
Chapter 44

An Efficient Parallel Algorithm for the Row Minima

of a Totally Monotone Matrix

Mikhail J. Atallah*

Abstract

We give a parallel algorithm for the problem of comput-

ing the row minima of a totally monotone two-dimensionrd

matrix. Whereas the previous best CREW-PRAM algo-

rithm for this problem ran in O(log n log log n) time with

O(n/ log log n) processors, our algorithm runs in O(log W)

time with O(n) processors in the (weaker) EREW-PRAM

model. Thus we simultaneously improve the time complexity

without any deterioration in the time x processors product,

even using a weaker model of parallel computation.

1 Introduction

First we review the problem, which was introduced and

solved in linear sequential time in [2]. It has myriads of

applications to geometric and combinatorial problems

[1,2].

For any m x n matrix A, the row minima is an m-

vector f?A such that, for every row index r (1 ~ r ~ m),

f?A [r) is the smallest column index c that minimizes

A(r, c) (that is, among all c’s that minimize A(r, c),

6A(r) is the smallest). If 6A satisfies the following sorted

property:

dA(r) ~ OA(?’+ 1),

and if for every submatrix A’ of A, @AJ also satisfies

the sorted property, then matrix A is said to be totally

monotone [1,2].

Given a totally monotone matrix A, the problem of

computing the OA array is known as that of “computing

the row minima of a totally monotone matrix” [1]. The

best previous CREW-PRAM algorithm for this problem

ran in O(log n log log n) time and O(n/ log log n) pro-

*Dept. of Computer Science, Purdue University, West
Lafayette, IN 47907. This author’s research was supported by
the Office of Naval Research under Contracts NOO01484-K-0502
and NOO014-86-K-0689, the Air Force Office of Scientific Research

under Grant AFOSR-90-01 07, the National Science Foundation
under Grant DC R-8451 393, and the National Library of Medicine
under Grant RO1-LM05118.

tDept. of Computer Science, Johns Hopkins University,
Baltimore, MD 21218. This author’s r=earch wss supported by
the National Science Foundation under Grant CCR-8804284 and
NSF/DARPA Grant CCR-8908092.

S. RRQ Kosarajut

cessors [1] (where m = n). The main result of our pa-

per is an EREW-PRAM algorithm of time complexity

O(log n) and processor complexity (1(n). This improves

on the time complexity of [1] without any increase in the

time x processors product, and using a weaker paral-

lel model. It also implies corresponding improvements

on the parallel complexities of the many applications of

this problem (which we refrain from listing—they can

be found in [1,2]). More specifically, our bounds are as

follows.

THEOREM 1.1. The row minima (that is, the array

(?.4) of an m X n totally monotone matrix A can be

computed in O(log m + log n) time with O(m + n)

processors in the EREW-PRAM model.

In fact we prove a somewhat stronger result: that

an implicit description of 6A can be computed, within

the same time bound ss in the above theorem, by

O(n) processors. From this implicit description, a

Singie processor can obtain any particular 6A(r) value

in O(log n) time.

Section 3 gives a preliminary result that is a cru-

cial ingredient of the scheme of Section 4. Section 4,

which contains the heart of our CREW method, uses

a new kind of sampling and pipelining, where samples

are evenly spaced (and progressively finer) groups of el-

ements and where the “help” for computing the infor-

mation at a node does not come only from its children

(as it did in [5]) but also from some of its subtree’s

leaves. Section 5 gives the EREW algorithm, which is

not achieved by using known methods such as [6], but

rather relies on (i) storing each leaf solution in a suitable

parallel data structure, and (ii) re-defining the nature

of the information stored at the internal nodes.

Recall that the EREW-PRAM is the parallel model

where the processors operate synchronously and share

a common memory, but no two of them are allowed si-

multaneous access to a memory cell (whether the access

is for reading or for writing in that cell), The CREW-

PRAM differs from the EREW-PRAM in that simulta-

neous reading is allowed (but simulateous writing is still

forbidden).

394

ALGORITHM FOR THE Row MINIMA OF A MONOTONE MATRIX

2 Preliminaries

In this section we introduce some notation, terminology,

and conventions.

Since the matrix A is understood, we henceforth

use 0 as a shorthand for (?A. Throughout, R will denote

the set of m row indices of A, and C will denote its n

column indices. To avoid cluttering the exposition, we

assume that m and n are powers of two (our scheme can

easily be modified for the general case).

An interval of rows or columns is a non-empty set

of contiguous (row or column) indices [i, j] = {i, i +

1,... , j}. We imagine row indices to lie on a horizontal

line, so that a row is to the Iefi o~another row iff it has a

smaller index (similarly “left of” is defined for columns).

We say that interval 11 is to the left of interval 12, and

12 is to the right of 11, if the largest index of 11 is smaller

than the smallest index of 12.

Let 1 be a column interval, and let A1 be the m x Ill

submatrix of A consisting of the columns of A in I. We

use 01 as a shorthand for 8&. That is, if r is a row index,

then O1(r) denotes the smallest c c 1 for which A(r, c)

is minimized. Note that 61(T) usually differs from O(r),

since we are minimizing only over I rather than C’.

Throughout the paper, instead of storing t91 di-

rectly, we shall instead store a function ~1 which is an

implicit description of 01.

DEFINITION 1. For any column interval I and any

column index c, nJ(c) is the row interval such that, for

evey row index r in that interval, we have OI(r) = c;

~I(c) 2s empty if no such r exists.

Note that the monotonicity of A implies that, if

c1 < C2, then ~I(cl) is to the left of 7rf(c2).

Note that each rI (c) can be stored in 0(1) space,

since we need only store the beginning and end of that

row interval. Throughout the paper, we shall use ~1 as

an implicit description of t91. The advantage of doing

so is that we use 0(III) storage instead of the 0(IRI)

that would be needed for explicitly storing O1. The

disadvantage is that, given a row index r, a processor

needs to binary search in the TI array for the position of

row index r in order to determine OI(r). Had we stored

directly L91, (?](r) would be readily available in constant

time. From now on, we consider our problem to be

that of computing the Tc array. Once we have mc, it

is essy to do a postprocessing computation that obtains

(explicitly) 0 from mC with m processors: each column

c gets assigned Inc (c)I processors which set O(r) = c for

every r c mc (c). Therefore Theorem 1.1 would easily

follow if we can establish the following.

