AppIications of Row Sorting

As an application of our row sorting algorithm, we con-
sider the following point soding problem: given a convex
n-gon P with vertices pl , . . . , p,, in counterclockwise or-
der, for each pit sort the other vertices of P by distance
from pi. &call the n x (2n- 1) totally monotone distance
array A = {a[i,jJ} we defined in Section 1. The i-th row
of A contains the distances d(pi,pr), . . . ;d(pi, p,,), along
with n negative entries; thus, sorting the rows of A using
our row sorting algorithm gives an O(n2) time solution
to the point sorting problem for P.

Now consider the following more general point sort-
ing problem: given a convex nz-gon P with vertices
Pl ,--- ,pm in counterclockwise order and a set Q of n
arbitrary points ~1,. . . , qnr for each pi, sort the vertices
of Q by distance from pi. We call this the problem of
sorting Q with respect to P. We cannot represent the
distances separating the vertices of P and the points of
Q as a totally monotone array. However, the correct-
ness of our row sorting algorithm does not depend on
total monotonicity; total monotonicity is merely used to
bound of the number of inversions. Thus, even though
the m x n array B = (b[i, j]), where b[i,j] = d(pi, qj), is
not totally monotone, we can still apply our row sorting
algorithm

In the context of the array B, an inversion corresponds
to indices i, jr, and jz such that a[i, jl] < b[i, jz] but
b[i + 1, jr] > b[i + l,jz]. To bound the number of times
this can occur for any particular pair of indices j, and j2,
note that the perpendicular bisector of qjl and qjj-, can
intersect P at most twice, as shown in Figure 4.1. Since
there is an inversion for j, and jz between rows i and if 1
if and only if the perpendicular bisector of sI and sa
intersects the edge of P connecting pi and pi+1 , there are
at most two inversions associated with the pair (jr, jz).
Since there are (t) pairs of points in Q, the total number
of inversions is no more than 2(T) = O(n2). Thus, we
can sort the rows of B (i.e., sort P with respect to Q)
in O(mn + n”) time.

Taking the point sorting problem one step further,

suppose we are given a set P of n arbitrary points
~1,. . . ,p,, and that we want to sort P with respect to
itself. In other words, for each point pi, we want to sort
the other points by distance form pi. To solve this prob-
lem, we need to partition the points of P into subsets
forming convex polygons PI, . . . , Pt. (This could be ac-
complished by computing the convex layers of P, which
requires only O(nlg n) time [Cha85].) Assuming this
partition is given, we can sort P with respect to itself
in O(n2(1 + lge)) time as follows. Let Pi,. . . , Pl be a
second partition of the points of P into 1 arbitrary sub-
sets, each of size n/L. Then for 1 5 i 5 -! and I 5 j < e,
we sort Pi with respect to Pi in O(nju/L + n2/t2) time,
where nj is the size of Pi. The total time required is

For each point pi of P, we now have A? sorted lists, corre-
sponding to the points of Pi,. &. , Pl, respectively. As we
can merge these lists in O(n21g4) total time, we obtain
all O(n2(1+ lg4)) t ime algorithm for sorting the points
of P.

As a final application of our row sorting algorithm,
suppose we are given a set P of n arbitrary points
~1,. . . ,p,, and that we want to find all triples (pi,pj, ph)
such that pi, pi, and pin. form an isosceles triangle. Equiv-
alently, we want to find for each pi all pairs (pj,pk) such
that d(pi, pj) = d(pi ,pk). If for each pi, we have the
other points sorted by distance from pi, then a simple
linear scan of the sorted list for pi gives US all the pairs
of points that are equidistant from pi. Thus, sorting P
with respect to itself in O(n2(1 + lge)) time allows us to
find alI of the isosceles triangles formed by points of P
in O(n2(1 + lge)) t ime. Similarly, if the points of P are
the vertices of a convex n-gon in counterclockwise order,
then we can find all of the isosceles triangles formed by
points of P in O(n2) time. (Note that in Section 1, we
made the simplifying assumption that no two entries of a
totally monotone array are equal. However, as was also
mentioned in Section 1, all of the algorithms and analy-
ses in this paper are easily modified to handle equalities.)

