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ABSTRACT. 

Dynamic  programming is one of several widely used problem-solving techniques in 

computer science and operation research. In applying this technique, one always seeks to 

find speed-up by taking advantage of special properties of the problem at hand. However, 

in the current state of art, ad hoc approaches for speeding tip seem to be characteristic; 

few general criteria are known. In this paper we give a quadrangle inequality condition for 

rendering speed-up. This condition is easily checked, and can be applied to several apparently 

different problems. For example, it follows immediately from our general condition that  the 

construction of optimal binary search trees may be speeded up from O(n ~) steps to O(n2), a 

result that  was first obtained by Knuth using a different and rather complicated argument. 

1. INTRODUCTION. 

In the application of a general technique, it is often possible to 

improve the solution by taking advantage of special properties of 

the problems at hand. Dynamic  programming is one of several 

widely used problem-solving techniques in computer science and 

operation research (see, e.g.[2]). It finds applications in context- 

free language parsing [8], constructing optimal binary trees [7], 

finding shortest paths [4], and in solving various "intractible" 

combinatorial problems (see the references in [2]). In the con- 

struction of optimal binary search trees, for example, Knuth[5][7] 

showed that  one can have an algorithm that  runs in time O(n2), 

whereas straightforward dynamic programming would yield an 

O(n 3) algorithm. Knuth's proof is quite complicated and involves 

detailed properties of the optimal binary trees. In general, ad hoe 

approaches for speeding up seem to be characteristic in dynamic 

programming; few general criteria are known. 

In the present paper we will discuss a quadrangle inequality 

condition for the purpose of achieving speed-up in dynamic 

programming. This condition is easily checked and will be applied 
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to several apparently different problems. In particular, it is used 

to give a simple proof of Knuth's construction of optimal trees, 

and applied to optimization problems involving Vary partitions. 

2. DYNAMIC PROGRAMMING AND QUADRANGLE INEQUALITIES. 

We consider a simple dynamic programming problem for the 

purpose of illustration. 

Example 1. Let Li, L2,- . ,Ln be n finite, nonempty sets 

of strings. We wish to compute their product ('concatenation) 

Ll.  L2...Ln by using L. L t, the product of two sets, as the primi- 

tive. To simplify matters, we assume that  the product operation 

is charged a cost of ILl. ILtl, and results in ILl. I L'I strings stored 

in L.  L t (i.e., duplicate strings will not be detected). 

Let ILil -~ ni and w(i, j) ~ nini+l...nj, then the optimal 

cost c(i,j) for computing L/-  Li+l  . ..Lj satisfies the following 

recurrence relations: 

c(i,  i) = 0; 

e(i, j)  = w(i, j )  + mid (c(i, k - l) + c(k, i))  for i < j .  
i < k ~ j  

(1) 

429 



We will refer to the function w in the  above relations as 

the increment  func t ion  for e; it determines the cost function e 

completely. To evaluate  c using the obvious procedure suggested 

by  these equations will require total  t ime O(n3). However, as 

we will see, the increment  function w in Example  1 satisfies the 

quadrangle inequalities (QI) 

w(i, 3') + ~(i', 3") < w(¢, j) + w(i, y) for i < i' < i _< Y. 

(2) 

This  proper ty  allows the  dynamic  programming to be speeded 

up because of the following general theorem. 

Theorem 1. If w sa t i s f iesQIand fur thermore  is monotone on the 

latt ice of intervals  (ordered by inclusion), i.e., 

wCi, j)  _< loCi', J3 i /  [i, j] c_ [i', jq, 

then  the funct ion c defined by (13 can be computed in t ime OCn23 . 

We now verify these conditions for the w in Example  1. 

The monotonic i ty  is obvious, For  the QI, let a ~ hi. " n v - b  b = 

ne . . ,nj,  and c = n j + l  • ..ny, Then  the  QI becomes 

This  is t rue since 

ab .-4- be ~ b + abe. 

o <_ b(a-- 1 # -  1). 

Theorem 1 is proved by establishing the following two lem- 

mas. 

L e m m a  2.1. If w satisfies QI and is monotone on the lattice of 

intervals,  then the funct ion c defined by (1) also satisfiesQL 

Proof. The proof is by induct ion on the length l -~ I f - - i l  of the  

" long side" of the quadrangle inequality 

cCi, j )  + eCi',/3 --< cCi', J3 + cCi, 3") /o r  i < i '  < j < j ' .  (3) 

Firs t  note tha t  (3) is tr ivial  when i -~- i' or ] = j ' .  Therefore 

(3 3 is t rue when l _< 1. Inductively, consider two cases: A)i < 

i I -~- ] < j ' ,  and B)i < i '  < j < j ' .(See Figure 1). 

