
Efficient Dynamic Programming Using Quadrangle Inequali t ies

F. Frances Yao

Xerox Palo Alto Research Center

Palo Alto, California

ABSTRACT.

Dynamic programming is one of several widely used problem-solving techniques in

computer science and operation research. In applying this technique, one always seeks to

find speed-up by taking advantage of special properties of the problem at hand. However,

in the current state of art, ad hoc approaches for speeding tip seem to be characteristic;

few general criteria are known. In this paper we give a quadrangle inequality condition for

rendering speed-up. This condition is easily checked, and can be applied to several apparently

different problems. For example, it follows immediately from our general condition that the

construction of optimal binary search trees may be speeded up from O(n ~) steps to O(n2), a

result that was first obtained by Knuth using a different and rather complicated argument.

1. INTRODUCTION.

In the application of a general technique, it is often possible to

improve the solution by taking advantage of special properties of

the problems at hand. Dynamic programming is one of several

widely used problem-solving techniques in computer science and

operation research (see, e.g.[2]). It finds applications in context-

free language parsing [8], constructing optimal binary trees [7],

finding shortest paths [4], and in solving various "intractible"

combinatorial problems (see the references in [2]). In the con-

struction of optimal binary search trees, for example, Knuth[5][7]

showed that one can have an algorithm that runs in time O(n2),

whereas straightforward dynamic programming would yield an

O(n 3) algorithm. Knuth's proof is quite complicated and involves

detailed properties of the optimal binary trees. In general, ad hoe

approaches for speeding up seem to be characteristic in dynamic

programming; few general criteria are known.

In the present paper we will discuss a quadrangle inequality

condition for the purpose of achieving speed-up in dynamic

programming. This condition is easily checked and will be applied

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© 1980 A C M 0-89791-017-6/80/0400/0429 $00.75

to several apparently different problems. In particular, it is used

to give a simple proof of Knuth's construction of optimal trees,

and applied to optimization problems involving Vary partitions.

2. DYNAMIC PROGRAMMING AND QUADRANGLE INEQUALITIES.

We consider a simple dynamic programming problem for the

purpose of illustration.

Example 1. Let Li, L2,- . ,Ln be n finite, nonempty sets

of strings. We wish to compute their product ('concatenation)

Ll. L2...Ln by using L. L t, the product of two sets, as the primi-

tive. To simplify matters, we assume that the product operation

is charged a cost of ILl. ILtl, and results in ILl. I L'I strings stored

in L. L t (i.e., duplicate strings will not be detected).

Let ILil -~ ni and w(i, j) ~ nini+l...nj, then the optimal

cost c(i,j) for computing L/- Li+l . ..Lj satisfies the following

recurrence relations:

c(i, i) = 0;

e(i, j) = w(i, j) + mid (c(i, k - l) + c(k, i)) for i < j .
i < k ~ j

(1)

429

We will refer to the function w in the above relations as

the increment func t ion for e; it determines the cost function e

completely. To evaluate c using the obvious procedure suggested

by these equations will require total t ime O(n3). However, as

we will see, the increment function w in Example 1 satisfies the

quadrangle inequalities (QI)

w(i, 3') + ~(i', 3") < w(¢, j) + w(i, y) for i < i' < i _< Y.

(2)

This proper ty allows the dynamic programming to be speeded

up because of the following general theorem.

Theorem 1. If w sa t i s f iesQIand fur thermore is monotone on the

latt ice of intervals (ordered by inclusion), i.e.,

wCi, j) _< loCi', J3 i / [i, j] c_ [i', jq,

then the funct ion c defined by (13 can be computed in t ime OCn23 .

We now verify these conditions for the w in Example 1.

The monotonic i ty is obvious, For the QI, let a ~ hi. " n v - b b =

ne . . ,nj, and c = n j + l • ..ny, Then the QI becomes

This is t rue since

ab .-4- be ~ b + abe.

o <_ b(a-- 1 # - 1).

Theorem 1 is proved by establishing the following two lem-

mas.

L e m m a 2.1. If w satisfies QI and is monotone on the lattice of

intervals, then the funct ion c defined by (1) also satisfiesQL

Proof. The proof is by induct ion on the length l -~ I f - - i l of the

" long side" of the quadrangle inequality

cCi, j) + eCi',/3 --< cCi', J3 + cCi, 3") /o r i < i ' < j < j ' . (3)

Firs t note tha t (3) is tr ivial when i -~- i' or] = j ' . Therefore

(3 3 is t rue when l _< 1. Inductively, consider two cases: A)i <

i I -~-] < j ' , and B)i < i ' < j < j ' .(See Figure 1).

