
Chapter 44

Computing a Minimum-Weight k-Link Path
in Graphs with the Concave Monge Property*

Baruch Schieber t

Abstract

Let G be a weighted, complete, directed acyclic graph
(DAG) whose edge weights obey the concave Monge

condition. We give an efficient algorithm for finding
the minimum-weight k-link path between a given pair
of vertices for any given k. The algorithm runs in
n2O(&g klog log n) time. Our algorithm can be applied
to get efficient solutions for the following problems, im-
proving on previous results: (1) computing length-limited
Huffman codes. (2) computing optimal discrete quanti-
zation. (3) computing maximum k-cliques of an interval

graph. (4) finding the largest k-gon contained in a given

convex polygon. (5) finding the smallest k-gon that is the

intersection of k half-planes out of TZ half-planes defining a

convex n-gon.

1 Introduction

Let G = (V, E) b e a weighted, complete, directed
acyclic graph (DAG) with the vertex set V =

(Vl,VZ,--*r v,}. (For convenience, we sometimes rep-
resent D; by i.) For 1 5 i < j 5 n, let w(i, j) denote
the weight associated with the edge (i, j). (See Fig-
ure 1.)

Figure 1: Complete DAG

An edge in a path in G is called a link of the path.

*Extended summary
tIBM - Research Division, T. J. Watson Research Center,

P.O. Box 218, Yorktown Heights, NY 10598.
Email: sbarQwatson.ibm .com

We call a path in G a k-link path if the path contains
exactly Ic links. For any two vertices, i and j, we
call a path from i to j a minimum k-link path if it
contains exactly k links and among all such paths
it has the minimum-weight. A weighted DAG, G,
satisfies the concave Monge property if the inequality
w(;,j)+ul(i+l,j+l) < +,j+l)+ul(i+l,j) holds
for all 1 < i + 1 < j < 12.

In this paper, we are interested in computing the
minimum-weight k-link path from 1 to n in concave
Monge DAGs, i.e., weighted DAGs whose weights
satisfy the concave Monge property.

Using the results of Aggarwal et ~2. [l] and Aggar-
wal and Park [2], it is easy to show that the minimum-
weight k-link path can be computed in O(nk) time
for a concave Monge DAG. Recently, Bein et al. [7]
and Aggarwal et al. [3] gave a weakly-polynomial al-
gorithm for this problem that runs in O(n log V) time,
assuming that the weights are integral and U is the
maximumabsolute value of these weights. Aggarwal et
al. [3] also gave an improved strongly-polynomial al-
gorithm that runs in O(nJEE+nlogn) time. The

main result of this paper is a n2°(d10g Ic ‘w’~w) time
algorithm for computing the minimum-weight k-link

path. Note that this algorithm is superior to the al-
gorithm given in [3]. It is superior to the O(nk) time
naive algorithm whenever k = R(logn). From now on,
we assume that this is the case.

In [3], Aggarwal et al. posed the question of design-
ing an O(n . polylog(n, k)) time algorithm for comput-
ing the minimum-weight k-link path. Although we are
still unable to answer this question in the affirmative,
we may be a step closer to this goal since our algorithm
runs in o(nk”) time, for any fixed E.

Our algorithm is recursive. It uses some properties
of concave Monge DAGs together with a variant of
the parametric search technique [13, 9] - a powerful
technique for designing algorithms, especially in com-
putational geometry [8]. Interestingly, our algorithm

uses the parametric search in the most naive way, in

405

406 SCHIEBER

contrast to the more sophisticated way it was used
in [3]. We leave open the question whether a more
clever way of applying the parametric search paradigm
would yield a better algorithm.

1.1 Applications
The algorithm for minimum-weight k-link path in con-
cave Monge DAGs has several applications. Given be-
low are such applications to data optimization (App.
I), data compression (App. II), interval graphs (App.
III), and geometric path finding (App. IV and V).

Application I. Given a weighted alphabet of size n,
we want to find an optima1 prefix-free binary code
for the alphabet with the restriction that no code
string be longer than k bits. Using the reduction
of this problem to the minimum-weight k-link path

problem [12], we solve it in n20(~1“sk10s’osn) time,
improving on [ll, 31.

