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A b s t r a c t  

An O(log ~ n) time, n2 / logn  processor as well as an 
O(log n) time, n3/log n processor CREW determin- 
istic parallel algorithms are presented for construct- 
ing Huffman codes from a given list of frequences. 
The time can be reduced to O(log n(loglog n) 2) on an 
CRCW model, using only n2/(log log n) 2 processors. 
Also presented is an optimal O(log n) time, O(n/ log  n) 
processor EREW parallel algorithm for constructing a 
tree given a list of leaf depths when the depths are 
monotonic. An O(log 2 n) time, n processor parallel 
algorithm is given for the general tree construction 
problem. We also give an O(log 2 n) time n2/ log2n 
processor algorithm which finds a nearly optimal bi- 
nary search tree. An O(log 2 n) time n 2'36 processor al- 
gorithm for recognizing linear context free languages is 
given. A crucial ingredient in achieving those bounds 
is a formulation of these problems as multiplications of 
special matrices which we call concave matrices. The 
structure of these matrices makes their parallel multi- 
plication dramatically more efficient than that of arbi- 
trary matrices. 
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1 I n t r o d u c t i o n  

In this paper we present several new parallel algo- 
rithms. Each algorithm uses substantially fewer pro- 
cessors than used in previously known algorithms. The 
four problems considered are: The Tree Construc- 
tion Problem, The Huffman Code Problem, The Lin- 
ear Context Free Language Recognition Problem, and 
The Optimal Binary Search Tree Problem. In each 
of these problems the computational expensive part of 
the problem is finding the associated tree. We shall 
show that these trees are not arbitrary trees but are 
special. We take advantage of the special form of these 
trees to decrease the number of processors used. 

All of the problems we consider in this paper, 
as well as many other problems, can be performed in 
sequential polynomial time using Dynamic Program- 
ming. Arc algorithms for each of these problems can 
be obtained by parallelization of Dynamic Program- 
ming. Unfortunately, this approach produces parallel 
algorithms which use O(n 6) or more processors. An 
algorithm which increases the work performed from 
O(n) or O(n 2) to O(n 6) is not of much practical value. 
In this paper we present several new paradigms for im- 
proving the processor efficiency for dynamic program- 
ming problems. For all the problems considered a tree 
or class of trees is given implicitly and the algorithm 
must find one such tree. 

The construction of optimal codes is a classical 
problem in communication. Let ~ = {0, 1 .... , o" - 1} 
be an alphabet. A code £ = {cl . . . . .  cn} over E is a 
finite nonempty set of distinct finite sequences over ~, 
Each sequence ci is called code word. A code C is a 
prefix code if no code-word in C is a prefix of another 
code-word. A message over. C is a word resulting from 
the concatenation of code words from d. 

We assume the words over a source alphabet 
a l , . . . , a n  are to be transmitted over a communica- 
tion channel which can transfer one symbol of ~ per 
unit of time, and the probability of appearance of ai 
is Pi C ~ .  The H u f f m a n  Cod ing  P r o b l e m  is to 
construct a prefix code C =: {c l , . . . , cn  E ~*} such 



f g  . that  the average word length Ei=lp, •Icil is minimum, 
where Ici] is the length of ci. 

It is easy to see that  prefix codes have the nice 
property that a message can be decomposed in code 
word in only one way- they are uniquely decipherable. 
It is interesting to point out that  Kraft and McMillan 
proved that  for any code which is uniquely decipher- 
able there is always a prefix code with the same average 
word length [13]. In 1952, IIuffman [9] gave an elegant 
sequential algorithm which can generate an optimal 
prefix code in O(n log n) time. If the probabilities are 
presorted then his algorithm is actually linear time 
[11]. Using parallel dynamic programming, Kosaraju 
and Teng [18], independently, gave the first A/'C al- 
gorithm for the IIuffman Coding Problem. However, 
b~th constructions use n e processors. In this paper, 
we first show how to reduce the processor count to n s, 
while using O(log n) time, by showing that  we may as- 
sume that the tree associated with the prefix code is 
left-justified (to be defined in Section 2). 

The n 3 processor count arises from the fact that 
we are multiplying n x n matrices over a closed semir- 
ing. We reduce the processor count still further to 
n2/log n by showing that, after suitable modification, 
the matrices which are multiplied are concave (to be 
defined later). The structure of these matrices makes 
their parallel multiplication dramatically more efficient 
than that  of arbitrary matrices. An O(logn log log n) 
time nZ/log n processor CREW algorithm is presented 
for multiplying them. Also given is an O((loglogn) 2) 
time, n2/log log n processor CRCW algorithm for mul- 
tiplying two concave" matrices 1. 

The algorithm for construction of a ttuffman code 
still uses n 2 processors, which is probably too large for 
practical consideration since Huffman's algorithm only 
takes O(n log n) sequential time. Shannon and Fano 
gave a code, the Shannon-Fano Code, which is only 
one bit off from optimal. That  is, the expected length 
o fa  Shannon-Fano code word is at most one bit longer 
than the Huffman code word. 

The construction of the Shannon-Fano Code re- 
duces to the following Tree  C o n s t r u c t i o n  P r o b l e m ,  

Def in i t ion  1.1 (Tree  C o n s t r u c t i o n  P r o b l e m )  
Given n integer values ll , . . . .  ln, construct an ordered 
Mnary tree with n leaves whose levels when read form 
left to right are 11,..., 1,. 

1Independently, [1] and [2] improved the CREW algorithm 
results by showing that two concave matrices can be rnulti- 
plied in O(logn) time, using n2/logn CREW PRAM proces- 
sors. Also, [2] improved the CRCW algorithm by reducing the 
number ofCRCW PRAM processors required to n2/(log log n) 2. 

