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Superlinear Bounds on Matrix Searching 

Maria M. Klawe* 

The technique of matrix searching in totally mono- 
tone matrices and their generalizations is steadily find- 
ing ever more applications in a wide variety of areas 
of computer science, especially computational geometry 
and dynamic programming problems (see [AKMSW87], 
[AK87], [AP88], [AS87], [AS89], [EGG88], [KK88], 
[WSS]). Although an asymptotically optimal linear time 
algorithm is known for the most basic problem of find- 
ing row minima and maxima in totally monotone matri- 
ces [AKMSW87], for most of the generalizations of to- 
tally monotone matrices, only superlinear algorithms are 
known, though until now no superlinear lower bounds 
have been proved. This paper gives the first superlin- 
ear bound for matrix searching in two types of totally 
monotone partial matrices. We also give a matching up- 
per bound for a subclass of one of them, though unfor- 
tunately the proof of the lower bound does not apply to 
this subclass. These types of matrices, which we refer 
to as v-matrices and h-matrices, respectively, were in- 
troduced by Aggarwal and Suri [AS891 who used them 
to find the farthest visible pair in a simple polygon. In 
addition, these matrix classes are natural extensions of 
staircase matrices which have applications in computa- 
tional geometry and dynamic programming problems. 

The precise results of this paper are as follows. We 
show that any algorithm for finding row maxima or min- 
ima in totally monotone partial 2n x n matrices with 
the property that the non-blank entries in each column 
form a contiguous segment, can be forced to evaluate 
n(na(n)) entries of the matrix in order to find the row 
maxima or minima, where o(n) denotes the very slowly 
growing inverse of Ackermann’s function. A similar re- 
sult is obtained for n x 2n matrices with contiguous non- 
blank segments in each row. 

We also give an O(mo(n) + n) time algorithm to find 
row maxima and minima in totally monotone partial 
n x rn matrices with the property that the non-blank en- 
tries in each column form a contiguous segment ending 
at the bottom row. This upper bound comes from ex- 
tending the Klawe-Kleitman algorithm [KK88] for ma- 
trix searching in staircase matrices. The lower bounds 
are proved by introducing the concept of an indepen- 
dence set in a partial matrix and showing that any ma- 
trix searching algorithm for these types of partial matri- 
ces can be forced to evaluate every element in the inde- 
pendence set. Wiernik’s D(na(n)) lower bound on the 
lower envelope of n line segments in the plane ([WSS]) 
is then used to construct an independence set of size 
!J(no(n)) in the matrices of size 2n x n and n x 2n. 

1. Introduction 

A partial matrix is a matrix in which entries are 
either real numbers or are blank. A partial matrix 
M = (A$) is called totally monotone if for every 
i < i’, j < j’ such that all entries of the 2 x 2 subma- 
trix, Mij , Mijl, Milj, and Milj’, are non-blank, whenever 
Mij 5 Mii, we have n/i,j 5 Mi,j,. A totally mono- 
tone matrix is a totally monotone partial matrix with 
no blank entries. 

We will call a totally monotone partial matrix a v- 
matrix (vertical matrix) if the set of non-blank entries 
in each column forms a contiguous interval. Similarly, 
an h-matrix (horizontal matrix) is a totally monotone 
partial matrix such that the set of non-blank entries in 
each row forms a contiguous interval. Finally, a skyline 
matrix is a v-matrix such that every column’s non-blank 
segment ends at the bottom row. A partial matrix is 
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a staircase matrix if it is both a v-matrix and an h- 
matrix (this definition is slightly more general than the 
one given in [AK871 and [KK88], but the algorithms 
of those papers can be trivially extended to handle this 
definition of staircase matrix). Examples of an h-matrix 
and skyline matrix are shown in Figure 1, where the grey 
areas indicate the regions containing non-blank entries. 

(a) h-matrix (b) skyline matrix 

Figure 1 

Totally monotone matrices were introduced by Ag- 
garwal, Klawe, Moran, Shor and Wilber in [AKMSW87], 
who showed that several problems in computational ge- 
ometry could be reduced to finding the maximum or 
minimum value in each row of a totally monotone ma- 
trix. We will use the term matrix searching to refer 
to the task of finding row minima or maxima in a ma- 
trix. Aggarwd et al gave a linear time algorithm (which 
we will refer to as the SMAWK algorithm) for matrix 
searching in totally monotone matrices, yielding faster 
algorithms for a broad collection of problems. Wilber 
[W88] used the SMAWK algorithm to get a linear time 
algorithm for a dynamic programming problem known 
as the concave least weight subsequence problem. Ag- 
garwal and Klawe [AKU’] generalized totally monotone 
matrices to staircase matrices, and showed that addi- 
tional problems of computational geometry could be re- 
duced to matrix searching in staircase matrices. Ag- 
garwal and Klawe [AK871 also gave an O(m loglogn) 
time algorithm for searching staircase matrices of size 
n x m, again yielding faster algorithms for several prob- 
lems in computational geometry. Klawe and Kleitman 
[KK88] gave an O(mcr(n) + n) time algorithm for ma- 
trix searching in staircase matrices, and extended this 
algorithm to handle a class of dynamic programming 
problems satisfying convex quadrangle inequalities in- 
troduced by Eppstein, Galil and Giancarlo [EGG88]. In 
[AS89], Aggarwal and Suri introduced v-matrices and 
h-matrices, and used matrix searching in these matri- 
ces to give a faster algorithm for computing the farthest 
visible vertex pair in a simple polygon. 