Application II. Let f : {~r,22,. . ., z,) t R be
a real valued function, where R is the set of the
real numbers and xl 5 22 5 . . . 5 a, are real
numbers. Fix k and consider a sorted set of real
numbers 2 = {z~,zz,. . . , zk) and a mapping 1c, :
(1,2, . . . , n} --, { 1,2, . . . , k}. The pair (2, 4) is called
a quantization, and the sum Cy=“=,f(zi)(~i - z,J(~J)~
the error of the quantization. Optimal quantization
is the one which minimizes the error. It is easy to
see that in optimal quantization G-‘(j) is an interval
foreachj= 1,2,..., k. Quantization can be regarded
as a data compression of n data items into k items,
as illustrated in Figure 2. Wu [14] showed that
computing optimal quantization can be reduced to
finding a minimum-weight k-link path. Hence, it can

be solved in n2°(~10slc1cs10sn) time by applying our
algorithm, improving on [14, 31.

.

Figure 2: Quantization (k=4)

Application III. Let H be an interval graph gener-
ated by m weighted intervals on n terminals. Given
k, find k cliques of H so that the sum of the weights
of intervals in the union of the cliques is maximized.
(See Figure 3.) By applying our algorithm this prob-

lem can be solved in O(m) + n2°(~osk“‘srosn) time,
improving on previous results of [5, 3, 43.

-t ----+-
1 ~ -7

I I
Figure 3: k maximum weight cliques of interval graph

(k=2)

Application IV. Computing the maximum area k-
gon and the maximum perimeter k-gon that are con-
tained in a given convex n-gon. (See Figure 4.) For
this problem Boyce ef al. [S] provided an O(nk log n)
time algorithm that was later improved by Aggarwal et
al. [l] to O(nk + n logn) time, and by Aggarwal et
al. [3] to O(n&&$+n log n) time. By incorporating
the main result of this paper, this problem can now be

solved by an algorithm that runs in n2O(l”sk’oslosn)
time.

Figure 4: Max-area inscribed polygon

Application V. Computing the minimum area k-
gon that is the intersection of k half-planes out of n
half-planes defining a given convex n-gon. In other

COMPUTING A MINIMUM-WEIGHT ~-LINK PATH

words, computing the minimum area circumscribing
polygon touching edge-to-edge. (See Figure 5.) This

problem can also be solved in 712~(J’“s” l”sl’gn) time,
improving on the previous results mentioned above.

Figure 5:
contact

Min-area inscribed polygon with edge-to-edge

The rest of the paper is organized as follows.
Section 2 proves some properties of concave Monge
DAGs, and Section 3 describes the algorithm and
analyzes its complexity.

2 Properties of concave Monge DAGs

Let G be a concave Monge DAG. For a real number
7, define G(T) to be the weighted DAG with the same
sets of vertices and edges as G, in which each edge e in
G(T) has the weight w(e)+T (where w(e) is the weight
of e in G). Note that if G has the concave Monge
property, then also G(T) has this property. Define a
diameter path in G to be a path from 1 to n.

The first two lemmas hold for any DAG and do
not depend on the fact the G haa the concave Monge
property.

LEMMA 2.1. If for some r a minimum-weight di-
ameter path in G(T) has k links, then this path is the

minimum-weight k-link diameter path in G.

LEMMA 2.2. If a minimum-weight diameter path

in G(T) has k links, then for every (< T, any
minimum-weight diameter path in G(t) has at least

k links.

Proof, Let P and Q be minimum-weight diameter
paths in G(T) and G(t), respectively. Suppose that P

has k links, and Q has C links. Let WT(P) denote the
weight of P in G(T). Then, W7(Q) - W7(P) 2 0 and

407

Wt(Q) - W,(P) 5 0. Thus,

+--CC) = %(Q)-Wf(Q) 2 W(P)-WE(P) = k(T-0.

Since r - < > 0, we have that 1 2 k. cl

DEFINITION 2.3. An edge (il,jl) covers another

edge (i2,j2) if il 5 i2 < j2 5 jl and (G,jl) # (i2,j2).