Case A). i < i' = j < j'.

In this case, (3 3 becomes the (inverse3 triangle inequality:

eCi, j) + cCj, j ') < cCi, j') for i < j < j'. (4)

Suppose c(i , /3 is minimized a t k = z; tha t is, e(i, JO = e~(i , /)

where we use ck(i, j) to denote w(i, j) -4- e(i, k - - l) + c(k, j). There

?

Figure 1. The proof of Lemma 2.1

are two symmetr ic subcases.

Case A1). z _< j .

We have e(i , j) ~ cz(i,j) -~- w(i ,]) -4- c(i ,z - - 13 -4-- c(z,j).

Therefore,

eCi, j) + c(j, j ') < wCi, J3 + eCi, z - - 1) + eCz, j) + eCj, J'3

< wCi, j ') + eCi, z - 1) + c(z, j ')

= c(i, y),

where we used the monotonic i ty of w, and the induct ion

hypothesis (4 3 a t z ~ j < j ' .

Case A2). z >]. This is symmetr ic with A1), with all the

intervals reversed.

Case B). i < i' < j < j'.

Assume the two terms on the right hand side of (3) achieve

their values a t k = y and k = z respectively. T h a t is,

c(i', j) = ev(i' , J3, and c(i, j') -~ cz(i,/3.

We again look a t two symmetr ic subeases.

Case B1). z ~ y.

We have

and

e i t "I cCi', j') _< ~(, 3)

eCi, j) < czCi,.i).

430

Adding them up, we obta in

c(i, j) + c(i', j')

< c~(i, j) + %(i', j')

= ~(i , j) + wCi',/) + c(i, z - t) + eCz, j) + c(i', v - 1) + c(v, j')

(s)

Applying the QI of w, and the induction hypothesis (3) at the

points z < y < j < j ' , (5) becomes

c(i, j) + c(i', JO

_< w(i', j) + w(i, j') + c(i,z -- 1) + c(i', y -- i) + c(y, j) + c(z, j')

_< ey(i', j) + c~(i, y)

= c(i', j) + e(i, j')

Case t32). z > y. This again reduced to B1) when all intervals

are reversed.ll

Let us use K~(i,j) to denote maz{klck(i,j) = c(i,j)}; so

Kc(i, j) is the largest index k where the minimum is achieved in

(1). (We define Re(i, i) = i.)

Lemma 2.2. If the function c defined in (I) satisfies QI, then we

have

IeJi, j) A Ke(i, j + t) _< Kc(i + L J + t) for i < j. (o)

Proof. It is t r ivial ly true when i = j , therefore assume i < j .

To prove the first inequali ty Kc(i, j) < Kc(j, j + 1), we show tha t

for i < k < ld < j,

[ek,(i, j) ~ ck(i, j)] = [ca,(i, j + 1) ~ ck(i, j + 1)1. (7)

Take the quadrangle inequality of c at k < k s < j < j n t- 1

c(k, j) + c(ks, j -+- 1) _< c(k ~, j) + c(k, j -4- 1)

Adding w(i,j) + w(i , j + 1) + e(i,k -- 1) -1- c(i, ks -- 1) to both

sides, we get

ck(i, j) + ck,(i, j + 1) < ek,(i, j) + ck(i, j + 1),

from which (7) follows. Similarly, the second inequali ty Kc(i, j +

1) < Kc(i + 1, j + 1) follows from t h e Q I of c a t i < i -1- 1 <_

k g ks.I

Lemma 2.2 says t ha t the mat r ix K~(i,j) is nondecreasing

along each row and column. As a consequence, when we com-

pute c(i,j) for 6 = j - - i = O, I, 2 n - - 1, only Ke(i "4- 1, J + -

1)-- 'K~(i , j) minimizat ion operations need to be carried out for

c(i,j + 1). Hence for a fixed g, the to ta l amoun t of work is O(n);

the overall computa t ion time is therefore reduced to O(n2). This

proves Theorem 1.|

We remark tha t the monotonic i ty assumption on w in

Lemma 2.1 is necessary for the QIof e. For example, if we let

(i, i', j, j') -= (1, 2, 2, 3), then the QI of e becomes

c(1, 2) + ~C2, 3) < cO, 3),
which is equivalent to

w(1, 2) "4- w(2, 3) < w(1, 3) "4- minCw(1, 2), w(2, 3)),

o r

max(w(l , 2), w(2, 3)) ~ w(l, 3).

3. OPTIMAL BINARY SEARCH TREES.

The construct ion of opt imal b inary search trees is a well

known example of dynamic programming. The s ta tement of the

problem is as follows[5][7].

