
Construct ing Trees in Parallel

M . J . A t a l l a h * S . R . K o s a r a j u t L . L . L a r m o r e $ G . L . M i l l e r § S - H . T e n g §

A b s t r a c t

An O(log ~ n) time, n2 / logn processor as well as an
O(log n) time, n3/log n processor CREW determin-
istic parallel algorithms are presented for construct-
ing Huffman codes from a given list of frequences.
The time can be reduced to O(log n(loglog n) 2) on an
CRCW model, using only n2/(log log n) 2 processors.
Also presented is an optimal O(log n) time, O(n/ log n)
processor EREW parallel algorithm for constructing a
tree given a list of leaf depths when the depths are
monotonic. An O(log 2 n) time, n processor parallel
algorithm is given for the general tree construction
problem. We also give an O(log 2 n) time n2/ log2n
processor algorithm which finds a nearly optimal bi-
nary search tree. An O(log 2 n) time n 2'36 processor al-
gorithm for recognizing linear context free languages is
given. A crucial ingredient in achieving those bounds
is a formulation of these problems as multiplications of
special matrices which we call concave matrices. The
structure of these matrices makes their parallel multi-
plication dramatically more efficient than that of arbi-
trary matrices.

*Depar tment of Computer Science, Purdue University. Sup-
ported by the Office of Naval Research under Grants N00014-84-
K-0502 and N00014-86-K-0689, and the National Science Foun-
dation under Grant DCR-8451393, with matchlng funds from
AT&T.

tDepar tment of Computer Science, Johns Hopkins Univer-
sity. Suppor ted by National Science Foundation through grant
CCR-88-04284

tICS, UC Irvine.
§School of Compute r Science, CMU and Depar tment of Com-

puter Science, USC. Supported by National Science Foundation
through grant CCR-87-13489.

I'ermission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery.
'1'o copy otherwise, or to republish, requires a fee and/or specific permission.

~,:~ 1989 ACM 0-89791-323-X/89/0006/0421 $1.50

421

1 I n t r o d u c t i o n

In this paper we present several new parallel algo-
rithms. Each algorithm uses substantially fewer pro-
cessors than used in previously known algorithms. The
four problems considered are: The Tree Construc-
tion Problem, The Huffman Code Problem, The Lin-
ear Context Free Language Recognition Problem, and
The Optimal Binary Search Tree Problem. In each
of these problems the computational expensive part of
the problem is finding the associated tree. We shall
show that these trees are not arbitrary trees but are
special. We take advantage of the special form of these
trees to decrease the number of processors used.

All of the problems we consider in this paper,
as well as many other problems, can be performed in
sequential polynomial time using Dynamic Program-
ming. Arc algorithms for each of these problems can
be obtained by parallelization of Dynamic Program-
ming. Unfortunately, this approach produces parallel
algorithms which use O(n 6) or more processors. An
algorithm which increases the work performed from
O(n) or O(n 2) to O(n 6) is not of much practical value.
In this paper we present several new paradigms for im-
proving the processor efficiency for dynamic program-
ming problems. For all the problems considered a tree
or class of trees is given implicitly and the algorithm
must find one such tree.

The construction of optimal codes is a classical
problem in communication. Let ~ = {0, 1 , o" - 1}
be an alphabet. A code £ = {cl cn} over E is a
finite nonempty set of distinct finite sequences over ~,
Each sequence ci is called code word. A code C is a
prefix code if no code-word in C is a prefix of another
code-word. A message over. C is a word resulting from
the concatenation of code words from d.

We assume the words over a source alphabet
a l , . . . , a n are to be transmitted over a communica-
tion channel which can transfer one symbol of ~ per
unit of time, and the probability of appearance of ai
is Pi C ~ . The H u f f m a n Cod ing P r o b l e m is to
construct a prefix code C =: {c l , . . . , cn E ~*} such

f g . that the average word length Ei=lp, •Icil is minimum,
where Ici] is the length of ci.

It is easy to see that prefix codes have the nice
property that a message can be decomposed in code
word in only one way- they are uniquely decipherable.
It is interesting to point out that Kraft and McMillan
proved that for any code which is uniquely decipher-
able there is always a prefix code with the same average
word length [13]. In 1952, IIuffman [9] gave an elegant
sequential algorithm which can generate an optimal
prefix code in O(n log n) time. If the probabilities are
presorted then his algorithm is actually linear time
[11]. Using parallel dynamic programming, Kosaraju
and Teng [18], independently, gave the first A/'C al-
gorithm for the IIuffman Coding Problem. However,
b~th constructions use n e processors. In this paper,
we first show how to reduce the processor count to n s,
while using O(log n) time, by showing that we may as-
sume that the tree associated with the prefix code is
left-justified (to be defined in Section 2).

The n 3 processor count arises from the fact that
we are multiplying n x n matrices over a closed semir-
ing. We reduce the processor count still further to
n2/log n by showing that, after suitable modification,
the matrices which are multiplied are concave (to be
defined later). The structure of these matrices makes
their parallel multiplication dramatically more efficient
than that of arbitrary matrices. An O(logn log log n)
time nZ/log n processor CREW algorithm is presented
for multiplying them. Also given is an O((loglogn) 2)
time, n2/log log n processor CRCW algorithm for mul-
tiplying two concave" matrices 1.

The algorithm for construction of a ttuffman code
still uses n 2 processors, which is probably too large for
practical consideration since Huffman's algorithm only
takes O(n log n) sequential time. Shannon and Fano
gave a code, the Shannon-Fano Code, which is only
one bit off from optimal. That is, the expected length
o fa Shannon-Fano code word is at most one bit longer
than the Huffman code word.

