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Abstract 
A twodimensional array A = {u[i, j]} is called totally 
monotone if for all il < i2 and ji < j,, a[il, jt] < a[ir, ja] 
implies a[iz, jr] < a[is, jg]. Totally monotone arrays 
were introduced by Aggarwal, Klawe, Moran, Shor, and 
Wilber [AKM+87], h h w o e owed that several problems in 
computational geometry and VLSI river routing could 
be reduced to the problem of finding a maximum entry 
in each row of a totally monotone array. In this paper, 
we consider several selection and sorting problems in- 
volving totally monotone arrays and give a number of 
applications of solutions for these problems. In particu- 
lar, we obtain the following results for an m x n totally 
monotone array A: 

1. The k largest entries in each row of A can be com- 
puted in O(k(rn + n)) time. This allows us to deter- 
mine the k farthest (or nearest) neighbors of each 
vertex of a convex n-gon in O(kn) time. 

2. Provided the transpose of A is also totally mono 
tone, the k largest entries overall in A cm be 
computed in O(m + n + klg(st/k)) time, where 
s = min{k,m) and t = min{ k, n}. This allows us 
to find the k farthest (or nearest) pairs of vertices 
of a convex n-gon in O(n + k lg(t2/k)) time, where 
t = min{k,n}. 

3. The rows of A can be sorted in O(mn + n”) time. 
This allows us to solve the following problem in 
O(n2(1 + lg1)) t* rme: given e convex polygons with 
a total of n vertices, for all vertices u, sort the other 
vertices by distance from u. 

4. Sorting all the entries of A requires n(mnIgm) 
time. 
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Figure 1.1: (a) In a totally monotone array, for no i1 < iz 

ad jr < jz is a[G, jl] < a[il, is] and a[&, Jo] > a[&, jz]. (b) 
For my quadrilateral pilpilpj,pj, where iI <-is < jl < j2, 

dbirsPjs)+dhspja) >d(pi,,pjz)-td@i,,pj,). 

1 Introduction 

1.1 Motivation and Previous Work on 
Totally Monotone Arrays 

A twodirensional array A = {a[i, j]) is called monotone 
if the maximum entry in its (i + 1)-at row lies directly 
below or to the right of the maximum entry in its i-th 
row. (If a row has several maxima, then we consider only 
the leftmost one.) A is called totally monotone if every 
2 x 2 subarray (i.e., every 2 X 2 minor) is monotone. 
Equivalently, A is totally monotone if for all ir < i2 and 
jr < j2, a[h,h] < &,j2] implies +2,jll < 42,j21, 

as is suggested in Figure 1.1(a). Note that total mono- 
tonicity implies monotonicity. 

Although the notion of a totally monotone array may 
seem rather odd at first glance, [AKM+87, AP89b, 
APSSa] have shown that such arrays arise naturally in 
connection with a wide variety of problems. As an ex- 
ample of this phenomenon (borrowed from [AKM+87]), 
consider a convex polygon P in the plane with vertices 
pi, . . . ,p,, in counterclockwise order. The distances sep- 
arating pairs of vertices of P form a totally monotone 
array. Specifically, if we let d(pi,pj) denote the EU- 
clidean distance from pi to pi, then the n x (2n - 1) 
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array A = {a[i,j]}, where 

1 

j-i ifl<j<i, 

a[i, j] = d(Pi 3 Pj > ifi< j<n, 
d(pi,pj-,) if n < j < i + n, 
-1 ifi+n<j<2n, 

is totally monotone, as shown in [AKM+87] and [AK89]. 
Furthermore, the transpose AT of A is also is totally 
monotone’. We refer to A aa the distance away for P. 
The total monotonicity of A and AT more or less follows 
from the quadrangle inequality: given any four vertices 

Pit t Pi2 j Pjl> andpj,suchthatlsil<il<jl<j2<n, 
the sum of the lengths of the diagonals of the quadrilat- 
eral formed by these vertices is strictly greater than the 
sum of the lengths of two opposite sides. In particu- 
lar, dCpi,,Pjt) + d(Pi,sPjo) > d(Pi,,Pjg) +d(Pia,Pj,), 88 
suggested in Figure 1.1(b). 

Totally monotone arrays were introduced by Aggar- 
wal, Klawe, Moran, Shor, and Wilber [AKM’87], who 
showed that several problems in computational geome- 
try and VLSI river routing could be reduced to the prob- 
lem of finding a maximum entry in each row of a totally 
monotone array. (These entries will be referred to 89 
row matima.) Aggarwal et al. also gave a sequential al- 
gorithm that finds the leftmost maximum in each row of 
an m x n totally monotone array A in O(m) time when 
m > n and in e(m(l+lg(n/m))) time when m < n, prc+ 
vided each entry of A can be computed in constant time. 
Note that thii algorithm does not explicitly create the 
entire array A (that would take n(mn) time); rather, it 
computes an entry only when that entry is needed. We 
will refer to this algorithm as the SMAWK algorithm, 
following the convention of wi188]. 