This paper has two main contributions. The first 
is a superlinear lower bound for matrix searching in v- 

matrices and h-matrices. This is the first superlinear 
lower bound for matrix searching in totally monotone 
matrices. The problem of extending this lower bound to 
staircase matrices remains open, and requires at least 
one more idea since we can show that our current tech- 
niques will not suffice. The second contribution is the 
extension of the Klawe-Kleitman matrix searching algo- 
rithm for totally monotone staircase matrices to skyline 
matrices. The question of extending the algorithm to ei- 
ther v-matrices or h-matrices remains open. In the next 
section we outline the proofs of the lower bound, Sec- 
tion 3 contains a sketch of the extension of the Klawc 
Kleitman algorithm to skyline matrices, and the final 
section describes remaining open problems. 

2. The Lower Bound 

We assume that an algorithm for matrix searching in 
a partial matrix is given as input the pattern of non- 
blank entries in the matrix. For a v-matrix this simply 
the positions of the top and bottom non-blank entry in 
each column. We will refer to this pattern matrix in- 
dicating the positions of non-blanks as the structure 
matrix (or structure v-matrix or h-matrix as appropri- 
ate) of the partial matrix. The algorithm may query 
the value of any entry in the matrix at any time, and at 
the end must report the position of the maximum [min- 
imum] value in each row. We will prove a lower bound 
on the number of entries that must be evaluated in the 
worst-case. 

Our strategy to prove the lower bound is as follows. 
Given a fixed structure matrix, we define the concept 
of an independence set for that structure matrix. Next 
we show, using Wiernik’s Q(ncr(n)) lower bound on the 
lower envelope of n line segments in the plane ([W86]), 
that there is a structure matrix of size 2n x n possessing 
the column interval property which has an independence 
set of size Q(na(n)). Transposing this matrix gives a 
structure h-matrix of size 2n x n with an independence 
set of size Q(na(n)). The final step is to exhibit an 
adversary which can respond to queries in such a way 
that that the matrix created is totally monotone, and 
such that any element of the independence set which 
has not yet been queried is still a candidate, but not a 
certainty, for the maximum in its row. In the remainder 
of this section we give the definition of independence set 
and show how Wiernik’s result gives a structure matrix 
with the desired size of independence set. For the v- 
matrix case we construct the adversary directly from 
Wiernik’s result, but this does not seem to work for the 
h-matrix case. 
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Let A be an n x m structure matrix. A subset S C 

(I,.. .,n} x {l,..., m} is said to be independent for 
A if every (i, j) in S, the entry Aij is non-blank and 
there exists some j’ # j such that (i, j’) is also in S. 
Moreover, for every i < i’ and j < j’ such that both 
(i, j’) and (i’, j) are in S, we have that either Aij is 
blank or Aitjt is blank. For any matrix M we will call 
the ordered pair (i, j) the index of the entry Mij. 

Given a set of line segments II,. . . , I, in the plane, 
we define their left envelope to be the set of points 
{.z : z E li for some i, and z is the leftmost point in the 
intersection of ~y=~li with the horizontal line through 
z}. Figure 2(a) shows a set of line segments and their 
left envelope. It is easy to see that the left envelope is 
always the union of a finite set of line segments. Wiernik 
[W86] gives a construction of n line segments Ii,. . . ,l, 
in the plane such that their left envelope has n(ncr(n)) 
segments. For each i let (zi, yi) and (xi, yi) be the top 
and bottom endpoints of li respectively, and let Li be 
the infinite line extending li. Suppose the line segments 
are ordered so that whenever i < j, as y goes to co the 
line Li is eventually to the left of Lj. We use the li 
to define a 2n x n structure matrix, A as follows. Let 

{ Wl,..., 2024 = {Yj : j = 1,2,i = l,.. .,n} arranged 
in decreasing order. Without loss of generality we may 
assume that the {wi} are all distinct. The i-th row of the 
structure matrix corresponds to wi and the j-th column 
corresponds to the line segment lj. More precisely, the 
top non-blank entry in the j-th column of A is in the row 
i such that wi = $i and the bottom non-blank entry is in 
the row i’ - 1 where wit = 4. A is obviously a structure 
v-matrix. We now show that A has an independence 
set of size a(no(n)). Figure 2(b) shows the structure 
v-matrix corresponding to the line segments in Figure 