We give an O(log 2 n) time, n processor EREW 
PRAM parallel algorithm for the tree construction 
problem. In the case when ll, .. •, 1, are monotonic, we 
give an O(logn) time and n / l o g n  processor EREW 
PRAM parallel algorithm. In fact, trees where the 
level of the leaves are monotone will be used for 
both constructing Huffman Codes and Shannon-Fano 
Codes. 

Using our solution of the tree construction prob- 
lem we get an O(logn) time n / logn  processor 
EREW PRAM algorithm for constructing Shannon- 
Fano Codes. 

We also consider the problem of parallel con- 
structing optimal binary search trees as defined by 
Knuth [10]. The best known NC algorithm for this 
problem is the parallelization of dynamic program- 
ming which uses n 6 processors. In this paper, using 
the new concave matrix multiplication algorithm, we 
show how to compute nearly optimal binary search 
tree in O(log 2 n) time using n2/ logn processors. Our 
search trees are only off from optimal by an additive 
amount of 1/n k for any fixed k. 

Finally, we consider recognition of linear context 
free languages. A CFL is said to be linear if all pro- 
ductions are of the form A --~ bB, A ~ Bb or a ~ A 
where A and B are nonterminal variables and a and 
b are terminal variables. It is well known from Ruzzo 
[17] that the general CFL's recognition problem can be 
performed on a CRCW PRAM in O(log n) time using 
n 6 processors again by parallelization of dynamic pro- 
gramming. By observing that  the parse tree of the lin- 
ear context free language is of very restricted form, we 
construct an O(n 3) processor, O(log 2 n) time CREW 
PRAM algorithm for it. Using the fact that  we are do- 
ing Boolean matrix multiplication, we can reduce the 
processor count to n 2 ~ .  

2 Pre l iminar i e s  

Throughout this paper a tree will be a rooted tree. It 
is ordered if the children of each node are ordered from 
left to right. The level of a node in a tree is its distance 
from the root. A binary tree T is complete at level I 
if there are 2 z nodes in T at level I. A binary tree is 
empty at level I if there is no vertex at level i. 

A binary tree T is a left-justified tree if it satisfies 
the following property: 

1. i fa  vertex has only one child, then it is a left child; 

2. if u and v are sibling nodes of T, where u is to the 
left of v, then if Tv is not empty at some level 1, 
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then Tu is complete at level 1, where Tu and Tv de- 
note the subtrees rooted at u and v, respectively. 
Right-justified trees can be defined similarly. 

Let R A K E  be an operation that  removes all leaves 
from a tree. We shall consider a restricted form of 
RAKE where leaves are removed only when its siblings 
are leaves. 

P r o p o s i t i o n  2.1 The set of  left-justified trees (right- 
justified trees) is closed under the RAKE operation. 

L e m m a  2.1 For any left-justified tree T o f n  vertices, 
[log 2 n] applications of RAKE will reduce T to a single 
chain. Moreover, the resu!l~nq chain comes from the 
left most path in 7.. 

Proof: We need only show that  any vertex not on 
the left most pa th  of 7" is removed by [log n] iterations 
of RAKE.  

Let v be a vertex of 7" not on the left most path, 
and let h be the height of v, the maximum length of 
a path from v to a leaf in Tv. Since 7" is left-justified, 
there exists a vertex u of T at  the same level as v and 
to the left of v, and since Tv is not empty at  level h, 
7.u is complete at  level h and hence has at least 2 h 
leaves. Since 7" has n leaves altogether, h < log n. 
Each RAKE decreases the height of every non-empty 
subtree by 1, thus  log n iterations of RAKE completely 
eliminate 7~. O 

Let the height of a tree 7" be the height of its root. 

C o r o l l a r y  2.1 I f7.  is a left-justified tree ofn  vertices, 
then for all v not on the left most path o fT ,  the height 
of  ~ is bounded by O([ logn]) .  

3 Parallel  Tree Contract ion 
and Dynamic  Programming 

In this section, we present a parallel algorithm for find- 
ing an optimal Huffman tree for a given monotonic 
frequency vector (P l , . - . ,Pn) .  The general Huffman 
Coding Problem is reducible to this special case after 
applying one sort (see Tang [18]). 

For 1 < i < j _< n let Hi,j be defined to be the 
minimum average word length of a Huffman code over 

1 (pi , . . .  ,Pj). Let Pi,i = ~s=iPs.  The values.of H may 
be obtained recursively as follows: for all 1 < i < j _< 
n ,  

0 i = j  
t l i , j  =. mink=i+ 1 (tll,k-1 + Hk,i) + Pi,i i < j (I) 

The values of all Hi,j, including the desired out- 
put  value Hi,n, may be obtained by the following al- 
gori thm which simulates the RAKE operation: 

1. Estimate Hi,j to be 0 if i = j ,  +c<~ otherwise. 

2. Iterate this step until all Hi,i are stable: Use re- 
lation (1) to re-estimate H i j  for all i < j ,  using 
the values of H obtained during the previous es- 
timation step. 

3. Output  the value of Hl,n. 

Each iteration of the second step can be done in 
O(log n) time using n3/ logn  processors, if a C R E W  
PRAM model of computation is used. Unfortunately, 
the best upper bound on the number of iterations 
needed is O(n), since each iteration simulates just  one 
RAKE operation. 