Returning to our example of the convex polygon in the 
plane, the SMAWK algorithm gives us a Q(n) time algc+ 
rithm for computing a farthest neighbor for each vertex 
of a convex n-gon. In [AK89], Aggarwal and Kravets 
extend this result, showing that all farthest neighbors 
for each vertex of a convex n-gon can be computed in 
Q(n) time using the SMAWK algorithm. (In fact, their 
algorithm is easily modified to compute all maximum 
entries in each row of an m x n totally monotone array 
A in O(n + m + 8) time, where 8 is the output size, i.e., 
the total number of row maxima.) 

Another application of the totally monotone array ab- 
straction is given by Wilber mil88], who solves the con- 
cave least-weight subsequence problem in linear time 
using the SMAWK algorithm. Aggarwal and Park 
[APSSb, APSSa] g eneralize the notion of totally mono- 
tone arrays to higher dimensions, develop new sequential 
and parallel algorithms for computing maxima in totally 

‘As a technicd detail, we need the negative entries of A (i.e., 
those that do not correspond to distances) to make A and AT 
totally monotone, though they render A’s definition somewhat 
cumbersome. 

monotone arrays, and apply these algorithms, along with 
the SMAWK algorithm, to additional problems involving 
computational geometry, dynamic programming, VLSI 
river routing, and string editing. ([AP89b] presents se- 
quential applications, while [APSSa] gives parallel appli- 
cations.) 

Note that SMAWK algorithm is easily adapted to 
computing a minimum entry in each row of a totally 
monotone array A. Conceptually, we need only negate 
the entries of A and reverse the ordering of its columns. 
The algorithms of [AP89b, AP89a, AK891 for two- 
dimensional totally monotone arrays may be modified 
in a similar fashion to solve the minimizing (rather than 
maximizing) variants of the respective problems. 

1.2 Our Results 

As indicated in the last subsection, previous work re- 
lating to totally monotone arrays was limited to max- 
imization (or minimization) problems. In this paper, 
we consider two more comparison problems in the con- 
text of totally monotone arrays: selection and sorting. 
Given n values al, . . . , a, and an integer k between 1 
and n, the selection problem is that of finding a k-th 
largest value, i.e., an ai such that I{aj : nj 2 ai}l 2 k 
and I(aj : aj 5 ai)l 2 n - k + 1. Given n val- 
ues al,...,a,, the sorting problem is that of finding 
a permutation c : (1,. . . ,n} -+ (1,. . . ,n} such that 
%7(l) 2 "+.) 2 -.- 2 G(n)- 

For arbitrary values al, . . . , a,, the selection and sort- 
ing problems are well understood: the general selection 
problem can be solved in O(n) time [BFP+72] and the 
general sorting problem in 8(nlg n) time (see [Knu73], 
for example). Using the special structure of totally 
monotone arrays, we obtain significantly better results 
for certain selection and sorting problems involving such 
arrays than are possible with the classical selection and 
sorting algorithms. We then apply these results to a 
number of problems involving convex polygons in the 
plane. 

The remainder of this paper is organized as follows. 
In Section 2, we consider the problem of computing a 

k-th largest entry in each row of a totally monotone array 
A. We call this the row selection problem for A. For an 
m x n array A, we show that the row selection problem 
can be solved in O(k(m+n)) time. For small values of k, 
this represents a significant improvement over the naive 
O(mn) time algorithm obtained by applying the linear 
time selection algorithm of [BFP+72] m times2. We also 
show how our row selection algorithm can be used to 
compute k farthest or k nearest neighbors for each ver- 
tex of a planar convex n-gon in O(kn) time. Previous 

‘Recently, Mansour, Schieber, and Sen [MSS89] have obtained 
an O(m=n) time algorithm for the row selection problem, where 
a is a constant slightly less than 1. However, for small values of 
k, our algorithm remains the best known. 
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results for this problem include an O(n’/’ Ign) time al- 
gorithm suggested by Chazelle [Cha87], an O(kn3i2 Ig n) 
time algorithm based on the k-th order Voronoi diagram 
algorithm of [Ede86], and an O(k2n + n lgn) time al- 
gorithm bssed on the k-th order Voronoi diagram al- 
gorithm of [Lee82, AGSS87]. All three of these results 
apply to arbitrary sets of points in the plane; thus, they 
are more general than our algorithm for computing k 
farthest neighbors. However, for the vertices of a convex 
polygon, our algorithm is superior when k = O(nQ/5). 

