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Computing a Minimum-Weight k-Link Path 
in Graphs with the Concave Monge Property* 

Baruch Schieber t 

Abstract 

Let G be a weighted, complete, directed acyclic graph 
(DAG) whose edge weights obey the concave Monge 

condition. We give an efficient algorithm for finding 
the minimum-weight k-link path between a given pair 
of vertices for any given k. The algorithm runs in 
n2O(&g klog log n) time. Our algorithm can be applied 
to get efficient solutions for the following problems, im- 
proving on previous results: (1) computing length-limited 
Huffman codes. (2) computing optimal discrete quanti- 
zation. (3) computing maximum k-cliques of an interval 

graph. (4) finding the largest k-gon contained in a given 

convex polygon. (5) finding the smallest k-gon that is the 

intersection of k half-planes out of TZ half-planes defining a 

convex n-gon. 

1 Introduction 

Let G = (V, E) b e a weighted, complete, directed 
acyclic graph (DAG) with the vertex set V = 

( Vl,VZ,--*r v,}. (For convenience, we sometimes rep- 
resent D; by i.) For 1 5 i < j 5 n, let w(i, j) denote 
the weight associated with the edge (i, j). (See Fig- 
ure 1.) 

Figure 1: Complete DAG 

An edge in a path in G is called a link of the path. 
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We call a path in G a k-link path if the path contains 
exactly Ic links. For any two vertices, i and j, we 
call a path from i to j a minimum k-link path if it 
contains exactly k links and among all such paths 
it has the minimum-weight. A weighted DAG, G, 
satisfies the concave Monge property if the inequality 
w(;,j)+ul(i+l,j+l) < +,j+l)+ul(i+l,j) holds 
for all 1 < i + 1 < j < 12. 

In this paper, we are interested in computing the 
minimum-weight k-link path from 1 to n in concave 
Monge DAGs, i.e., weighted DAGs whose weights 
satisfy the concave Monge property. 

Using the results of Aggarwal et ~2. [l] and Aggar- 
wal and Park [2], it is easy to show that the minimum- 
weight k-link path can be computed in O(nk) time 
for a concave Monge DAG. Recently, Bein et al. [7] 
and Aggarwal et al. [3] gave a weakly-polynomial al- 
gorithm for this problem that runs in O(n log V) time, 
assuming that the weights are integral and U is the 
maximumabsolute value of these weights. Aggarwal et 
al. [3] also gave an improved strongly-polynomial al- 
gorithm that runs in O(nJEE+nlogn) time. The 

main result of this paper is a n2°(d10g Ic ‘w’~w) time 
algorithm for computing the minimum-weight k-link 

path. Note that this algorithm is superior to the al- 
gorithm given in [3]. It is superior to the O(nk) time 
naive algorithm whenever k = R(logn). From now on, 
we assume that this is the case. 

In [3], Aggarwal et al. posed the question of design- 
ing an O(n . polylog(n, k)) time algorithm for comput- 
ing the minimum-weight k-link path. Although we are 
still unable to answer this question in the affirmative, 
we may be a step closer to this goal since our algorithm 
runs in o(nk”) time, for any fixed E. 

Our algorithm is recursive. It uses some properties 
of concave Monge DAGs together with a variant of 
the parametric search technique [13, 9] - a powerful 
technique for designing algorithms, especially in com- 
putational geometry [8]. Interestingly, our algorithm 

uses the parametric search in the most naive way, in 
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contrast to the more sophisticated way it was used 
in [3]. We leave open the question whether a more 
clever way of applying the parametric search paradigm 
would yield a better algorithm. 

1.1 Applications 
The algorithm for minimum-weight k-link path in con- 
cave Monge DAGs has several applications. Given be- 
low are such applications to data optimization (App. 
I), data compression (App. II), interval graphs (App. 
III), and geometric path finding (App. IV and V). 