THEOREM 2.1. irc can be computed in O(log m +

log n) time and O(n) processors in the EREW-PRAM

model.

The rest of this

DEFINITION 2.

indices is obtained

R (i. e., every row

395

paper proves the above theorem.

The k-sample of the set R of row

by choosing every k-th element of

index which is a multiple of k).

For example, the 4-sample of R is (4,8,..., m). For

k G [0, log m], let Rk denote the (m/2k)-sample of R.

For example, R. = (m),

Ra = (m/8, m/4, 3m/8, m/2, 5m/8, 3m/4, 7m/8, m),

and RIOgm = (1,2,m) = R.

Note that lRkl = 2k = 21R~_11.

3 A log m Processor Algorithm

This section gives a min(n, log m)-processor algorithm

which is needed as an important ingredient in the

algorithm of the next section. It has the feature that its

complexity bounds depend on the number of columns

in a stronger way than on the number of rows.

LEMMA 3.1. The rC array can be computed in

O(max(n, log m)) time with min(n, log m) processors in

the EREW-PRAM model.

The bounds of the above lemma might look unap-

pealing at first sight, but their significance lies in the

fact that m can be much larger than n. In fact we shall

use this lemma, in the next section, on problems of size

m x (log n). The rest of this section proves the lemma.

Simple-minded approaches like “use one processor to

binary search for ~c (c) in parallel for each c c C“ do

not work, the difficulty being that we do not know which

Zc(c)’s are empty. In fact, if we knew which rc (c)’s are

empty then we could easily achieve O(log m) time with

n processors (by using the above-mentioned straight-

forward binary search—e,g,, binary search for the right

endpoint of rc (c) by doing log m comparisons involving

the two columns c and c’, where c’ is the nearest column

to the right of c having a nonempty mc(c’)).

We shall compute the irc array by computing a

LeftExtend and a RightExtend arrays whose signifi-

cance is as follows.

DEFINITION 3.

For any column c, let LeftExtend(c) be the lefi end-

point of row interval r[l,cl(c). That is, LeftExtend(c)

is the minimum row index r such that, for any c) < c,

A(r, c) < A(r, c’). Let RightExtend(c) be the right end-

point of row interval n[c,nl(c). That is, RightExtend(c)

is the maximum row index r such that, for any c’ > c,

A(r, c) < A(r, c’).

Intuitively, LeftExtend(c) measures how far to the left

(in R) column c can “extend its influence)’ if the only

competition to it came from columns to its left. The

intuition for Right Extend(c) is analogous, with the

roles of “left” and “right” being interchanged. Note

that LeftExtend(c) (resp., RightExtend(c)) might be

396 ATALLAH AND KOSARAJU

undefined, which we denote by setting it equal to the

nonexistent row m + 1 (resp., O).

Once we have the RightExtend and LeftExtend

arrays, it is easy to obtain the Tc array, as follows. If

either LeftEztend(c) = m + 1 or Rightl?ztend(c) = O

then obviously me(c) is empty. Otherwise we distinguish

two cases: (i) if 12ightEztend(c) < LeftEztend(c)

then me(c) is empty, and (ii) if Left Extend(c) s

RightEztend(c) then interval XC(C) is not empty and

has LeftExtend(c) and RightExtend(c) as its two end-

points. Hence it suffices to compute the Right Extend

and Left Extend arrays. The rest of this section ex-

plains how to compute the LeftExtend array (the com-

putation of RightExtend is symmetrical and is there-

fore omitted). Furthermore, for the sake of definiteness,

we shall describe our scheme assuming n ~ log m (it

will be easy for the reader to see that it also works

if n < log m). Thus we have min{n, log m} = log m

processors and wish to achieve O(max{n, log m}) =

O(n) time performance. We shall show how to use the

log m processors to compute the Left Extend array in

n + log m (= O(n)) time steps. To simplify the pre-

sentation we assume, wit bout loss of generality, that

A(m, 1) > A(m,2) > ..0 > A(rn, n) (one can always

add a “dummy” last row to A in order to make this

hold-obviously this does not destroy the monotonicity

of A). This assumption simplifies the presentation be-

cause it causes every LeftExtend(c) to be < m (i.e., it

is defined).

We first give a rough overview of our scheme.

Imagine that the row indices R are organized as a

complete binary search tree TR: the leaves cent ain

R sorted by increasing order, and each internal node

v cent ains the row index r of the largest leaf in the

subtree of v‘s left child (in which case we can simply

refer to v aa “internal node r“ rather than the more

cumbersome “the internal node that cent ains r“). Note

that a row index r < m appears exactly twice in T~:

once at a leaf, and once at an internal node (m appears

only once, as the rightmost leaf). Having only log m

processors, we clearly cannot afford to build all of TR.

Instead, we shall build a portion of it, starting from

the root and expanding downwards along n root-to-leaf

paths P1,Pn. Path P. is in charge of computing

Left Extend(c), and does so by performing a binary

search for it as it traces a root-to-leaf path in the

binary search tree TR. If path PC exits at leaf r then

Le f tEztend(c) = r. The tracing of all the Pi’s is done

in a total of n + log m time steps. Path PC is inactive

until time step c, at which time it gets assigned one

processor and begins at the root, and at each subsequent

step it makes one move down the tree, until it exits at

some leaf at step c + log m. Clearly there are at most

log m paths that are simultaneously active, so that we

use log m processors. At time step n + log m the last

path (Pn) exits a leaf and the computation terminates.

If, at a certain time step, path PC wants to go down

to a node of TR not traced earlier by a PC, (c’ < c),

then its processor builds that node of TR (we use a

pointer representation for the traced portion of TR—

we must avoid indexing since we cannot afford using

m space). During path PC’s root-t~leaf trip, we shall

maintain the property that, when P= is at node r of TR,

LeftExtend(c) is guaranteed to be one of the leaves in

r’s subtree (this property is obviously true when Pe is

at the root, and we shall soon show how to maintain

it aa PC goes from a node to one of its children). It

is because of this property that the completion of a PC

(when it exits from a leaf of T~) corresponds to the end

of the computation of LeftExtend(c).

