
Chapter 34

Length-Limited Coding

Lawrence L. Larmore*
Daniel S. Hirschberg#

Abstract

An O(nL)-time algorithm is given for finding an optimal prefix-free binary code
for a weighted alphabet of size n, with the restriction that no code string be longer than
L. An 0 (nLlogn)-time algorithm is given for the corresponding alphabetic problem,
which is equivalent to optimizing a dictionary of n words, implemented as a binary tree
of height h I: L with all data in the leaves.

1. Introduction

Euflman’a problem. Suppose C is an alphabet of size n, and 4; is the frequency

with which the ith symbol of C is transmitted. A binary tree1 with n leaves determines

a prefix-free2 binary code for C, and a tree which minimizes the weighted depth r=

$vi(h
.th

w ere lj is the depth of the leaf in 2’ containing the z symbol of C) determines

a code where the expected length of a code string is minimized. Figure 1 shows the

correspondence between a binary tree and a binary code.

Huffman’s algorithm [Hufj finds such an optimal code in time 0 (nlog n), and can

be implemented to run in O(n) time if the wi are already sorted [L].

The Alphabetic Coding problem. In [HuTu], Hu and Tucker present an 0 (nlog n)

solution to the variation of Huffman’s problem in which the desired tree must satisfy the

alphabetic property, i.e., if the tree were to be traversed in symmetric order, the

symbols (contained in the leaves) must be encountered in alphabetic order. Thus, the

tree could be used as a binary search tree.
--_______-___rl_c-___
l Department of Mathematics and Computer Science, University of California, Riverside, CA 92521.

Department of Information and Computer Science, University of California, Irvine, CA 92717.

r In this paper, each non-leaf node in a binary tree has exactly two children.

’ A code is prefix-free if no code string is a prefix of any other. The advantage of a prefix-free code is that
code strings can differ in length, yet any coded message can be decoded unambiguously.

310

The non-alphabetic problem can be shown to be reduced to the alphabetic

problem by simply sorting the weights [HuTa].

Height-limited optimal trees. A variation on the above two problems restricts

solution trees to have height at most L, where L is a given constant. These two

problems are sometimes referred to as the Length-Limited Coding and the Length-

Limited Alphabetic Coding problems.

Previous results. The Length-Limited (non-alphabetic) Coding problem is solved

in O(nLZL> time by Hu and Tan [HuTa], in O(n2L) time by Garey [Gal, and in

0 (n1*5Llog0*5n) time by Larmore CL]. This paper contains a simple 0 (nL)-time

algorithm, which we call the Package-Merge algorithm.

The Alphabetic Coding problem can be solved in 0 (nlog n) time by the Hu-

Tucker and Garsia-Wachs algorithms [HuTu] [GaWa]. Th e restricted-length version is

solved in 0 (n3L) time by Garey [Gal, and in 0 (n2L) time by Itai and Wessler,

independently [I] [WI. In this paper we present an 0 (nLlog n)-time algorithm.

2. The Package-Merge algorithm

In this section, we introduce the Coin Collector’s problem, which is a version of

the Knapsack problem, and the Package-Merge algorithm which solves it in linear time.

We then show how an instance of the Length-Limited Coding problem with parameters

n and L can be reduced to an instance of the Coin-Collector’s problem of size nL. The

Package-Merge algorithm thus solves the Length-Limited Coding problem in 0 (nL)

time.

The Coin CoZEector’s probEem. A coin collector has m coins of various

denominations (face values) and various numismatic values. The country he lives in has

binary coinage, and so the denomination of each coin is an integral power of 2. The

collector wishes to spend Q dollars (Q is an integer) to buy groceries, but the grocer

(rather unimaginatively) refuses to accept any coin at other than its face value. How

can the coin collector choose a set of coins of minimum tot al numismatic value whose

total face value is &?

An instance (1, Q) of the Coin Collec tar ‘3 problem of size m is formally defined

311

by:

(a) A set I of m items, each of which has a width 2-d (d E N) and a non-negative

weight. (Think of width as being face value of a coin, and weight as being numismatic

value.)

(b) An integer Q.

A solution to such an instance is a subset S of I of minimal weight whose widths

sum to exactly &.

The general Knapsack problem is NP-complete. However, by adding the

restriction that the widths are of the form 2-d, the resulting Coin-Collector’s problem

can be solved efficiently.

The Package-Merge algorithm. The Package-Merge algorithm maintains lists of

“packages.” Each package is a set of items whose total width is 2-d for some d E N, and

each list consists of packages of all the same width, sorted in order of increasing weight.