Application I. Given a weighted alphabet of size n, 
we want to find an optima1 prefix-free binary code 
for the alphabet with the restriction that no code 
string be longer than k bits. Using the reduction 
of this problem to the minimum-weight k-link path 

problem [12], we solve it in n20(~1“sk10s’osn) time, 
improving on [ll, 31. 

Application II. Let f : {~r,22,. . ., z,) t R be 
a real valued function, where R is the set of the 
real numbers and xl 5 22 5 . . . 5 a, are real 
numbers. Fix k and consider a sorted set of real 
numbers 2 = {z~,zz,. . . , zk) and a mapping 1c, : 
(1,2, . . . , n} --, { 1,2, . . . , k}. The pair (2, 4) is called 
a quantization, and the sum Cy=“=,f(zi)(~i - z,J(~J)~ 
the error of the quantization. Optimal quantization 
is the one which minimizes the error. It is easy to 
see that in optimal quantization G-‘(j) is an interval 
foreachj= 1,2,..., k. Quantization can be regarded 
as a data compression of n data items into k items, 
as illustrated in Figure 2. Wu [14] showed that 
computing optimal quantization can be reduced to 
finding a minimum-weight k-link path. Hence, it can 

be solved in n2°(~10slc1cs10sn) time by applying our 
algorithm, improving on [14, 31. 

. 

Figure 2: Quantization (k=4) 

Application III. Let H be an interval graph gener- 
ated by m weighted intervals on n terminals. Given 
k, find k cliques of H so that the sum of the weights 
of intervals in the union of the cliques is maximized. 
(See Figure 3.) By applying our algorithm this prob- 

lem can be solved in O(m) + n2°(~osk“‘srosn) time, 
improving on previous results of [5, 3, 43. 

-t ----+- 
1 ~ -7 

I I 
Figure 3: k maximum weight cliques of interval graph 

(k=2) 

Application IV. Computing the maximum area k- 
gon and the maximum perimeter k-gon that are con- 
tained in a given convex n-gon. (See Figure 4.) For 
this problem Boyce ef al. [S] provided an O(nk log n) 
time algorithm that was later improved by Aggarwal et 
al. [l] to O(nk + n logn) time, and by Aggarwal et 
al. [3] to O(n&&$+n log n) time. By incorporating 
the main result of this paper, this problem can now be 

solved by an algorithm that runs in n2O( l”sk’oslosn) 
time. 

Figure 4: Max-area inscribed polygon 

Application V. Computing the minimum area k- 
gon that is the intersection of k half-planes out of n 
half-planes defining a given convex n-gon. In other 
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words, computing the minimum area circumscribing 
polygon touching edge-to-edge. (See Figure 5.) This 

problem can also be solved in 712~(J’“s” l”sl’gn) time, 
improving on the previous results mentioned above. 

Figure 5: 
contact 

Min-area inscribed polygon with edge-to-edge 

The rest of the paper is organized as follows. 
Section 2 proves some properties of concave Monge 
DAGs, and Section 3 describes the algorithm and 
analyzes its complexity. 

2 Properties of concave Monge DAGs 

Let G be a concave Monge DAG. For a real number 
7, define G(T) to be the weighted DAG with the same 
sets of vertices and edges as G, in which each edge e in 
G(T) has the weight w(e)+T (where w(e) is the weight 
of e in G). Note that if G has the concave Monge 
property, then also G(T) has this property. Define a 
diameter path in G to be a path from 1 to n. 

The first two lemmas hold for any DAG and do 
not depend on the fact the G haa the concave Monge 
property. 

LEMMA 2.1. If for some r a minimum-weight di- 
ameter path in G(T) has k links, then this path is the 

minimum-weight k-link diameter path in G. 

LEMMA 2.2. If a minimum-weight diameter path 

in G(T) has k links, then for every ( < T, any 
minimum-weight diameter path in G(t) has at least 

k links. 