The above overview implies that at each time step,

the lowermost nodes of the log m active paths are

“staggered” along the levels of TR in that they are at

levels 1,2,... , log m respectively. Hence at each time

step, at most one processor is active at each level of TR,

and the computation of exactly one Le f tExtend(c) gets

completed (at one of the leaves).

We have omitted a crucial detail in the above

overview: what additional information should be stored

in the traced portion of TR in order to aid the downward

tracing of each PC (such information is needed for PC to

know whether to branch left or right on its trip down).

The idea is for each path to leave behind it a trail of

information that will help subsequent pat hs. Note that

LeftExtend(c) depends upon columns 1,2,... , c–1 and

is independent of columns c+ 1, 00. , n. Before specifying

the additional information, we need some definitions.

DEFINITION 4. Let c and c’ be column indices, r

be a row index. We say that c is better than c’ for

r (denoted by c <r c’) iff one of the following holds:

(i) A(r, c) < A(r, c’), or (ii) A(T, c) = A(r, c’) and

c < c’.

Note that for any columns c, c’ and row r, we must

have either c <r c’ or c’ <r c. When the algorithm com-

pares A(r, c) to A(r, c’) in order to determine whether

c <r c’ or c1 <v c, it is useful if the reader thinks of such

a comparison as a competition between c and c’ for r: c

wins the competition over c’ if the outcome is c <r c’,

otherwise it loses r to cl. When a path Pe is at an inter-

nal node r, itcompetes for r with the best column for r

among the columns in [1, c– 1] (that is, it competes with

@[l, C_ll(r)). If c beats O[l,C_ll(r) in this competition for

r, then PC obviously branches down to the left child

of r in TR (its LeftExtend(c) is certainly not greater

than r). Otherwise it branches to the right child of r.

However, the above assumes that the O11,.- 11(r) values

ALGORITHM FOR THE Row MINIMA OF A MONOTONE MATRIX 397

are available when needed. We must now make sure

that, when PC enters node r, itcan easily (i.e., in con-

stant time) obtain O[l,c_ll(r). Note that we can neither

maintain the needed O[l,C_ l](r) at r, nor can we carry it

down with P. on its downward trip (it is not hard to see

that either one of these two approaches runs into trou-

ble). Instead, we shall use a judicious combination of

both: some information is maintained locally in r, some

is carried along by PC. When PC enters r, P= combines

the information it is carrying, with the information in

r, to obtain in constant time O[l,C_ l](r). This is made

more precise below.

Each internal node r’ that has been already visited

by a path contains, in a register Iabel(r’), the best c’

for r’ among the subset of columns whose path went

through r’ (hence Iabel(r’) is empty if no path visited

r’ so far).

When P. enters internal node ?’ of TR, it carries

with it, in a register rival(c), the largest c’ such that

c’ < c and Le~tEztend(c’) is smaller than the leftmost

leaf in the subtree of r (hence rival(c) is empty when

P. is at the root).

Note that the current rival(c) and label(r) allow P=

to obtain O[l,C_ll(r) in constant time, w follows. Recall

that 6’[1,.- l](r) is the best for r (i.e., smallest under

the <r relationship) among the columns in [1, c – 1].

Now, view [1, c – 1] as being partitioned into three

subsets: the subset S1 (resp., SS) consisting of the

columns c’ whose Left Ext end(c’) is smaller (resp.,

larger) than the leftmost (resp., rightmost) leaf in the

subtree of r, and the subset S2 of the columns c’ whose

LeftEztend(c’) is in the subtree of r. Now, no column

in S3 can be O[l,C_ l](r) (by the definition of S3). The

best for r in S2 is iabei(r) (by definition). The best

for r in S1 is rivai(c), by the following argument.

Suppose to the contrary that there is a c“ E S1,

c“ < rival(c), such that c“ is better for r than rival(c).

A contradiction with the monotonicity of A is obtained

by observing that we now have: (i) c“ < rival(c), (ii)

LeftExtend(rival(c)) < r, and (iii) c“ is better than

rival(c) for r but not for Le f tllzt end(rival(c)). Hence

rivai(c) must be the best for r in S1. Hence O[l,C_ll(r)

is one of {rival(c), label(r)}, which can be obtained in

constant time from rival(c) and label(r), both of which

are available (PC carried riva~(c) down with it when it

entered r, and r itself maintained label(r) during the

previous time step).

The main problem that remains is how to update,

in constant time, the rivai(c) and the labei(r) registers

when P= goes from r down to one of r’s two children. We

explain below how PC updates its rival(c) register, and

how r updates its Jabel(r) register. (We need not worry

about updating the label(r’) of a row rl not currently

being visited by a PC,, since such a label(r’) remains by

definition unchanged,)

By its very definition, label(r) depends on all the

paths Pc/ (c’ < c) that previously went through r. Since

PC has just visited r, we need to make c compete, for

row r, with the previous value of label(r): if c wins then

Iabei(r) becomes c, otherwise it remains unchanged.

The updating of rival(c) depends upon one of the

following two cases.

The first case is when c won the competition at r,

i.e., PC has moved to the left child of r (call it r’). In that

case by its very definition rival(c) remains unchanged

(since the leftmost leaf in the subtree of r’ is the same

as the leftmost leaf in the subtree of r).

The second case is when c lost the competition at

r, i.e., PC has moved to the right child of r (call it r“).

In that case we claim that it suffices to compare the

old label(r) to the old rival(c): the one which is better

for r“ is the new value of rival(c). We now prove the

claim. Let rl (resp., rz) be the leftmost leaf in the

subtree of r (resp., r“). Let C’ (resp., C“) be the set

of paths consisting of the columns c’ such that c’ < c

and LeftExtend(c’) < rl (resp., LeftExtend(c’) < rz).

By definition, the old (resp., new) value of rival(c) is

the largest column index in C“ (resp., C’”). The claim

would follow if we can prove that the largest column

index in C“ – C’ is the old label(r) (by “old Iabei(r)”

we mean its value before updating, i.e., its value when

P. first entered r). We prove this by contradiction: let

? denote the old label(r), and suppose that there is a

c“ E Cl’ – C’ such that c“ >2. Since both c“ and t are

in C)) – C’, their respective paths went from r to the left

child of r. However, PC,) did so later than P2 (because

c“ > t). This in turn implies that c“ is better for r than

2, contradicting the fact that t is the old label(r). This

proves the claim.