The construction of the Shannon-Fano Code re-
duces to the following Tree C o n s t r u c t i o n P r o b l e m ,

Def in i t ion 1.1 (Tree C o n s t r u c t i o n P r o b l e m)
Given n integer values ll , ln, construct an ordered
Mnary tree with n leaves whose levels when read form
left to right are 11,..., 1,.

1Independently, [1] and [2] improved the CREW algorithm
results by showing that two concave matrices can be rnulti-
plied in O(logn) time, using n2/logn CREW PRAM proces-
sors. Also, [2] improved the CRCW algorithm by reducing the
number ofCRCW PRAM processors required to n2/(log log n) 2.

We give an O(log 2 n) time, n processor EREW
PRAM parallel algorithm for the tree construction
problem. In the case when ll, .. •, 1, are monotonic, we
give an O(logn) time and n / l o g n processor EREW
PRAM parallel algorithm. In fact, trees where the
level of the leaves are monotone will be used for
both constructing Huffman Codes and Shannon-Fano
Codes.

Using our solution of the tree construction prob-
lem we get an O(logn) time n / logn processor
EREW PRAM algorithm for constructing Shannon-
Fano Codes.

We also consider the problem of parallel con-
structing optimal binary search trees as defined by
Knuth [10]. The best known NC algorithm for this
problem is the parallelization of dynamic program-
ming which uses n 6 processors. In this paper, using
the new concave matrix multiplication algorithm, we
show how to compute nearly optimal binary search
tree in O(log 2 n) time using n2/ logn processors. Our
search trees are only off from optimal by an additive
amount of 1/n k for any fixed k.

Finally, we consider recognition of linear context
free languages. A CFL is said to be linear if all pro-
ductions are of the form A --~ bB, A ~ Bb or a ~ A
where A and B are nonterminal variables and a and
b are terminal variables. It is well known from Ruzzo
[17] that the general CFL's recognition problem can be
performed on a CRCW PRAM in O(log n) time using
n 6 processors again by parallelization of dynamic pro-
gramming. By observing that the parse tree of the lin-
ear context free language is of very restricted form, we
construct an O(n 3) processor, O(log 2 n) time CREW
PRAM algorithm for it. Using the fact that we are do-
ing Boolean matrix multiplication, we can reduce the
processor count to n 2 ~ .

2 Pre l iminar i e s

Throughout this paper a tree will be a rooted tree. It
is ordered if the children of each node are ordered from
left to right. The level of a node in a tree is its distance
from the root. A binary tree T is complete at level I
if there are 2 z nodes in T at level I. A binary tree is
empty at level I if there is no vertex at level i.

A binary tree T is a left-justified tree if it satisfies
the following property:

1. i fa vertex has only one child, then it is a left child;

2. if u and v are sibling nodes of T, where u is to the
left of v, then if Tv is not empty at some level 1,

422

then Tu is complete at level 1, where Tu and Tv de-
note the subtrees rooted at u and v, respectively.
Right-justified trees can be defined similarly.

Let R A K E be an operation that removes all leaves
from a tree. We shall consider a restricted form of
RAKE where leaves are removed only when its siblings
are leaves.

P r o p o s i t i o n 2.1 The set of left-justified trees (right-
justified trees) is closed under the RAKE operation.

L e m m a 2.1 For any left-justified tree T o f n vertices,
[log 2 n] applications of RAKE will reduce T to a single
chain. Moreover, the resu!l~nq chain comes from the
left most path in 7..

Proof: We need only show that any vertex not on
the left most pa th of 7" is removed by [log n] iterations
of RAKE.

Let v be a vertex of 7" not on the left most path,
and let h be the height of v, the maximum length of
a path from v to a leaf in Tv. Since 7" is left-justified,
there exists a vertex u of T at the same level as v and
to the left of v, and since Tv is not empty at level h,
7.u is complete at level h and hence has at least 2 h
leaves. Since 7" has n leaves altogether, h < log n.
Each RAKE decreases the height of every non-empty
subtree by 1, thus log n iterations of RAKE completely
eliminate 7~. O

Let the height of a tree 7" be the height of its root.

C o r o l l a r y 2.1 I f7. is a left-justified tree ofn vertices,
then for all v not on the left most path o fT , the height
of ~ is bounded by O([logn]) .

3 Parallel Tree Contract ion
and Dynamic Programming

In this section, we present a parallel algorithm for find-
ing an optimal Huffman tree for a given monotonic
frequency vector (P l , . - . ,Pn) . The general Huffman
Coding Problem is reducible to this special case after
applying one sort (see Tang [18]).

For 1 < i < j _< n let Hi,j be defined to be the
minimum average word length of a Huffman code over

1 (pi , . . . ,Pj). Let Pi,i = ~s=iPs. The values.of H may
be obtained recursively as follows: for all 1 < i < j _<
n ,

0 i = j
t l i , j =. mink=i+ 1 (tll,k-1 + Hk,i) + Pi,i i < j (I)

The values of all Hi,j, including the desired out-
put value Hi,n, may be obtained by the following al-
gori thm which simulates the RAKE operation:

1. Estimate Hi,j to be 0 if i = j , +c<~ otherwise.

2. Iterate this step until all Hi,i are stable: Use re-
lation (1) to re-estimate H i j for all i < j , using
the values of H obtained during the previous es-
timation step.

3. Output the value of Hl,n.

Each iteration of the second step can be done in
O(log n) time using n3/ logn processors, if a C R E W
PRAM model of computation is used. Unfortunately,
the best upper bound on the number of iterations
needed is O(n), since each iteration simulates just one
RAKE operation.