The algorithm can be improved by introducing a 
step which simulates the COMPRESS operation, as 
well. The COMPRESS operation halves each chain in 
a tree by doubling. For any 1 _< i < j _< n, define 
Fi,j to be that  quanti ty such that  Hl,i + Fi j  is the 
minimum average word length of a binary tree over 
(pl . . . . .  pj), where the only trees considered are those 
which contain a subtree which is a binary tree over 
(Pl . . . . .  p/). If the value of all Hi,j are already known, 
F i j  can be defined by the following: 

Hi+l , j  + p ~  i + 1 = j 
Fi,j = mink(Hi+lS + pl,j,z'i,k + Fk,j) i + 1  < j  (2) 

We now describe the modified algorithm, which 
makes use of relations (1) and (2), and which simulates 
log n iterations of RAKE followed by log n iterations 
of COMPRESS: 

1. For 1 < i _< j < n, estimate Hi,j to be 0 if i = j ,  
+c~ otherwise. 

2. Iterate this step [log n] times: For all I < i < j _< 
n, re-estimate Hid using relation (1) and the val- 
ues of H computed during the previous estimation 
step. 

3. For 1 < i < j < n, estimate Fi,i to be Hi+l,j+pi,j, 
using the last estimate of Hi+l,j. 

4. Iterate this step [log n] times: For all 1 < i < j < 
n, re-estimate Fi,j using relation (2) and the val- 
ues of F computed during the previous estimation 
step. 
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5. Output the value FI,n, which will be the minimum 
average word length of any Huffman code. 

Intuitively, each re-estimation of the values of H 
simulates one RAKE step, while each re-estimation of 
the values of F simulates one COMPRESS step. Cor- 
rectness of the algorithm follows from the fact that any 
left-justified binary tree can be reduced to the empty 
tree by [log n] iterations of RAKE followed by [log n] 
iterations of COMPRESS, and 

L a m i n a  3.1 For each monotonically increasing fre- 
quency vector (Pl,...,Pn), there is an optimal posi- 
tional tree (Iluffman tree) that is left-justified. 

[PROOF]:  This lamina can be proven by a simple in- 
d t~ction on n. In fact, the procedure given in the proof 
of Lemma 3.1 (Teng [18]) transforms any Huffman tree 
to a left-justified one. [] 

T h e o r e m  3.1 The Huffman Coding Problem can be 
solved in O(log n) time, using O(n3/ log n) processors 
on a CRCW PRAM. 

4 M u l t i p l i c a t i o n  of  Concave  
M a t r i x  

In this section we introduce a new subclass of matrices 
which we call concave matrices. A concave matrix is 
a rectangular matrix M which satisfies the quadrangle 
condition [19], that  is M 0 + Mkl _< Ma + Mkj for all 
i < k, j < 1 in the range of the indices of M. 

Matrix multiplication shall be defined over the 
closed semiring (min, +), where the domain is the set 
of rational numbers extended with +oo. For example, 
if M is the n x n matrix giving the weights of the edges 
of a complete digraph of size n, then M k is the ma- 
trix giving the minimum weight of any path of length 
exactly k between any given pair of vertices. 

We give a recursive concave matrix multiplica- 
tion algorithm which takes O(log n log log n) time, us- 
ing n2/logn processors on a CREW machine and 
O((log log n) 2) time, using n2/(log log n) processors on 
a CRCW machine. Our algorithm is very simple and 
has very small constant. 

T h e o r e m  4.1 Two concave matrices can be multi- 
plied in O(log n log log n) time, using n2/ log n proces- 
sors on a CREW machine; and O((loglogn) 2) time, 
using n2/(loglog n) processors on a CRCW machine. 

In the absence of the concavity assumption, the 
best known algorithm for computing AB requires 
O(n 3) comparisons. 
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4 .1  T h e  M a t r i x  C u t ( A , B )  

Let A be a concave matrix of size px  q, B be a concave 
matrix of size q x r. By the definition of matrix multi- 
plication above, (AB)ij : min{Aik + Bkjll < k < q}. 
We can define a matrix Cut(A,B) taking values in 
[1,q] as follows: Cut(A,B)~j = that value of k such 
that Ai~ + Bkj is minirrfized. (If there is more than 
one value of k for which that sum is minimized, take 
the smallest.) 

To compute AB it is clearly sufficient to compute 
Cut(A, B), since we can construct AB from Cut(A, B) 
in O(1) time using pr processors. In the algorithm 
below, we just indicate how to compute Cut(A, B). 

Define A~,~ to be the submatrix of A consisting 
of all the entries of A whose row index is even, while 
(by an abuse of notation) we define Beven to be the 
submatrix of B consisting of all entries of B whose 
column index is even. 

MULTIPLICATION ALGORITHM: 
Procedure: Cut(A, B) 
i f  A has just one row, or if B has just one column 
t h e n  

compute Cut(A, B) by examining all possible 
choices 
else 

compute Cut(Aeven, Beve,) by recursion 
compute Cut(Ae~n, B) by interpolation 
compute Cut(A, Be,en) by interpolation 
compute Cut(A, B) by interpolation 

fi 

Interpolation: 

The concavity property of A guarantees the fol- 
lowing inequality: 

ity: 

Cut(A, B)ij < Cut(A, B)i+l,j 

while concavity of B guarantees a similar inequal- 

Cut(A, B)ij < Cut(A, B)~j+i 

The combination of these two properties we call 
the monotonicity property. By the monotonicity 
property, the total number of comparisons needed 
to compute Cut(A,B), given Cut(Aeven, B), can- 
not exceed ( q -  1)r. To see this, fix a particular 
column index j .  For a particular odd row value 
of i, q - 1 comparisons could be needed to decide 
the value of Cut(A,B)ij, since every k is a candi- 
date. But monotonicity allows us to decide that value 
with only Cut(A,B)i+i,j - Cut(A, B ) i - l j  compar- 
isons. Summed over all odd values of i, the total 



number of comparisons needed (for the fixed value of 
j)  is thus only q -  1. For all j together, ( q -  1)r 
are enough. Similarly, monotonicity allows us to com- 
pute Cut(Ace,n, B) given Cut(Art,n, Be,~) using at 
most p ( q -  1)/2 comparisons and Cut(A,B) given 
Cut(Ae~,en, B) and Cut(A, Beven) using at most qr/2 
operations. 