Concerning the implementation of the above

scheme, the assignment of processors to their tasks is

trivial: each act ive PC carries with it its own processor,

and when it exits from a leaf it releases that processor

which gets assigned to Pc+l.g ~ which is just beginning

at the root of TR.

4 The Tree-Based Algorithm

This section builds on the algorithm of the previous sec-

tion and establishes the CREW version of Theorem 2.1

(the next section will extend it to EREW). The sam-

pling and iterative refinement methods used in this sec-

tion are reminiscent of the cascading divide-and-conquer

technique [5,4], and are similar to those used in [3] for

solving in parallel the string editing problem. In fact,

although [3] deals with a different problem, it implicitly

contains a solution to our problem whose complexity is

398 ATALLAH AND KOSARAJU

also O(log n) time but with a disappointing O(n log n)

processors. As in [3], it is useful to think of the com-

putation as progressing through the nodes of a tree T

which we now proceed to define (it differs substantially

from [3]).

Partition the column indices into n/ log n adjacent

intervals II, In, ,Ogn of size log ~ ewh+ cdl each

such interval Ii a ~at column. Imagine a complete binary

tree T on top of these fat columns, and associate with

each node v of this tree a fat interval I(v) (i.e., an

interval of fat columns) in the following way: the fat

interval associated with a leaf is simply the fat column

corresponding to it, and the fat interval associated

with an internal node is the union of the two fat

intervals of its children. Thus a node v at height

h has a fat interval l(v) consisting of Il(v)l = 2h

fat columns. The storage represent ation we use for

a fat interval 1(v) is a list containing the indices of

the fat columns in it; we also call that list 1(v),

in order to avoid introducing extra notation. For

example, if v is the left child of the root, then the

I(v) array contains (1, 2,.0., n/(2 log n)). Observe that

~j~ 1~(”)1 = O(ITI log ITI) = O((n/log n) log n) =

The ultimate goal is to compute Tc(c) for every

CGC.

Let leaf problem Ii be the problem of computing

mI, (c) for all c E Ii. Thus a leaf problem is a subproblem

of size m x log n. From Lemma 3,1 it follows that a

leaf problem can be solved in O(log n + log rn) time by

min{log n, log m} (< log n) processors. Since there are

n/ log n leaf problems, they can be solved in O(log n +

log m) time by n processors. We assume that this has

already been done, i.e., that we know the mIi array for

each leaf problem Ii. The rest of this section shows that

an additional O(log n+log m) time with O(n) processors

is enough for obtaining Tc.

DEFINITION 5. let ~(v) be the interval of original

columns that belong to fat intervals in I(v) (hence

IJ(v)] = l~(v)l .logn). For every v 6 T, fat column f E

I(v), and subset R’ of R, let $V (R’, f) be the interval

in R’ such that, for every r in that interval, d~(u)(r)

is a column in fat column f. We use “~V(R’, *)” as a

shorthand for “@U(R’, f) for all f E l(v))”.

We henceforth focus on the computation of the

@rooq~J(R, *) array, where root(T) is the root node of

T. Once we have the array ~rOOt(T) (R, +), it is easy to

compute the required rc array within the prescribed

complexity bounds: for each fat column f, we replace

the @rOOt(T)(R, f) row interval by its intersection with

the row intervals in the TI, array (which are already

available at the leaf If of T). The rest of this section

LEMMA 4.1. @v(R, *) for every v ~ T can be

computed by a CREW-PRAM in time O(height(T) +

log m) and O(n) processors, where height(T) is the

height of T (= O(log n)).

Proof. Since ~V6~ (l~(v)l +logn) = O(n), we have

enough processors to assign 11(v) I + log n of them to

each v c T. The computation proceeds in log m +

height(T) – 1 stages, each of which takes constant time.

Each v E T will compute ~U (R’,*) for progressively

larger subsets R’ of R, subsets R’ that double in size

from one stage to the next of the computation. We now

state precisely what these subsets are. Recall that ~

denotes the (m/2i)-sample of R, so that 1~ I = 2i.

At the t-th stage of the algorithm, a node v of height

h in T will use its 11(v) I + log n processors to compute,

in constant time, @v(Rt_h, *) if h < t ~ h + log m. It

does so with the help of information from @V(Rt _ ~-h, *),

‘@,?,eftchi/d(.)(Rt-h, *), and @Rightchiid(.)(&_h, *),all

of which are available from the previous stage t– 1 (note

that (t–l)–(h –l)=t–h). Ifi <hort>h+logm

then node v does nothing during stage t. Thus before

stage h the node v lies “dormant”, then at stage t = h

itfirst “wakes up” and computes @u(R., x), then at the

next stage t = h+ 1it computes $V(R1, *), etc. At stage

t = h + log m it computes & (RIOg ~, *), after which it

is done.

The details of what information v stores and how

it uses its Ii(v) I + log n processors to perform stage t

in constant time are given below. In the description,

tree nodes u and w are the left and (respectively) right

children of v in T.

After stage t, node v (of height h) contains

$u(R~-h, *) and a quantj$y Critical. (Rt-h) whose sig-

nificance is as follows.

DEFINITION 6. Let R’ be any subset of R.

Critical is the largest r c R’ that is contained in

tiv(R’, f) for some f c I(u); if there is no such r then

Criticalv (R’) = O.

The monotonicity of A implies that for every r’ <

Crit icalo (R’) (resp., r’ > Crit icalv (R’)), r’ is contained

in @u(R’, f) for some f 6 I(u) (resp., f c I(w)).

We now explain how v performs stage t, i.e.,

how it obtains Crit icalv (Rt- ~) and ~u (R~_k, *) using

du(~t-h, *), @w(&-h, *), and C?’j~~cdu[&_l_h) (all
three of which were computed in the previous stage

t – 1). The fact that the II(v) I + log n processors can do

this in constant time is based on the following observa-

t ions, whose correctness follows from the definitions.

OBSERVATION 1. 1, Critical. (R,_h) is ei-

ther the same as CriticalV(Rt–l_h), or the succes-

sor of Criticalu (Rt_l_h) in Rt_b.

proves the following lemma. l?. If f 6 I(u), then &(Rt_h, f) is the portion of

ALGORITHM FOR THE Row MINIMA OF A MONOTONE

inierual ~U(Rt_h, f) that is ~ Criticaiv(Rt_h).