Proof, Let P and Q be minimum-weight diameter 
paths in G(T) and G(t), respectively. Suppose that P 

has k links, and Q has C links. Let WT(P) denote the 
weight of P in G(T). Then, W7(Q) - W7(P) 2 0 and 
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Wt(Q) - W,(P) 5 0. Thus, 

+--CC) = %(Q)-Wf(Q) 2 W(P)-WE(P) = k(T-0. 

Since r - < > 0, we have that 1 2 k. cl 

DEFINITION 2.3. An edge (il,jl) covers another 

edge (i2,j2) if il 5 i2 < j2 5 jl and (G,jl) # (i2,j2). 

Let 9 and PZ be paths in G. Suppose that there 
exists a link (il, jl) of PI and a link (iz, j2) of P2 such 
that (il,j,) covers (i2,jz). We define a path swap 
operation with respect to this pair of edges. This 
operation creates two new paths Q1 and Q2. Path 
&I is given by connecting the prefix of PI ending at 
il with the suffix of P2 starting at j2 by edge (il, j2). 
Path Qz is given by connecting the prefix of P2 ending 
at i2 with the suffix of PI starting at j, by edge (i2, jI). 

LEMMA 2.4. Let &I, QZ be paths obtained from PI 
and P2 by a path swap operation with respect to (il, jl) 

and (iz, jz). The sum of the weights of paths Q1 and 

QZ is at most the sum of the weights of paths PI and 
Ps. In particular, if PI and Pz are minimum-weight 
paths so are &I and Q2. 

Proof. In case il = i2 or j, = j2, clearly, lV(Ql) + 
W(Q2) = W(Pl) f W(P2). Otherwise, i.e., il < i2 < 
j2 < jl, we have 

WQl) +WQz) = JW3>+W'2) - 

(W(il,jl) + W(iP,j2)) + 

(4Grj2) + w(i2,h)) 

5 qp1> + W(P2). 

The inequality follows from the concave Monge prop- 
erty of the edge weights. Cl 

For a _< b, let P, and Pb be paths from VI to v, and 
from ‘~1 to Ubr respectively. Suppose that P, has k, 
links, Pb has kb links, and k, > Lb. 

LEMMA 2.5. FOT any 0 5 x 2 k, - kb there are 
links e, = (ia,&) Of P, and eb = (ib,j,) Of Pb with 
the following two properties. 

1. Edge eb covers edge e,. 

2. The prefix of P, ending at i, has x moTe links 
than the prefix of Pb ending at ia. 

Proof. Let e = (ib, jb) be the leftmost link of Pb 
that covers some link of P,. Such a link must exist 
since b 2 a and k, > kb. Suppose that e covers c 
links of P,, and let f = (io, ja) be the leftmost such 
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link. Let d be the difference between the length of 
the prefix of P,, ending at i, and the length of the 
prefix of Pb ending at ib. It follows from our selection 
of e that this difference is less than or equal to zero. 
Observe that for any d 5 0 < x < d + c we can set eb 
to e and e, to one of the links of P, covered by e and 
have the two properties of the lemma satisfied. In case 
k, - kb < d + c we are done. Otherwise, there must 
be another link of Pb (to the right of e) that covers 
some link of Pa. Let e’ = (ii, j:) be the leftmost such 
link. Again, suppose that e’ covers c’ links of P,, and 
let f’ = (i’,, &) be the leftmost such link. Note that 
the difference d’ between the length of the prefix of P, 

ending at ib and the length of the prefix of Pb ending 
at $ is less than or equal to d + c. Hence, for any 
d’ 5 d + c < x < d’ + c’ we can set eb to e’ and e, to 
one of the links of P, covered by e’ and have the two 
properties of the lemmasatisfied. If k, -kb < d’+c’ we 

are done. Otherwise, we continue in the same manner. 

LEMMA 2.6. Let a, b, P,, Pa, k, and kb be as above. 
For any k in the range [kb, ka], there are paths Qa 
with k links from VI to va and &a with k, + kb - k 
links from vr to vb such that the sum of the weights 

of paths Q. and Qb is at most the sum of the weights 
of paths P, and Pa. In particular, if P, and Pb are 

minimum-weight paths so are Qa and Qb. 