T i m e  a n d  W o r k  Analys is :  
Except for the recursion, the time to execute the 

multiplication algorithm is O(log q) or O(loglogq) on 
a CREW and CRCW machine, respectively. Since 
the depth of the recursion is min{logp, logr}, the to- 
tal time is O(log q(rnin{logp, log r}) on a CREW ma- 
chine and O(loglogq(min{logp, logr}) on a CRCW 
machine. 

that in Step(2), each row requires Vrff. n comparisons. 
Since there is x/~ff rows, n 2 comparisons are sufficient. 
Similarly, Step (3) takes n 2 comparisons. 

For m > 1, by monotonicity properties that each 
row (column) takes n 1/2=. n comparisons. Since there 

1 - - 1 / 2  r a - 1  1 / 2  m 2 " are n • n rows (columns), n comparisons 
are sufficient. 

Therefore, the above algo- 
rithm takes O(log n log log n) time, using n2/log n pro- 
cessors on a CREW machine or O((log log n) 2) time, 
using n2/(log log n) processors on a CRCW machine. 

5 T h e  Par a l l e l  G e n e r a t i o n  o f  
H u f f m a n  C o d e  

4 . 2  M o r e  E f f i c i e n t  C o n c a v e  M a t r i x  A l -  

g o r i t h m  

In the MULTIPLICATION ALGORITHM given in 
the above subsection, the size of matrices is getting 
small during the recursion, while the number of pro- 
cessor available is still n 2. Hence at a certain stage, 
we do have enough processors to run the general ma- 
trix multiplication algorithm to compute the Cut ma- 
trix in one step. This implies that we can stop the 
recursion whenever the sizes of matrices are smaller 
enough to run the general matrix multiplication algo- 
rithm. Thus, the parallel (concave matrix) multiplica- 
tion algorithm can be speeded up. 

For each integer m, let Amodm be the submatrix 
of A consisting of all the entries of A whose row in- 
dex is a multiple of m, while (by an abuse of nota- 
tion) let Bmodrn submatrix of B consisting of all the 
entries of B whose column index is a multiple of m. 
Clearly, Cut(Amod[vrffj, Bmod[vr~j) requires n 2 com- 
parisons, and can be computed in O(logn) time and 
(log logn) time on a CREW machine and a CRCW 
machine, respectively. 

The following is a bottom-up procedure for com- 
puting Cut(A, B). 

* for m = 1 to [log log n] -4- 1 do 

1. Compute Cut(Amod[nl/2,~ ], Bmod[nl/2~J);; 

2. Compute Cut(Amod[n~/~mJ, B);; 

3. Compute Cut(A, Bmod[nIl2~ J);; 

We now show that each step of the loop can be 
computed by n 2 comparisons. 

Clearly, when m = 1, step (1) requires n 2 compar- 
isons. And it follows from the monotonicity properties 
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Presented in this section is an efficient parallel algo- 
rithms for the Huffman Coding Problem. The algo- 
rithm runs in O(log 2 n) time, using n2/logn proces- 
sors on an CRCW PRAM. This algorithm improves 
upon the previous known .hfC algorithms significantly 
on the processor count. It hinges on the use of concave 
matrix multiplication. 

By Lemma 3.1, for each nondecreasing vector 
(Pl,...,Pn), there exists an optimal ordered tree 
for (Pl,--- ,  P,) which is left-justified. From Corol- 
lary 2.1, it follows that there exists an optimal tree 
for (Pl, . . . ,  P,)  such that the heights of all subtrees in- 
duced by nodes not on the leftmost path are bounded 
by [log n]. 

This observation suggests the following paradigm 
for the Huffman Coding Problem. 

1. C o n s t r u c t i n g  He igh t  B o u n d e d  Subt rees :  for 
all i _< j ,  compute Ti,j, an optimal tree for 
(pl, ..,, Pi) whose height is bounded by [log n]. 

2. C o n s t r u c t i n g  the  O p t i m a l  Tree: using the in- 
formation provided in the first step to construct 
an optimal Huffrnan tree for (Pl . . . .  , Pn). 

Assume that weights Px . . . .  , Pn are given in mono- 
tonically increasing order. Define a matrix S as 
S[i,j] J = ~k=i+l  Pk for i < j ,  and S[i,j] = +oo for 
i _> j. It follows easily that S is a concave matrix. 

For each h >_ 0, then define a matrix A~ as fol- 
lows. For 0 _< i < j < n, Ah[i,j] be the average word 
length of the optimal Huffman tree for the weights 
(Pi+I...Pj), restricted to height h, i.e., minimum over 
all trees whose height does not exceed h. If no tree 
exists, i.e., i > j or ( j  - i) > 2 h, define Ah [i, j] = +oo. 

Note that A0 is trivial to compute, while Ah = 
min(Ah-l,  Ah-a*Ah-i+S), where • stands for the ma- 
trix multiplication using the closed semiring {rain, +}. 



Note also that  ABogn ] [i, j] is equal to the aver- 
age word length of the optimal tree for (pi+l, .-., Pj) of 
height bounded by [log n]. 

The following lemma was first proven by Garey 
[6] and is known as the Quadrangle Lemma. For a 
simplier proof see Larmore [11]. 

Lemma 5.1 For each h, Ah is a concave matrix. 