2(a)- 

We start with a set T that is almost an independent 
set. The only way in which it may fail is that there 
may be some rows in which T only has one entry. Let 
T = {(i, j) : there is some ye with wi 2 yc > wi+l such 
that the line segment forming the left envelope at y = yc 
is lj}. It is easy to see that A must be non-blank at every 
(i, j) in T. Suppose i < i’ and j < j’ such that both 
(i, j’) and (i’, j) are in T, and suppose both (i, j) and 
(i’, j’) are non-blank in A. Let a be the y-coordinate of 
the intersection of Lj and Ljl. Because of the ordering 
of the line-segments and the fact that (i, j’) E T, it is 
not hard to see that we must have z > wi+i and hence 
% > Wit. Since (i’, j’) is non-blank, it is impossible that 
(i’, j) E T since ljl lies to the left of lj for the entire 
interval between wit and wil+l. Thus at least one of 
(i, j) and (i’, j’) must be blank. Figure 2(c) shows the 
set T for the line segments in Figure 2(a). 

w5 

w6 
w7 

structure v-matrix 

-8 
(c) the set T 

(a) the left envelope 

Figure 2 

We complete the construction of the independent set, 
S, by removing all points from T which are the unique 
point in their row. We claim that S has size ~(ncu(n)). 
Since we removed at most 2n points, it suffices to show 
that the size of T is n(no(n)). This follows immediately 
from the observation that in any interval in which no 
line segment begins or ends, each lj can occur in the left 
envelope at most once. 

We now turn to the problem of constructing an ad- 
versary which will force a row-maxima finding algorithm 
to evaluate every entry whose index is in the indepen- 
dent set. We first define a v-matrix, M, whose structure 
matrix is A. We then prove that M is totally monotone. 
Next we will define a set of v-matrices Mf , such that 
each Mf has structure matrix A and agrees with M on 
all entries outside the independence set. We then prove 
that each Mf is totally monotone. Finally we construct 
an adversary for the searching algorithm such that the 
positions of the row-maxima cannot be known until each 
element whose index is in the independence set has been 
queried, and such that the final matrix will be Mf for 
some f. 

Let M be the v-matrix with structure matrix A de- 
fined by Mij = the maximum number of lines lying to 
the right of lj at any point strictly between wi and wi+l 
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whenever Aij is non-blank. Note that Mij assumes a 
maximal value in row i if and only if part of lj is in the 
left envelope between wi and wi+r . The next lemma 
proves that M is totally monotone. 

Lemma 2.1. M is totally monotone. 

Proof. Suppose i < i’, j < j’ such that all entries 
of the 2 X 2 submatrix, Mij, Mijl, Milj, and Mi,jt, axe 
non-blank, and Mij 5 Mijf. We must show that Milj 2 
M<ljl. Let z be the y-coordinate of the intersection of 
Lj and Lit. Since j < j’ we know Lj lies to the left of 
Ljl a~ Y goes to 00. Since Mij < Mijt we must have lj 
lying to the right of 2jl at some point strictly between 
wi and wi+i. Thus we must have z > wi+i and hence 
2 > Wit since Wi+l > WiJ. This shows that lj is to the 
right of ljl at every point between wit and wil+i, and 
hence Milj 5 Mitj’. m 

For each function f from S to the non-negative real 
numbers, we define Mf to be the v-matrix such that 
M,$ = Mij + f(i, j) for (i, j) E S and M,$ = Mij other- 

wise. The next lemma shows that Mf is totally mono- 
tone. 

Lemma 2.2. For any function f from S to the non- 
negative real numbers, the v-matrix Mf is totally mono- 
tone. 

Proof. Suppose i < i’, j < j’ such that all en- 
tries of the 2 x 2 submatrix, iVf6, M,$,, M~j, and Mi!j,, 

are non-blank, and M,$ 5 M,$. We must show that 

M~j 5 M~j,- If none of the indices are in S this follows 
from Lemma 2.1, so we may assume that at least one of 
the indices is in S. Since S is an independence set, we 
cannot have both (i, j’) and (if, j) in S. Also M( 5 M&, 
implies that if (i, j) is in S then (i, j’) is also. Moreover, 
if (i’, j’) is in S then either (i’, j) is also, or Mi!j 5 Mi!j,, 
Thus it suffices to consider the cases (i, j’) E S and 
i:i’i),~ SC S;ppose we have (i, j’) E S. This implies 

ij - ii), and hence Mi’j < MiljJ by Lemma 

2 1 In addition . . I MI = Milj since (i’,j) 4 S, and s’j 
Mitjl 5 M,$j, since f only assumes non-negative val- 

ues. Combining this gives Mi!j 5 M~j, a~ desired. NOW 
suppose (i’, j) E S. Let z be the y-coordinate of the 
intersection of Lj and Ljl. Since (i’, j) E S we must 
have wil > z, and hence lj lies to left of ljl at every 
point between wi and wi+r, contradicting the assump- 
tion M,$ 5 J$,, and completing the proof. 1 

We are now ready to define the behaviour of an ad- 
versary for any row-maxima finding algorithm on v- 
matrices with structure matrix A. When the algorithm 

queries the entry with index (i, j), the adversary will 
respond with Mij for (i, j) $ S and Mij + k + 1 for 
(i, j) E S, where k is the number of entries with in- 
dices in S that the algorithm has queried so far. By 
Lemma 2.2 the matrix produced by the adversary is to 
tally monotone. Moreover, if (i, j) is the last index in 
S to be queried by the algorithm, the adversary could 
answer Mij instead of Mij + IS’1 and still produce a to- 
tally monotone matrix. Since S has at least two indices 
in row i, the question of whether Mij is a row-maxima 
cannot be answered without evaluating it. This shows 
that the algorithm must evaluate 15’1 = O(no(n)) en- 
tries of the v-matrix in order to determine the positions 
of the row-maxima. 