Case A). i < i' = j < j'. 

In this  case, (3 3 becomes the (inverse3 triangle inequality: 

eCi, j )  + cCj, j ') < cCi, j') for i < j < j'. (4) 

Suppose c(i , /3  is minimized a t  k = z; tha t  is, e(i, JO = e~(i , / )  

where we use ck(i, j)  to denote w(i, j )  -4- e(i, k - -  l )  + c(k, j). There 

? 

Figure 1. The proof of Lemma 2.1 

are two symmetr ic  subcases. 

Case A1).  z _< j .  

We have e(i , j)  ~ cz(i,j) -~- w(i ,])  -4- c(i ,z  - -  13 -4-- c(z,j). 

Therefore,  

eCi, j )  + c(j, j ' )  < wCi, J3 + eCi, z - -  1) + eCz, j)  + eCj, J'3 

< wCi, j ' )  + eCi, z - 1) + c(z, j ' )  

= c(i, y), 

where we used the monotonic i ty  of w, and the induct ion 

hypothesis  (4 3 a t  z ~ j < j ' .  

Case A2).  z > ]. This is symmetr ic  with  A1), with all the  

intervals  reversed. 

Case B). i < i' < j < j'. 

Assume the two terms on the right hand  side of (3) achieve 

their  values a t  k = y and k = z respectively. T h a t  is, 

c(i', j)  = ev(i' , J3, and c(i, j') -~ cz(i,/3. 

We again look a t  two symmetr ic  subeases. 

Case B1). z ~ y. 

We have 

and 

e i t "I cCi', j') _< ~( , 3 ) 

eCi, j) < czCi,.i). 
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Adding them up, we obta in  

c(i, j) + c(i', j') 

< c~(i, j) + %(i', j') 

= ~(i ,  j)  + wCi',/) + c(i, z - t) + eCz, j) + c(i', v - 1) + c(v, j') 

(s) 

Applying the QI of w, and the induction hypothesis  (3) at  the 

points z < y < j < j ' ,  (5) becomes 

c(i, j) + c(i', JO 

_< w(i', j) + w(i, j') + c(i,z --  1) + c(i', y --  i)  + c(y, j) + c(z, j') 

_< ey(i', j) + c~(i, y)  

= c(i', j)  + e(i, j') 

Case t32). z > y. This again reduced to B1) when all intervals 

are reversed.ll 

Let  us use K~(i,j) to denote maz{klck(i,j ) = c(i,j)}; so 

Kc(i, j) is the largest index k where the minimum is achieved in 

(1). (We define Re(i, i) = i.) 

Lemma 2.2. If the function c defined in (I) satisfies QI, then we 

have 

IeJi, j) A Ke(i, j + t) _< Kc(i + L J + t) for i < j. (o) 

Proof. It is t r ivial ly true when i = j ,  therefore assume i < j .  

To prove the first inequali ty Kc(i, j) < Kc(j, j + 1), we show tha t  

for i < k < ld < j, 

[ek,(i, j)  ~ ck(i, j)] = [ca,(i, j + 1) ~ ck(i, j + 1)1. (7) 

Take the quadrangle inequality of c at  k < k s < j < j n t- 1 

c(k, j) + c(ks, j -+- 1) _< c(k ~, j) + c(k, j -4- 1) 

Adding w(i,j) + w(i , j  + 1) + e(i,k --  1) -1- c(i, ks --  1) to both  

sides, we get 

ck(i, j) + ck,(i, j + 1) < ek,(i, j) + ck(i, j + 1), 

from which (7) follows. Similarly, the second inequali ty Kc(i, j + 

1) < Kc(i + 1, j + 1) follows from t h e Q I  of c a t  i < i -1- 1 <_ 

k g ks.I 

Lemma 2.2 says t ha t  the  mat r ix  K~(i,j) is nondecreasing 

along each row and column. As a consequence, when we com- 

pute c(i,j) for 6 = j - -  i = O, I, 2 ..... n - -  1, only Ke(i "4- 1, J + -  

1)-- 'K~(i ,  j) minimizat ion operations need to be carried out  for 

c(i,j + 1). Hence for a fixed g, the to ta l  amoun t  of work is O(n); 

the overall computa t ion  time is therefore reduced to O(n2). This  

proves Theorem 1.| 

We remark tha t  the monotonic i ty  assumption on w in 

Lemma 2.1 is necessary for the QIof e. For example, if we let 

(i, i', j, j') -= (1, 2, 2, 3), then the QI of e becomes 

c(1, 2) + ~C2, 3) < cO, 3), 
which is equivalent  to 

w(1, 2) "4- w(2, 3) < w(1, 3) "4- minCw(1, 2), w(2, 3)), 

o r  

max(w(l ,  2), w(2, 3)) ~ w(l, 3). 