In Section 3, we consider the problem of computing a 
k-th largest entry overall in a totally monotone array A. 
We call this the army selection problem for A. For an 
m x n array A, we show that the array selection problem 
can be solved in O(m f n + klg(st/k)) time, where s = 
min{k,m} and t = min(k,n). For small values of k, 
this again represents a significant improvement over the 
naive O(mn) time algorithm obtained by applying the 
linear time selection algorithm of pFP+72]. We also 
show how our array selection algorithm can be used to 
compute k farthest or k nearest pairs of vertices of a 
planar convex n-gon in O(n + klg(t2/k)) time, where 
t = min{k, n}. The best previous result for this problem 
is the O(nQi5 Ign) time algorithm of Chazelle [Cha87]. 
His algorithm is again more general than ours, since it 
applies to arbitrary sets of points in the plane. However, 
for the vertices of a convex polygon, our algorithm is 
superior when k = O(n’/‘). 

In Section 4, we consider the problem of sorting the 
rows of a totally monotone array A. We call this the row 
sorting problem for A. For an m x n array A, we show 
that the row sorting problem can be solved in 0( mn+n2) 
time. For n = O(mlg m), this represents an improve- 
ment over the naive O(mn lg n) time algorithm obtained 
by applying a general sorting algorithm to each row of 
A. As an application of our row sorting algorithm, we 
show that, given a convex n-gon P in the plane, for all 
vertices w of P, we can sort the other vertices by distance 
from u in O(d) time. We then generalize this algorithm 
to 1 polygons with a total of n vertices, showing that for 
each vertex v, we can sort the other vertices by distance 
from v in O(n2(1 + lge)) time. The A? = 1 result allows 
us to find all triples of vertices from a convex polygon 
forming isosceles triangles in O(n’) time, which settles 
an open question raised by Guibaa [Gui88]. 

In Section 5, we consider the problem of sorting all the 
entries of a totally monotone array A. We call this the 
army sorting problem for A. For an m x n array A, we 
show that the array sorting problem requires R(mn lg m) 
time. Thus, for m = 0(n), the total monotonicity of A 
does not make sort+g the entries of A any easier than 
sorting mn arbitrary values. Note that this lower bound 
implies there is no straightforward way of using totally 
monotone arrays to sort in O(n2) time the (:) Euclidean 
distances separating n points in the plane, even if the 

points are the vertices of a convex polygon in counter- 
clockwise order. This problem remains open. (If the L1 
metric is used in place of the L2 metric, then an O(n2) 
time solution for the problem is known be76].) 

Finally, in Section 6, we present some open problems. 
In the following discussion, we assume all the entries in 

our totally monotone arrays are distinct. This is merely 
to simplify our presentation; all the algorithms and anal- 
yses presented in this paper are easily modified to handle 
equalities. 

2 Row Selection 

2.1 A Row Selection Algorithm 

In this subsection, we describe an algorithm that, given 
an m x n totally monotone array A = {a[i, j]) and an 
integer k between 1 and n, computes the k largest entries 
in each row of A in O(k(m + n)) time. The algorithm 
combines two previous results with an important prop- 
erty of totally monotone arrays to achieve the specified 
time bounds. The first of these previous results is the 
SMAWK algorithm, described in the introduction. The 
second is the selection algorithm of Frederickson and 
Johnson [FJ82], that computes, as a special case, the 
k largest elements overall in O(k) sorted lists in O(k) 
time. The property of totally monotone arrays linking 
these two algorithms is given in the following lemma. 

Lemma 2.1 Let B = (a[i, j]} be an m x n totally mono- 
tone array, where m 1 n. If each column of B contains 
at least one row maximum, then each row of B is bitonic. 
Specifical@, for 1 5 i 5 m, 

b[i,l] < -.. < b[i, c(i) - l] < b[i,c(i)J 

and 

6[i,c(i)] > b[i, c(i) + 1] > -. . > b[i, n], 

where c(i) denotes fhe column containing the maximum 
entry in row i. 

Proof Suppose each column of B contains at least one 
row maximum, but B is not bitonic. Since B is not 
bitonic, there exist indices i, j,, and j2, such that 1 5 
i 5 m, 1 5 j, < j2 5 n, and either 

1. jl < j2 5 c(i) and b[i, jl] > b[i, jz], or 

2. c(i) 5 jl < j2 and b[i,jl] < b[i, &I. 