We now turn to the proof of the lower bound for the 
h-matrix case. Let A, T be the tranposed versions of the 
structure matrix and “pm-independence set” from the 
proof for the v-matrix case. Clearly A is a structure h- 
matrix. As before let S be the set obtained by deleting 
any element of T which is the unique element of T in its 
row. It is easy to check that S is an independence set 
for A from the definition of independence set. 

We first define Si = {j : (i, j) E S}. Similar to the 
proof in the v-matrix case we will construct an h-matrix 
M with structure matrix A such that for each function f 
from S to the non-negative reals, the matrix M’ defined 
by M,$ = Mij for (i, j) $ S and Mh = ISil + f(i, j) is 
totally monotone. Given M, the adversary which forces 
a row-maxima finding algorithm to evaluate each entry 
with an index in S is completely analogous to the v- 
matrix case. The construction of M takes a bit more 
work in this case than in the v-matrix case. For each i 
let Ai = {(i, j) : Aij is non-blank}. We begin by defining 
a partial order on each Ai. 

Let j, j’ E Ai. We define a relation xi on Ai by 
j xi j’ if any of the following hold: 
(i) (i, j) $8 S and (i, j’) E S. 
(ii) Neither (i, j) nor (i, j’) are in S, j < j’ and for some 
h < i we have (h, j’) E S and Ahj non-blank. 
(iii) Neither (i, j) nor (i, j’) are in S, j’ < j and for some 
i’ > i we have (i’, j’) E S and Aitj non-blank. 

Let 4i be the transitive closure of xi, i.e. j -+ j’ if 
for any k 2 1 there exist jo, ji,. . . , jk E Ai with j = 
j0 ai jl ai . . . ai jk = j’. 

Remark 2.3. Whenever p, 4 f Ai with p +i q we have 

(iJ4 4 s- 

Proof. This follows immediately from the observation 
that whenever p,q E A; with p ai q we have (i,p) $! S. 
I 
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Lemma 2.4. Suppose A is a structure h-matrix. Then 
+ is a partial order on Ai. 

Proof. Since -+ is obviously transitive, it suffices to 
show that we cannot have j + j for any j in Ai. Sup- 
pose the contrary. Let k 1 1 and j,, j,, ‘. . . , jk E A; such 
that j = jo O(i j, ai . . . ai jk = j, and suppose that 
j and k are chosen so that k is minimal, i.e. whenever 
jh ai j: ai . . . a; j;, = jb vie have k’ 1 k. It is easy 
to check from the definition of ai that we never have 
j’ ai j’ for any j’ E Ai. It is also not hard to see that 
we cannot have j ai j’ ai j for any pair j, j’ in Ai. To 
see this, suppose without loss of generality that j < j’. 
Then in order to have j ai j’ ai j, we must have some 
h < i such that (h, j’) E S and Ahj non-blank, and 
some i’ > i such that (i’,j) E S and Ai’j’ non-blank. 
However, this contradicts the independence of S since 
we have h < i’, j < j’ with both (h, j’) and (i’, j) in S 
and both Ahj and Ai,j, non-blank. Thus we may as- 
sume that k 2 3, and that jo < j, for s = 1, . . . . k - 1. 
Also, note that (i, jd) is not in S for 0 5 s 5 k. This 
is obvious for 0 5 s 5 k - 1 by Remark 2.3, and also 
for 8 = k since jk = jo. Thus whenever j, < js+l there 
is some h, < i such that (h,, j,+,) E S and Ah,j, is 
non-blank, and whenever j, > js+l there is some i, > i 
such that (i8, j#+l) E S and Ai,j, is non-blank. 

Choose r such that 1 j, - jr+1 1 is maximal. Without 
loss of generality we assume that j, < jr+1 (the proof 
for the other case is symmetric). Let t such that j, > j, 
for s # t. It is not hard to prove that for any q with 
jo < q 5 j,, there is some s and some s’ such that 
j, < q < js+l and js’+l < q < j,). For example, taking 
s to be maximal such that j, < q for each w 5 s, and s’ 
to be minimal such that j, < q for each x > s’ will do. 
Thus there is some y such that j,+, c jr+1 5 j,. Now 
since lj, - j,+, 1 is maximal, we must have j, 5 j,+,. 
We have h, < i < i, and both (h,, j,+,) and (iv, j,+l) 
in S and both Ah,j, and AiYjY are non-blank. Moreover, 
since A has the row interval property and j, 5 j,+, < 
j,+, 5 jY, we must have that Ah,j,+l and Ai,i,+l are 
non-blank. Now this contradicts the independence of S, 
completing the proof. 1 

Iffor i = l,..., n we have a linear order <i on each 
Ai, we define the canonical partial matrix generated 
by the {<i} to be the matrix M with M+j = the position 
of j in the <i ordering of Ai if A:j is non-blank, and 
blank otherwise. We will say that a set (+:-+ is a 
partial order on Ai} is consistent if whenever j, j’ E Ai 
with j < j’ and j + j’, for every i’ with i < i’ and 
j, j’ E Ai, we have j +;I j’. 