Proof. Fix some k in the range [kb, k,]. By 
Lemma 2.5 there are links e, = (ia,jO) in P, and 
eb = (ia,&,) in Pb such that edge eb covers edge ear 
and the prefix of P, ending at i, has k, - k more links 
than the prefix of &, ending at &. Perform a path 
swap with respect to e, and eb to obtain two paths 
Q. and &a from v1 to w, and vb, respectively. Since 
Qa is created by connecting the prefix of Pb ending at 
ib with the suffix of P, starting at j,, the length of 
Qa is k, - (ka - k) = k. Similarly, the length of Qb is 
k, + kb - k. Lemma 2.4 implies that the sum of the 
weights of paths Qa and Qb is at most the sum of the 
weights of paths P, and Pb. cl 

DEFINITION 2.7. FOT 1 < a 5 n and 1 5 1 < a, 
let P(a,L) denote the minimum-weight e-link path in 
G from 1 to a, and let W(a,e) denote the weight of 

this path. Let P(e) = P(n, 4!) and W(e) = W(n, .f?). 

The next corollaries follow from Lemma 2.6. 
(Proofs omitted.) 

COROLLARY 2.8. For 1 < a < b < n and 1 < 1 < 
a- 1, 

qa, e) - wca, e + 1) 2 w(b, e) - w(b, e + 1). 

COROLLARY 2.9. FOT 1 < a < n and 1 < L < o-1, 

W(U, q .- W(U, e + I) 5 wca, e - 1) - wca, e). 

Corollary 2.9 implies that the function W(a, .) is 
unimodal; or in other words, any local minimum of 
the function is a global minimum. 

COROLLARY 2.10. FOT 1 5 f! 5 n - 1, all the 
vertices to which there ezists a minimum-weight path 
(fTom 1) with C links are consecutive. 

LEMMA 2.11. For any 1 < k 5 n - 1, there exists 
a real number r such that a minimum-weight diameter 
path of G(r) has k links. 

Proof. First, consider some 1 < k < n-l. We claim 
that for any 7 in the interval [W(k)- W(k+l), W(k- 
1) - W(k)] there is a minimum-weight diameter path 
in G(T) with k links. Consider any k < 1 < n. It is 
easy to verify that for all 7 2 (W(k)- W(P))/(f?-k), a 
minimum-weight k-link path in G(T) weighs no more 
than a minimum-weight e-link path. By Corollary 2.9 

W(k) - W(L) = W(k) - W(k -t- 1) + 

W(k + 1) - W(k + 2) + ..- + 

w(e - 1) - w(e) 
5 (!- k)(W(k) - W(k + 1)). 

We get that for all 7 > W(k) - W(k + l), a minimum- 
weight k-link path in G(-r) weighs no more than a 
minimum-weight !-link path, for any 1 > k. Similarly, 
for any 1 5 e < k, and for all 7 5 W(k - 1) -W(k), a 
minimum-weight k-link path in G(T) weighs no more 
than a minimum-weight e-link path. This completes 
the proof for 1 < k < n - 1. In a similar way it 
can be shown that for any 1 < L < n, and for all 

7- 2 W(1) - W(2), a minimum-weight l-link path 
in G(T) weighs no more than a minimum-weight e- 
link path; and for any 1 5 1 < n - 1, and for all 
T 5 W(n - 2) - W(n - l), a minimum-weight (n - l)- 
link path in G(T) weighs no more than a minimum- 
weight -&link path. cl 