Let 9 and PZ be paths in G. Suppose that there
exists a link (il, jl) of PI and a link (iz, j2) of P2 such
that (il,j,) covers (i2,jz). We define a path swap
operation with respect to this pair of edges. This
operation creates two new paths Q1 and Q2. Path
&I is given by connecting the prefix of PI ending at
il with the suffix of P2 starting at j2 by edge (il, j2).
Path Qz is given by connecting the prefix of P2 ending
at i2 with the suffix of PI starting at j, by edge (i2, jI).

LEMMA 2.4. Let &I, QZ be paths obtained from PI
and P2 by a path swap operation with respect to (il, jl)

and (iz, jz). The sum of the weights of paths Q1 and

QZ is at most the sum of the weights of paths PI and
Ps. In particular, if PI and Pz are minimum-weight
paths so are &I and Q2.

Proof. In case il = i2 or j, = j2, clearly, lV(Ql) +
W(Q2) = W(Pl) f W(P2). Otherwise, i.e., il < i2 <
j2 < jl, we have

WQl) +WQz) = JW3>+W'2) -

(W(il,jl) + W(iP,j2)) +

(4Grj2) + w(i2,h))

5 qp1> + W(P2).

The inequality follows from the concave Monge prop-
erty of the edge weights. Cl

For a _< b, let P, and Pb be paths from VI to v, and
from ‘~1 to Ubr respectively. Suppose that P, has k,
links, Pb has kb links, and k, > Lb.

LEMMA 2.5. FOT any 0 5 x 2 k, - kb there are
links e, = (ia,&) Of P, and eb = (ib,j,) Of Pb with
the following two properties.

1. Edge eb covers edge e,.

2. The prefix of P, ending at i, has x moTe links
than the prefix of Pb ending at ia.

Proof. Let e = (ib, jb) be the leftmost link of Pb
that covers some link of P,. Such a link must exist
since b 2 a and k, > kb. Suppose that e covers c
links of P,, and let f = (io, ja) be the leftmost such

408 SCHIEBER

link. Let d be the difference between the length of
the prefix of P,, ending at i, and the length of the
prefix of Pb ending at ib. It follows from our selection
of e that this difference is less than or equal to zero.
Observe that for any d 5 0 < x < d + c we can set eb
to e and e, to one of the links of P, covered by e and
have the two properties of the lemma satisfied. In case
k, - kb < d + c we are done. Otherwise, there must
be another link of Pb (to the right of e) that covers
some link of Pa. Let e’ = (ii, j:) be the leftmost such
link. Again, suppose that e’ covers c’ links of P,, and
let f’ = (i’,, &) be the leftmost such link. Note that
the difference d’ between the length of the prefix of P,

ending at ib and the length of the prefix of Pb ending
at $ is less than or equal to d + c. Hence, for any
d’ 5 d + c < x < d’ + c’ we can set eb to e’ and e, to
one of the links of P, covered by e’ and have the two
properties of the lemmasatisfied. If k, -kb < d’+c’ we

are done. Otherwise, we continue in the same manner.

LEMMA 2.6. Let a, b, P,, Pa, k, and kb be as above.
For any k in the range [kb, ka], there are paths Qa
with k links from VI to va and &a with k, + kb - k
links from vr to vb such that the sum of the weights

of paths Q. and Qb is at most the sum of the weights
of paths P, and Pa. In particular, if P, and Pb are

minimum-weight paths so are Qa and Qb.

Proof. Fix some k in the range [kb, k,]. By
Lemma 2.5 there are links e, = (ia,jO) in P, and
eb = (ia,&,) in Pb such that edge eb covers edge ear
and the prefix of P, ending at i, has k, - k more links
than the prefix of &, ending at &. Perform a path
swap with respect to e, and eb to obtain two paths
Q. and &a from v1 to w, and vb, respectively. Since
Qa is created by connecting the prefix of Pb ending at
ib with the suffix of P, starting at j,, the length of
Qa is k, - (ka - k) = k. Similarly, the length of Qb is
k, + kb - k. Lemma 2.4 implies that the sum of the
weights of paths Qa and Qb is at most the sum of the
weights of paths P, and Pb. cl

DEFINITION 2.7. FOT 1 < a 5 n and 1 5 1 < a,
let P(a,L) denote the minimum-weight e-link path in
G from 1 to a, and let W(a,e) denote the weight of

this path. Let P(e) = P(n, 4!) and W(e) = W(n, .f?).