Remark 2.5. If the linear orderings {<i} are consis- 

tent then the canonical partial matrix generated by the 
{<i} is totally monotone. 

Proof. This follows immediately from the definition 
of total monotonicity. w 

Suppose +i is a partial order on Ai and j, j’ are in- 
comparable elements of A; with j < j’. We define the 
partial order 4: (j, j’) on Ai to be the extension of 4; 
obtained by adding the relation j -$ j’, and similarly 
define the partial order 4,: (j, j’) on A; to be the exten- 
sion of + obtained by adding the relation j’ -x; j. If 
P = (4,: s = 1,. . , , n) we use Pi+< j, j’) and Pi-(j, j’) 
to denote the sets obtained by replacing -+ in P by 
-$ (j, j’) and 4,: (j, j’) respectively. 

Lemma 2.6. If P = (4,: s = 1, ..+ ,n} is consistent 
and j, j’ are incomparable elements of Ai with j < j’, 
then at Ieast one of P,‘(j, j’) and PiW(j, j’) must be con- 
sistent. 

Proof. Suppose not. Since Pi+< j, j’) is not consis- 
tent, there is some i’ > i with j, j’ E Ai1 and j’ +I j. 
Similarly, since P,.- (j, j’) is not consistent, there is some 
h < i with j, j’ E Ah and j + j’, but this contradicts 
the consistency of P.m 

Corollary 2.7. If P = (4. : s = 1, . . . , n} is consis- 
tent then there is a consistent set P’ of linear orderings 
extending P . 

Proof. This follows immediately from Lemma 2.6. 1 

Lemma 2.8. Suppose A is a structure h-matrix, and 
j,,..,,jk E Ai with j, ai . . . ai jk. Then if (js - 
jr--l)(jk - jk-1) < 0 for each s = 2,. . . , k - 1, then jk 
cannot lie between jd-l and j, for s = 2,. . . , k - 1. 

Proof. First suppose j, < jk-1. This implies that 
jb--l < j, for each s = 2,. . . , k - 1. Thus it suffices 
to show jk < jd-l for each s = 2,. . . ,k. The proof 
is by backwards induction on s. This holds for s = k 
since we assumed jk < j&l, so suppose 3 _< s 5 k and 
jk < jb-i. Since j.-, a; js-l there is some h < i such 
that ja-2, js-l E Ah and (h, j,-1) E S. Similarly as 
j,-1 cq j, there is some i’ > i such that jk-1, jk E Ait 
and (i’,jk) E S. If jk 1 js-z then jk E Ah because 
A has the row interval property and jsBz 5 jk < jd-l. 
This contradicts the independence of S. The argument 
for the case jk > jk-1 is symmetric. 1 

Lemma 2.9. Suppose A is a structure h-matrix, and 
A,. ..,jk EAT with j, ai . . . ai jk, where k > 2. Let p 
be minimal such that (j., - js-l)(jk - jk-1) > 0 for all 
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s with p 5 s _< k. Then j, lies between j,-i and js for 
s= ,...,p. 1 

Proof. The proof is by induction on k. It is obvi- 
ously true for k = 2 so assume k > 2 and that the 
hypothesis holds for k - 1. Let q be minimal such that 
(jd - js-r)(j~-r - jk-2) > 0 for all s with q < s 5 
k - 1. Without loss of generality suppose j, c j,-, . If 
pSk-- 1 it is easy to see that statement holds since 
clearly p = q. Thus suppose p = k. This implies that 
(js - js-l)(jk - jk-I) < 0 for s = q,. . . , k - 1. Now 
by Lemma 2.8, we have that j, < j&-i for s = q, . . . , k 
and the interval li, , jk- r] contains the interval [js -r, j#] 
for s = q,... , k - 1. This completes the proof as the 
interval b,-r, j,] contains all the j, for s = 1,. . . , q by 
the induction hyp0thesis.g 

Corollary 2.10. Suppose A is a structure h-matrix, 
ji ,..., jk EAT withjr Oci . ..ai j,, where k > 2. Then 
jk is either the maximum or minimum of {j, : 1 5 s 5 

W 

Proof. Let p be as in Lemma 2.9. Without loss of 
generality suppose jp < j,+l < . . . < j&l < jk. If 

P= 1 we are done so assume p > 1. Then jp < jp- 1 
so by Lemma 2.9 it sufhces to show that jp-i < jk+ If 
jk < jp--l then 3 ‘p+r lies between j, and jp-i but this is 
impossible by Lemma 2.8 since (jp - jp-i)(jp+r - jp) < 

0.1 

Lemma 2.11. Suppose 2, y 1 2, al < . . . a,, b, < 
. . . < br, a1 < b, and at < br. Then there exist U, v with 
2 5 u 5 x,2 < v 5 y such that a,-1 5 b, < a, < b,-1. 

