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Abstract 

An O( nL)-time algorithm is given for finding an optimal prefix-free binary code 
for a weighted alphabet of size n, with the restriction that no code string be longer than 
L. An 0 (nLlogn)-time algorithm is given for the corresponding alphabetic problem, 
which is equivalent to optimizing a dictionary of n words, implemented as a binary tree 
of height h I: L with all data in the leaves. 

1. Introduction 

Euflman’a problem. Suppose C is an alphabet of size n, and 4; is the frequency 

with which the ith symbol of C is transmitted. A binary tree1 with n leaves determines 

a prefix-free2 binary code for C, and a tree which minimizes the weighted depth r= 

$vi( h 
.th 

w ere lj is the depth of the leaf in 2’ containing the z symbol of C) determines 

a code where the expected length of a code string is minimized. Figure 1 shows the 

correspondence between a binary tree and a binary code. 

Huffman’s algorithm [Hufj finds such an optimal code in time 0 (nlog n), and can 

be implemented to run in O(n) time if the wi are already sorted [L]. 

The Alphabetic Coding problem. In [HuTu], Hu and Tucker present an 0 (nlog n) 

solution to the variation of Huffman’s problem in which the desired tree must satisfy the 

alphabetic property, i.e., if the tree were to be traversed in symmetric order, the 

symbols (contained in the leaves) must be encountered in alphabetic order. Thus, the 

tree could be used as a binary search tree. 
--_______-___rl_c-___ 
l Department of Mathematics and Computer Science, University of California, Riverside, CA 92521. 

# Department of Information and Computer Science, University of California, Irvine, CA 92717. 

r In this paper, each non-leaf node in a binary tree has exactly two children. 

’ A code is prefix-free if no code string is a prefix of any other. The advantage of a prefix-free code is that 
code strings can differ in length, yet any coded message can be decoded unambiguously. 
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The non-alphabetic problem can be shown to be reduced to the alphabetic 

problem by simply sorting the weights [HuTa]. 

Height-limited optimal trees. A variation on the above two problems restricts 

solution trees to have height at most L, where L is a given constant. These two 

problems are sometimes referred to as the Length-Limited Coding and the Length- 

Limited Alphabetic Coding problems. 

Previous results. The Length-Limited (non-alphabetic) Coding problem is solved 

in O(nLZL> time by Hu and Tan [HuTa], in O(n2L) time by Garey [Gal, and in 

0 ( n1*5Llog0*5n) time by Larmore CL]. This paper contains a simple 0 (nL)-time 

algorithm, which we call the Package-Merge algorithm. 

The Alphabetic Coding problem can be solved in 0 (nlog n) time by the Hu- 

Tucker and Garsia-Wachs algorithms [HuTu] [GaWa]. Th e restricted-length version is 

solved in 0 ( n3L) time by Garey [Gal, and in 0 (n2L) time by Itai and Wessler, 

independently [I] [WI. In this paper we present an 0 (nLlog n)-time algorithm. 

2. The Package-Merge algorithm 

In this section, we introduce the Coin Collector’s problem, which is a version of 

the Knapsack problem, and the Package-Merge algorithm which solves it in linear time. 

We then show how an instance of the Length-Limited Coding problem with parameters 

n and L can be reduced to an instance of the Coin-Collector’s problem of size nL. The 

Package-Merge algorithm thus solves the Length-Limited Coding problem in 0 (nL) 

time. 

The Coin CoZEector’s probEem. A coin collector has m coins of various 

denominations (face values) and various numismatic values. The country he lives in has 

binary coinage, and so the denomination of each coin is an integral power of 2. The 

collector wishes to spend Q dollars (Q is an integer) to buy groceries, but the grocer 

(rather unimaginatively) refuses to accept any coin at other than its face value. How 

can the coin collector choose a set of coins of minimum tot al numismatic value whose 

total face value is &? 

An instance (1, Q) of the Coin Collec tar ‘3 problem of size m is formally defined 
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by: 

(a) A set I of m items, each of which has a width 2-d (d E N) and a non-negative 

weight. (Think of width as being face value of a coin, and weight as being numismatic 

value.) 

(b) An integer Q. 

A solution to such an instance is a subset S of I of minimal weight whose widths 

sum to exactly &. 

The general Knapsack problem is NP-complete. However, by adding the 

restriction that the widths are of the form 2-d, the resulting Coin-Collector’s problem 

can be solved efficiently. 