Initially, each item is a package by itself, and each list is the set of all items of a given

width, sorted by weight. Each step of the algorithm combines the two smallest weight

items of the smallest remaining width to form a single package of the next larger width,

which is then inserted into the appropriate list. An odd package of width less than 1 is

discarded. Finally, there is only one list, consisting of packages of width 1, sorted by

weight. S is then t&en to be the union of the first & of these. Figure 2 illustrates the

algorithm.

PACKAGE-MERGE ALGORITHM

Let D be such that 2-O - IS the smallest width of any item

A, is the list of items of width 2-4 sorted by weight

for d t D downto 1 loop
if A, has odd length then discard its heaviest item
Combine adjacent pairs of A, (each element has width 2-4

to form a list B, of packages of width 2-&l
Merge B, into A,,

endloop

Let S be the union of the & least weight items of A,

Correctness. We prove that the Package-Merge algorithm is correct by

induction. If all items have width 1, correctness is trivial. Otherwise, since & is an

312

integer, S must contain an even number of items of the smallest width. If there is only

one such item, discarding it will not affect the solution. If there are two or more items

of smallest width, consider the two of smallest weight. Either both or neither of these

will be in S, so combining them into a single item of larger width will not affect the

solution. In either case the instance is reduced to an instance with fewer items.

Time analysis. Packaging the pairs of elements of a list takes time which is

linear in the length of the list while merging two sorted lists takes time which is linear

in the sum of the lengths of the lists. We begin an amortization argument by placing

three credits on each original item, Invariably, there are three credits on each item of

any list which consists solely of original items, two credits on each item of any list

formed as a result of a merge, and three credits on each item of list B,. Each packaging

step combines two items (from Ad) which have two or three credits each into one item

(placed on Bd) which has three credits, allowing at least one credit to pay for the

operation. The merge step takes time which is linear in the sum of the lengths of the

lists. One credit from each item (they have three each) pays for the merge, leaving each

item with two credits. Therefore, the Package-Merge algorithm on m items takes linear

time assuming that the items in the lists A, are presorted by width, then by weight

within each width (this will be the case in our application). Otherwise, some sorting

algorithm must be applied first and the algorithm will require 0 (mlog m) time,

Space analysis. Each package can be represented as a binary tree, where the

leaves are original items. The space requirement is 0 (m).

We note that the algorithm can be modified to cover the case where & is not an

integer. Q must be some diadic rational, otherwise no solution is possible. Write & as

an integer, plus a sum of distinct powers of 2 (for example, if Q = 3.625, write 3 + 2-l

+ 2-3). During the iteration of the algorithm inhexed by d, if that power of 2 occurs in

the sum then pluck the smallest package of width 2-d from Ad before executing any

other step. These plucked packages will be included in S, as will the smallest [QJ

packages of width 1.

The reduction (Coding problem -+ Coin Collector’s problem). Let 41, . . . $n be

the list of frequencies (sorted into non-increasing order) for an instance of the (non-

alphabetic) Length-Limited Coding problem, and let L be the maximum permitted

313

length. We define a node to be an ordered pair (i,Z) E [l,n] x[l,L]. Node (i,Z) has index

i, weight $j, level 1, and width 2-l. The weight (or width) of a set of nodes is the sum of

the weights (or widths) of its members. If 2’ is a binary tree, define nodeset(T) =

{(i,l) 1 l<Z<Z,) where Zi is the depth of the ith leaf of 2’. Thus t= 2 +iZj is exactly
i=l

the weight of nodeset(T), and it can be shown (by induction on n) that the width of

nodeset(T) is n - I.

The reduction to the Coin Collector’s problem is to let each node be an item.

Use the Package-Merge algorithm to find a set A C [l,n] x[l,L] of width n-l of

minimum weight. If ties (for equal weight nodes) are broken in favor of nodes of smaller

index, A will be the nodeset of an optimal height-restricted tree. See Figure 3.

Time and space requirements. The Package-Merge algorithm for the Length-

Limited Coding problem has a straightforward implementation that requires 0 (&) time

and space. It can be run in linear space, using a trick similar to that used in [Hi]. The

effect is to multiply the time requirements by a small constant factor (- 2).

3. The Alphabetic Package-Merge algorithm

In this section, we give an algorithm that solves an instance of the Length-

Limited Alphabetic Coding problem in time 0 (nZlog n).

We are given weights &, . . . 4,, not necessarily sorted, and an integer L 2 logzn.

The desired output is a binary tree T for which t= #;I 4J i is minimized, where 1 i is the

depth of the jth leaf of T.