The algorithm can be improved by introducing a
step which simulates the COMPRESS operation, as
well. The COMPRESS operation halves each chain in
a tree by doubling. For any 1 _< i < j _< n, define
Fi,j to be that quanti ty such that Hl,i + Fi j is the
minimum average word length of a binary tree over
(pl pj), where the only trees considered are those
which contain a subtree which is a binary tree over
(Pl p/). If the value of all Hi,j are already known,
F i j can be defined by the following:

Hi+l , j + p ~ i + 1 = j
Fi,j = mink(Hi+lS + pl,j,z'i,k + Fk,j) i + 1 < j (2)

We now describe the modified algorithm, which
makes use of relations (1) and (2), and which simulates
log n iterations of RAKE followed by log n iterations
of COMPRESS:

1. For 1 < i _< j < n, estimate Hi,j to be 0 if i = j ,
+c~ otherwise.

2. Iterate this step [log n] times: For all I < i < j _<
n, re-estimate Hid using relation (1) and the val-
ues of H computed during the previous estimation
step.

3. For 1 < i < j < n, estimate Fi,i to be Hi+l,j+pi,j,
using the last estimate of Hi+l,j.

4. Iterate this step [log n] times: For all 1 < i < j <
n, re-estimate Fi,j using relation (2) and the val-
ues of F computed during the previous estimation
step.

423

5. Output the value FI,n, which will be the minimum
average word length of any Huffman code.

Intuitively, each re-estimation of the values of H
simulates one RAKE step, while each re-estimation of
the values of F simulates one COMPRESS step. Cor-
rectness of the algorithm follows from the fact that any
left-justified binary tree can be reduced to the empty
tree by [log n] iterations of RAKE followed by [log n]
iterations of COMPRESS, and

L a m i n a 3.1 For each monotonically increasing fre-
quency vector (Pl,...,Pn), there is an optimal posi-
tional tree (Iluffman tree) that is left-justified.

[PROOF]: This lamina can be proven by a simple in-
d t~ction on n. In fact, the procedure given in the proof
of Lemma 3.1 (Teng [18]) transforms any Huffman tree
to a left-justified one. []

T h e o r e m 3.1 The Huffman Coding Problem can be
solved in O(log n) time, using O(n3/ log n) processors
on a CRCW PRAM.

4 M u l t i p l i c a t i o n of Concave
M a t r i x

In this section we introduce a new subclass of matrices
which we call concave matrices. A concave matrix is
a rectangular matrix M which satisfies the quadrangle
condition [19], that is M 0 + Mkl _< Ma + Mkj for all
i < k, j < 1 in the range of the indices of M.

Matrix multiplication shall be defined over the
closed semiring (min, +), where the domain is the set
of rational numbers extended with +oo. For example,
if M is the n x n matrix giving the weights of the edges
of a complete digraph of size n, then M k is the ma-
trix giving the minimum weight of any path of length
exactly k between any given pair of vertices.

We give a recursive concave matrix multiplica-
tion algorithm which takes O(log n log log n) time, us-
ing n2/logn processors on a CREW machine and
O((log log n) 2) time, using n2/(log log n) processors on
a CRCW machine. Our algorithm is very simple and
has very small constant.

T h e o r e m 4.1 Two concave matrices can be multi-
plied in O(log n log log n) time, using n2/ log n proces-
sors on a CREW machine; and O((loglogn) 2) time,
using n2/(loglog n) processors on a CRCW machine.

In the absence of the concavity assumption, the
best known algorithm for computing AB requires
O(n 3) comparisons.

424

4 .1 T h e M a t r i x C u t (A , B)

Let A be a concave matrix of size px q, B be a concave
matrix of size q x r. By the definition of matrix multi-
plication above, (AB)ij : min{Aik + Bkjll < k < q}.
We can define a matrix Cut(A,B) taking values in
[1,q] as follows: Cut(A,B)~j = that value of k such
that Ai~ + Bkj is minirrfized. (If there is more than
one value of k for which that sum is minimized, take
the smallest.)

To compute AB it is clearly sufficient to compute
Cut(A, B), since we can construct AB from Cut(A, B)
in O(1) time using pr processors. In the algorithm
below, we just indicate how to compute Cut(A, B).

Define A~,~ to be the submatrix of A consisting
of all the entries of A whose row index is even, while
(by an abuse of notation) we define Beven to be the
submatrix of B consisting of all entries of B whose
column index is even.

MULTIPLICATION ALGORITHM:
Procedure: Cut(A, B)
i f A has just one row, or if B has just one column
t h e n

compute Cut(A, B) by examining all possible
choices
else

compute Cut(Aeven, Beve,) by recursion
compute Cut(Ae~n, B) by interpolation
compute Cut(A, Be,en) by interpolation
compute Cut(A, B) by interpolation

fi

Interpolation:

The concavity property of A guarantees the fol-
lowing inequality:

ity:

Cut(A, B)ij < Cut(A, B)i+l,j

while concavity of B guarantees a similar inequal-

Cut(A, B)ij < Cut(A, B)~j+i

The combination of these two properties we call
the monotonicity property. By the monotonicity
property, the total number of comparisons needed
to compute Cut(A,B), given Cut(Aeven, B), can-
not exceed (q - 1)r. To see this, fix a particular
column index j . For a particular odd row value
of i, q - 1 comparisons could be needed to decide
the value of Cut(A,B)ij, since every k is a candi-
date. But monotonicity allows us to decide that value
with only Cut(A,B)i+i,j - Cut(A, B) i - l j compar-
isons. Summed over all odd values of i, the total

number of comparisons needed (for the fixed value of
j) is thus only q - 1. For all j together, (q - 1)r
are enough. Similarly, monotonicity allows us to com-
pute Cut(Ace,n, B) given Cut(Art,n, Be,~) using at
most p (q - 1)/2 comparisons and Cut(A,B) given
Cut(Ae~,en, B) and Cut(A, Beven) using at most qr/2
operations.