3. If f E ~(w), then @V(R~-h, f) is the portion of

interval $bW(Rt_h, f) that is > Criticaiv(Rt_h).

The algorithmic implications of the above observa-

tions are discussed next.

4.1 Computing Criticaiv(Rt-h). Relationship (1)

of Observation 1 implies that, in order to compute

Criticalu (Rt_h), all v has to do is determine which

of Critica[o (Rt _ l-h) or its successor in Rt-h is the

correct value of Crit icaiv (Rt-h). This is done as

follows. If Criticalv (Rt - l-h) has no successor in R~_h

then Criticai”(Rt-1-h) = m (the last row) and hence

Criticaiv(Rt_h) = Critical. (Rt_l_h). Otherwise the

updating is done in the following two steps. For

conciseness, let r denote Crit icalv (Rt - l_h), and let s

denote the successor of r in Ri_h.

The first step is to compute L9J(UJ(S) and 6J(W)(S) in

constant time. This involves a search in l(u) (resp.,

l(w)) for the fat column f’ e l(u) (resp., f“ G

~(w)) whose ~U(R~_h,f’) (resp., ~W(R~-h, f“))

contains s. These two searches in 1(u) and 1(w)

are done in constant time with the II(v) I processors

available. We explain how the search for f‘ in 1(u)

is done (that for f” in 1(w) is similar and omitted).

Node v assigns a processor to each ~ E l(u), and

that processor tests whether s is in @“(&-h, f);

the answer is “yes” for exactly one of those II(u) I

processors and thus can be collected in constant

time. Next, v determines 6J(U)(S)and OJ(W)(S) in

constant time by using log n processors to search

for s in constant time in the leaf solutions m~j,

and mI,,, available at leaves f‘ and f”, respectively.

If the outcome of the search for s in 71, is that

(s c m~,, (c’) for c’ c If,, then 6J(UJ s) = c’.

Similarly, OJ(W)(S)is obtained from the outcome

of the search for s in irIj,, .

The next step consists of comparing A(s, oJ(.\(s))
tO A(S, 6J(W)(S)). If the OUtCOrne k ii(s,iJ(u)(sjj>
A(s, 6j(W)(s)), then Criticalv(li!t-h) is the same as

Crit icalo (I&- l-~). Otherwise Crit ica~. (Rt_h) is

s.

We next show how the just computed

Criticalo (Rt_h) VdUe k used tO COmpUte @u(Rt-h,*)

in constant time.

4.2 Computing & (R~_h, *). Relationship (2) of

Observation 1 implies the following for each f 6 l(u):

. If ~U(Rt_h, f) is to the left of Critica~~(Rt-h), then

tiu(~t-h, f) = @u(Rt-h, f).

MATRIX 399

● If !#u(Rt_h, f) is to the right of Criticaiv (Rt-h)

then @V(Rt-h, f) = 0.

. If *U (&_h, f) contains c?’itiCa/o (Rt-h) then

?/k(&_h, f) consists of the portion of &(&h, f)

up to (and including) Criticalv (R~_~).

The above three facts immediately imply that 0(1) time

is enough for II(u) I of the II(v) I processors assigned

to v to compute @V(Rt_h, f) for all f ● ~(u) (recall

that the @u(Rt-h, *) array is available in u from the

previous stage t – 1, and Criticalu(R~-h) hasalready

been computed).

A similar argument, using relationship (3) of Ober-

vat ion 1, shows that 11(w) I processors are enough

for computing *U (R,-h, f) for all f G l(w). Thus

@“(R,_~, *) can be computed in constant time with

I1(v)I processors.

This completes the proof of Lemma 4.1. ❑

5 Avoiding Read Conflicts

The scheme of the previous section made crucial use of

the “concurrent read” capability of the CREW-PRAM.

This occurred in the computation of Criticaiv(Rt_h)

and also in the subsequent computation of & (Ri-h, *).

In its computation of Critical. (R~_h), there are two

places where the algorithm of the previous section uses

the “concurrent read” capability of the CREW (both

of them occur during the computation of @J(u)(s)and

t9J(W)(s) in constant time). After that, the CREW

part of the computation of @o(Rt _ h, *) is the common

reading of Crit icalv (Rt_h). We review these three

problems next, using the same notation as in the

previous section (i.e., u is the left child of v in T, w

is the right child of v in T, v has height h in T, s is the

successor of Crit icalu (Rt - l-h) in &_h, etc).

●

●

Problem 1: This arises during the search in

I(u) (resp., 1(w)) for the fat column f‘ c l(u)

(resp., f“ E I(w)) whose ~U(Rt_~, f’) (resp.,

+w(%h, f“)) contains s. specifically, for find-
ing (e.g.) f’, node v assigns a processor to each

f E I(u), and that processor tests whether s is in

&(Rt_h, f); the answer is “yes” for exactly One Of

those Ii(u) I processors and thus can be collected in

constant time.

Problem 2: Having found f’ and f“, node v

determines 6J(U)(s) and 19J(W)(S)in constant time

by using log n processors to search fors, in constant

time, in the leaf solutions ~IJ, and m~j,, available

at leaves f‘ and f”, respectwely. There are two

parts to this problem: (i) many ancestors of a leaf

IJ (possibly all log n of them) may simultaneously

access the same leaf solution mIj, and (ii) each

ATALLAH AND KOSARAJU400

●

of those ancestors uses logn processors to do a

constant-time search in the leaf solution rIj (in the

EREW model, it would take fl(log log n) time just

to tell the processors in which leaf to search).

Problem 3: During the computation of ~u (R~_~, *),

the common reading of the Critical. (&_h) value

by the fat columns j g l(v).

Any solution we design for Problems 1–3 should also be

such that no concurrent reading of an entry of matrix A

occurs. We begin by discussing how to handle Problem

2.

5.1 Problem 2. To avoid the “many ancestors” part

of Problem 2 (i.e., part (i)), it naturally comes to mind

to make log n copies of each leaf 1$ and to dedicate each

copy to one ancestor of If, especially since we can easily

create these log n copies of If in O(log n) time and log n

processors (because the space taken by Z1f is O(log n)).