Therefore, Arlos,~ ] can be computed in O(log 2 n) 
time, using n2/ log n processors. This is the first step 
in the paradigm proposed above. We now show that 
the second step in the paradigm can be also reduced 
to multiplying concave matrices. 

A square matrix can be identified with a weighted 
diiected graph. It is well known [3] that if M is the 
matrix for a weighted digraph with (n --b 1) vertices, 
that  rain(M, I) n contains the solutions to the all-pairs 
minimum path problem for that digraph, where I is 
the identity matrix over the closed serniring {rain, +}. 

We now show how to reduce the Huffman prob- 
lem to a minimum weight path problem for a directed 
graph. The matrix M, defined below, will be the 
weight matrix for a directed graph,which is also called 
M, whose vertices are {0,1, ..., n}. 

{+ ~ i f i = g = 0  
M [ i , j ] =  0 if i =  a n d j = I  

Arlog,~l [i, j] + S[O, j] if 0 < i < j _< n 
+oo otherwise. 

It is easy to verify that M is a concave matrix. 
The entries of M k contain minimum weights of 

paths in the digraph M of length exac t l y  k. For 
i > 0, M k [i, j] has no simple meaning in terms of Huff- 
man trees. But M k [0, j ]  contains the minimum aver- 
age word length over all Huffman trees on the weights 
(Pi .... pj) which satisfies the following two properties: 

I. There are exactly k - 1 internal nodes on the left 
edge of the tree, i.e., the leftmost leaf is at  depth 
k. 

2. The tree is left-justified. 

By Lemma 3.1, there is an optimal Huffman tree 
that satisfies the above two conditions for some k. 
Thus computing M k for all k up to n will give us the 
optimal Huffman tree. Unfortunately, the amount of 
computation involved is too great. 

This problem can be overcome by a very slight 
modification of the graph of the matrix M. 

Define a matrix M I as follows: M'[0, 0] = 0 and 
M'[i, j] = M[i, j] otherwise. 
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Think of M ~ as a digraph derived from M by 
adding a self-loop of weight 0 at 0. It is easy to verify 
that M'  satisfies the quadrangle condition [19]. Hence, 
M ~ is a concave matrix. 

Note that any path of length k or less from 0 to 
j in M corresponds to a path of length exactly k from 
0 to j in M'.  

The left edge of the optimal Huffman tree has 
length less than n, therefore (M')k[0, n] equals the 
weighted path length of the optimal Huffman tree for 
any k > n. 

Note that M ~ is a concave matrix. Moreover 
(M') k is also a concave matrix. Hence (M')  2B°*"1 
can be computed by starting with M t, then squaring 
~logn] times. Using the parallel concave matrix mul- 
tiplication algorithm, each squaring can be performed 
in O(logn) time, using n~/ logn  processors. 

T h e o r e m  5.1 The Huffrnan Coding Problem can be 
solved in O(log 2 n) ~ime, using n~/ logn processors. 

6 Constructing Almost Opti- 
mal Binary Searching Trees 
in Parallel 

In this section, the parallel construction of optimal bi- 
nary search trees, an important data  structure for data 
maintenance and information retrieval [10], is consid- 
ered. An O(log 2 n) time, n2/ log2n processor parallel 
algorithm is given for constructing an approximate bi- 
nary search tree whose weighted path length is within 
e off the optimal, where e = n -h.  Note that the best 
known sequential optimal search tree construction al- 
gorithm, due to Knuth, takes O(n 2) time. Hence, our 
algorithm is optimal up to approximation. This algo- 
rithm too hinges on the judicious use of concave matrix 
multiplication. 

The sequential version of the optimal search tree 
problem was first studied by Knuth [10], who used 
monotonicity to give an O(n ~) time algorithm. 

Suppose we are given n names A1, . . . .  An and 
2 n +  1 frequencies P0 ,Pl , . . .  ,Pn, ql, . . . .  qn, where qi is 
the probability of accessing Ai and Pl is the probability 
of accessing a word which is not in the dictionary and 
is between Ai and Ai+l. 

A labeled proper binary tree 'T of n internal nodes 
and ( n + l )  leaves is a binary search tree for A1 , . . . ,  An 
iff there is a one-one onto mapping from A1 . . . .  , An to 
the internal nodes of 7" such that the inorder traversal 
of 7- gives the vector (A1, . . . ,  An). 



Let bi b e t h e  depth of the i th internal node and ai 
be the depth of the i th leaf. Then P(7-), the weighted 
path length of 7", is defined to be P(T)  = ~ i  qi(bi + 
1) + ~ i  piai. 

7- is an optimal binary search tree for (A1 . . . .  , An) 
if P(T)  is minimized over all possible search trees. 

The optimal binary search tree problem is re- 
ducible to a dynamic programming problem over the 
closed semiring {min, +}. Hence, it lies in .ARC. How- 
ever, the best known A/'C parallel algorithm requires 
n 6 processors. 

Let the weight of a subtree be the sum of the pi 
and qi for the nodes and leaves in that subtree. Let 
the depth of the subtree to be the depth of its root in 
the whole tree. 

Our parallel algorithm utilizes the following ap- 
proximating lemma due to Gu:ttler, Mehlhorn, and 
Schneider [7]. 

L e m m a  6.1 I f  S is a subtree of an optimal tree, and 
i f  w and d are the weight ors  and the depth of the root 
orS, then d < C+log(1/w)/  log(t), where ¢ = 1.618... 
is the Golden ratio, and C is some small constant. 

The following is the outline of our parallel ap- 
proximate optimal binary search tree construction al- 
gorithm. 