Example 2. We are given 2n -t- 1 probabil i t ies PbP2, "",Pn and

qo, ql, ' " , qn where

Pl = p r o b a b i l i t y tha t K e y / i s the search argument;

q / = p r o b a b i l i t y tha t the search a rgument

lies between Keyl and Keyi-.H.

We wish to find a binary tree which minimizes the expected

number of comparisons in the search, namely

pj (l -t- level of j th internal node in symmetr ic order) -[-
l</<n

C qk(level of the (k + l) s t external node,)
O<k<n

where the root has level zero.

Let c(i,j) be the cost of an opt imal subtree with weights

(P/+b "", PJ; q/, "", qJ). Since all subtrees of an opt imal tree are

optimal, it follows tha t c(i,j) satisfies the same recurrences as

given by Equ.(1) with w now defined by

w(i, j) = p~+~ + . . .+p~ + q / + . . . + ~ . (s)

This increment function is monotone, and it satisfies the quad-

rangle inequalities in fact as equalities. It therefore follows from

431

Theorem 1 tha t we can have an O(n 2) time construction of an

optimal tree by dynamic programming. In [5], the monotone

property (6) is derived by a more complex argument.

Note that the question asked in Knuth [7, Section 6.2.2 ex.30]

is whether the cost function e satisfies a special case of the quad-

rangle inequalities, namely

c(i, j) + c(i + 1,] + l) < e(i + l, j) + c(i, j + 1), (9)

"and is therefore answered in the affirmative by Lemma 2.1. In

fact, (9) is equivalent to the general QI since (3) can be derived

from (9) by induction on l i ' - - i I and IJ' - - Jl.

4. PATHS IN A CONVEX POLYGON .

We look at an example where the quadrangle inequalities

have a most intuitive interpretation, and where binary parti t ions

generalize easily to t-ary partitions.

Example 8. Suppose vtv2 • ".vn is a convex polygon in E 2. Let

d(i,j) = the Euclidean distance between vl and vj if i <],

and d(i, j) = 0 if i > j . We notice that d satisfies the inverse

quadrangle inequalities, i.e.,

d(i, 1) + d(i', j') > d(i', j) + d(i,]') for i < i' <] < 1'.

0o)

(Inverse QI's are what we need in considering maximizat ion

problems such as the present one.) We use A (~ B to denote the

(max, +) -- multiplication of upper tr iangular matrices A and B.

Tha t is, if A = (a(i, j)) and B = (b(i, j)), then A ~ B == (c(i, j))

where c(i,j) ~- maxi<k<j(a(i, k) + b(k,])). We define D (t) ~-

D = (d(i,j)), D (*) = D (t - t) ~ D , and write D (0 as (d(t)(i,])).

For example, d(2)(i, j) is the length of the longest t rajectory from

vi to vj that allows one bounce off the wall vlvi+,...vj. We are

interested in computing D (t) fast.

By as soc ia t iv i tyD (t) ~- D (~) ~ D (8) for t -~- r + s . This

multiplication is a special case of a relation of the following form.

e (i , j) ~ - w (i , j) + max (a(i,k)+b(k,])) for i < j . (11)

It follows from Lemma $.1 below tha t d(~)(i,j) satisfies the in-

verse QI for any r ~ 1 by induction on r. Lemma $.2 then tells

us that the multiplication D (~) ~ DO) can be done in O(n 2) t ime

for a n y r ~ I a n d s ~ 1.

Lemma $.1 If w, a and b all satisfy the inverse QI, then the

function c defined by (11) also satisfies the inverse QL

Proof. Similar to the proof of Lemma 2.1, except tha t we need

not consider Case A) seperately from Case B).

L e m m a $.2. If both a and b satisfy the inverse QI, then for the

function e defined by (11) we have

KcCi, 1) ~ KcCi, j + 1) < KcCi + 1, j + 1) for i < 1.

Proof. Similar to the proof of Lemma 2.2.

Theorem 2. For any t, D (t) can be computed in t ime O((log t)n 2)

Proof. Apply a s tandard binary algorithm for comput ing

powers. |

Example 5'is reminiscent of the problem studied in [3], where

monotonici ty properties similar to Lemma $.2a re utilized to find

a maximum triangle inscribed in a convex polygon efficiently. An

interesting question is whether the present approach can be used

to obtain a fast solution for finding maximum k-gons.