The next corollaries follow from Lemma 2.6.
(Proofs omitted.)

COROLLARY 2.8. For 1 < a < b < n and 1 < 1 <
a- 1,

qa, e) - wca, e + 1) 2 w(b, e) - w(b, e + 1).

COROLLARY 2.9. FOT 1 < a < n and 1 < L < o-1,

W(U, q .- W(U, e + I) 5 wca, e - 1) - wca, e).

Corollary 2.9 implies that the function W(a, .) is
unimodal; or in other words, any local minimum of
the function is a global minimum.

COROLLARY 2.10. FOT 1 5 f! 5 n - 1, all the
vertices to which there ezists a minimum-weight path
(fTom 1) with C links are consecutive.

LEMMA 2.11. For any 1 < k 5 n - 1, there exists
a real number r such that a minimum-weight diameter
path of G(r) has k links.

Proof. First, consider some 1 < k < n-l. We claim
that for any 7 in the interval [W(k)- W(k+l), W(k-
1) - W(k)] there is a minimum-weight diameter path
in G(T) with k links. Consider any k < 1 < n. It is
easy to verify that for all 7 2 (W(k)- W(P))/(f?-k), a
minimum-weight k-link path in G(T) weighs no more
than a minimum-weight e-link path. By Corollary 2.9

W(k) - W(L) = W(k) - W(k -t- 1) +

W(k + 1) - W(k + 2) + ..- +

w(e - 1) - w(e)
5 (!- k)(W(k) - W(k + 1)).

We get that for all 7 > W(k) - W(k + l), a minimum-
weight k-link path in G(-r) weighs no more than a
minimum-weight !-link path, for any 1 > k. Similarly,
for any 1 5 e < k, and for all 7 5 W(k - 1) -W(k), a
minimum-weight k-link path in G(T) weighs no more
than a minimum-weight e-link path. This completes
the proof for 1 < k < n - 1. In a similar way it
can be shown that for any 1 < L < n, and for all

7- 2 W(1) - W(2), a minimum-weight l-link path
in G(T) weighs no more than a minimum-weight e-
link path; and for any 1 5 1 < n - 1, and for all
T 5 W(n - 2) - W(n - l), a minimum-weight (n - l)-
link path in G(T) weighs no more than a minimum-
weight -&link path. cl

Let Iopt be the interval [W(k) - W(k + l), W(k -
1)-W(k)]. T o n a minimum-weight k-link diameter fi d
path it is sufficient to find some value rVt in the
interval Iopt. Suppose that such a rOrt is found. To
compute a minimum-weight k-link diameter path in G
(or equivalently, a minimum-weight diameter path in
G(T~~~) with k links) we do the following. Apply the
linear time algorithm for finding a minimum-weight
diameter path in DAGs with the concave Monge
property, to find two minimum-weight diameter paths

COMPUTING A MINIMUM-WEIGHT ~-LINK PATH 409

in G(ropl): P, with the maximum number of links and
Pb with the minimum number of links. It is easy to
see that both known linear time algorithms for this
problem: the one given by Wilber [15] and the one by
Klawe [lo] can be used to find these paths. Then, to
find a minimum-weight diameter path with & links we
apply Lemma 2.6. It is easy to see that finding the
required links e a and eb in the proof of Lemma 2.6
and performing the path swap can be done in time
proportional to the length of P@; that is G(n) time.

3 The algorithm

Fix an integer 1, which will be set appropriately in the
analysis. For convenience, assume that both f? and h/e
are integers. The algorithm consists of h/e stages, In
the t-th stage, for t = 1,. . . , h/1,

either find some r+ or (i) compute the
maximal range [Lt, Rt] such that for all r E
I qpt and all Lt < i < Rt, there exists a
minimum-weight path from ~1 to vi in G(r)
of length t4; and (ii) compute a minimum-
weight t&link path to each of these vertices.

Note that the range [Lt, Rt] cannot be empty. Later
we show that in case rVt is not found in Stage t, then
for all 7 E Iopt and all Lt 5 i _< Rt, all minimum-
weight paths from vr to vi in G(r) have te links.

DEFINKTION 3.1. Let P be a path that starts at ~1.
The left endpoint of the last link of P is called the
anchor of P. If the anchor of a path P is in an interval
I, we say that the path P is anchored in I.