The Package-Merge algorithm. The Package-Merge algorithm maintains lists of 

“packages.” Each package is a set of items whose total width is 2-d for some d E N, and 

each list consists of packages of all the same width, sorted in order of increasing weight. 

Initially, each item is a package by itself, and each list is the set of all items of a given 

width, sorted by weight. Each step of the algorithm combines the two smallest weight 

items of the smallest remaining width to form a single package of the next larger width, 

which is then inserted into the appropriate list. An odd package of width less than 1 is 

discarded. Finally, there is only one list, consisting of packages of width 1, sorted by 

weight. S is then t&en to be the union of the first & of these. Figure 2 illustrates the 

algorithm. 

PACKAGE-MERGE ALGORITHM 

Let D be such that 2-O - IS the smallest width of any item 

A, is the list of items of width 2-4 sorted by weight 

for d t D downto 1 loop 
if A, has odd length then discard its heaviest item 
Combine adjacent pairs of A, (each element has width 2-4 

to form a list B, of packages of width 2-&l 
Merge B, into A,, 

endloop 

Let S be the union of the & least weight items of A, 

Correctness. We prove that the Package-Merge algorithm is correct by 

induction. If all items have width 1, correctness is trivial. Otherwise, since & is an 
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integer, S must contain an even number of items of the smallest width. If there is only 

one such item, discarding it will not affect the solution. If there are two or more items 

of smallest width, consider the two of smallest weight. Either both or neither of these 

will be in S, so combining them into a single item of larger width will not affect the 

solution. In either case the instance is reduced to an instance with fewer items. 

Time analysis. Packaging the pairs of elements of a list takes time which is 

linear in the length of the list while merging two sorted lists takes time which is linear 

in the sum of the lengths of the lists. We begin an amortization argument by placing 

three credits on each original item, Invariably, there are three credits on each item of 

any list which consists solely of original items, two credits on each item of any list 

formed as a result of a merge, and three credits on each item of list B,. Each packaging 

step combines two items (from Ad) which have two or three credits each into one item 

(placed on Bd) which has three credits, allowing at least one credit to pay for the 

operation. The merge step takes time which is linear in the sum of the lengths of the 

lists. One credit from each item (they have three each) pays for the merge, leaving each 

item with two credits. Therefore, the Package-Merge algorithm on m items takes linear 

time assuming that the items in the lists A, are presorted by width, then by weight 

within each width (this will be the case in our application). Otherwise, some sorting 

algorithm must be applied first and the algorithm will require 0 (mlog m) time, 

Space analysis. Each package can be represented as a binary tree, where the 

leaves are original items. The space requirement is 0 (m). 

We note that the algorithm can be modified to cover the case where & is not an 

integer. Q must be some diadic rational, otherwise no solution is possible. Write & as 

an integer, plus a sum of distinct powers of 2 (for example, if Q = 3.625, write 3 + 2-l 

+ 2-3). During the iteration of the algorithm inhexed by d, if that power of 2 occurs in 

the sum then pluck the smallest package of width 2-d from Ad before executing any 

other step. These plucked packages will be included in S, as will the smallest [QJ 

packages of width 1. 

The reduction (Coding problem -+ Coin Collector’s problem). Let 41, . . . $n be 

the list of frequencies (sorted into non-increasing order) for an instance of the (non- 

alphabetic) Length-Limited Coding problem, and let L be the maximum permitted 
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length. We define a node to be an ordered pair (i,Z) E [l,n] x[l,L]. Node (i,Z) has index 

i, weight $j, level 1, and width 2-l. The weight (or width) of a set of nodes is the sum of 

the weights (or widths) of its members. If 2’ is a binary tree, define nodeset( T) = 

{(i,l) 1 l<Z<Z,) where Zi is the depth of the ith leaf of 2’. Thus t= 2 +iZj is exactly 
i=l 

the weight of nodeset( T), and it can be shown (by induction on n) that the width of 

nodeset( T) is n - I. 

The reduction to the Coin Collector’s problem is to let each node be an item. 

Use the Package-Merge algorithm to find a set A C [l,n] x[l,L] of width n-l of 

minimum weight. If ties (for equal weight nodes) are broken in favor of nodes of smaller 

index, A will be the nodeset of an optimal height-restricted tree. See Figure 3. 

Time and space requirements. The Package-Merge algorithm for the Length- 

Limited Coding problem has a straightforward implementation that requires 0 (&) time 

and space. It can be run in linear space, using a trick similar to that used in [Hi]. The 

effect is to multiply the time requirements by a small constant factor (- 2). 