T i m e a n d W o r k Analys is :
Except for the recursion, the time to execute the

multiplication algorithm is O(log q) or O(loglogq) on
a CREW and CRCW machine, respectively. Since
the depth of the recursion is min{logp, logr}, the to-
tal time is O(log q(rnin{logp, log r}) on a CREW ma-
chine and O(loglogq(min{logp, logr}) on a CRCW
machine.

that in Step(2), each row requires Vrff. n comparisons.
Since there is x/~ff rows, n 2 comparisons are sufficient.
Similarly, Step (3) takes n 2 comparisons.

For m > 1, by monotonicity properties that each
row (column) takes n 1/2=. n comparisons. Since there

1 - - 1 / 2 r a - 1 1 / 2 m 2 " are n • n rows (columns), n comparisons
are sufficient.

Therefore, the above algo-
rithm takes O(log n log log n) time, using n2/log n pro-
cessors on a CREW machine or O((log log n) 2) time,
using n2/(log log n) processors on a CRCW machine.

5 T h e Par a l l e l G e n e r a t i o n o f
H u f f m a n C o d e

4 . 2 M o r e E f f i c i e n t C o n c a v e M a t r i x A l -

g o r i t h m

In the MULTIPLICATION ALGORITHM given in
the above subsection, the size of matrices is getting
small during the recursion, while the number of pro-
cessor available is still n 2. Hence at a certain stage,
we do have enough processors to run the general ma-
trix multiplication algorithm to compute the Cut ma-
trix in one step. This implies that we can stop the
recursion whenever the sizes of matrices are smaller
enough to run the general matrix multiplication algo-
rithm. Thus, the parallel (concave matrix) multiplica-
tion algorithm can be speeded up.

For each integer m, let Amodm be the submatrix
of A consisting of all the entries of A whose row in-
dex is a multiple of m, while (by an abuse of nota-
tion) let Bmodrn submatrix of B consisting of all the
entries of B whose column index is a multiple of m.
Clearly, Cut(Amod[vrffj, Bmod[vr~j) requires n 2 com-
parisons, and can be computed in O(logn) time and
(log logn) time on a CREW machine and a CRCW
machine, respectively.

The following is a bottom-up procedure for com-
puting Cut(A, B).

* for m = 1 to [log log n] -4- 1 do

1. Compute Cut(Amod[nl/2,~], Bmod[nl/2~J);;

2. Compute Cut(Amod[n~/~mJ, B);;

3. Compute Cut(A, Bmod[nIl2~ J);;

We now show that each step of the loop can be
computed by n 2 comparisons.

Clearly, when m = 1, step (1) requires n 2 compar-
isons. And it follows from the monotonicity properties

425

Presented in this section is an efficient parallel algo-
rithms for the Huffman Coding Problem. The algo-
rithm runs in O(log 2 n) time, using n2/logn proces-
sors on an CRCW PRAM. This algorithm improves
upon the previous known .hfC algorithms significantly
on the processor count. It hinges on the use of concave
matrix multiplication.

By Lemma 3.1, for each nondecreasing vector
(Pl,...,Pn), there exists an optimal ordered tree
for (Pl,--- , P,) which is left-justified. From Corol-
lary 2.1, it follows that there exists an optimal tree
for (Pl, . . . , P,) such that the heights of all subtrees in-
duced by nodes not on the leftmost path are bounded
by [log n].

This observation suggests the following paradigm
for the Huffman Coding Problem.

1. C o n s t r u c t i n g He igh t B o u n d e d Subt rees : for
all i _< j , compute Ti,j, an optimal tree for
(pl, ..,, Pi) whose height is bounded by [log n].

2. C o n s t r u c t i n g the O p t i m a l Tree: using the in-
formation provided in the first step to construct
an optimal Huffrnan tree for (Pl , Pn).

Assume that weights Px , Pn are given in mono-
tonically increasing order. Define a matrix S as
S[i,j] J = ~k=i+l Pk for i < j , and S[i,j] = +oo for
i _> j. It follows easily that S is a concave matrix.

For each h >_ 0, then define a matrix A~ as fol-
lows. For 0 _< i < j < n, Ah[i,j] be the average word
length of the optimal Huffman tree for the weights
(Pi+I...Pj), restricted to height h, i.e., minimum over
all trees whose height does not exceed h. If no tree
exists, i.e., i > j or (j - i) > 2 h, define Ah [i, j] = +oo.

Note that A0 is trivial to compute, while Ah =
min(Ah-l, Ah-a*Ah-i+S), where • stands for the ma-
trix multiplication using the closed semiring {rain, +}.

Note also that ABogn] [i, j] is equal to the aver-
age word length of the optimal tree for (pi+l, .-., Pj) of
height bounded by [log n].

The following lemma was first proven by Garey
[6] and is known as the Quadrangle Lemma. For a
simplier proof see Larmore [11].

Lemma 5.1 For each h, Ah is a concave matrix.

Therefore, Arlos,~] can be computed in O(log 2 n)
time, using n2/ log n processors. This is the first step
in the paradigm proposed above. We now show that
the second step in the paradigm can be also reduced
to multiplying concave matrices.

A square matrix can be identified with a weighted
diiected graph. It is well known [3] that if M is the
matrix for a weighted digraph with (n --b 1) vertices,
that rain(M, I) n contains the solutions to the all-pairs
minimum path problem for that digraph, where I is
the identity matrix over the closed serniring {rain, +}.

We now show how to reduce the Huffman prob-
lem to a minimum weight path problem for a directed
graph. The matrix M, defined below, will be the
weight matrix for a directed graph,which is also called
M, whose vertices are {0,1, ..., n}.

{+ ~ i f i = g = 0
M [i , j] = 0 if i = a n d j = I

Arlog,~l [i, j] + S[O, j] if 0 < i < j _< n
+oo otherwise.