But we are still left with part (ii) of Problem 2, i.e.,

how an ancestor can search the copy of If dedicated

to it in constant time by using its log n processors in

an EREW fashion. On the one hand, just telling all

of those log n processors which lJ to search takes an

unacceptable fl(log log n) time, and on the other hand

a single processor seems unable to search ~rj in constant

time. We resolve this by organizing the information at

(each copy of) If in such a way that we can replace the

log n processors by a single processor to do the search

in constant time. Instead of storing a leaf solution in an

array 7rrj, we store it in a tree structure (call it Tree(f))

that enables us to exploit the highly structured nature

of the searches to be performed on it. The search to

be done at any stage t is not arbitrary, and is highly

dependent on what happened during the previous stage

t – 1, which is why a single processor can do it in

constant time (as we shall soon see).

We now define the tree Tree(f). Let List =

[l, r~],[r’~+ I,r’z],..., [rp+ 1,m] be the list of (at most

log n) nonempty intervals in ZIJ, in sorted order. Each

node of Tree(f) contains one of the intervals of List.

(It is implicitly assumed that the node of Tree(f) that

contains ~1, (c) also stores its associated column c.)

Imagine a procedure that builds l“r-ee(~) from the root

down, in the following way (this is not how Tree(f)

is actually built, but it is a convenient way of defining

it). At a typical node r, the procedure has available a

contiguous subset of List (call it L(x)), together with

an integer d(z), such that no interval of L(z) contains

a multiple of rn/(2dt”J). (The procedure starts at the

root of Tree(f) with L(root) = List and d(root) = –l.)
The procedure determines which interval of L(z) to

store in z by finding the smallest integer i > d(z)

[23.32]

[15,15]

Figure 1. Illustrating Tree(f).

such that a multiple of rn/(2i) is in an interval. of

L($) (we call i the priority of that intervaJ), together

with the interval of L(z) for which this happens (say

it is interval [r~ + 1, r~+l], and note that it is unique).

Interval [r~ + 1, r~+l] is then stored at z (together with

its associated column), and the subtree of z is created

recursively~ as follows. Let L’ (resp.l L“) be the portion

of L(z) to the left (resp., right) of interval [r~ + 1, r~+l].

If L’ # 0 then the procedure creates a left child for z

(call it y) and recursively goes to ~ with d(y) = i and

with L(y) = L’. If L“ # 0 then the procedure creates

a right child for z (call it z) and recursively goes to z

with d(z) = i and with L(z) = L“.

Note that the root of Tree(f) has priority zero and

no right child, and that its left child w has d(w) = O

and L(w) = (List minus the last interval in List).

Figure 1 shows the Tree(f) corresponding to the

case where m = 32, log n = 8, and

rrf = [1,6][7,8] [9, 14] [] [15, 15] [16, 17] [18, 22] [23, 32].

In that figure, we have assumed (for convenience) that

the columns in lf are numbered 1,...,8, and we have

shown both the columns c (circled) and their associ-

ated intervals mIf (c). For this example, the priori-

ties of the nonempty intervals of TIf are (respectively)

3,2,3,5,1,3,0. The concept of priority will be useful for

building Tree(f) and for proving various facts about it.

The following proposition is an easy consequence of the

above definition of Tree(f).

PROPOSITION 5.1. Let X be an interval in List, of

priority i. Let X’ (resp., X’)) be the nearest interval

that is to the lefl (resp., right) of X in List and that

has priority smaller than i. Let i’ (resp., i“) be the

priority of X’ (resp., X“). Then we have the following:

1. If i >0 then at least one of {X’, X“} exists.

2. If only one of {X’, X“} exists, then X is its child

ALGORITHM FOR THE Row MINIMA OF A MONOTONE MATRIX 401

in Tree(f) (right child in case of X’, left child in to avoid during this O(lList]) time computation (the

case of X{!). details are trivial and omitted).

Note: Although we do not need to do so, it is in fact
3. If X’ and X“ both exist, then i’ # i’{. Furthermore, possible to build Tree(f) in O(log m + log n) time by

if i’ > i“ then X iS the right child of X’ in Tree(f), using onlY one processor rather than log n processors,

otherwise (i. e., ifi’ < i“) X is the left child of X”. but the construction is somewhat more involved and we

Proof. The proof refers to the hypothetical proce- refrain from giving it in order not to break the flow of

dure we used to define Tree(f). For convenience, we
the exposition.

denote a node z of Tree(f) by the interval X that it
As explained earlier, after Tree(f) is built, we must

contains; i.e., wheress in the description of the proce- make log n copies of it (one for each ancestor in T of leaf

dure we used to say “the node z of Tree(f) that contains ~f)-

X“ and “list L(z)”, we now simply say “node X“ and We now explain how a single processor can use a

“list L(X)” (this is somewhat of an abuse of notation,
copy of Tree(f) to perform constant time searching.

since when the procedure first entered z it did not yet From now on, if a node of Tree(f) contains interval

know X).
rIf (c), we refer to that node as either “node ~If (c)” or

That (1) holds is obvious. as “node c“. We use RightChild(c) and Le ftC’hild(c)

That (2) holds follows from the following observa- to denote the the left and (respectively) right child of c

tion. Let X be a child of X’ in Tree(f). When the ‘n ‘ree(f)”

procedure we used to define Tree(f) was at X’, it went PROPOSITION 5.2. Let r E Rk, r’ be the prvdeces-

to node X with the list L(X) set equal to the portion of sor of r in Rk. Let r G n~j (c), r’ 6 m~j (c’). Then the

L(X’) before X’ (if X is left child of X’) or after X’ (if p~decessor of r in Rk+l (cQ/l it r“) is in ~~~ (c”) ~he~

X is right child of X’). This implies that the priorities c?’ E {c’, RightChild(c’), LeftChild(c), c}.

of the intervals between X’ and X in List are all larger Proof. If c“ E {c’, c} then there is nothing to prove,
than the priority of X. This implies that, when start- so suppose that c“ @ {c, c’}. This implies that c # c’
ing in List at X and moving along List towards X’, X’ (since c = C’ would imply that c“ = c). Then ~lj (c’),

is the first interval that we encounter that has a lower ~

priority than that of X. Hence (2) holds.
If (c”) and ~Ij (c) are distinct and occur in that order

in List (not necessarily adjacent to one another in List).
We now prove (3). Note that the proof we Just Note that rI, (c’) and ~IJ (c) each contains a row in Rk,

gave for (2) also implies that the parent of X is in that ~If (c”) contains a row in Rk+l but no row in Rk,