3. The Alphabetic Package-Merge algorithm 

In this section, we give an algorithm that solves an instance of the Length- 

Limited Alphabetic Coding problem in time 0 (nZlog n). 

We are given weights &, . . . 4,, not necessarily sorted, and an integer L 2 logzn. 

The desired output is a binary tree T for which t= #;I 4J i is minimized, where 1 i is the 

depth of the jth leaf of T. 

As in the previous section, we say that (d,Z) E [l,n]x[l,L] is a node of index i, of 

weight 4i and of level 1. If 2’ is a binary tree, nodeset( !Z’) = ((i,Z) 1 l<Z<Z,) where Z,. is 

the depth of the ith leaf of T. 

The weight of a set of nodes is the sum of the weights of its members. We define 

the index of a set of nodes to be 0.5 more than the smallest index of any of its member 

nodes. 

As in the non-alphabetic version, this algorithm builds optimal packages at 

iteratively higher levels to construct the nodeset of an optimal tree. There are A+1 lists 
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of nodesets (packages): P,,P,,..., P,. Initially, ps is empty and each list P, (d>O) 

contains n singleton nodesets, each containing one node at level d. The algorithm 

proceeds in stages, indexed from L down to 1. At stage d, the algorithm iterates 

combining two packages at level d to form a package at level d-l. As in the Hu-Tucker 

algorithm [HuTu], packages can be combined only if they are a “compatible pair” and 

they have the least total weight of any compatible pair. A pair of nodesets of P,, p, and 

p,, whose indices are i, and i, are defined to be compatible if no singleton nodeset of P, 

has index strictly between i, and i,. This definition is essentially the same as that in 

[HuTu] . 

After all L stages have been executed, ps has n-l members, each of which is a 

nodeset. The union of these is nodeset( 27) for the optimal tree T. 

In high-level form, the algorithm is as follows: 

ALPHABETIC PACKAGEMERGE ALGORITHM 

P,, t 0 (the empty list) 
for d + 1 to L 

Pd + ULW~ UWh “-) U%d)l 
for d c L downto 1 loop 

while lPdj 2 2 loop 

{p,,p,} + P, (Delete least weight compatible pair) 
p t p1 U p, (Package step) 
P d-l c= P (Merge SW-9 

end while 

end for 

St UP0 
T Opt c that tree whose nodeset is S 

Implementation. The Alphabetic Package-Merge algorithm can be implemented 

to run in 0 (nlog n) time for each level d (and hence in 0 (nLlog n) time altogether) 

using mergeable priority queues (see [AHU] for example). 

If i,, . . . im are the indices of the remaining singletons in P,, let Cr be the set of 

remaining packages in P, whose indices lie in the interval [ir,ir+,], where we let i, = 0 

and im+l = n+l. Singleton packages (other then possibly the first and/or last) will be 

in two of the { C,> while all other packages will be in exactly one of the (Cr}. Two 

packages are compatible if and only if they both lie in the same Cr. Each of the { C,) is 
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represented as a mergeable priority queue, with the member packages prioritized by 

weight, and the sum of the weights of the lightest two members is maintained. The 

collection of these minimal sums is maintained as a heap, the minimum sum being at 

the top of the heap. Each time the least weight compatible pair is taken, the one or 

both copies of each package must be removed from the structure, and possibly some 

adjacent sets must be merged. Thus, each package-merge iteration can be performed in 

0 (log n) time. 

Any P, can have at most 2n packages and so the inner loop of the algorithm 

iterates at most nL times. The time for the last step is also O(d). Therefore, the time 

for the entire algorithm is O(nLlogn). The space required for the data structure is 

O(nL). 
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a-0 
b - 101 
c - 11 
d -100 

Figure 1. The binary tree corresponding to a prefix-free binary code. 

level width 

0 1 

3 l/8 

Figure 2. The Package-Merge algorithm for the Coin Collector’s problem. 
Original items are singleton packages, indicated by square nodes. 

The set S of width Q=3 of minimum weight 
is represented by the square nodes in the enclosed region. 

The algorithm is worked from the bottom of the diagram up. 
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Figure 3. The minimum weight nodeset of width n- 1 
and the resulting optimal tree. 

Each node is shown as a number which is its weight, +;. 
Circled nodes indicate tree leaves. 
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