3. OPTIMAL BINARY SEARCH TREES. 

The construct ion of opt imal  b inary  search trees is a well 

known example of dynamic  programming.  The s ta tement  of the 

problem is as follows[5][7]. 

Example 2. We are given 2n -t- 1 probabil i t ies PbP2, "",Pn and 

qo, ql, ' " ,  qn where 

Pl = p r o b a b i l i t y  tha t  K e y / i s  the search argument;  

q / = p r o b a b i l i t y  tha t  the search a rgument  

lies between Keyl and Keyi-.H. 

We wish to find a binary tree which minimizes the expected 

number  of comparisons in the search, namely  

pj ( l  -t- level of j th  internal  node in symmetr ic  order) -[- 
l</<n 

C qk(level of the ( k + l ) s t  external  node,) 
O<k<n 

where the root has level zero. 

Let  c(i,j) be the cost of an opt imal  subtree with weights 

(P/+b "", PJ; q/, "", qJ). Since all subtrees of an opt imal  tree are 

optimal,  it follows tha t  c(i,j) satisfies the same recurrences as 

given by Equ.(1) with w now defined by 

w(i, j) = p~+~ + . . .+p~ + q / +  . . . + ~ .  (s) 

This increment  function is monotone,  and it satisfies the quad- 

rangle inequalities in fact as equalities. It therefore follows from 
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Theorem 1 tha t  we can have an O(n 2) time construction of an 

optimal tree by dynamic programming. In [5], the monotone 

property (6) is derived by a more complex argument.  

Note that  the question asked in Knuth  [7, Section 6.2.2 ex.30] 

is whether  the cost function e satisfies a special case of the quad- 

rangle inequalities, namely 

c(i, j) + c(i + 1, ] + l) < e(i + l, j) + c(i, j + 1), (9) 

"and is therefore answered in the affirmative by Lemma 2.1. In 

fact, (9) is equivalent to the general QI since (3) can be derived 

from (9) by induction on l i ' - -  i I and IJ' - -  Jl. 

4. PATHS IN A CONVEX POLYGON . 

We look at  an example where the quadrangle inequalities 

have a most  intuitive interpretation, and where binary parti t ions 

generalize easily to t-ary partitions. 

Example 8. Suppose vtv2 • ".vn is a convex polygon in E 2. Let  

d(i,j) = the Euclidean distance between vl and vj if i < ], 

and d(i, j )  = 0 if i > j .  We notice that  d satisfies the inverse 

quadrangle inequalities, i.e., 

d(i, 1 ) +  d(i', j') > d(i', j) + d(i, ]') for i < i' < ] < 1'. 

0o) 

(Inverse QI's are what  we need in considering maximizat ion 

problems such as the present one.) We use A (~ B to denote the 

(max, +) --  multiplication of upper tr iangular matrices A and B. 

Tha t  is, if A = (a(i, j)) and B = (b(i, j)), then A ~ B == (c(i, j)) 

where c(i,j) ~- maxi<k<j(a(i, k) + b(k, ])). We define D (t) ~- 

D = (d(i,j)), D (*) = D ( t - t )  ~ D ,  and write D (0 as (d(t)(i,])). 

For  example, d(2)(i, j)  is the length of the longest t rajectory from 

vi to vj that  allows one bounce off the wall vlvi+,...vj. We are 

interested in computing D (t) fast. 

By as soc ia t iv i tyD (t) ~- D ( ~ ) ~ D  (8) for t -~- r + s .  This 

multiplication is a special case of a relation of the following form. 

e ( i , j ) ~ - w ( i , j ) +  max (a(i,k)+b(k,])) for i < j .  (11) 

It follows from Lemma $.1 below tha t  d(~)(i,j) satisfies the in- 

verse QI for any r ~ 1 by induction on r. Lemma $.2 then tells 

us that  the multiplication D (~) ~ DO) can be done in O(n 2) t ime 

for a n y r ~  I a n d s ~  1. 

Lemma $.1 If w, a and b all satisfy the inverse QI, then the 

function c defined by (11) also satisfies the inverse QL 

Proof. Similar to the proof of Lemma 2.1, except tha t  we need 

not consider Case A) seperately from Case B). 

L e m m a  $.2. If both  a and b satisfy the inverse QI, then for the 

function e defined by (11) we have 

KcCi, 1) ~ KcCi, j + 1) < KcCi + 1, j + 1) for i < 1. 