5. OgrlMhU T-AnY TRe~ .

In view of Theorem 2, what can we say when Equ(1) is

generalized to allow c(i,j) to be part i t ioned into up to t sub-

problems? The recurrence becomes

c(i, j) = ~(i , j) +

rain (cCi, kt -- 1) + eCkt, k2 - - 1) + . . . + e C k t - t ,]))

i f i < L

c (i , j) = O i f i >] .
(12)

So when i < j , the problem of computing c(i,]) is divided into

2 to t subproblems whose sizes are strictly smaller than that of

the original problem. (We say a subproblem c(k,l) is empty if

k > l.) This problem is similar to Example 3; it requires a little

more care since it involves recurrences.

The main result we have here is the following. We say tha t

a function w satisfies the triangle inequalities (TI) if

w(i, j) + w(j, j') < w(i, j') /or i < 1 < J'.

Notice tha t w satisfies TI implies that w is monotone.(We assume

that w(i, j) __~ 0.)

432

Theorem 3. If w satisfies Q / a n d T/, then the function c defined

by (12) can be computed in t ime O((logt)n2).

Example ~. Consider the construct ion of opt imal search trees as

in Example 2, but allowing each node to have degree a t most

t. In the special case tha t all the q's are zero, we have w(i, j) ----

Pi+l ~ ""'-~Pj, which satisfies the condition of Theorem 3, and

such optimal trees can be constructed in t ime O((log t)n2).

Let us denote the 'rain' term in Equ(12) by f(t)(i , j) . Thus,

~) (i , j) =

min (c(i, kt - - 1) --{- e(k b k2 - - 1) -I.- ... + c (k t _ t, J))
i <kl~k2<.._<kt--t.~_j

i / i < L

r i O (i , j) = O i f i ~ j .
(13)

Fur thermore , define l(~)(i, j) = c(i, j) ; and for 2 < q < t - - 1,

define/(q)(i , j) to be the opt imal sum of ~ q subproblems.

~) C i , . /) =

min (c(i, ki - - 1) --{- c(kt, k2 - - 1) + . . . + c (k q _ t , j))

i f i < j ,

flq)(i, j) = 0 i / i > j .
(14)

Note that , in a par t i t ion of](q)(i, j), only one subproblem is re-

quired to be nonempty.

Fact A. f(I)(i ,y) > f(2)(i, j) ~ ... ~ f(t)(i , j) .

Proof. All except the last inequali ty follows immediate ly from the

definition of ~q). If f(t--U(i, j) is obta ined by a decomposit ion into

two or more subproblems, we have f(t-- ')(i , j) > f(t)(i, y) ; other-

wise](t--l)(i, j) ---- c(i, j) > f(t)(i, j) by Equ(12) since w(i, j) > O.

|

Fact B.

f(q)(i, j) -~- i ~ . / (f (r) (i , k - - 1) + f(')(k, j)) for q = r -~- s,

and r ~ l , s > l , 2 ~ q < t - - l .
(15)

Proof.We will show tha t !efthand s i d e > r i g h t h a n d side since the

other direction is obvious. If in (14) the minimum value off(q)(i, i)

is achieved with division points kh ...,k~, " ' ,kq--b we choose k to

be this k~ on the r ighthand side of Equ(15) . |

Fact C.

f(t)(i, j) = min (](~)C i, k - - 1) +](8)(k, j)) for t = r + s,
i<k_<j

and r > 1, s > l .
(10)

Proof. Similar to the proof of Fact B. Again choose k on the

r ighthand side to be the kr of the lef thand side.II

L e m m a 5.1. In (14), i f f (~)(i , j) and f (s)(i , j) satisfy Q l f o r i - -

j < ~f, t hen f(q)(i, j) satifies QI for i - - j ~ 5.

proof. Similar to the proof of L e m m a 2.1.1n the case correspond-

ing to Case A1), we need the TI

~)Cz, j) + ~q)CJ, J0 _< f~)Cz, J"),

which follows from the QI of]('), and the fact f(q) ~ f(s).

Similarly, Case A2) follows from the QI of f(r), Case B1) from

the Q[of](s), and B2) from the QI of ~) . (See Figure 2). | .

4 i

.fc

• f fr) . ,

• P

Figure 2. The proof of Lemma 5.1

L e m m a 5.2. In (15), i f f (r) (i , j) and](8)(i,j) satisfy Q / f o r i - -

j < ~i, then fit)(/, j) satifies QI for i - - j < ~ .-f- 1.

proof. Analogous to the proof of L e m m a 5.1; here the problem

sizes are str ict ly reduced in the inductive step. |

433

Lemma 5.8. In (12), w satisfies Q / a n d T/ impl ies tha t f (l) (= .

c), ..., f(q),..., fit) all satisfy QI.

proof.It follows from the preceding two Lemmas by induction on

6 = j - - i and on q, noting that w satisfies QI, T / a n d f(t) satisfies

QI together imply that c satisfies Q/.ll

proof of Theorem 5'.For the f ' s on the lefthand side of (15) and

(16), we use K](i,]) as before to denote the largest k on the

r ighthand side which allows the minimum value of f (i ,]) to be

achieved. By the same argument which led to Lemma 2.2 and

$.2, we have

Ks(i, j) <_ Ks(i, j + l) < K~(~ + 1, j + 1) /or / < y,
(IT)

and / ~-- /(q), l < q < t.