We consider only the first possibility; the proof for the 
second possibility is analogous. Since each column of B 
contains at least one row maximum, there exists an i’ 
such that c(i’) = j2. Furthermore, c(i’) # c(i), since 
by assumption, b[i,jl] > b[i,c(i’)], but by definition, 
b[i,c(i)] is the maximum entry in row i. We must also 
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Figure 2.1: If the maximum entry in row i’ lies in column is, 
then by the total monotonicity of B, we cannot have a[;, jl] > 
byi, jz]. 

have i’ < i, since total monotonicity implies monotonic- 
ity. Now consider the 2 x 2 minor of B corresponding to 
rows i’ and i and columns jl and j,. (This subarray is 
depicted in Figure 2.1.) By definition, b[i’,c(i’)] is the 
maximum entry in row i’. Thus, b[i’,jl] < b[i’,c(i’)]. 
By assumption, b[i, jl] > a[i, c(i’)]. This contradicts the 
total monotonicity of B. n 

We now sketch our algorithm for computing the k 
largest entries in each row of A. The algorithm has 
two parts. First, we decompose A into a series of m- 
row subarrays B1, ,.., Bk. The first subarray B1 con- 
sists of those columns of A that contain row maxima of 
A. If we let A1 be the m-row subarray of A consisting 
of those columns of A not in Bl, then B2 consists of 
those columns of Al that contain row maxima of Al. In 
general, if we let Al-1 be the m-row subarray of A con- 
sisting of those columns of A not in any of BI, . . . , BL-1, 
then Bt consists of those columns of At-1 that contain 
row maxima of AL-I. Using the SMAWK algorithm, we 
can compute B1 , . . . , Bk (or, more precisely, the columns 
forming these arrays) in O(k(m + n)) total time. 

Since the row maxima of BL, 1 5 I 5 k, are the row 
maxima of AL-~ (where, by convention, A0 = A), each 
column of Bf must contain at least one row maximum; 
thus, by Lemma 2.1, the rows of BL are bitonic. Further- 
more, if an entry is among the Z largest entries in some 
row of A, 1 5 4! 5 k, then the entry must be contained 
in one of B I,. . . , Bl. Thus, to compute the k largest 
entries in row i of A, we merely need to compute the 
k largest elements in the 2k sorted lists associated with 
row i. (Each B f contributes two sorted lists, the first 
consisting of those entries in the i-th row of BL to the 
right of the row’s maximum and the second consisting 
of those entries to the maximum’s left.) This can be ac- 
complished in O(k) time using the selection algorithm 
given by Frederickson and Johnson in [FJ82]. Since A 
contains m rows, the total time for this second part of 
the algorithm is O(km), which gives the entire row se- 
lection algorithm a running time of O(k(m + n)). 

Note that our algorithm does not output the k largest 
entries in a row of A in sorted order, as the algorithm of 
[FJ82] does not provide its output in sorted order. Also 
note that the size of our algorithm’s output, km, is not 

necessarily a lower bound on the time required for the 
row selection problem; there may be a more concise rep- 
resentation for the output, given the highly structured 
nature of totally monotone arrays. Finally, note that 
our row selection algorithm can also be used to find the 
k smallest entries in each row of a totally monotone ar- 
ray; as suggested in the introduction, we merely negate 
each entry of the array and reverse the ordering of its 
columns. 

2.2 Applications of Row Selection 

Using the row selection algorithm of the previous subsec- 
tion, we can solve two selection problems involving con- 
vex polygons in the plane. Given a set S = (PI,. . . ,p,,} 
of n points in the plane and an integer k between 1 and n, 
the k farthest neighbors problem for S is that of comput- 
ing k farthest neighbors for each point pi. More precisely, 
for all i between 1 and n, we must find a subset Si C S 
such that ISil = k and for all Q E Si and p’ E S - Si, 
d(pi, q) 2 d(pi, q’). The k neared neighbors problem for 
S is defined analogouslp. If the points ~1,. . . ,pn are 
the vertices of a convex n-gon in counterclockwise order, 
then using our algorithm for computing the k largest en- 
tries in each row of a totally monotone array, we can 
solve both the k farthest neighbors problem and the k 
nearest neighbors problem for ~1,. . . ,pn in O(kn) time. 

To reduce the k farthest neighbors problem for 
PI,--*,Pn to a row selection problem, we use the n x 

(2~3 - 1) totally monotone distance array A defined in 
Section 1. As the n largest entries in row i of A are 
the n d&mces d(Pi,Pl),d(Pi,P2),...rd(Pi,Pn), we can 
use our row selection algorithm to solve the k farthest 
neighbors problem for ~1,. . . ,pn in O(kn) time. 

To solve the k nearest neighbors problem for 
~1,. . . , p,,, we would like to reuse the array A defined 
above; however, to compute the k nearest neighbors of 
pi, we need the n + k smallest entries in row i, since the 
n smallest entries in this row are negative integers that 
do not correspond to distances. For 1 2 k 5 [n/2], our 
upper bound on the time to compute the n + k smallest 
entries in A is O(n2). To obtain an O(kn) time algo- 
rithm for the k nearest neighbors problem, we need a 
slightly more complicated reduction. (Note that we can- 
not circumvent this difficulty by replacing the negative 
integers in A with large positive integers, as this destroys 
the total monotonicity of A.) 