5 Array Sorting

As a final variation on our paper’s theme, we consider
the problem of sorting all the entries of an m x n to
tally monotone array. A primary motivation for consid-
ering this problem is the following problem from compu-
tational geometry: given n pointspr , . . , , pn in the plane,
sort the (z) distances d(pi , pi), corresponding to all pairs
(pi,pj) of points. If distance is measured in terms of
the Lr metric (i.e., for pi = (zir Yi) and Pj = (zj, Yj),
d(pi,pj) = Izi - zj] +]vi - yj]), then this problem can
be solved in O(n2) time pe76]. However, if distance is

500

measured in terms of the La (Euclidean) metric, then no
o(n2 lgn) time algorithm for this problem is known. For
the special case of this problem when PI,. . . ,pn are the
vertices of a convex polygon in counterclockwise order,
the distance array defined in Section 1 gives a reduc-
tion to the array sorting problem for a totally monotone
array. Unfortunately, unlike the three array problems
we considered in Sections 24, the array sorting prob-
lem is not significantly easier than the general problem
of sorting mn arbitrary values, which takes O(mn Ig mn)
time. Specifically, we can show a simple R(mn lg m) time
lower bound for the array sorting problem, which im-
plies that the aforementioned distance array reduction
does not help us in sorting the (3 Euclidean distances
associated with the vertices of a convex n-gon. Further-
more, since we can solve the array sorting problem in
O(mn lg m) time by applying the row sorting algorithm
of the previous section and then merging the m sorted
rows, we have an optimal algorithm for the problem.

In Section 3, we give an algorithm for computing
the k largest entries overall in an array A such that
both A and its transpose are totally monotone. It
remains open whether a comparable result can be
obtained for totally monotone arrays whose trans-
poses are not totally monotone.

We prove the lower bound on the array sorting prob-
lem ss follows. Let Ll, . . . ,L, denote n independent
lists, each containing m positive integers, where for
1 < j 5 ?I, Lj = /j[l], . . . , Zj [m]. Sorting any one of
these lists requires Ct(mlg m) time in the decision tree
model; thus, sorting all of the lists requires n(mnlgm)
time. In o(mn lg m) time, we will reduce the problem of
sorting LI , . . . , L, to an array sorting problem, thereby
obtaining the desired lower bound on array sorting.

The only array problem considered in this paper for
which we obtain matching upper and lower bounds
is the array sorting problem discussed in Section 5.
It remains open whether the algorithms for row se-
lection, array selection, and row sorting given in
Sections 24 can be improved or nontrivial lower
bounds for these problems obtained. (Lower bounds
might follow from the sizes of the various problems’
search spaces - for example, a lower bound of Q(S)
on the number of combinations of row permutations
possible for a totally monotone array would imply
an n(lg S) lower bound on the time necessary to sort
the array’s rows in a linear decision tree model.)

3.

In O(mn) time, we can compute the maximum integer
I’ in any of the lists. Let M = 1’ + 1. Now consider the
mx n array A = (a[i,~J), where a[i,f = jM+lj[q. A is
clearly totally monotone, since for all i, a[i, l] < a[i, 21 <
. . . < a[i, n - l] < a[i, n]. Furthermore, the rank of a[i, j]
in A is (j- 1)M plus the rank of lj [d in Lj. Thus, sorting
the entries of A implicitly sorts Ll, . . . , L,.

In Subsection 4.2, we applied our algorithm for sort-
ing the rows of a totally monotone array to the
vertices of a convex polygon P, obtaining for each
vertex u an ordering of the other vertices of P
by distance from v. We then extended this tech-
nique to arbitrary point sets. However, it remains
open whether our two selection algorithms for to-
tally monotone arrays, which we also apply to the
vertices of a convex polygon, can likewise be applied
to arbitrary point sets.

Acknowledgements

Using a similar but slightly more complicated con-
struction, we have also been able to obtain an
0(mnlg m) lower bound on the time required to sort
the entries of an m x n array A, such that m 5 n and
both A and its transpose are totally monotone. How-
ever, for the sake of brevity, we omit the proof of this
lower bound.

The authors are grateful to Alok Aggarwal, who first
suggested we consider selection and sorting in totally
monotone arrays, brought [Gha87] and [Fre76] to our
attention, and provided a number of helpful comments
on an early draft of this paper. The authors also thank
Michelangelo Grigni for bringing FJ82] to our attention.
Portions of this paper have appeared previously in Dina
Kravets’ SM. thesispra881.