Let Iopt be the interval [W(k) - W(k + l), W(k - 
1)-W(k)]. T o n a minimum-weight k-link diameter fi d 
path it is sufficient to find some value rVt in the 
interval Iopt. Suppose that such a rOrt is found. To 
compute a minimum-weight k-link diameter path in G 
(or equivalently, a minimum-weight diameter path in 
G(T~~~) with k links) we do the following. Apply the 
linear time algorithm for finding a minimum-weight 
diameter path in DAGs with the concave Monge 
property, to find two minimum-weight diameter paths 
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in G(ropl): P, with the maximum number of links and 
Pb with the minimum number of links. It is easy to 
see that both known linear time algorithms for this 
problem: the one given by Wilber [15] and the one by 
Klawe [lo] can be used to find these paths. Then, to 
find a minimum-weight diameter path with & links we 
apply Lemma 2.6. It is easy to see that finding the 
required links e a and eb in the proof of Lemma 2.6 
and performing the path swap can be done in time 
proportional to the length of P@; that is G(n) time. 

3 The algorithm 

Fix an integer 1, which will be set appropriately in the 
analysis. For convenience, assume that both f? and h/e 
are integers. The algorithm consists of h/e stages, In 
the t-th stage, for t = 1,. . . , h/1, 

either find some r+ or (i) compute the 
maximal range [Lt, Rt] such that for all r E 
I qpt and all Lt < i < Rt, there exists a 
minimum-weight path from ~1 to vi in G(r) 
of length t4; and (ii) compute a minimum- 
weight t&link path to each of these vertices. 

Note that the range [Lt, Rt] cannot be empty. Later 
we show that in case rVt is not found in Stage t, then 
for all 7 E Iopt and all Lt 5 i _< Rt, all minimum- 
weight paths from vr to vi in G(r) have te links. 

DEFINKTION 3.1. Let P be a path that starts at ~1. 
The left endpoint of the last link of P is called the 
anchor of P. If the anchor of a path P is in an interval 
I, we say that the path P is anchored in I. 

We now describe stage t of the algorithm. The 
input to this stage is minimum-weight ((t - l)L)-link 
paths to vi in G, for all Lt-1 5 i < Rt-1. All 
these paths are minimum-weight paths in G(r), for 
all 7 E -lqt. For t > 1, these paths were computed in 
the previous stage. For t = 1, Lo = RCJ = 1. 

Stage t consists of three steps: 

Step 1: For all Rt-r < j 5 n and all r E IVt, 
compute a minimum-weight path in G(T) anchored 
in [Lt-l, Rt-11 from vr to vj. All these paths have 
(t - 1)4! -t 1 links. 

Step 2: Find the range [Lt, Rt]. If in the course of 
this computation some value r E Iopt is found then we 
are done; otherwise, continue to the next step. 

Step 3: For all Lt 5 j < Rt and all r E Iopt, compute 
a minimum-weight path in G(r) from ‘ur to vj, All 

these paths have tt links. 

We now describe each of the steps in detail. 

Step 1: For t = 1 this step is trivial. Consider 
some t > 1. Since all the minimum-weight paths 
anchored in [Lt-1, Rt-11 have (t - 1)1 + 1 links, the 
computation of the minimum over these paths can 
be done independently of T as all comparisons involve 
paths with the same number of links. 

Consider the (n-Rt-l)x(Rt-l-Lt-l+l) matrix 
in which the (i, j)-th entry is the weight of a minimum- 
weight (t - l)f!-link path from 1 to j + &-I - 1 in G, 
plus the weight of the edge (j + Lt-1 - 1, i + R+l) in 
G. It is not difficult to see that: (i) this matrix has the 
concave Monge Property; and (ii) the minimum entry 
in row i corresponds to the weight of a minimum- 
weight ((t - l)e + 1)-link path from 1 to i + Rt-l 
anchored in [&-I, R+l]. Hence, all these paths can 
be found in G(n) time by applying the matrix search 
algorithm of [l]. Note that the matrix need not be 
stored explicitly. Instead, each entry can be computed 
upon demand. 