In [LP78], Lee and Preparata consider the nearest 
neighbor problem (the k = 1 special case of the k near- 
est neighbors problem) for the vertices of a convex n- 
gon. In obtaining an O(n) time solution to this prob- 
lem, they introduce an interesting property of certain 
convex polygons which they call the semicircle property. 

. 
3As the k nearest neighbors problem for S is equivalent to the 

n - k farthest neighbors problem for S, we restrict our attention 
to dues of k between 1 and [n/2] for both problems. 
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4a 

Figure 2.2: Q1, 82, Q3, and Qb have the semi-&de prop 
erty. 

A convex polygon P with vertices pl, . . . ,p,, in counter- 
clockwise order is said to possess the semicircle property 
ifp2 , . . . ,p,,-1 lie inside the circle with diameter PIpn. 

Lemma 2.2 ([LP78]) If P satisfies fhe semicircle 
property, then for all i beiwecn 1 and n, the sequence 
of distances d(pi, pl), d(pi, p2), . . . , d(pi,pn) is bifonic. 
SpecijicaIZy, 

d(pi,pl) > **. > d(piapi-1) > d(pi,Pi) 

and 

Lee and Preparata also showed how to decompose an 
arbitrary convex n-gon into four convex polygons peg 
sessing the semicircle property. We use a slightly simpler 
decomposition, due to Yang and Lee wL79]: 

Lemma 2.3 ([YL79]) Let men and p+,t be the uer- 
iices of P with minimum and maximum x-coordinates, 
respectively, and let hottom and pto,, be the vertices of 
P wifk minimum and mazimum y-cootiinates, respec- 
dive/y. Let &I be the polygon formed by vertices p,.+t 
through ptop (i.e., p,.+t, ptop, and those vertices be- 
tween ?‘right and Ptop in the counterclockwise ordering 
of P ‘23 vertices). Similarly, let 92, Q3, and 94 be 
the polygons formed by vertices ptop through men, neft 
through aottom, and pt,ottom through p,.+, respectively, 
as shown in Figure 2.2. &I, Q2, 93, and 94 possess the 
semi-circle property. 

Using this decomposition of P, we can compute the 
k nearest neighbors of each vertex of P. We restrict 
our attention to the vertices of &I, showing that their k 
nearest neighbors in P can be computed in O(kn) time 
- the computation of the k nearest neighbors of the 
vertices of Q2, Qs, and &a is analogous. For each v in 
&I, the k nearest neighbors of v in Qr can be computed 
in O(k) time, since by the semi-circle property, these k 

nearest neighbors must be within k of v in the original 
ordering of P’s vertices. We can also compute for each 
v in &I its k nearest neighbors in Qp. To do this, we 
consider the IQ11 x (IQ21 - 1) array A = {a[i,j]} where 
a[i,f is the distance from the i-th vertexof &I to the (j- 
1)-st vertex of Q2. (We ignore the first vertex of Qr since 
it is also the last vertex of Qr .) It is readily verified that 
A is totally monotone; moreover, the k smallest entries 
in row i of A correspond to the k nearest neighbors in Q2 
of the i-th vertex of Qr. Thus, using our row selection 
algorithm, we can find the k nearest neighbors in QZ of 
all the vertices in Qi in O(kn) total time. In a similar 
manner, we csn compute for each v in Qi its k nearest 
neighbors in Qs and its k nearest neighbors in 94. We 
now have 4k neighbors for each v in 91; using the linear 
time selection algorithm of [BFP+72], we can select the k 
nearest of these neighbors in O(k) additional time. This 
gives the k nearest neighbors in P of each v in Qi in 
O(kn) total time. 

3 Array Selection 

3.1 An Array Selection Algorithm 

In this subsection, we describe an algorithm that, given 
an m x n array A = (u[i, j]}, such that both A and 
its transpose AT are totally monotone, and an integer k 
between 1 and mn, computes the k largest entries overall 
in A in O(m+n+klg(st/k)) time, where s = min{m, k) 
and t = min{n, k}. We first present an algorithm for 
those values of k that are greater than or equal to both 
m and n and then show how to modify this algorithm to 
handle smaller values of k. 

To compute the k largest entries of A, max(m,n} 5 
k _< mn, we begin by checking the relative magnitudes 
of k and mn. If k >_ mn/2 (the “easy” case), we use the 
linear time selection algorithm of BFP+72] to compute 
the k-th largest entry of A in O(k) time. If, on the other 
hand, k < mn/2, we consider two subcases. 