It is easy to verify that M is a concave matrix.
The entries of M k contain minimum weights of

paths in the digraph M of length exac t l y k. For
i > 0, M k [i, j] has no simple meaning in terms of Huff-
man trees. But M k [0, j] contains the minimum aver-
age word length over all Huffman trees on the weights
(Pi pj) which satisfies the following two properties:

I. There are exactly k - 1 internal nodes on the left
edge of the tree, i.e., the leftmost leaf is at depth
k.

2. The tree is left-justified.

By Lemma 3.1, there is an optimal Huffman tree
that satisfies the above two conditions for some k.
Thus computing M k for all k up to n will give us the
optimal Huffman tree. Unfortunately, the amount of
computation involved is too great.

This problem can be overcome by a very slight
modification of the graph of the matrix M.

Define a matrix M I as follows: M'[0, 0] = 0 and
M'[i, j] = M[i, j] otherwise.

426

Think of M ~ as a digraph derived from M by
adding a self-loop of weight 0 at 0. It is easy to verify
that M' satisfies the quadrangle condition [19]. Hence,
M ~ is a concave matrix.

Note that any path of length k or less from 0 to
j in M corresponds to a path of length exactly k from
0 to j in M'.

The left edge of the optimal Huffman tree has
length less than n, therefore (M')k[0, n] equals the
weighted path length of the optimal Huffman tree for
any k > n.

Note that M ~ is a concave matrix. Moreover
(M') k is also a concave matrix. Hence (M') 2B°*"1
can be computed by starting with M t, then squaring
~logn] times. Using the parallel concave matrix mul-
tiplication algorithm, each squaring can be performed
in O(logn) time, using n~/ logn processors.

T h e o r e m 5.1 The Huffrnan Coding Problem can be
solved in O(log 2 n) ~ime, using n~/ logn processors.

6 Constructing Almost Opti-
mal Binary Searching Trees
in Parallel

In this section, the parallel construction of optimal bi-
nary search trees, an important data structure for data
maintenance and information retrieval [10], is consid-
ered. An O(log 2 n) time, n2/ log2n processor parallel
algorithm is given for constructing an approximate bi-
nary search tree whose weighted path length is within
e off the optimal, where e = n -h. Note that the best
known sequential optimal search tree construction al-
gorithm, due to Knuth, takes O(n 2) time. Hence, our
algorithm is optimal up to approximation. This algo-
rithm too hinges on the judicious use of concave matrix
multiplication.

The sequential version of the optimal search tree
problem was first studied by Knuth [10], who used
monotonicity to give an O(n ~) time algorithm.

Suppose we are given n names A1, An and
2 n + 1 frequencies P0 ,Pl , . . . ,Pn, ql, qn, where qi is
the probability of accessing Ai and Pl is the probability
of accessing a word which is not in the dictionary and
is between Ai and Ai+l.

A labeled proper binary tree 'T of n internal nodes
and (n + l) leaves is a binary search tree for A1 , . . . , An
iff there is a one-one onto mapping from A1 , An to
the internal nodes of 7" such that the inorder traversal
of 7- gives the vector (A1, . . . , An).

Let bi b e t h e depth of the i th internal node and ai
be the depth of the i th leaf. Then P(7-), the weighted
path length of 7", is defined to be P(T) = ~ i qi(bi +
1) + ~ i piai.

7- is an optimal binary search tree for (A1 , An)
if P(T) is minimized over all possible search trees.

The optimal binary search tree problem is re-
ducible to a dynamic programming problem over the
closed semiring {min, +}. Hence, it lies in .ARC. How-
ever, the best known A/'C parallel algorithm requires
n 6 processors.

Let the weight of a subtree be the sum of the pi
and qi for the nodes and leaves in that subtree. Let
the depth of the subtree to be the depth of its root in
the whole tree.

Our parallel algorithm utilizes the following ap-
proximating lemma due to Gu:ttler, Mehlhorn, and
Schneider [7].

L e m m a 6.1 I f S is a subtree of an optimal tree, and
i f w and d are the weight ors and the depth of the root
orS, then d < C+log(1/w)/ log(t), where ¢ = 1.618...
is the Golden ratio, and C is some small constant.

The following is the outline of our parallel ap-
proximate optimal binary search tree construction al-
gorithm.

1. L e t 0 < e < n - t and l e t 6 = e / 2 n l o g n .

2. Define a Pl or qi to be small if it is less than 8;
Define a run of small frequencies to be a sublist
starting and ending with a p value, where every
p value and every q value in that sublist is small.
Collapse every maximal run of small frequencies
to a single frequency, which will then still be less
than e.

3. Let H = O(log(1/e)) be the maximum height,
given in the sense of Gu:ttler, Mehlhorn, and
Schneider [7], of any optimal tree which has no
subtrees (other than a single leaf) of weight less
than 6.

4. Let T S be an optimal tree for the collapsed list of
frequencies. Note that height(T') < H.

5. Let T b e the tree o f n + 1 leaves obtained from
7-' as follows. If L is a leaf of T' whose frequency
is one of the "collapsed" values obtained in step
2, replace L by an arbitrary binary tree of height
no more than logn, which contains all the low
frequency nodes involved in the collapse.

427

The correctness of the algorithm is guaranteed by
the following lemrna due to Larmore [12].

L e m m a 6.2 The weighted path length o f t will differ
from that of the optimal tree by at most e.

Clearly, steps (1)-(3) and (5) can be performed
optimally in O(logn) time. The bottleneck of the al-
gorithm is step (4) which computes optimal binary
search trees of height bounded by H = O(log n) for
all pairs. Like the problem of constructing optimal
Huffman tree of height bounded by O(log n), this prob-
lem can be also reduced to multiplication of concave
matrices. Moreover, the number of concave matrix
multiplications is bounded by O(logn). The formal
description of the method is given in the full paper.