6 Conclusion References

In this paper, we explore two fundamental comparison
problems, selection and sorting, in the context of totally
monotone arrays. We provide simple but efficient algo-
rithms for two selection problems and a sorting problem
involving totally monotone arrays, algorithms that take
advantage of an array’s total monotonicity to obtain sig-
nificantly better results than are possible for arbitrary
arrays. We also present several applications of these al-
gorithms to problems in computational geometry. We
leave the following important questions unresolved:

[AGSS87] A. Aggarwal, L. J. Guibss, J. Saxe, and
P. W. Shor. A linear time algorithm for
computing the Voronoi diagram of a convex
polygon. In Proceedings of the 19th Annual
ACM Symposium on Theory of Computing,
pages 3947, 1987.

[AK891 A. Aggarwal and D. Kravets. A linear time
algorithm for finding all farthest neighbors
in a convex polygon. Information Processing
Letters, 31:17-20, 1989.

501

[AKM+87] A. Aggarwal, M. M. Klawe, S. Moran,

[APSSa]

[AP89b]

[BFP+ 723

[Cha85]

[Cha87]

[Ede86]

[FJ82]

[Fre76]

[Gui88]

IKnu73]

[Kra88]

P. Shor, and R. Wilber. Geometric appli-
cations of a matrix-searching algorithm. AZ-
gorithmica, 2:195-208, 1987.

A. Aggarwal and J. Park. Parallel searching
in multidimensional monotone arrays. Jour-
nal of Algorithms, 1989. Submitted. Portions
of this paper appear in Proceedings of the
29th Annual IEEE Symposium on Founda-
tions of Computer Science, 1988.

A. Aggarwal and J. Park. Sequential search-
ing in multidimensional monotone arrays.
Journal of Algorithms, 1989. Submitted.
Portions of this paper appear in Proceed-
ings of the 29th Annual IEEE Symposium
on Foundations of Computer Science, 1988.

M. Blum, R. W. Floyd, V. R. Pratt, R. L.
Rive&, and R. E. Tarjan. Time bounds for
selection. Journal of Computer and System
Sciences, 7:448461, 1972.

B. M. Chazelle. On the convex layers of a
planar set. IEEE fiansactions on Informa-
tion Theory, IT-31:509-517, 1985.

B. M. Chazelle. Some techniques for geo-
metric searching with implicit set represen-
tations. Aeta Informaiica, 24:565-582, 1987.

H. Edelsbrunner. Edge skeletons in arrange-
ments with applications. Algorithmica, 1:93-
109, 1986.

G. N. Frederickson and D. B. Johnson. The
complexity of selection and ranking in X + Y
and matrices with sorted columns. Journal
of Computer and System Sciences, 24:197-
208, 1982.

M. L. Fredman. How good is the informa-
tion theory bound in sorting? Theoretical
Computer Science, 1:355-361, 1976.

L. J. Guibas, 1988. Personal communication
(via Alok Aggarwal).

D. E. Knuth, The Art of Computer Pro-
gramming, Vol. 3: Sorting and Searching.
Addison-Wesley, Reading, MA, 1973.

D. Kravets. Finding farthest neighbors in a
convex polygon and related problems. Mas-
ter’s thesis, Massachusetts Institute of Tech-
nology, December 1988. Also published as
Technical Report MIT/LCS/TR-437, Jan-
uary, 1989.

[Lee821

[LP78]

[MSS89]

wi188]

[YLW

D. T. Lee. On k-nearest neighbor Voronoi
diagrams in the plane. IEEE Transactions
on Computers, C-31:478487, 1982.

D. T. Lee and F. P. Preparata. The
all nearest-neighbor problem for convex
polygons. Information Processing Letters,
7(4):189-192, 1978.

Y. Mansour, B. Schieber, and S. Sen,
September 1989. Personal communication
(via Yiihay Mansour).

R. Wilber. The concave least-weight subse-
quence problem revisited. Journal of Algo-
rithms, 9:418-425, 1988.

C. C. Yang and D. T. Lee. A note on
the all nearest-neighbor problem for convex
polygons. Information Processing Letters,
8(4):193-194, 1979.

502