1. L e t 0 < e < n - t  and l e t 6 = e / 2 n l o g n .  

2. Define a Pl or qi to be small if it is less than 8; 
Define a run of small frequencies to be a sublist 
starting and ending with a p value, where every 
p value and every q value in that sublist is small. 
Collapse every maximal run of small frequencies 
to a single frequency, which will then still be less 
than e. 

3. Let H = O(log(1/e)) be the maximum height, 
given in the sense of Gu:ttler, Mehlhorn, and 
Schneider [7], of any optimal tree which has no 
subtrees (other than a single leaf) of weight less 
than 6. 

4. Let T S be an optimal tree for the collapsed list of 
frequencies. Note that height(T') < H. 

5. Let T b e  the tree o f n  + 1 leaves obtained from 
7-' as follows. If L is a leaf of T'  whose frequency 
is one of the "collapsed" values obtained in step 
2, replace L by an arbitrary binary tree of height 
no more than logn, which contains all the low 
frequency nodes involved in the collapse. 
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The correctness of the algorithm is guaranteed by 
the following lemrna due to Larmore [12]. 

L e m m a  6.2 The weighted path length o f t  will differ 
from that of the optimal tree by at most e. 

Clearly, steps (1)-(3) and (5) can be performed 
optimally in O(logn) time. The bottleneck of the al- 
gorithm is step (4) which computes optimal binary 
search trees of height bounded by H = O(log n) for 
all pairs. Like the problem of constructing optimal 
Huffman tree of height bounded by O(log n), this prob- 
lem can be also reduced to multiplication of concave 
matrices. Moreover, the number of concave matrix 
multiplications is bounded by O(logn). The formal 
description of the method is given in the full paper. 

T h e o r e m  6:1 For any 0 < e < 1/n, a binary 
search tree 7- can be found whose weighted path 
length is within e of that of the optimal tree, in 
O(log(1/e)(log n)) time, using n2/ log 2 n processors. 

7 Construct ing Trees 
Given Leaf-Patterns 

from 

In this section, an optimal O(log n) time, n~ log n pro- 
cessor EREW parallel algorithm is given for the tree 
construction problem when the leaf pattern is mono- 
tone or bitonic. Also presented is an O(log 2 n) time, 
n~ log n processor parallel EREW PRAM algorithm to 
the tree construction problem with general leaf pat- 
terns. This involves an Aft  reduction for the gen- 
eral tree construction problem to the tree construction 
problem with bitonic leaf patterns. Consequently, an 
optimal, O(log n) time EREW parallel algorithm is ob- 
tained for constructing Shannon-Fano code. 

7 . 1  M o n o t o n i c  L e a f  P a t t e r n s  a n d  

B i t o n i c  L e a f  P a t t e r n s  

There is an elegant characteristic function, due to 
Kraft [5], to determine whether there is a solution to 
the tree construction problem with a monotone leaf 
pattern. 

L e m m a  7.1 ( K r a f t  [5]) There is a solution to the 
tree construction problem for a monotone leaf pattern 
( l l , . . . ,  l.) iff 1/2" < 1. 

In using the Kraft sum one has to be careful that 
the numbers added have only O(logn) bits in their 
representations and not O(n) as they naively appear 
to have in the Kraft sum. 



Suppose (li . . . . .  In) is a monotone leaf pattern.  
Since it is sorted we can construct a vector a = 
( a t , . . . ,  am) such tha t  ai = the number leaves at  level 
i and m = li in O(logn) time optimaly. In the case 
when 11 > n we must  store a as linked-list of nonzero 
entries. For simplicity of the exposition assume that  
m < n. We first show how to reduce a to a vector 
such tha t  ai < 2 for 1 < i < n. We compute a vector 
a '  from a by sett ing a'  = i-1 [ai/2J + ( a i - i  mod 2). It 
follows by the Kraft  sum that  the tree for a exists iff 
it  does for a'. Further,  from the tree for a '  we can 
in unit  t ime construct one for a. This reduction from 
a to a '  is very analogous the the RAKE in the Huff- 
man code algori thm for left-justified trees. We shall 
apply this reduction until  the ai _< 2, at most O(log n) 
times. To see t ha t  we only need n] log n processors 
for the log n reductions, observe tha t  the total  work 
is O(~a~L2~logai ) < n. To balance the work, any 
processor tha t  computes a'. a t  a given stage will be $ 

required to compute a~_ i a t  the next stage. Thus we 
distribute the ai >_ 2 based on the work of ai which is 
log ai. To construct a tree for a where ai < 2 reduces 
to computing the sum of two n-bit  numbers and their 
intermediate carries. This can all be done optirnaly 
using prefix sums. 

This  gives the  following theorem: 

Theorem 7.1 Trees with monotone leaf patterus c a n  

be constructed in O(logn)  time, using n /  logn proces- 
sors on an E R E W  PRAM. 

A pat tern  ( l i , . . . ,  l n ) i s  a bitonic pat tern  if there 
exists i such tha t  ( l l , . . . ,  li) is monotone increasing 
and (ll, ..., l . )  is monotone decreasing. 

L e m m a  7.2 The tree construction problem for a 
bitonic leaf pattern (ll . . . . .  ln) has a solution iff 
~i~ 2-'~ _< 1. 

Using the methods  presented for monotone leaf 
pat terns and the above lamina we get the following 
theorem: 

T h e o r e m  7.2 A Tree from a bitonic leaf pattern can 
be constructed in O(logn) time, using n / l o g n  proces- 
sors on an E R E W  P R A M  if  it ezists. In general, the 
minimum number of trees (in order) will be generated 
with the prescribed leaf pattern. 