Step 2: Define an auxiliary DAG Ht. The DAG Ht 
has n - Rt-l + 1 vertices: a new source vertex s, and 
vertices Rt-l+l, . . . ,nofG. For Rt-r+l 5 i < j < n, 
the weight of edge (i, j) in Ht is the same as its weight 
in G. The weight of edge (s, i), for Rt-1+1 5 i 5 n, is 
the weight of a minimum-weight ((t - 1)1-1-1)-link path 
in G from 1 to i anchored in [Lt-1, Rt-11, computed in 
Step 1. Note that Ht has the concave Monge property. 
Define Ht(r) to be the weighted DAG with the same 
sets of edges and vertices as Rt, in which the weight 
of each edge (i, j), for Rt-1 + 1 5 i < j 2 n, is 
incremented by T, and the weight of each edge (8, i), 
for Rt-l + 1 5 i < n, is incremented by ((t - l)e+ 1)~. 
Note that H,(T) has th e concave Monge property as 
well. 

We first show how to find Lt. This is done in two 
phases of binary search. In the first phase we find the 
minimum integer a such that for all r E Iopt, there 
exists a minimum-weight path from 1 to Rf-1 + 2’1 
in G(T) with at least tf! links. In the second phase, if 
a > 0, we perform a binary search on all the vertices 
in the range [Rt-l + 2”-‘l+ 1, Rt-l + 2”1] to find Lt. 

We now describe the first phase. Initialize m to 
1. The following procedure is done iteratively. Find 
a minimum-weight (e - 1)-link path and a minimum- 
weight e-link path in Rt from s to Rt-l + m. This 
is done by invoking the algorithm recursively. (As 
a matter of fact, we do the recursion only on the 
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subgraph of i!lt induced by the first m + 1 vertices.) 
Let WH(m, e - 1) and WH(m, e) denote the weight 
of these paths. Set [ = IV&m,-! - 1) - WH(m, Q. 
Find two minimum-weight diameter paths in G(t): P, 
with the minimum number of links and Py with the 
maximum number of links. If the number of links of 
P, is less than or equal to Ic and the number of links 
of Py is greater than or equal to k, then there exists a 
minimum-weight diameter path in G(t) with k links. 
This implies that [ E lopt and we are done. For the 
rest of the cases we need the following two lemmas. 

LEMMA 3.2. If all minimum-weight diameter paths 
in G(t) have moTe than k links, then foT all r E Iapt, 
& minimum-weight paths from 1 to Rt-.l+ m in G(T) 
have less than te links. 

Proof. Since all minimum-weight diameter paths in 
G(E) have more than k links, [ < W(k) - W(k + 1). 
(Recall that W(lc) - W(k + 1) is the leftmost point of 
Iopt.) By the definition of <, for all 7 > < the weight 
of a minimum-weight (1 - l)-link path to Rt-l + m 
in Hi is less than the weight of a minimum-weight 
e-link path to Rt-1 + m. It follows from Corollary 2.9 
that all minimum-weight paths from s to Rt-l + m in 
Ht(7) have less than ! links. By the definition of Rt, 
for all 7 E Iopt, a minimum-weight path in Ht (r) from 
.s to Rt- I+ m with d links corresponds to a minimum- 
weight path in G(T) from 1 to Rt-l+m with d+(t-l)e 
links. It follows that for all r E &,t, all minimum- 
weight paths to Rt-1 + m in G(T) have less than te 
links. 0 

In the same way we can prove: 

LEMMA 3.3. If all minimum-weight diameter paths 
in G(t) have less than k links, then for all r E Iopt, 
+lJ minimum-weight paths from 1 to Rr-l+m in G(T) 
have at least te links. 

Given these two lemmas the search proceeds as 
follows. If P, has more than k links then double m 
and iterate. Otherwise, R(t - 1) + m = R(t - 1) + 29 
is the desired vertex. 

We turn to the second phase of the search. Suppose 
that a > 0. (Otherwise, this phase is trivial.) We 
search for Lt: the first vertex in the range [R(t - 1) -I- 
2”-lL + 1, R(t - 1) + 2”e] such that for all r E I,+,*, 
there exists a minimum-weight path from 1 to L, 
in G(T) with at least te links. This is done using 
binary search similar to the first phase. Initialize 
a = 2”-’ 1 + 1, p = 2”e. The following procedure 
is done iteratively. If 01 = p then we are done 
and Lt = Rt-1 + Q. Else, set m = [(/3 - o)/2]. 