Proof. Choose U, v > 2 such that b, < a, and such 
that a,, - b, is minimal. It is always possible to do this 
since b, < u2 and 2, y 2 2, and clearly by the minimality 
of au - bu we have a,-1 5 b, c a,, 2 b,-1.1 

Theorem 2.12. Suppose A is a structure h-matrix. 
Then the set {-$} is consistent. 

Proof. Suppose there exist i < i’, j < j’ such that 
j, j’ E Ai fl Ait and j -+ j’, j’ +it j. Then there exist 
k,k’,jl,...,h,j:,.. . , j;, such that j = ji ai . , . ai 

jk = j’ and j’ = ji ait . . . ait ji, = j. Moreover, 
since j < j’ by Corollary 2.10 we have j’ > j, for s = 
1 k- 1. * - 8 1 and j < j: for s = 2,...,k’. Let p be 
minimal such that (j, - jd-i)(jk - j&i) > 0 for all 

s with p 5 s 5 k, and let p’ be minimal such that 
(j: - j:-l)(& - ji,-r) > 0 for all s with p’ 5 s 5 k’. 
By Lemma 2.9 we have jp-i 5 j, jp-1 < jp < jp+i C 
. . . < j&l < jk = j’, j’ 2 j$-, and j = jb, < j;,-r < 
. . . < ji, < jilwl. Now by Lemma 2.11 there exist 
u,v 2 2 such that j,-1 5 jt < j, 5 jJ-r. Now since 

j,-i < j, and j,-r ai j,, there is some h < i such 
that ju-1, j, E Ah and (h, jU) E S. Moreover, as A is 
a structure h-matrix, j: must be in Ah also. Likewise, 

‘I as 3v-1 > ji and j:-r ai’ jh , there is some T > i’ such 
that j:-i, j: E A, and (P, j:) E S. Finally, as A is a 
structure h-matrix, j, must be in A, also. Combining 
allthiswehaveh<i<i’<r, j: <j,, @,hJ E 
S, (r, ji) E S and both (h, ji) and (r, ju) non-blank, 
contradicting the independence of S.1 

By Corollary 2.7, there is a consistent set, {<ill of 
linear orderings which extend the set (4;) of partial or- 
ders. Let M = (j&j) be the canonical partial mat& 
generated by the (<;}. By Remark 2.5, M is a totally 
monotone. Thus M is an h-matrix with A as its struc- 
ture matrix. Recall that for any function f from S to the 
positive reals, we define the matrix Mf by h$ = Mij 

for (i, j) e S and jV4 = ISi] + f(i, j). 

Theorem 2.13. The partial matrix Mj is totally 
monotone. 

Proof. Suppose i < i’, j < j’ such that all en- 
tries of the 2 x 2 submatrix, Mi, Mi,, Msj, and Mij,, 
are non-blank, and Mi’j 5 ML,. We must show that 

Mi!j I M~j,. There is nothing to prove if none of the 
indices are in S since M is totally monotone. Also 
note that if exactly one of indices in a row is in S 
then the relationship between the two entries in that 
row is the same in M and in Mf , It is not hard to 
see that this implies we may restrict our attention to 
the two cases (i, j),(i, j’) E S and (i’, j), (i’, j’) $! S; 
and (6 j), (i, j’) 4 S and (i’, j), (i’, j’) E S. Suppose 
(i, j), (i, j’) E S and (i’, j), (i’, j’) $ S. Then by the def- 
inition of CY~I we have jq, j’ and hence Mi’j < Miljl. 
The argument for the other case is analogous. g 

As we noted at the beginning of the proof for the h- 
matrix lower bound, given Theorem 2.13 the remainder 
of the proof of the lower bound for h-matrices can now 
be completed along entirely analogous lines as the proof 
for the v-matrix case. 

3. The Matrix Searching Algorithm for Sky- 
line Matrices 

In this section we extend the almost linear time ma- 
trix searching algorithm of [KK89] to a more general 
type of partial totally monotone matrices, skyline ma- 
trices. Recall that a skyline matrix is a v-matrix in 
which every non-blank column segment ends at the bot- 
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tom row. The extension follows from the following ob- 
servation. Suppose that, given some particular type of 
partial totally monotone matrix, we choose parameters 
n, m and t and let qc(t, n, m) denote the worst-case num- 
ber of comparisions needed to find the row-minima of 
any of this type of partial matrix with those parame- 
ter values. Then if this function qe(t, n, m) satisfies the 
three key propositions in [KK89], namely Lemma 2.1, 
Corollary 2.4 and Theorem 2.6, it will also satisfy The- 
orem 2.9, i.e. qe(n, n,m) = O(ma(n) + n). 

For simplicity and completeness we restate the three 
key propositions from [KK89]. As in [KK89] we define 
the functions Li(n) for i = -l,O, 1,2,. . . recursively 
as follows. L-l(n) = n/2, and for i 2 0, Li(n) = 
min,{Lf-i(n) 5 1). Thus Lo(n) = pogra],&(n) is es- 
sentially log*(n), La(n) is essentially log**(n) etc. We 
now define o(n) = min{s : Ld(rb) 5 s). 