We now describe stage t of the algorithm. The
input to this stage is minimum-weight ((t - l)L)-link
paths to vi in G, for all Lt-1 5 i < Rt-1. All
these paths are minimum-weight paths in G(r), for
all 7 E -lqt. For t > 1, these paths were computed in
the previous stage. For t = 1, Lo = RCJ = 1.

Stage t consists of three steps:

Step 1: For all Rt-r < j 5 n and all r E IVt,
compute a minimum-weight path in G(T) anchored
in [Lt-l, Rt-11 from vr to vj. All these paths have
(t - 1)4! -t 1 links.

Step 2: Find the range [Lt, Rt]. If in the course of
this computation some value r E Iopt is found then we
are done; otherwise, continue to the next step.

Step 3: For all Lt 5 j < Rt and all r E Iopt, compute
a minimum-weight path in G(r) from ‘ur to vj, All

these paths have tt links.

We now describe each of the steps in detail.

Step 1: For t = 1 this step is trivial. Consider
some t > 1. Since all the minimum-weight paths
anchored in [Lt-1, Rt-11 have (t - 1)1 + 1 links, the
computation of the minimum over these paths can
be done independently of T as all comparisons involve
paths with the same number of links.

Consider the (n-Rt-l)x(Rt-l-Lt-l+l) matrix
in which the (i, j)-th entry is the weight of a minimum-
weight (t - l)f!-link path from 1 to j + &-I - 1 in G,
plus the weight of the edge (j + Lt-1 - 1, i + R+l) in
G. It is not difficult to see that: (i) this matrix has the
concave Monge Property; and (ii) the minimum entry
in row i corresponds to the weight of a minimum-
weight ((t - l)e + 1)-link path from 1 to i + Rt-l
anchored in [&-I, R+l]. Hence, all these paths can
be found in G(n) time by applying the matrix search
algorithm of [l]. Note that the matrix need not be
stored explicitly. Instead, each entry can be computed
upon demand.

Step 2: Define an auxiliary DAG Ht. The DAG Ht
has n - Rt-l + 1 vertices: a new source vertex s, and
vertices Rt-l+l, . . . ,nofG. For Rt-r+l 5 i < j < n,
the weight of edge (i, j) in Ht is the same as its weight
in G. The weight of edge (s, i), for Rt-1+1 5 i 5 n, is
the weight of a minimum-weight ((t - 1)1-1-1)-link path
in G from 1 to i anchored in [Lt-1, Rt-11, computed in
Step 1. Note that Ht has the concave Monge property.
Define Ht(r) to be the weighted DAG with the same
sets of edges and vertices as Rt, in which the weight
of each edge (i, j), for Rt-1 + 1 5 i < j 2 n, is
incremented by T, and the weight of each edge (8, i),
for Rt-l + 1 5 i < n, is incremented by ((t - l)e+ 1)~.
Note that H,(T) has th e concave Monge property as
well.

We first show how to find Lt. This is done in two
phases of binary search. In the first phase we find the
minimum integer a such that for all r E Iopt, there
exists a minimum-weight path from 1 to Rf-1 + 2’1
in G(T) with at least tf! links. In the second phase, if
a > 0, we perform a binary search on all the vertices
in the range [Rt-l + 2”-‘l+ 1, Rt-l + 2”1] to find Lt.

We now describe the first phase. Initialize m to
1. The following procedure is done iteratively. Find
a minimum-weight (e - 1)-link path and a minimum-
weight e-link path in Rt from s to Rt-l + m. This
is done by invoking the algorithm recursively. (As
a matter of fact, we do the recursion only on the

410 SCHIEBER

subgraph of i!lt induced by the first m + 1 vertices.)
Let WH(m, e - 1) and WH(m, e) denote the weight
of these paths. Set [= IV&m,-! - 1) - WH(m, Q.
Find two minimum-weight diameter paths in G(t): P,
with the minimum number of links and Py with the
maximum number of links. If the number of links of
P, is less than or equal to Ic and the number of links
of Py is greater than or equal to k, then there exists a
minimum-weight diameter path in G(t) with k links.
This implies that [E lopt and we are done. For the
rest of the cases we need the following two lemmas.