If m 2 ~1, we use the row selection algorithm of Sec- 
tion 2 to compute the 2k/m largest entries in each row of 
A in 0((2k/m)(n + m)) = O(k) time. Let bi denote the 
(2k/m)-th 1 ar es entry in row i of A. Using the linear g t 
time selection algorithm, we can compute the median b’ 
of bl , . . . , b, in O(m) time. Let B denote the m/2 x n 
subarray of A consisting of those rows i such that ki 3 b*, 
and let L denote the list of (2k/m)(m/2) = k entries 
formed from the 2k/m largest entries of each row of A 
notinB. NowifrowiofAisnotinB,i.e.,bi<b’,then 
the n - (2k/m) smallest entries in row i are all smaller 
than b’, which means they are all smaller than the 2k/m 
largest entries in each row of B. Since B has m/2 rows, 
this means that the n - (2k/m) smallest entries in row 
i are all smaller than at least (m/2)(2k/m) = k other 
entries, i.e., these entries need not be considered as can- 
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didates for the k largest entries overall of A. Thus, if we 
recursively compute the k largest entries in B and then 
use the linear time selection algorithm to compute in 
O(k) time the k largest of these entries and the k entries 
of L, we obtain the k largest entries in A. 

If m < n, we apply the procedure described in the 
last paragraph to AT rather than A. This requires O(k) 
time plus the time needed to recursively compute the k 
largest entries in an m x n/2 subarray of A. 

Letting T(k,m,n) denote our algorithm’s running 
time in computing the k largest entries in an m x n array 
A, where max{m, n} 2 k 5 mn and both A and AT are 
totally monotone, we have 

T(k,m,n) = 

’ O(k) if k 2 mn/2, 
T(k, m/2, n) 
+w if k < mn/2 

andmzn, 

TV, m, 42) 
+0(k) ifk <mn/2 

L and m < n. 

The solution to this recurrence is 

T(k,m,n) = O(klg(mn/k)). 

Now suppose k < m. We can eliminate all but k of A’s 
rows from consideration as follows. In O(n + m) time, 
we can compute the row maxima of A. Then, using 
the linear timi: selection algorithm, we can select the 
k largest of these maxima in an additional O(m) time. 
Now consider the m - k rows of A corresponding to the 
m-k smallest row maxima. The entries in these rows are 
all smaller than the k largest row maxima, which means 
they are not among the k largest entries of A. Thus, 
we can eliminate these m - k rows from consideration. 
Similarly, if k < n, we can eliminate all but k of A’s 
columns in O(n + m) time. 

Once the number of rows in A has been reduced to k 
or less and the number of columns in A has been reduced 
to k or less, we can apply our O(klg(mn/k)) time selec- 
tion algorithm for arrays with m 5 k rows and n 5 k 
columns. This gives an algorithm for computing the k 
largest entries in A that works for all values of k between 
1 and mn and runs in O(m + n+ k lg(st/k)) time, where 
8 = min(m, k) and t = min{n, k). 

Note that the only lower bound we have on the time 
required for the array selection problem is n(n). Also 
note that our array selection algorithm can also be used 
to compute the k smallest entries overall in a totally 
monotone array, just aa our row selection algorithm can 
be used to compute the k smallest entries in each row of 
a totally monotone array. 

3.2 AppIications of Array Selection 

Using the array selection algorithm of the previous sub- 
section, we can solve two more selection problems in- 

volving convex polygons in the plane. Given a set 
s = (PI,... ,p,,} of n points in the plane and an in- 
teger k between 1 and (:), the k farthest pairs problem 
for S is that of computing k largest values of d(pi,pj) 
over all unordered pairs (pi,pi) of points. The k nearest 
pairs problem for S is defined analogously. If the points 
Pl,-*-,Pn are the vertices of a convex n-gon in counter- 
clockwise order, then using our algorithm for computing 
the k largest entries overall in a totally monotone array, 
we can solve both the k farthest pairs problem and the k 
nearest pairs problem for pl, . . . , p,, in O(n + k lg(t’/k)) 
time, where t = min(n, k}. 

To reduce the k farthest pairs problem and the k near- 
est pairs problem for ~1,. . . ,pn to row selection prob- 
lems, we use constructions similar to those used in the 
last section. (Here we make use of the total monotonic- 
ity of the transpose of the distance array associated with 
a convex polygon.) For the sake of brevity, we omit the 
details of these reductions. 

4 Row Sorting 

4.1 A Row Sorting Algorithm 

In this subsection, we sketch an algorithm for sorting the 
rows of an m x n totally monotone array A = {a[;, j]} 
in O(mn + n2) time. 

For 1 5 i 2 m and 1 5 r 5 n, let ~+[fl denote the 
column of the entry in row i of A with rank r in row i. 
Furthermore, for 1 5 P 5 n, let cr[O] = n - r + 1. Our 
algorithm consists of m phases, where in the i-th phase, 
we sort row i of A by computing cl[s’], ca[d, . . . , cn[~ using 
cl[i - 11, cz[i - 11,. . . , cn[i - 11. Specifically, we use an 
insertion sort (such as the one described in [Knu73]) to 
sort row i, inserting first u[i, cl[i- l]], then a[;, cz[i - I]], 
then a[i, cs[i - l]], and so on through u[i, c,, [i - 11. 