Proposition 3.1 (Lemma 2.1 in [KK89]). For any pos- 
itive integer a we have 

qc(n, n, m) 5 qc(n/a, n, m) + O(am + n). 

Proposition 3.2 (Corollary 2.4 in [KK89]). For any 
positive integer a we have 

qc(n, n, m) I qJn/a, n/a, m) + O(am + n>. 

Proposition 3.3 (Theorem 2.6 in [KK89]). There is a 
constant cl such that for s 2 0 we have qc(n,n, m) 5 
cl(m + nLa(n)) + ma.(& Qe(ni/Ls-l(Q), W,mi) : 

Cfzl ni I r&(n) and Cf=, mi < m + nL$(n)}. 

For M a skyline matrix, we will say that row i is a top 
row if it is the top row of some column’s non-blank seg- 
ment. A skyline matrix M is said to be of shape (t, n, m) 
if it has at most t top rows, at most n rows and at most 
m columns. We will denote the worst case number of 
comparisons needed to find the row-minima of a skyline 
matrix of this shape by qc(t,n,m). We will now prove 
that the three propositions above hold for this defini- 
tion of the function qc, thus providing an O(mo(n) + n) 
time algorithm for finding row-minima in skyline ma- 
trices. The proofs of Propositions 3.1 and 3.3 are very 
similar to those in [KK89] for staircase matrices, so we 
only sketch the proof of 3.1 to indicate how the argu- 
ments must be modified for skyline matrices. We give a 
complete proof of Proposition 3.2, since it is somewhat 
more subtle than the proof of the corresponding result 
for staircases matrices. 

In order to translate the proofs for staircase matrices 
to skyline matrices we need to give the appropriate defi- 

nition of stepsize approximation and border matrices in 
this setting. 

For each column j of M let t(j) be the top row of the 
non-blank segment in column j. For i 5 k and j < I, 
we will use the notation M[i, k; j, r] to denote the sky- 
line matrix obtained by taking the intersection of rows 
z,..., k of M with columns j, . . . ,I of M. For any posi- 
tive integer a, we define the stepsize a approximation 
of M to be the submatrix of h4 obtained by, for each j 
with t(j) 5 a [n/a], truncating the non-blank entries in 
column j so that the non-blank segment begins at row 
a[t(j)/al, and for each j with t(j) > a[n/aJ replacing 
all the entries in column j with blanks. We denote the 
stepsize a approximation of M by ikia. An example is 
illustrated in Figure 3. Clearly M, is a skyline matrix of 
shape (ln/aJ , n, m). We define the a-border matrices 
of M, which we denote by M(a, i) for i = 1,. . . , [n/al, 
by M(a, i) is the skyline matrix with at most a - 1 rows 
whose non-blank entries are the non-blank entries of M 
inrows(i-l)a+l,..., min(ia - 1, n) which are blank in 
M,. An example of a-border matrices is also illustrated 
in Figure 3. We will denote the set of u-border matrices 
of M by I’(M, a). It is easy to see that the skyline ma- 
trices M,, M(a, l), . . . , M(a, [n/a]) disjointly cover the 
non-blank entries of M. 

M 

Stepsice a approximation Ma 

Figure 3 

a-border matrices 

Given these definitions, the proof of the first propo- 
sition is identical to the proof of Lemma 2.1 in [KK89]. 

Proposition 1. For any positive integer a we have 

dn, n,m) I dnla, n, m) + Warn + n). 
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Proof. Let M be a skyline matrix of shape (n, n, m). 
Since the stepsize a approximation A4, is of shape 
(n/a, 72, m), it can be processed in qe(n/a, n, m) time. 
Since the total number of non-blank entries in the a- 
border matrices M(a, i) for i = 1, , . . , [n/al, is less than 
am we can process these border matrices in O(am) time. 
Finally in 0( n comparisons we can compare the row- ) 
minima found in Ma with the row-minima found in the 
a-border matrices, and hence determine the row-minima 
OfM. g 

The proof of the second proposition requires a little 
more care than the corresponding proposition for stair- 
case matrices. 

Proposition 2. For any positive integer a we have 

Proof. Let N be a skyline matrix of shape (n, n, m). 
By the proof of Proposition 1 it suffices to show that 
finding the row-minima of the stepsize approximation 
matrix, N,, can be reduced to finding the row-minima of 
a skyline matrix of shape (n/a, n/a, m) in O(m+n) time. 
Let M = N,, and for each j let t(j) be the row such 
that the non-blank segment of column j of M begins at 
row t(j). Let S be the Ln/aJ x m skyline matrix where 
s. - = Maij if t(j) < (i - l)a and is blank otherwise. 
L:i s(i) be the column containing the minimum value 
in row i of S, and let d(i) such that Mai,d(i) is minimal 
among the Mai,j such that t(j) = ai. Finally let j(i) 
be the column containing the minimum value in row ai 
of N. Note that j(i) must be either s(i) or d(i). Note 
that S is a skyline matrix of shape (n/a, n/a, m). Thus 
it suffices to show that given the (s(i)}, the row minima 
of the rows of Ma can be found in O(m + n) time. 