Let q0, qh "', qh be an addition chain[6] for t; tha t is, q0 -~- 1,

qh --~ t, and for each i > 1, qi = qj--Fqk for some] < i, k < i. It is

well known that any t has an addition chain of length h < 2 log t.

The following procedure then employs Equ(15), (16) and (17) to

compute c(i,]).

begin

for l < i < n , l < m < h d o f l q ~) (i , i) ~ - 0 ;

f o r 6 ~ l t o n d o

for m 4 - l t o h d o

for j - - i -~ 6 do

compute /q~) (i , j)

end

Because of Equ(17), the innermost loop takes only O(n)

steps. Therefore the algorithm uses total t ime O(hn2), which is

oCClog t)~). u

6. CONCLUDING REMARKS .

In this paper we have considered a general type of conditions

which ensures monotonici ty of division points in certain dynamic

programming processes. This monotonici ty proper ty makes it

possible to achieve speed-up by a facor of n or more over the

straightforward implementations. We would also like to point

out some situations where the present results do not apply, and

which deserve further study.

The monotonici ty property for the division points does not

hold for the matr ix multiplication chain problem[If, as shown

h P~ P~ r,

Figure 3a. c(],3) + c(2,2) ~ c(] ,2) + c(2,3).

I

I I

[% _~.:

c t ; 3 ?

~orse

,, , / \
.

¢(2,1)

I / ~ T ~ x :z¥ ~:.¢

/ I X

cc/,3) c(t,2)

Figure 3b.

For tne w defined by (8), Equ (16) fails.

by the following example. Consider the matrices Mh M2, M3, M4

with dimensions 2 × 3, 3 × 2, 2 × 10, and 10 × 1, respectively. As

can be easily verified, the proper order to compute MLM2M~ is to

parenthesize it as (MjM2)M3, while the optimal computat ion of

MihC2M3M4 corresponds to Mt(M2(M3M4)).

Similarly, optimal t -ary search trees in general (when the q'a

are not zero) do not satisfy the monotonici ty proper ty ei ther.The

addit ion of a new leftmost key may force the division points (at

the root) to shift rightward! An example is shown in Figure 3. As

434

the w defined by (8) fails to satisfy TI (for example, w(l, 2) .q-

w(2, 3) > w(l, 3)), the function c defined by (12) does not satisfy

the QI (Figure 3a). When Keyi is added, the division points

change from {3, 4} to {4, 5}.(Figure 3b).

ACKNOWLEDGEMENT

We recently learned that Zhu Yongjin and Wang Jianfang

[9], in studying algorithms for constructing alphabetic trees with

restricted depth, used an approach similar to ours.

REFERENCES

[1] A. Aho, J. Hopcroft and J. Ullman, The design and analysis

of computer algorithms, Addison-Wesley, Reading Mass., 1974.

[2] K. Q. Brown, Dynamic programming in computer

science, Computer Science Department Report CMU-CS-79-106,

Carnegie-Mellon University, February 1979.

[3] D. P. Dobkin and L. Snyder, On a general method for max-

imizing and minimizing among certain geometric problems,

Froc. IEEE 20th Annual Symposium on Foundations of Computer

Science, Puerto Rico, 1979, 9-17.

[4] R. W: Floyd, Algorithm 97 : shortest path, Comm. A C M 5

(1962), 345.

[5] D. E. Knuth, Optimum binary search trees, Acta

Informatiea 1 (1971), 14.-25.

[6] D. E. Knuth, The Art of Computer Programming, Vol 2

:Seminumerieal Algorithms, Addison-Wesley, Reading Mass.,

1975.

[7] D. E. Knuth, The Art of Computer Programming, Vol 8

:Searching and Sorting, Addison-Wesley, Reading Mass., 1973.

[8] D. H. Younger, Recognition of context-free languages in

time n 3, Information and Control 10 (1967), 189-208.

[9] Y. Zhu and J. Wang, On alphabetic-extended binary trees

with restricted path length, Scientia Sinica 22 (1979), 1362-1371.

435