T h e o r e m 6:1 For any 0 < e < 1/n, a binary
search tree 7- can be found whose weighted path
length is within e of that of the optimal tree, in
O(log(1/e)(log n)) time, using n2/ log 2 n processors.

7 Construct ing Trees
Given Leaf-Patterns

from

In this section, an optimal O(log n) time, n~ log n pro-
cessor EREW parallel algorithm is given for the tree
construction problem when the leaf pattern is mono-
tone or bitonic. Also presented is an O(log 2 n) time,
n~ log n processor parallel EREW PRAM algorithm to
the tree construction problem with general leaf pat-
terns. This involves an Aft reduction for the gen-
eral tree construction problem to the tree construction
problem with bitonic leaf patterns. Consequently, an
optimal, O(log n) time EREW parallel algorithm is ob-
tained for constructing Shannon-Fano code.

7 . 1 M o n o t o n i c L e a f P a t t e r n s a n d

B i t o n i c L e a f P a t t e r n s

There is an elegant characteristic function, due to
Kraft [5], to determine whether there is a solution to
the tree construction problem with a monotone leaf
pattern.

L e m m a 7.1 (K r a f t [5]) There is a solution to the
tree construction problem for a monotone leaf pattern
(l l , . . . , l.) iff 1/2" < 1.

In using the Kraft sum one has to be careful that
the numbers added have only O(logn) bits in their
representations and not O(n) as they naively appear
to have in the Kraft sum.

Suppose (li In) is a monotone leaf pattern.
Since it is sorted we can construct a vector a =
(a t , . . . , am) such tha t ai = the number leaves at level
i and m = li in O(logn) time optimaly. In the case
when 11 > n we must store a as linked-list of nonzero
entries. For simplicity of the exposition assume that
m < n. We first show how to reduce a to a vector
such tha t ai < 2 for 1 < i < n. We compute a vector
a ' from a by sett ing a' = i-1 [ai/2J + (a i - i mod 2). It
follows by the Kraft sum that the tree for a exists iff
it does for a'. Further, from the tree for a ' we can
in unit t ime construct one for a. This reduction from
a to a ' is very analogous the the RAKE in the Huff-
man code algori thm for left-justified trees. We shall
apply this reduction until the ai _< 2, at most O(log n)
times. To see t ha t we only need n] log n processors
for the log n reductions, observe tha t the total work
is O(~a~L2~logai) < n. To balance the work, any
processor tha t computes a'. a t a given stage will be $

required to compute a~_ i a t the next stage. Thus we
distribute the ai >_ 2 based on the work of ai which is
log ai. To construct a tree for a where ai < 2 reduces
to computing the sum of two n-bit numbers and their
intermediate carries. This can all be done optirnaly
using prefix sums.

This gives the following theorem:

Theorem 7.1 Trees with monotone leaf patterus c a n

be constructed in O(logn) time, using n / logn proces-
sors on an E R E W PRAM.

A pat tern (l i , . . . , l n) i s a bitonic pat tern if there
exists i such tha t (l l , . . . , li) is monotone increasing
and (ll, ..., l .) is monotone decreasing.

L e m m a 7.2 The tree construction problem for a
bitonic leaf pattern (ll ln) has a solution iff
~i~ 2-'~ _< 1.

Using the methods presented for monotone leaf
pat terns and the above lamina we get the following
theorem:

T h e o r e m 7.2 A Tree from a bitonic leaf pattern can
be constructed in O(logn) time, using n / l o g n proces-
sors on an E R E W P R A M if it ezists. In general, the
minimum number of trees (in order) will be generated
with the prescribed leaf pattern.

7 . 2 G e n e r a l L e a f - P a t t e r n s

Presented in this subsection is an O(logn) time re-
duction from the tree construction problem with a
general leaf pat tern to the one with a bitonic leaf

428

pattern. Moreover, the reduction can be performed
with n/ log n processors. Therefore, an O(log 2 n) time,
n / l o g n processor E R E W PRAM parallel algorithm
results.

A segment-representation of a pat tern (li In)
/ m /

is ((l[, nl) (Ira, am)) where ~ i = nj = n, l~ # lj+i,
and

(11, ..., li, ..., l~, ..., l~) (l l , l .) = ' ' ' '

I l l r i m

For simplicity, ((l~, ni) , (l~n, am)) is also called
a pattern. In a pat tern ((ll, hi), . , , (lm, am)), li is a
min-point if l i - i > li < li+1; li is a max-point i f / i -1 <
li > li+i.

In a pat tern ((It, n i) , ..., (lm, nm)), (li, ..., I s) is
a right-finger if (1) l i - i is a rain-point and for no
i < k < j is lk a min-point (2) I/+1 <_ l i - i < I s.
A left-finger is defined similarly except that lj+l is a
min-point. Note tha t a finger may be both a left and a
right finger. We next show how to "remove" every fin-
ger from a leaf pat tern using the tree construction for
bitonic patterns. Finally, we observe tha t the new pat-
tern will have at most half as many fingers as before.
Thus we need only remove fingers O(logn) times.

Finger-Reduction applied to one finger (li, . . . , lj)
in a pat tern ((ll, n l) , (l, . , n , .)) is defined as follows:
Without loss of generality assume tha t i t is a right-
finger and lj+l < li-1. Set

ni t

k----i

Finger-Reduction returns the pattern:

((11, nl) , ..., (h - i , ni-1 + K) , (lj+i, nj+i), ..., (I,~, n,~)).

We have just related a finger with the number (from
Lemma 7.2) of leaves at level l i - i tha t are needed to
generate it. In general Finger-Reduction will simulta-
neously remove all fingers, both left and right fingers.
It will return with a pattern.