We first note that we can find the d(i) in at most 
O(m) time since we only need to look at one entry in 
each column. Let P = [n/a]. For each i = 1, . . . , r+l let 
J(i) be the set of columns {j : s(i) 5 j 5 j(;- l),t(j) 5 
a(i - l), and j 5 s(k) for each k: < i such that t(j) 5 
a(k- l)}, where we adopt the convention that j(0) = m 
and S(P + 1) = 1. Let A(i) be the matrix consisting of 
the intersection of rows a(i - 1) + 1,. . . , min(n, ai - 1) 
of M with the columns in J(i). 

We claim that each A(i) is a totally monotone ma- 
trix containing all the row minima in rows a(; - 1) + 
1 >“’ , min(n, ai- 1) of M, and ciz: IJ(i)l 5 m+r+ 1. 
We now prove this claim. It is easy to see that each 
A(i) is a totally monotone matrix since j in J(i) implies 
that column j has no blank entries in rows a(; - 1) + 
1 Y---Y min(n, ai - 1). We now show that A(i) contains 
all the row minimain rows a(i-l)+l,. . . ,min(n,ai-1) 
of M. In other words, for each j not in J(i), and 

a(i-1)-4-l 5 h 5 min(n, ai-I), we must show that Mh,j 
is not a row minima. If t(j) > a(i - 1) then t(j) >_ ai 
SO Mh,j is blank, and hence not a row minima. Thus 
we may assume t(j) 2 a(; - I). Now by total mono- 
tonicity, if j C 5(i) then we must have Mh,j > M*,,(i) 
and if j > j(i - 1) then we must have Mhj(+1) < Mh,j, 
SO in either case Mh,j is not a (leftmost) row I;;inima. 
Finally suppose j > s(k) for some k < i such that 
t(j) 5 a(k - 1). Again by total monotonicity we have 
Mh,j 2 Mb+(t) so again Mhj is not a row minima. 

We now show that Ci’=‘,’ /J(i)1 5 m+r+l. It suffices 
to show that for i < i’, the sets J(i)\{s(i)} and J(i’) 
are disjoint. Suppose j belongs to both J(i) and J(C). 
Then since i < i’ and t(j) < a(i- 1) because j is in J(i), 
we must have j 5 s(i) because j is in J(C). However j 
in J(i) implies j > s(i) and hence j = s(i). 

The proof is completed by observing that finding 
the row minima of the A(i) requires at most O(n + 
CIzi ]J(i)I) = O(m + n) time. g 

In order to indicate how the proof of Proposition 3 
is translated from the proof for staircase matrices in 
[KK89], we need to define the concept of i-th slice for 
skyline matrices. For each i, the i-th slice of M is the 
set of columns (j : t(j) = i}. Given this definition it is 
fairly straightforward to translate the proof of Theorem 
2.6 to handle skyline matrices. 

4. Open Problems 

There are many interesting problems in matrix 
searching which remain open (see [AP88] for example). 
In this section we restrict ourselves to problems related 
to upper and lower bounds for matrix searching in par- 
tial matrices. The first obvious group of problems con- 
cerns closing the gap between the current upper and 
lower bounds for the partial matrices discussed in this 
paper. Specifically for staircase and skyline matrices we 
have O(mcx(n) + n) upper bounds ([KK88] and this pa 
per respectively) for searching matrices of size 71 x m but 
only linear lower bounds. For v-matrices and h-matrices 
there are fairly straightforward O(m log n + n) upper 
bounds [AS891 and lower bounds of Q(na(n)) (this pa- 
per). It would be interesting to improve these lower 
bounds to Q(ma(n)) for the case m > n. Another prob- 
lem which seems to be difficult is to find a better upper 
bound for horizontal skyline matrices, i.e. h-matrices in 
which each row’s non-blank segment starts in the first 
column. 

A completely different direction involves Monge ma- 
trices [AP88]. Th ese are matrices which satisfy the con- 
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dition, for every i < i’, j < j’ such that all entries of 
the 2 X 2 submatrix, Mij , Afijl, A4irj, and Miljl, are non- 
blank, we have Mij + Mini, > Mijl + Milj. It is easy to 
see that Monge implies totally monotone but the reverse 
is not true. In most applications of totally monotone 
matrices, the matrix in question is actually Monge, so 
it would be worthwhile to get a superlinear lower bound 
for matrix searching of Monge matrices. 

Finally, there are a number of open problems con- 
cerning the techniques used to prove the lower bound 
for h-matrices. First, is it possible to find a simpler 
construction of the matrix M directly from the line seg- 
ments and their left envelope as was done in the v-matrix 
case? Next, for any structure matrix A with an inde- 
pendent set S, one can define the relations {oci} as was 
done in section 2. It is easy to find structure matrices in 
which some of the (+i} are not partial orders. It seems 
natural to try to characterize the family of structure 
matrices for which {+i} is a consistent set of partial or- 
ders. This paper proves that structure h-matrices have 
this property, and we believe that a similar proof can 
be given for structure v-matrices though it seems to be 
slightly more difficult. We conjecture that in fact this 
will hold for any structure matrix in which for every 
non-blank entry, the set of non-blank entries in either 
its row or column form a contiguous segment. 
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