LEMMA 3.2. If all minimum-weight diameter paths
in G(t) have moTe than k links, then foT all r E Iapt,
& minimum-weight paths from 1 to Rt-.l+ m in G(T)
have less than te links.

Proof. Since all minimum-weight diameter paths in
G(E) have more than k links, [< W(k) - W(k + 1).
(Recall that W(lc) - W(k + 1) is the leftmost point of
Iopt.) By the definition of <, for all 7 > < the weight
of a minimum-weight (1 - l)-link path to Rt-l + m
in Hi is less than the weight of a minimum-weight
e-link path to Rt-1 + m. It follows from Corollary 2.9
that all minimum-weight paths from s to Rt-l + m in
Ht(7) have less than ! links. By the definition of Rt,
for all 7 E Iopt, a minimum-weight path in Ht (r) from
.s to Rt- I+ m with d links corresponds to a minimum-
weight path in G(T) from 1 to Rt-l+m with d+(t-l)e
links. It follows that for all r E &,t, all minimum-
weight paths to Rt-1 + m in G(T) have less than te
links. 0

In the same way we can prove:

LEMMA 3.3. If all minimum-weight diameter paths
in G(t) have less than k links, then for all r E Iopt,
+lJ minimum-weight paths from 1 to Rr-l+m in G(T)
have at least te links.

Given these two lemmas the search proceeds as
follows. If P, has more than k links then double m
and iterate. Otherwise, R(t - 1) + m = R(t - 1) + 29
is the desired vertex.

We turn to the second phase of the search. Suppose
that a > 0. (Otherwise, this phase is trivial.) We
search for Lt: the first vertex in the range [R(t - 1) -I-
2”-lL + 1, R(t - 1) + 2”e] such that for all r E I,+,*,
there exists a minimum-weight path from 1 to L,
in G(T) with at least te links. This is done using
binary search similar to the first phase. Initialize
a = 2”-’ 1 + 1, p = 2”e. The following procedure
is done iteratively. If 01 = p then we are done
and Lt = Rt-1 + Q. Else, set m = [(/3 - o)/2].

Recursively, find a minimum-weight (a - I)-link path
and a minimum-weight &link path in Ht from s to
&-l+m. Set [= W&m,e--l)-WH(m,e). Find two
minimum-weight diameter paths in G(e): P, with the
minimum number of links and Py with the maximum
number of links. If there exists a minimum-weight
diameter path in G(t) with A links, then [E I,* and
we are done. If P, has more than k links then set
OL = m + 1, and iterate. Otherwise, set /3 = m, and
iterate.

Note that if no value t E Iopt is found in this phase,
then WH(&, L - 1) - WH(Lt, e) > W(k - 1) - W(k),
and hence, for all r E Iopt, all minimum-weight paths
from 1 to Lt in G(T) have at least te links. Also, since
Lt is the first such vertex, there must be a minimum-
weight path from 1 to Lt in G(r) with exactly tl links.

The vertex Rt is found as follows. First, we find
the first vertex b such that for all 7 E Iopt, there exists
a minimum-weight path from 1 to b in G(r) with at
least te + 1 links. This is done in the same way Lt
was found above. If no value [E &Opt is found in this
search, then for all r E Iopt, all minimum-weight paths
from 1 to b in G(T) h ave at least te + 1 links. Next,
find a minimum-weight e-link path and a minimum-
weight (e + l)-link path in Ht from s to b - 1. Set
t = WH(b - 1, e) - WH(b - l,e + 1). As before, Find
P, and Py in G(t). If there exists a minimum-weight
diameter path in G(t) with k links, then E E I,* and
we are done. Otherwise, it must be that P, has more
than k links and Wn(b - l,e) - WH(b - l,e + 1) <
W(k) - W(k + 1). In this case set Rt = b - 1.

Step 3: The input to this step consists of vertices
Lt and Rt; and weights WH(Lt,.t - l), Wx(Lt,L),
Wx(Rt,l), and TWH(&,e + 1). All this input is
computed in the previous step.