To see tha t Finger-Reduction reduces the num-
ber of finger by a t least one half, observe tha t Finger-
Reduction removes all max-points. I t is not hard to see
tha t the only candidates for max-points are li which
were previously rain-points and also adjacent to a left
and right finger. Thus the worst case for reducing the
number of fingers of a pat tern is when the pat tern con-
sists of consecutive pairs of left and right fingers that
share a rain-point. The next Lemma summerizes this:

L e m m a 7.3 (F i n g e r C u t L e m m a) I f a pat-
tern (l~ , . . . , l~) is obtained by Finger-Reduction from

a pattern (l l , . . . , ln), then the tree construction prob-
lem with pattern (11, . . . , 1,~) has a solution if f there is a
solution to the tree construction problem with pattern

To obtain the tree for a pattern we apply Finger-
Reduction until the pattern is reduced to a single fin-
ger. We then construct the root tree for the finger.
In an expansion phase we attach the trees constructed
while removing the finger during Finger-Reduction to
the root tree.

T h e o r e m 7.3 A tree can be constructed for a pattern
(ll, . . . , In) with m fingers in O(log n logm) time, using
n~ log n processors.

7.3 ~ C o n s t r u c t i n g A p p r o x i m a t e Opt i -
ma l Trees

The Shannon-Fano coding method can be specified as:
upon input (Pl,--- ,Pn), compute (l l , . . . , l ,) such that
log ~ < li < log ~ + 1, then construct a prefix code
C =icT, c,) such that I cl l= l,.

The proof to the following claim can be found in

Is]:
C l a i m 7.1 Let S F (A) be the average word-length of
the Shannon-Fano code of A = {al, . . . , a n } and
H U F F (A) be the one of the Huffman code, then

H U F F (A) < S F (A) < H U F F (A) + 1

The second part of the Shannon-Fano method can
be implemented by the parallel tree construction algo-
rithm presented in Section 7.1. Therefore,

T h e o r e m 7.4 In O(log n) time, using n / l o g n ~0ro-
cessors, a prefix code can be constructed with average
word length bounded by that o f the corresponding Huff-
man code plus one.

8 Parallel Linear Context-free
Language Recognition

In this section, the parallel complexity of linear
Context-free Language recognition is considered. The
linear CFLs' recognition problem is reduced to a path
problem in a graph which has a family of small sep-
arators. An O(log ~ n) time, M (n) processor parallel
algorithm is obtained for linear CFLs' recognition by
using the parallel nested disection of Pan and Reif [16].
Here M (n) is the number of processors needed to mul-
tiply two n × n boolean matrices in O(log n) time in
the CRCW PRAM model.

429

D e f i n i t i o n 8.1 (Con tex t - f r ee Language)
A context-free grammar is a 4-tuple G = {V, E, P, S}
where:

• V is a finite nonempty set called the total vocab-

ulary;

® E C_ V is a finite nonempty set called the terminal
alphabet,"

® S E V - E = N is called the start symbol;

o P is a finite set of rules of the form:

A--~ a, where A E N, a E V*

A context-free grammar G = {V, E,P, S} is linear i f
each rule is of the form: A ~ uBv , where A , B E
N, u, v E E*

Let G = { V , E , P , S } be a context-free grammar,
and let w, w ~ E V*, w is said to directly generate w ~,
written w ~ w ~ i f there exist a, fl, u, v E V* such that

w = dAft , w' = v~uBvl~ E V*, and A ---~ u Bv E P.
stands for the reflexive-transitive closure of 0 .

The language generated by G, written L(G) is the
set

L (G) = {w e E* IS:=~w}

The CFL-recognition problem is defined as: given
a context-free grammar, G and a finite sequence w =
wl. . .wn E E*, decide whether w E L(G) (and generate
a parse tree).

Each linear context-
free grammar G ~ = {V/, E , P ~, S} can be normalized
by constructing another linear context-free grammar
G = {V, E, P, s} such that (i) L(G) = L(G') , (it) P is
a finite set of rules of the form

A --~ bB, or A --~ a, or A --+ Cc,

where a,b, c E ~ , A , B , C E N .
A linear context-free grammar G ~ can be easily

normalized by finding a G such that (i), (it) are sat-
isfied and moreover, the size of G is within a constant
factor of that of G ~. Throughout this section, it is as-
sumed that the input linear context-free grammar is
normal and its size is a constant with respect to n, the
length of the input finite sequence.

Given a (normal) linear context-free grammar G
and a finite sequence w = wl...wn E E*, a graph can
be defined, IG(G, w) = {IV, I E } , called induced graph
of G and w which has]IV] = O(n 2) nodes. More
specifically,

IV = { v + , j , r l l < i < j < _ n , p e N }

I E = IEi U IEr where

IEz = {(vi,jw,vij-x,q) I i < j, p ~ qwj E P}

XE,. =- I i < j, p w+q P }

We have the following observation.

C la im 8.1 Let G be a linear context-free grammar
and w E E*. Let IG(G,w) be the induced graph of
G andw. Then w E L(G) iffthere exists a path in
IG(G, w) from Vl,n,, to vl,l,q for some i : 1 < i < n,
whe~ q .-o wl E P.

The above observation reduces the linear context-
free recognition problem to a path problem (teachabil-
ity problem) in the induced graph IG(G, w).

Let cluster i , j refer to the set of INI vertices of
the form vij,v (see Figure 1). Note that if all vertices
of each cluster i, j are "collapsed" into one vertex (call
it vi,j), then a planar grid graph is obtained (see Fig-
ure 2a) which we schematically draw as a triangle (see
Figure 2b). Although IG(G, w) itself is typically not
planar, we shall take the liberty of talking about its
external face to refer to the subset of its nodes that
map into the external face of the collapsed version.

¢t~tet i4- l

Figure 1: In IG(G, w) the only edges leaving cluster
i , j go to clusters i , j - 1 and i + 1,j.