As noted in [Knu73], the insertion sort algorithm sorts 
n values in O(n + I) time, where I is the number of 
inversions separating the insertion order and the final 
sorted order for the values. An inversion is a pair of 
values (a, a) such that a is inserted before b but a < b (or 
vice-versa). It is not hard to verify that the total number 
of inversions encountered in stepping through the rows of 
an m x n totally monotone array A = (a[i,j]} is O(n2), 
since for each pair of columns in A, corresponding to 
indices jl and j2, 1 5 j, < j2 5 n, there exists at most 
one index i, 1 5 i < m, such that a[i, jl] > a[i, j2] and 
a[i + 1, jl] < a[i + 1, jz]. Thus, our algorithm’s running 
time is O(mn + n2). 

Note that the size of our algorithm’s output, mn, is not 
necessarily a lower bound on the time required for the 
row sorting problem; there may be a more concise rep- 
resentation for the output, given the highly structured 
nature of totally monotone arrays. 
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Figure 4.1: The perpendicular bisector of any pair of points 
gj, and gjp cm intersect P at most twice. 

4.2 AppIications of Row Sorting 

As an application of our row sorting algorithm, we con- 
sider the following point soding problem: given a convex 
n-gon P with vertices pl , . . . , p,, in counterclockwise or- 
der, for each pit sort the other vertices of P by distance 
from pi. &call the n x (2n- 1) totally monotone distance 
array A = {a[i,jJ} we defined in Section 1. The i-th row 
of A contains the distances d(pi,pr), . . . ;d(pi, p,,), along 
with n negative entries; thus, sorting the rows of A using 
our row sorting algorithm gives an O(n2) time solution 
to the point sorting problem for P. 

Now consider the following more general point sort- 
ing problem: given a convex nz-gon P with vertices 
Pl ,--- ,pm in counterclockwise order and a set Q of n 
arbitrary points ~1,. . . , qnr for each pi, sort the vertices 
of Q by distance from pi. We call this the problem of 
sorting Q with respect to P. We cannot represent the 
distances separating the vertices of P and the points of 
Q as a totally monotone array. However, the correct- 
ness of our row sorting algorithm does not depend on 
total monotonicity; total monotonicity is merely used to 
bound of the number of inversions. Thus, even though 
the m x n array B = (b[i, j]), where b[i,j] = d(pi, qj), is 
not totally monotone, we can still apply our row sorting 
algorithm 

In the context of the array B, an inversion corresponds 
to indices i, jr, and jz such that a[i, jl] < b[i, jz] but 
b[i + 1, jr] > b[i + l,jz]. To bound the number of times 
this can occur for any particular pair of indices j, and j2, 
note that the perpendicular bisector of qjl and qjj-, can 
intersect P at most twice, as shown in Figure 4.1. Since 
there is an inversion for j, and jz between rows i and if 1 
if and only if the perpendicular bisector of sI and sa 
intersects the edge of P connecting pi and pi+1 , there are 
at most two inversions associated with the pair (jr, jz). 
Since there are (t) pairs of points in Q, the total number 
of inversions is no more than 2(T) = O(n2). Thus, we 
can sort the rows of B (i.e., sort P with respect to Q) 
in O(mn + n”) time. 

Taking the point sorting problem one step further, 

suppose we are given a set P of n arbitrary points 
~1,. . . ,p,, and that we want to sort P with respect to 
itself. In other words, for each point pi, we want to sort 
the other points by distance form pi. To solve this prob- 
lem, we need to partition the points of P into subsets 
forming convex polygons PI, . . . , Pt. (This could be ac- 
complished by computing the convex layers of P, which 
requires only O(nlg n) time [Cha85].) Assuming this 
partition is given, we can sort P with respect to itself 
in O(n2(1 + lge)) time as follows. Let Pi,. . . , Pl be a 
second partition of the points of P into 1 arbitrary sub- 
sets, each of size n/L. Then for 1 5 i 5 -! and I 5 j < e, 
we sort Pi with respect to Pi in O(nju/L + n2/t2) time, 
where nj is the size of Pi. The total time required is 

For each point pi of P, we now have A? sorted lists, corre- 
sponding to the points of Pi,. &. , Pl, respectively. As we 
can merge these lists in O(n21g4) total time, we obtain 
all O(n2(1+ lg4)) t ime algorithm for sorting the points 
of P. 