{X’, X“}. Hence to prove (3), it suffices to show that and that all the other intervals of List that are between
one of {X’, X“ } is ancestor of the other (this would Z1f (c’) and 7rIJ (c) do not contain any row in Rk+l.
imply that they are both ancestors of X, and that the This, together with the definition of the priority of an

one with the larger priority is the parent of X). We interval, implies that ~If (c,) and mlf (c) have priorities
prove this by contradiction: let Z be the lowest common no larger than ~, that T1f (c”) has a priority equal to

ancestor of X’ and X“ in Tree(f), with Z @ {X’, X“}. k + 1, and that all the other intervals of List that are

Since Z has lower priority than both X’ and X“, ‘t between rI, (c’) and TIJ (c) have priorities greater than
cannot occur between X’ and X“ in List. However, k + 1, This, together with proposition 5.1, implies that
the fact that X’ (resp., X“) is in the subtree of the left c“ E {RightChiid(c’), Le f tChild(c)}. c1
(resp., right) child of Z implies that it is in the portion

of L(Z) before Z (resp.
PROPOSITION 5.3. Let r 6 Rkl r’ be the successor

, after Z). This implies that Z

occurs between X’ and X“ in List, a contradiction. ❑
of r in Rk. Let r E mlJ (c), ?“ c m~j(c’). Then the

We now show that Tree(f) can be built in
successor of r in Rk+l (call ii rr’) is in XIJ (c”) whew

O(log m + log n) time with lList [(< log n) processors.
c“ c {c, RightChild(c), LeftChiid(c’), c’}.

Assign one processor to eaeh interval of List, and do Proof. Similar to that of Proposition 5.2, and there-

the following in parallel for each such interval. The pro- fore omitted. •1

cessor assigned to an interval X computes the smallest Now recall that, in the previous section, the searches

integer i such that a multiple of m/(2i) is in that inter- done by a particular v in a leaf solution at If had the

val (recall that this integer i is the priority of interval feature that, if at st age tnode v E T asked which column

X). Following this O(log m) time computation of the of ~j contains a certain row r E Rk, then at stage t+ 1 it

priorities of the intervals in List, the processor assigned is asking the same question about r’ where r’ is either

to each interval determines its parent in Tree(f), and the successor or the predecessor of r in Rk+ 1. This,

whether it is left or right child of that parent, by using together with Propositions 5.2 and 5.3, implies that a

the above Proposition 5.1. Reading conflicts are easy processor can do the search (in Tree(f)) at stage t + 1

402 ATALLAH AND KOSARAJU

in constant time, so long as it maintains, in addition

tothenodeofl%ee(~) that contains the current r, the

two nodes of Tree(f) that contain the predecessor and

(respectively) successor of r in Rk. These are clearly

easy to maintain. c1

We next explain how Problems 1 and 3 are handled.

5.2 Problems 1 and 3. Right after stage t – 1

is completed, v stores the following information (recall

that the height of v in T is h). The fat columns f c I(v)

for which interval ~. (Rt-l-h, f) is not empty are stored

in a doubly linked list. For each such fat column f,

we store the following information: (i) the row interval

+v(Rt-1-~, f) = [al, d, and (ii) forrowm (rew.,~z),
a pointer to the node, in v‘s copy of Tree(f), whose

interval cent ains row al (resp., az). In addition, w

stores the following. Let z be the parent of v in T,

and let s’ be the successor of Critical: (R~- l–t~+l)) in

R,_(~+l), with s’ in @~(Rt-l_~,g) for some g E l(v).

Then v has g marked as being its distinguished fat

column, and v also stores a pointer to the node, in v’s

copy of Tree(g), whose interval contains s’. Of course,

information similar to the above for w is stored in every

node z of T (including v’s children, u and w), with

the height of z playing the role of h. In particular,

in the formulation of Problem 1, the fat columns we

called f’ and f“ are the distinguished fat columns of u

and (respectively) w, and thus are available at u and

(respectively) w, each of which also stores a pointer to

the node containing s in its copy of Tree(f’) (for u) or

of Tree(f”) (for w).

Assume for the time being that we are able to

maintain the above information in constant time from

stage t – 1 to stage t. This would enable us to

avoid Problem 1 because instead of searching for the

desired fat column f‘ (resp., f”), node u (resp,, W)

already has it available as its distinguished fat column.

Problem 3 would also be avoided, because now only the

distinguished fat columns of u and w need to read from

v the Criticalu (.&_h) value (whereas previously all of

the fat columns in 1(u) U ~(w) read that value from

v). It therefore suffices to show how to maintain, from

stage t — 1 to stage t, the above information (i.e., v’s

linked list and its associated pointers to the Tree(f)s

of its elements, v’s distinguished fat column g, and the

pointer to v‘s copy of Tree(g)). We explain how this is

done at v.

First, v computes its Crit icalv (Rt_~): since we

know from stage t– 1 the distinguished fat columns f’

and f“ of u and (respectively) w, and their associated

pointers to u’s copy of Tree(fl) and (respectively) w’s

copy of Tree(f”), v can compare the two relevant entries

of matrix A (i.e., A(s, 6J(U1(S)) and A(s, OJ(W)(S)))

and it can decide, based on this comparison, whether

Crit icalu (&-h) remains equal to Crit icalw (Rt_ l_h) or

becomes equal to s, its successor in Rt_h. But since

this is done in parallel by all v ‘s, we must show that no

two nodes of T (say, v and v’) try to access the same

entry of matrix A. The reason this does not happen

is as follows. If none of {v, v’ } is ancestor of the other

then no read conflict in A can occur between v and

v’ because their associated columns (that is, J(v) and

J(v’)) are disjoint. If one of v, v’ is ancestor of the

other, then no read conflict in A can occur between them

because the rows they are interested in are disjoint (this

is based on the observation that v is interested in rows

‘- l-bRi and hence will have no conflict within Rt_h —Ui=O

any of its ancestors).