Proof. Similar to the proof of Lemma 2.2. 

Theorem 2. For any t, D (t) can be computed in t ime O((log t )n 2) 

Proof. Apply a s tandard binary algorithm for comput ing 

powers. | 

Example 5'is reminiscent of the problem studied in [3], where 

monotonici ty  properties similar to Lemma $ .2a re  utilized to find 

a maximum triangle inscribed in a convex polygon efficiently. An 

interesting question is whether  the present approach can be used 

to obtain a fast solution for finding maximum k-gons. 

5. OgrlMhU T-AnY TRe~ . 

In view of Theorem 2, what  can we say when Equ(1) is 

generalized to allow c(i,j) to be part i t ioned into up to t sub- 

problems? The recurrence becomes 

c(i, j) = ~( i ,  j) + 

rain (cCi, kt -- 1) + eCkt, k2 - -  1) + . . . + e C k t - t ,  ])) 

i f  i < L  

c ( i , j ) = O  i f  i > ] .  
(12) 

So when i < j ,  the problem of computing c(i, ]) is divided into 

2 to t subproblems whose sizes are strictly smaller than that  of 

the original problem. (We say a subproblem c(k,l) is empty if 

k > l.) This problem is similar to Example  3; it requires a little 

more care since it involves recurrences. 

The main result we have here is the following. We say tha t  

a function w satisfies the triangle inequalities (TI) if 

w(i, j) + w(j, j') < w(i, j') /or i < 1 < J'. 

Notice tha t  w satisfies TI implies that  w is monotone.(We assume 

that  w(i, j) __~ 0.) 
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Theorem 3. If w satisfies Q / a n d  T/, then the function c defined 

by (12) can be computed in t ime O((logt)n2). 

Example  ~. Consider the construct ion of opt imal  search trees as 

in Example  2, but  allowing each node to have degree a t  most  

t. In the special case tha t  all the q's are zero, we have w(i, j )  ---- 

Pi+l ~ ""'-~Pj, which satisfies the condition of Theorem 3, and 

such optimal trees can be constructed in t ime O((log t)n2). 

Let  us denote the 'rain'  term in Equ(12) by f( t)(i , j) .  Thus, 

~ ) ( i ,  j )  = 

min (c(i, kt - -  1) --{- e(k b k2 - -  1) -I.- ... + c ( k t _  t, J)) 
i <kl~k2<.._<kt--t.~_j 

i /  i < L  

r i O ( i , j ) = O  i f  i ~ j .  
(13) 

Fur thermore ,  define l(~)(i, j) = c(i, j) ;  and for 2 < q < t - -  1, 

define/(q)(i ,  j )  to be the opt imal  sum of ~ q subproblems.  

~ ) C i , . / )  = 

min (c(i, ki - -  1) --{- c(kt, k2 - -  1) + . . . + c ( k q _ t ,  j)) 

i f  i < j ,  

flq)(i, j )  = 0 i /  i > j .  
(14) 

Note that ,  in a par t i t ion of ](q)(i, j),  only one subproblem is re- 

quired to be nonempty.  

Fact  A. f(I)(i ,y) > f(2)(i, j )  ~ ... ~ f(t)(i , j) .  

Proof. All except the last inequali ty follows immediate ly  from the 

definition of ~q). If f(t--U(i, j )  is obta ined by a decomposit ion into 

two or more subproblems,  we have f(t-- ')(i ,  j )  > f(t)(i, y) ; other- 

wise ](t--l)( i, j )  ---- c( i, j )  > f(t)(i, j)  by Equ(12) since w( i, j )  > O. 

| 

Fact  B. 

f(q)(i, j )  -~- i ~ . / ( f ( r ) ( i ,  k - -  1) + f(')(k, j ))  for q = r -~- s, 

and r ~ l , s > l , 2 ~ q < t - - l .  
(15) 

Proof.We will show tha t  !efthand s i d e > r i g h t h a n d  side since the 

other direction is obvious. If in (14) the minimum value off(q)(i, i )  

is achieved with division points kh ...,k~, " ' ,kq--b we choose k to 

be this k~ on the r ighthand side of Equ(15) . |  

Fact  C. 

f(t)(i, j )  = min (](~)C i, k - -  1) +](8)(k, j))  for t = r + s, 
i<k_<j 

and r >  1, s > l .  
(10) 

Proof. Similar to the proof of Fact  B. Again choose k on the 

r ighthand side to be the kr of the lef thand side.II 

L e m m a  5.1. In (14), i f f (~)( i , j )  and f (s)( i , j )  satisfy Q l f o r  i - -  

j < ~f, t hen  f(q)(i, j )  satifies QI for i - -  j ~ 5. 

proof. Similar to the proof of L e m m a  2.1.1n the case correspond- 

ing to Case A1), we need the TI  

~)Cz, j) + ~q)CJ, J0 _< f~)Cz, J"), 

which follows from the QI of ]('), and the fact f(q) ~ f(s). 