1,$..$,5 ~ ..•

f v 1,2

1,1

(at (b)

Figure 2: A grid graph (a) and its schematic represen-
tation (b).

Let m = O(n ~) denote the number of vertices
in IG(G,w), and PIG = O(n) be the edge size of
IG(G, w), i.e. the perimeter of the external face. The
subset C, shown in Figure 3, is a separator of size
0 (4 ~) = O(n), which partitions IG(G, w) into four

430

approximately equal components (in that figure the
triangle is meant to depict IG(G, w) itself rather than
its collapsed version). Moreover, such a small separa-
tor can be uniformly found in each component recur-
sively.

Figure 3: Illustrating the small separator C in
Ia(G,w)

The outline Of the parallel algorithm becomes
clear. Let U, M, L, R be the four pieces in IG(G, w)
induced by the separator C (see Figure 3). First, the
reachability matrix R~achv between all pairs of ver-
tices on the external face of U is recursively computed.
The same is done for each of M, L, R, resulting in ma-
trices ReachM , R~achL, R~achR, respectively. Using
the four boolean matrices returned by these four re-
cursive calls, the reachability matrix Reach6 between
all pairs of vertices on the external face of IG(G, w)
is computed. This can be done simply by boolean
matrix multiplication (actually three such multiplica-
tions), taking time O(log n) with M(n) processors (it is
known that M(n) = O(n TM) where 0 < e < I), Hence
the time complexity of the algorithm is O(log 2 n). The
processor count can be obtained by the following re-
currence:

P(n) = max(4P(n/2), M(n))

which implies P(n) = O(M(n)).

T h e o r e m 8.1 Linear contezt-free languages can be
recognized in O(log ~ n) time, using M(n) processors,
where M(n) is the number of processors needed to do
boolean matriz multiply in O(log n) time.

9 O p e n Q u e s t i o n s

• Can the Huffman Coding Problem be solved in
polylogarithrnic time, using o(n 2-+) processors?

• Given a position tree, can we test whether it is
a Huffman tree in polylogarithmic time, using
O(n 2-~) processors?

Can general context-free languages be recog-
nized in polylogarithmie time, using O(nS-+), or
o(M (n2)) processors?

0 Can a linear context-free language be recognized
in polylogarithmic time, using n 2 or o(M(n)) pro-
cessors?

o Can the Optimal Binary Search Tree Construc-
tion be solved in polylogarithmic time, using fewer
than O(n 6-~) processors?

A c k n o w l e d g e m e n t s We would like to thank
Manuela Veloso of CMU for carefully reading drafts of
the paper and many helpful comments. We would also
like to thank Alok Aggarwal for helpful discussions.

R e f e r e n c e s

[1] A. Apostolico, M. J. Atallah, L. L. Larmore and
tI. S. McFaddin. Efficient parallel algorithms for
string editing and related problems. In Proc. 26th
Annual Allerton Conf. on Communication, Con-
trol, and Computing, Monticello, Illinois, Septem-
ber 1988, pp 253-263, 1988.

[2] A. Aggarwal and J. Park. Notes on searching
in multidimensional monotone arrays. In 29th
Annual Symposium on Foundations of Computer
Science, IEEE, 1988.

[3] A. Aho, J. Hopcroft, and J. Ullman. The Design
and Analysis of Computer Algorithms. Addison-
Wesley, 1974.

[4] It. Cole. Parallel merge sort. In FOCS$7,
pages 511-516, IEEE, Toronto, October 1987.

[5] S. Even. Graph Algorithms. Computer Science
Press, Potomac, Maryland, 1979.

[6] M. R. Garey Optimal binary search tree with re-
stricted maximal depth. SIAM Journal of Com-
puting, 3:101-110, 1974.

[7] R. Guttler K. Mehlhorn and W. Schneider. Bi-
nary search trees: average and worst case be-
havior. Elektron. Informationsverarb Kybernet,
16:579-591, 1980.

[8] R. W. Hamming. Coding and Information The-
ory. Prentice-Hall, Inc., 1980.

[9] D. A. Huffman. A method for the construction of
minimum redundancy codes. Proc. IRE, 40:1098-
1101, 1952.

431

[10] D. E. Knuth. Optimal binary search trees. Acla
Informalica, 1:14-25, 1971.

[11] L. L. Larmore. tteight restricted optimal binary
trees. SIAM Journal of Computing, 16:1115-
1123, 1987.

[12] L. L. Larmore. A subquadratic algorithm for
constructing approximately optimal binary search
trees, aT. of Algorithms, 8:579-591, 1987.

[13] B. McMillan. Two inequalities implied by unique
decipherability. IRE, Transaction on Information
Theory, 0:185-189, 1956.

[14] G. L. Miller and J. H. Reff. Parallel tree contrac-
tion and its applications. In $6th Symposium on
Foundations of Computer Science, pages 478-489,
IEEE, Portland, Oregon, 1985.

[15] G. L. Miller and S-tI. Teng. Systematic meth-
ods for tree based parallel algorithm development.
In Second International Conference on Supercom-
paring, pages 392--403, Santa Clara, May 1987.

[16] V. Pan and J. It. Reif. Fast and efficient paral-
lel solution of linear systems. SIAM Journal of
Computing, to appear, 1988.

[17] W. L. Ruzzo. On uniform circuit complexity.
Journal of Computer and System Sciences, 22(3):,
June 1981.

[18] S-H. Teng. The construction of Huffman-
equivalent prefix code in NC. A CM SIGACT,
18(4):54-61, 1987.

[19] F. F. Yao. Efficient dynamic programming us-
ing efficient dynamic programming using quad-
rangle inequalities. In Proceedings of the 1Pth An-
nual A CM Symposium on Theory of Computing,
pages 429--435, ACM, 1980.