Recursively, find a minimum-weight (a - I)-link path 
and a minimum-weight &link path in Ht from s to 
&-l+m. Set [ = W&m,e--l)-WH(m,e). Find two 
minimum-weight diameter paths in G(e): P, with the 
minimum number of links and Py with the maximum 
number of links. If there exists a minimum-weight 
diameter path in G(t) with A links, then [ E I,* and 
we are done. If P, has more than k links then set 
OL = m + 1, and iterate. Otherwise, set /3 = m, and 
iterate. 

Note that if no value t E Iopt is found in this phase, 
then WH(&, L - 1) - WH(Lt, e) > W(k - 1) - W(k), 
and hence, for all r E Iopt, all minimum-weight paths 
from 1 to Lt in G(T) have at least te links. Also, since 
Lt is the first such vertex, there must be a minimum- 
weight path from 1 to Lt in G(r) with exactly tl links. 

The vertex Rt is found as follows. First, we find 
the first vertex b such that for all 7 E Iopt, there exists 
a minimum-weight path from 1 to b in G(r) with at 
least te + 1 links. This is done in the same way Lt 
was found above. If no value [ E &Opt is found in this 
search, then for all r E Iopt, all minimum-weight paths 
from 1 to b in G(T) h ave at least te + 1 links. Next, 
find a minimum-weight e-link path and a minimum- 
weight (e + l)-link path in Ht from s to b - 1. Set 
t = WH(b - 1, e) - WH(b - l,e + 1). As before, Find 
P, and Py in G(t). If there exists a minimum-weight 
diameter path in G(t) with k links, then E E I,* and 
we are done. Otherwise, it must be that P, has more 
than k links and Wn(b - l,e) - WH(b - l,e + 1) < 
W(k) - W(k + 1). In this case set Rt = b - 1. 

Step 3: The input to this step consists of vertices 
Lt and Rt; and weights WH(Lt,.t - l), Wx(Lt,L), 
Wx(Rt,l), and TWH(&,e + 1). All this input is 
computed in the previous step. 

Let 1t be the open interval (WH(Rt,e)-WH(Rt,e+ 
l), WH(Lt,e - 1) - WH(Lt,e)). Observe that by our 
construction It contains the (closed) interval I,t. By 
Corollary 2.8 it follows that 1t is contained in all the 
open intervals (W~(i,e) - WH(~, 4!+ l), WH(~, .t- 1) - 
Wx(i,e)), for Lt 5 i 5 Rt. Hence, for all r E It all 
minimum-weight paths from s to i in Hi have e 
links, and correspondingly, all minimum-weight paths 
from 1 to i in G(T) have te links. We pick one such 
r and apply the linear time algorithm for finding a 
minimum-weight diameter path in DAGs with the 
concave Monge property to find the minimum-weight 
path from 1 to all Lt 5 i 5 Rt in G(r). This can be 
done in one application of the linear time algorithm. 



COMPUTING A MINIMUM- WEIGHT /C-LINK PATH 

3.1 Time complexity 
Let ‘i!‘(n, Ic) denote the time complexity of our algo- 
rithm when the input DAG has n vertices and we are 
required to find a minimum-weight L-link path. It is 
not difficult to verify that the time complexity of the 
algorithm is dominated by Step 2 of each stage. It 
follows that T(n, Ic) satisfies the following recursion: 

kll 
T(n,k) = c*logn-C(T(ni,L)+n), 

i=l 

for some constant c, and some sequence 

711,n2, *. *, nk/(, where n 5 CfL: ni 5 2n. 

Setting f! appropriately, it can be shown that 
the solution of this recursion is T(n, Ic) = 
,20(&k loglogn) 

We note that the space complexity of the algorithm 
is linear in 12. 
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