7 . 2  G e n e r a l  L e a f - P a t t e r n s  

Presented in this subsection is an O(logn) time re- 
duction from the tree construction problem with a 
general leaf pat tern to the one with a bitonic leaf 
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pattern.  Moreover, the reduction can be performed 
with n/ log  n processors. Therefore, an O(log 2 n) time, 
n / l o g n  processor E R E W  PRAM parallel algorithm 
results. 

A segment-representation of a pat tern (li . . . . .  In) 
/ m / 

is ((l[, nl) ..... (Ira, am)) where ~ i =  nj = n, l~ # lj+i,  
and 

(11, ..., li, ..., l~, ..., l~) ( l l  . . . .  , l . )  = ' ' ' ' 

I l l  r i m  

For simplicity, ((l~, ni) .... , (l~n, am)) is also called 
a pattern. In a pat tern ((ll, hi), . , , ( lm, am)), li is a 
min-point if l i - i  > li < li+1; li is a max-point i f / i -1 < 
li > li+i. 

In a pat tern ((It, n i ) ,  ..., (lm, nm)), (li, ..., I s) is 
a right-finger if (1) l i - i  is a rain-point and for no 
i < k < j is lk a min-point (2) I/+1 <_ l i - i  < I s. 
A left-finger is defined similarly except that  lj+l is a 
min-point. Note tha t  a finger may be both a left and a 
right finger. We next show how to "remove" every fin- 
ger from a leaf pat tern using the tree construction for 
bitonic patterns. Finally, we observe tha t  the new pat- 
tern will have at most half  as many  fingers as before. 
Thus  we need only remove fingers O(logn) times. 

Finger-Reduction applied to one finger (li, . . . ,  lj) 
in a pat tern ((ll,  n l )  .... , (l, . ,  n , . ) )  is defined as follows: 
Without loss of  generality assume tha t  i t  is a right- 
finger and lj+l < li-1. Set 

ni t  

k----i 

Finger-Reduction returns the pattern: 

((11, nl) ,  ..., ( h - i ,  ni-1 + K) ,  (lj+i, nj+i), ..., (I,~, n,~)). 

We have just  related a finger with the number (from 
Lemma 7.2) of leaves at  level l i - i  tha t  are needed to 
generate it. In general Finger-Reduction will simulta- 
neously remove all fingers, both left and right fingers. 
It will return with a pattern.  

To see tha t  Finger-Reduction reduces the num- 
ber of finger by a t  least one half, observe tha t  Finger- 
Reduction removes all max-points. I t  is not hard to see 
tha t  the only candidates for max-points are li which 
were previously rain-points and also adjacent to a left 
and right finger. Thus the worst case for reducing the 
number of fingers of a pat tern is when the pat tern con- 
sists of consecutive pairs of left and right fingers that  
share a rain-point. The next Lemma summerizes this: 

L e m m a  7.3 ( F i n g e r  C u t  L e m m a )  I f  a pat- 
tern ( l~ , . . . , l~ )  is obtained by Finger-Reduction from 



a pattern ( l l , . . . ,  ln), then the tree construction prob- 
lem with pattern (11, . . . ,  1,~) has a solution if f there is a 
solution to the tree construction problem with pattern 

To obtain the tree for a pattern we apply Finger- 
Reduction until the pattern is reduced to a single fin- 
ger. We then construct the root tree for the finger. 
In an expansion phase we attach the trees constructed 
while removing the finger during Finger-Reduction to 
the root tree. 

T h e o r e m  7.3 A tree can be constructed for a pattern 
(ll, . . . , In) with m fingers in O(log n logm) time, using 
n~ log n processors. 

7.3 ~ C o n s t r u c t i n g  A p p r o x i m a t e  Opt i -  
ma l  Trees  

The Shannon-Fano coding method can be specified as: 
upon input (Pl,--- ,Pn), compute ( l l , . . . ,  l , )  such that 
log ~ < li < log ~ + 1, then construct a prefix code 
C =icT, . . . .  c,)  such that  I cl l= l,. 

The proof to the following claim can be found in 

Is]: 
C l a i m  7.1 Let S F ( A )  be the average word-length of  
the Shannon-Fano code of A = {al,  . . . , a n }  and 
H U F F ( A )  be the one of  the Huffman code, then 

H U F F ( A )  < S F ( A )  < H U F F ( A )  + 1 

The second part of the Shannon-Fano method can 
be implemented by the parallel tree construction algo- 
rithm presented in Section 7.1. Therefore, 

T h e o r e m  7.4 In O(log n) time, using n / l o g n  ~0ro- 
cessors, a prefix code can be constructed with average 
word length bounded by that o f  the corresponding Huff- 
man code plus one. 

8 Parallel Linear Context-free 
Language Recognition 

In this section, the parallel complexity of linear 
Context-free Language recognition is considered. The 
linear CFLs' recognition problem is reduced to a path 
problem in a graph which has a family of small sep- 
arators. An O(log ~ n) time, M ( n )  processor parallel 
algorithm is obtained for linear CFLs' recognition by 
using the parallel nested disection of Pan and Reif [16]. 
Here M ( n )  is the number of processors needed to mul- 
tiply two n × n boolean matrices in O(log n) time in 
the CRCW PRAM model. 

429 

D e f i n i t i o n  8.1 (Con tex t - f r ee  Language)  
A context-free grammar is a 4-tuple G = {V, E, P, S} 
where: 

• V is a finite nonempty set called the total vocab- 

ulary; 

® E C_ V is a finite nonempty set called the terminal 
alphabet," 

® S E V -  E = N is called the start symbol; 

o P is a finite set of  rules of  the form: 

A--~ a, where A E N, a E V* 

A context-free grammar G = {V, E,P,  S} is linear i f  
each rule is of the form: A ~ uBv ,  where A , B  E 
N,  u, v E E* 

Let G = { V , E , P , S }  be a context-free grammar, 
and let w, w ~ E V*, w is said to directly generate w ~, 
written w ~ w ~ i f  there exist a,  fl, u, v E V* such that 

w = dAft ,  w' = v~uBvl~ E V*, and A ---~ u Bv  E P.  
stands for the reflexive-transitive closure of 0 .  