Let 1t be the open interval (WH(Rt,e)-WH(Rt,e+
l), WH(Lt,e - 1) - WH(Lt,e)). Observe that by our
construction It contains the (closed) interval I,t. By
Corollary 2.8 it follows that 1t is contained in all the
open intervals (W~(i,e) - WH(~, 4!+ l), WH(~, .t- 1) -
Wx(i,e)), for Lt 5 i 5 Rt. Hence, for all r E It all
minimum-weight paths from s to i in Hi have e
links, and correspondingly, all minimum-weight paths
from 1 to i in G(T) have te links. We pick one such
r and apply the linear time algorithm for finding a
minimum-weight diameter path in DAGs with the
concave Monge property to find the minimum-weight
path from 1 to all Lt 5 i 5 Rt in G(r). This can be
done in one application of the linear time algorithm.

COMPUTING A MINIMUM- WEIGHT /C-LINK PATH

3.1 Time complexity
Let ‘i!‘(n, Ic) denote the time complexity of our algo-
rithm when the input DAG has n vertices and we are
required to find a minimum-weight L-link path. It is
not difficult to verify that the time complexity of the
algorithm is dominated by Step 2 of each stage. It
follows that T(n, Ic) satisfies the following recursion:

kll
T(n,k) = c*logn-C(T(ni,L)+n),

i=l

for some constant c, and some sequence

711,n2, *. *, nk/(, where n 5 CfL: ni 5 2n.

Setting f! appropriately, it can be shown that
the solution of this recursion is T(n, Ic) =
,20(&k loglogn)

We note that the space complexity of the algorithm
is linear in 12.

Acknowledgement. We thank Takeshi Tokuyama
for helpful discussions.

References

[1] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and
R. Wilber, Geometric Applications of a Matrix-
Searching Algorithm, Algorithmica 2 (1987), 195-
208.

[2] A. Aggarwal and J. Park, Notes on Searching in
Multidimensional Monotone Arrays, Proc. 29th
IEEE Symp. on Foundations on Computer Sci-
ence (1988), 497-512.

[3] A. Aggarwal, B. Schieber and T. Tokuyama,
Finding a minimum weight K-link path in graphs
with Monge property and applications, J. of
Discrete and Computational Geometry 12 (1994),
263-280.

[4] A. Aggarwal and T. Tokuyama, Consecutive
Interval Query and Dynamic Programming on
Intervals, Proc. 4th Int’l Symp. on Algorithms
and Computation, Lecture Notes in Computer
Science 762, Springer-Verlag (1993), 466-475.

[5] T. Asano, Dynamic Programming on Intervals,
Proc. 2nd Int’l Symp. on Algorithms, Lecture
Notes in Computer Science 557, Springer-Verlag
(1991), 199-207.

[63 J. Boyce, D. Dobkin, R. Drysdale, and L. Guibas,
Finding Extremal Polygons, SIAM J. on Com-
vutina 14 11985). 134-147.

411

W. Bein, L. Larmore, and J. Park, The d-
Edge Shortest-Path Problem for a Monge Graph,
Preprint, 1992.

B. Chazelle, H. Edelsbrunner, L. Guibas, and M.
Sharir, Diameter, Width, Closest Line Pair, and
Parametric Searching, Proc. 8th ACM Symp. on
Computational Geometry (1992), 120-129.

R. Cole, Slowing Down Sorting Networks to
Obtain Faster Sorting Algorithms, J. ACM 34
(1987), 200-208.

M. Klawe, A Simple Linear Time Algorithm for
Concave One-Dimensional Dynamic Program-
ming, Technical Report 89-16, University of
British Columbia, Vancouver, 1989.

L. Larmore and D. Hirschberg, Length-Limited
Coding, Proc. 1st ACM-SIAM Symp. on Discrete
Algorithms (1990), 310-318.

L. Larmore and T. Przytycka, Parallel Con-
struction of Trees with Optimal Weighted Path
Length, Proc. 3rd ACM Symp. on Parallel Algo-
rithms and Architectures (1991), 71-80.

N. Megiddo, Applying Parallel Computation Al-
gorithms in the Design of Serial Algorithms, J.
ACM 30 (1983), 852-865.

X. Wu, Optimal Quantization by Matrix Search-
ing, J. of Algorithms 12 (1991), 663-673.

R. Wilber, The concave least weight subsequence
problem revisited, J. of Algorithms 9 (1988), 418-
425.