As a final application of our row sorting algorithm, 
suppose we are given a set P of n arbitrary points 
~1,. . . ,p,, and that we want to find all triples (pi,pj, ph) 
such that pi, pi, and pin. form an isosceles triangle. Equiv- 
alently, we want to find for each pi all pairs (pj,pk) such 
that d(pi, pj) = d(pi ,pk). If for each pi, we have the 
other points sorted by distance from pi, then a simple 
linear scan of the sorted list for pi gives US all the pairs 
of points that are equidistant from pi. Thus, sorting P 
with respect to itself in O(n2( 1 + lge)) time allows us to 
find alI of the isosceles triangles formed by points of P 
in O(n2(1 + lge)) t ime. Similarly, if the points of P are 
the vertices of a convex n-gon in counterclockwise order, 
then we can find all of the isosceles triangles formed by 
points of P in O(n2) time. (Note that in Section 1, we 
made the simplifying assumption that no two entries of a 
totally monotone array are equal. However, as was also 
mentioned in Section 1, all of the algorithms and analy- 
ses in this paper are easily modified to handle equalities.) 

5 Array Sorting 

As a final variation on our paper’s theme, we consider 
the problem of sorting all the entries of an m x n to 
tally monotone array. A primary motivation for consid- 
ering this problem is the following problem from compu- 
tational geometry: given n pointspr , . . , , pn in the plane, 
sort the (z) distances d(pi , pi), corresponding to all pairs 
(pi,pj) of points. If distance is measured in terms of 
the Lr metric (i.e., for pi = (zir Yi) and Pj = (zj, Yj), 
d(pi,pj) = Izi - zj] + ]vi - yj]), then this problem can 
be solved in O(n2) time pe76]. However, if distance is 
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measured in terms of the La (Euclidean) metric, then no 
o(n2 lgn) time algorithm for this problem is known. For 
the special case of this problem when PI,. . . ,pn are the 
vertices of a convex polygon in counterclockwise order, 
the distance array defined in Section 1 gives a reduc- 
tion to the array sorting problem for a totally monotone 
array. Unfortunately, unlike the three array problems 
we considered in Sections 24, the array sorting prob- 
lem is not significantly easier than the general problem 
of sorting mn arbitrary values, which takes O(mn Ig mn) 
time. Specifically, we can show a simple R(mn lg m) time 
lower bound for the array sorting problem, which im- 
plies that the aforementioned distance array reduction 
does not help us in sorting the (3 Euclidean distances 
associated with the vertices of a convex n-gon. Further- 
more, since we can solve the array sorting problem in 
O(mn lg m) time by applying the row sorting algorithm 
of the previous section and then merging the m sorted 
rows, we have an optimal algorithm for the problem. 

In Section 3, we give an algorithm for computing 
the k largest entries overall in an array A such that 
both A and its transpose are totally monotone. It 
remains open whether a comparable result can be 
obtained for totally monotone arrays whose trans- 
poses are not totally monotone. 

We prove the lower bound on the array sorting prob- 
lem ss follows. Let Ll, . . . ,L, denote n independent 
lists, each containing m positive integers, where for 
1 < j 5 ?I, Lj = /j[l], . . . , Zj [m]. Sorting any one of 
these lists requires Ct(mlg m) time in the decision tree 
model; thus, sorting all of the lists requires n(mnlgm) 
time. In o(mn lg m) time, we will reduce the problem of 
sorting LI , . . . , L, to an array sorting problem, thereby 
obtaining the desired lower bound on array sorting. 

The only array problem considered in this paper for 
which we obtain matching upper and lower bounds 
is the array sorting problem discussed in Section 5. 
It remains open whether the algorithms for row se- 
lection, array selection, and row sorting given in 
Sections 24 can be improved or nontrivial lower 
bounds for these problems obtained. (Lower bounds 
might follow from the sizes of the various problems’ 
search spaces - for example, a lower bound of Q(S) 
on the number of combinations of row permutations 
possible for a totally monotone array would imply 
an n(lg S) lower bound on the time necessary to sort 
the array’s rows in a linear decision tree model.) 

3. 

In O(mn) time, we can compute the maximum integer 
I’ in any of the lists. Let M = 1’ + 1. Now consider the 
mx n array A = (a[i,~J), where a[i,f = jM+lj[q. A is 
clearly totally monotone, since for all i, a[i, l] < a[i, 21 < 
. . . < a[i, n - l] < a[i, n]. Furthermore, the rank of a[i, j] 
in A is (j- 1)M plus the rank of lj [d in Lj. Thus, sorting 
the entries of A implicitly sorts Ll, . . . , L,. 

In Subsection 4.2, we applied our algorithm for sort- 
ing the rows of a totally monotone array to the 
vertices of a convex polygon P, obtaining for each 
vertex u an ordering of the other vertices of P 
by distance from v. We then extended this tech- 
nique to arbitrary point sets. However, it remains 
open whether our two selection algorithms for to- 
tally monotone arrays, which we also apply to the 
vertices of a convex polygon, can likewise be applied 
to arbitrary point sets. 
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