The language generated by G, written L(G) is the 
set 

L ( G ) =  {w e E* IS:=~w} 

The CFL-recognition problem is defined as: given 
a context-free grammar, G and a finite sequence w = 
wl. . .wn E E*, decide whether w E L(G) (and generate 
a parse tree). 

Each linear context- 
free grammar G ~ = {V/, E , P  ~, S} can be normalized 
by constructing another linear context-free grammar 
G = {V, E, P, s} such that (i) L(G)  = L(G') ,  (it) P is 
a finite set of rules of the form 

A --~ bB, or A --~ a, or A --+ Cc, 

where a,b, c E ~ ,  A , B ,  C E N .  
A linear context-free grammar G ~ can be easily 

normalized by finding a G such that (i), (it) are sat- 
isfied and moreover, the size of G is within a constant 
factor of that of G ~. Throughout this section, it is as- 
sumed that the input linear context-free grammar is 
normal and its size is a constant with respect to n, the 
length of the input finite sequence. 

Given a (normal) linear context-free grammar G 
and a finite sequence w = wl...wn E E*, a graph can 
be defined, IG(G,  w) = {IV,  I E } ,  called induced graph 
of G and w which has ]IV] = O(n 2) nodes. More 
specifically, 



IV  = { v + , j , r l l < i < j < _ n ,  p e N }  

I E  = IEi U IEr where 

IEz = {(vi,jw,vij-x,q) I i < j, p ~ qwj E P} 

XE,. =- I i < j,  p w+q P }  

We have the following observation. 

C la im 8.1 Let G be a linear context-free grammar 
and w E E*. Let IG(G,w) be the induced graph of 
G andw. Then w E L(G) iffthere exists a path in 
IG(G, w) from Vl,n,, to vl,l,q for some i : 1 < i < n, 
whe~ q .-o wl E P. 

The above observation reduces the linear context- 
free recognition problem to a path problem (teachabil- 
ity problem) in the induced graph IG(G, w). 

Let cluster i , j  refer to the set of INI vertices of 
the form vij,v (see Figure 1). Note that if all vertices 
of each cluster i, j are "collapsed" into one vertex (call 
it vi,j), then a planar grid graph is obtained (see Fig- 
ure  2a) which we schematically draw as a triangle (see 
Figure 2b). Although IG(G, w) itself is typically not 
planar, we shall take the liberty of talking about its 
external face to refer to the subset of its nodes that 
map into the external face of the collapsed version. 

¢t~tet i4- l 

Figure 1: In IG(G, w) the only edges leaving cluster 
i , j  go to clusters i , j -  1 and i +  1,j. 

1,$ ..$,5 ~ ..• 

f v 1,2 

1,1 

(at (b) 

Figure 2: A grid graph (a) and its schematic represen- 
tation (b). 

Let m = O(n ~) denote the number of vertices 
in IG(G,w), and PIG = O(n) be the edge size of 
IG(G, w), i.e. the perimeter of the external face. The 
subset C, shown in Figure 3, is a separator of size 
0 ( 4 ~ )  = O(n), which partitions IG(G, w) into four 
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approximately equal components (in that figure the 
triangle is meant to depict IG(G, w) itself rather than 
its collapsed version). Moreover, such a small separa- 
tor can be uniformly found in each component recur- 
sively. 

Figure 3: Illustrating the small separator C in 
Ia(G,w)  

The outline Of the parallel algorithm becomes 
clear. Let U, M, L, R be the four pieces in IG(G, w) 
induced by the separator C (see Figure 3). First, the 
reachability matrix R~achv between all pairs of ver- 
tices on the external face of U is recursively computed. 
The same is done for each of M, L, R, resulting in ma- 
trices ReachM , R~achL, R~achR, respectively. Using 
the four boolean matrices returned by these four re- 
cursive calls, the reachability matrix Reach6 between 
all pairs of vertices on the external face of IG(G, w) 
is computed. This can be done simply by boolean 
matrix multiplication (actually three such multiplica- 
tions), taking time O(log n) with M(n) processors (it is 
known that M(n) = O(n TM) where 0 < e < I), Hence 
the time complexity of the algorithm is O(log 2 n). The 
processor count can be obtained by the following re- 
currence: 

P(n) = max(4P(n/2), M(n)) 

which implies P(n) = O(M(n)). 

T h e o r e m  8.1 Linear contezt-free languages can be 
recognized in O(log ~ n) time, using M(n) processors, 
where M(n) is the number of processors needed to do 
boolean matriz multiply in O(log n) time. 

9 O p e n  Q u e s t i o n s  

• Can the Huffman Coding Problem be solved in 
polylogarithrnic time, using o(n 2-+) processors? 

• Given a position tree, can we test whether it is 
a Huffman tree in polylogarithmic time, using 
O(n 2-~) processors? 

Can general context-free languages be recog- 
nized in polylogarithmie time, using O(nS-+), or 
o( M ( n2) ) processors? 



0 Can a linear context-free language be recognized 
in polylogarithmic time, using n 2 or o(M(n)) pro- 
cessors? 

o Can the Optimal Binary Search Tree Construc- 
tion be solved in polylogarithmic time, using fewer 
than O(n 6-~) processors? 
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