Similarly, Case A2)  follows from the  QI of f(r), Case B1)  from 

the Q[ of ](s), and B2) from the QI of ~ ) .  (See Figure 2). | .  

4 i 

.fc 

• f  fr) . ,  

• P 

Figure 2. The proof of Lemma 5.1 

L e m m a  5.2. In (15), i f f ( r ) ( i , j )  and ](8)(i,j) satisfy Q / f o r  i - -  

j < ~i, then fit)(/, j )  satifies QI for i - -  j < ~ .-f- 1. 

proof. Analogous to the proof of L e m m a  5.1; here the problem 

sizes are str ict ly reduced in the inductive step. | 
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Lemma 5.8. In (12), w satisfies Q / a n d  T/ impl ies  tha t  f ( l ) ( = .  

c), ..., f(q),..., fit) all satisfy QI. 

proof.It follows from the preceding two Lemmas by induction on 

6 = j - - i  and on q, noting that  w satisfies QI, T / a n d  f(t) satisfies 

QI together  imply that  c satisfies Q/.ll 

proof of Theorem 5'.For the f ' s  on the lefthand side of (15) and 

(16), we use K](i,]) as before to denote the largest k on the 

r ighthand side which allows the minimum value of f ( i , ] )  to be 

achieved. By the same argument  which led to Lemma 2.2 and 

$.2, we have 

Ks(i, j) <_ Ks(i, j + l) < K~(~ + 1, j + 1) /or / < y, 
(IT) 

and / ~-- /(q), l < q < t. 

Let  q0, qh "', qh be an addition chain[6] for t; tha t  is, q0 -~- 1, 

qh --~ t, and for each i > 1, qi = qj--Fqk for some ] < i, k < i. It is 

well known that  any t has an addition chain of length h < 2 log t. 

The following procedure then employs Equ(15), (16) and (17) to 

compute c(i, ]). 

begin 

for l < i < n , l < m < h d o f l q ~ ) ( i , i ) ~ - 0 ;  

f o r 6 ~ l t o n d o  

for m 4 -  l t o h d o  

for j - -  i -~ 6 do 

compute /q~) ( i ,  j )  

end 

Because of Equ(17), the innermost  loop takes only O(n) 

steps. Therefore the algorithm uses total t ime O(hn2), which is 

oCClog t)~). u 

6. CONCLUDING REMARKS . 

In this paper we have considered a general type of conditions 

which ensures monotonici ty of division points in certain dynamic 

programming processes. This monotonici ty  proper ty  makes it 

possible to achieve speed-up by a facor of n or more over the 

straightforward implementations.  We would also like to point  

out some situations where the present results do not apply, and 

which deserve further study. 

The monotonici ty  property for the division points does not 

hold for the matr ix  multiplication chain problem[If, as shown 

h P~ P~ r, 

Figure 3a. c(],3) + c(2,2) ~ c(] ,2) + c(2,3). 

I 

I I 

[% _~.: 

c t ; 3 ?  

~orse 

,, , / \  
. . . . .  

¢(2,1) 

I / ~ T ~  x :z¥ ~:.¢ 

/ I X  

cc/,3) c(t,2) 

Figure 3b. 

For tne w defined by (8), Equ (16) fails. 

by the following example. Consider the matrices Mh M2, M3, M4 

with dimensions 2 × 3, 3 × 2, 2 × 10, and 10 × 1, respectively. As 

can be easily verified, the proper order to compute MLM2M~ is to 

parenthesize it as (MjM2)M3, while the optimal computat ion of 

MihC2M3M4 corresponds to Mt( M2(M3M4)). 

Similarly, optimal t -ary search trees in general (when the q'a 

are not zero) do not satisfy the monotonici ty  proper ty  ei ther.The 

addit ion of a new leftmost  key may force the division points (at 

the root) to shift rightward! An example is shown in Figure 3. As 
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the w defined by (8) fails to satisfy TI (for example, w(l, 2) .q- 

w(2, 3) > w(l, 3)), the function c defined by (12) does not satisfy 

the QI (Figure 3a). When Keyi is added, the division points 

change from {3, 4} to {4, 5}.(Figure 3b). 
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