As a side effect

of the computation of G’riticalv (Rt–h), v also knows

which fat column ~ c { f‘, f”} is such that @u(Rt_h, ~~

contains Critical. (Rt–h). It uses its knowledge of f

to update its linked list of nonempty fat columns (and

their associated row intervals) as follows (we distinguish

two cases):
.

1. f = f’. In that case v‘s new linked list consists of

the portion of u’s old (i.e., at stage t – 1) linked

list whose fat columns are < f’ (the row intervals

associated with these fat columns are as in u’s list

at t– 1),followed by f‘ with an associated interval

@Jv(R,-h, f’) equal to the portion of @U(&-k, f’)

up to and including Critical. (I& _h), followed

by P with an associated interval iv (&_h, f”)

equal to the portion of @W(Rt_h, f”) larger than

Criticalv (Rt-h) if that portion is nonempty (if it

is empty then f” is not included in v‘s new linked

list), followed by the portion of w‘s old (i.e., at stage

t– 1) linked list whose fat columns are > f“ (the

row intervals associated with these fat columns are

as in w’s list at t– 1).

2. } = f“. Similar to the first case, except that

Criticalu (R~-h) is now in the interval associated

with f 11rather than f 1.

It should be clear that the above computation of

v’s new linked list and its associated intervals can be

implemented in constant time with [I(v) I processors (by

copying the needed information from u and w, since

these are at height h – 1and hence at stage t– 1 already

“knew” their information relative to &-1-(h_l) =

R~_h).

In either one of the above two cases (1) and (2),

for each endpoint a of a @u(Rt_h, f) in v‘s linked list,

we must compute the pointer to the node, in v’s copy

of Tree(f), whose interval contains that a. We do it

as follows. If f was not in v‘s list at stage t– 1, then

ALGORITHM FOR THE Row MINIMA OF A MONOTONE

we obtain the pointer from u or w, simply by copying

it (more specifically, if in u or w it points to a node of

u’s or w‘s copy of !t’ree(~), then the “copy)’ we make

of that pointer is to the same node but in v’s own copy

of Tree(f)). On the other hand, if ~ was in v’s list

at stage t – 1, then we distinguish two cases. In the

case where a was also an endpoint of @v(Rt_ l-h, f),

we already have its pointer (to v’s copy of Tree(f))

available from stage t— 1. If a was not an endpoint of

%h(~t-1-h,f) then @ is predecessor or successor of an

endpoint of @V(Rt-1-h, f) in Rt_h, and therefore the

pointer for a can be found in constant time (by using

Propositions 5.1 and 5.2).

Finally, we must show how v computes its new

distinguished fat column, It does so by first obtaining,

from its parent z, Criticaiz (Rt_(h+l)) that z has just

computed. The old distinguished fat column g stored

at v had its @w(&_ l_h, g) containing the successor

s’ of C~iticai=(&_l_(h+l)) in &_(h+l). It must be

updated into a g such that Criticalv (Rt_h, g) contains

the successor s“ of Criticalz(Rt_(h+ l)) in Rt+l-~h+l).

We distinguish two cases.

1.

2.

Critica~Z(R~-(h+~J) = Critical~(Rt_l_(~+lJ). ln

that case s“ is the predecessor of s’ in Rt+l–(h+l],

and the fat column g c 1(v) for which @v(Rt_h, g)

contains s“ is either the same as g or it is the

predecessor of g in the linked list for v at stage

t (which we already computed). It is therefore easy

to identify g in constant time in that case.

Criticalz(Rt_(h+ l)) = s’. In that case s“ is the

successor of Si in ‘Rt+l _(h+l), and the fat column

g E l(v) for which TJV(R~_~, g) contains s“ is either

the same as g or it is the successor of g in the linked

list for v at stage t (which we already computed).

It is therefore easy to identify j in constant time in

that case as well.

In either one of the above two cases, we need to

also compute a pointer value to the node, in v‘s copy

of Tree(g), whose interval cent ains s“. This is easy if

j = g, because we know from stage t – 1 the pointer

value for s’ into v’s copy of Tree(g), and the pointer

value for s“ can thus be found by using Propositions

5.2 and 5.3 (since s“ is predecessor or successor of s’

in Rt_h). So suppose g # g, i.e., g is predecessor or

successor of g in v‘s linked list of nonempty fat columns

at t.The knowledge of the pointer for s’ to v‘s copy of

Tree(g) at i! – 1 is of little help in that case, since we

now care about v’s copy of Tree(g) rather than Tree(g).

WA saves us is the following observation: s“ must be

an endpoint of row interval ~v (Rt_h, g). Specifically, s“

is the left (i.e., beginning) endpoint of ~. (Rt_h, g) if g

is the successor of g in v‘s linked list at stage t (Case 2

MATRIX 403

above), otherwise it is the right endpoint of 4. (Rt-h, j)

(Case 1 above). Since s“ is such an endpoint, we already

know the pointer for s“ to v’s copy of Tree(g) (because

such pointers are available, in v‘s linked list, for all the

endpoints of the row intervals in that linked list).

References

[1]

[2]

[3]

[4]

[5]

[6]

A. Aggarwal and J. Park, “Parallel searching in multi-

dimensional monotone arrays,” to appear in J. of Algo-

rithms. (A preliminary version appeared in Proc. 29th

Annual IEEE Symposium on Foundations of Computer

Science, 1988, pp. 497-512.)

A. Aggarwal, M. M. Klawe, S. Moran, P. Shor and R.

Wilber, “Geometric Applications of a Matrix Searching

Algorithm,” Algorithmic, Vol. 2, pp. 209-233, 1987.

A. Apostolic, M. J. Atallah, L. Larmore, and H. S.

McFaddln, “Efficient Parallel Algorithms for String

Editing and Related Problems,” SIAM J. C’omput. 19,

pp. 968-988, 1990.

M.J. Atallah, R. Cole and M.T. Goodrich, “Cascad-

ing Divide-and-Conquer: A Technique for Designing

Parallel Algorithms,n SIAM J. Comput., vol. 18, pp.

499-532, 1989.

R. Cole, “Parallel merge sort,” SIAM J. Comput. 17

(4), pp. 770-785, 1988.

Paul, W., Vishkin, U., and Wagener, H. “Parallel

dictionaries on 2-3 trees.” Proc. 10th Coil. on Autom.,

Lang., and Prog., LNCS 154, Springer, Berlin, 1983,

pp. 597-609.