As in the previous section, we say that (d,Z) E [l,n]x[l,L] is a node of index i, of

weight 4i and of level 1. If 2’ is a binary tree, nodeset(!Z’) = ((i,Z) 1 l<Z<Z,) where Z,. is

the depth of the ith leaf of T.

The weight of a set of nodes is the sum of the weights of its members. We define

the index of a set of nodes to be 0.5 more than the smallest index of any of its member

nodes.

As in the non-alphabetic version, this algorithm builds optimal packages at

iteratively higher levels to construct the nodeset of an optimal tree. There are A+1 lists

314

of nodesets (packages): P,,P,,..., P,. Initially, ps is empty and each list P, (d>O)

contains n singleton nodesets, each containing one node at level d. The algorithm

proceeds in stages, indexed from L down to 1. At stage d, the algorithm iterates

combining two packages at level d to form a package at level d-l. As in the Hu-Tucker

algorithm [HuTu], packages can be combined only if they are a “compatible pair” and

they have the least total weight of any compatible pair. A pair of nodesets of P,, p, and

p,, whose indices are i, and i, are defined to be compatible if no singleton nodeset of P,

has index strictly between i, and i,. This definition is essentially the same as that in

[HuTu] .

After all L stages have been executed, ps has n-l members, each of which is a

nodeset. The union of these is nodeset(27) for the optimal tree T.

In high-level form, the algorithm is as follows:

ALPHABETIC PACKAGEMERGE ALGORITHM

P,, t 0 (the empty list)
for d + 1 to L

Pd + ULW~ UWh “-) U%d)l
for d c L downto 1 loop

while lPdj 2 2 loop

{p,,p,} + P, (Delete least weight compatible pair)
p t p1 U p, (Package step)
P d-l c= P (Merge SW-9

end while

end for

St UP0
T Opt c that tree whose nodeset is S

Implementation. The Alphabetic Package-Merge algorithm can be implemented

to run in 0 (nlog n) time for each level d (and hence in 0 (nLlog n) time altogether)

using mergeable priority queues (see [AHU] for example).

If i,, . . . im are the indices of the remaining singletons in P,, let Cr be the set of

remaining packages in P, whose indices lie in the interval [ir,ir+,], where we let i, = 0

and im+l = n+l. Singleton packages (other then possibly the first and/or last) will be

in two of the { C,> while all other packages will be in exactly one of the (Cr}. Two

packages are compatible if and only if they both lie in the same Cr. Each of the { C,) is

315

represented as a mergeable priority queue, with the member packages prioritized by

weight, and the sum of the weights of the lightest two members is maintained. The

collection of these minimal sums is maintained as a heap, the minimum sum being at

the top of the heap. Each time the least weight compatible pair is taken, the one or

both copies of each package must be removed from the structure, and possibly some

adjacent sets must be merged. Thus, each package-merge iteration can be performed in

0 (log n) time.

Any P, can have at most 2n packages and so the inner loop of the algorithm

iterates at most nL times. The time for the last step is also O(d). Therefore, the time

for the entire algorithm is O(nLlogn). The space required for the data structure is

O(nL).

References

[AHU] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Compzlter Algoriihms,
Addison- Wesley (1974).

[GaWa] A.M. Garsia and M.L. Wachs, A New algorithm for minimal binary search trees, SIAM J Comp 6
(1977) pp. 622-642.

[Gal M.R. Garey, Optimal Binary Search Trees with Restricted Maximal Depth, SIAM J Comp 3
(1974) pp. 101-110.

WI Hirschberg, D.S., A linear space algorithm for computing maximal common subsequences, Comm
ACM 18 6 (1975), pp. 341-343.

[HuTa] T.C. Hu and K.C. Tan, Path length of binary search trees, SIAM J Applied Math 22 (1972) pp.
225-234.

[HuTu] T.C. Ku and A.C. Tucker, Optimal computer search trees and variable length alphabetic codes,
SIAM J Applied Math 21 (1971) pp. 514-532.

[Hu] T.C. Hu, Combinatorial Algorithms, Addison Wesley (1982).

[Hufl D.A. Huffman, A Method for the construction of minimum redundancy codes, Proc. Inst. Radio
Engineers 40 (1952) pp. 1098-1101.

PI Itai, Alon, Optimal alphabetic trees, SIAM Journal of Computing 5 (1976), pp. 9-18

IL1 L.L. Larmore, Height-restricted optimal binary trees, SIAM Jour. on Comp. 16 ‘(1987) pp. 1115-
1123.

WI Wessner, Ruse11 L., Optimal alphabetic search trees with restricted maximal height, Information
Processing Letters 4 (1976), pp. 90-94

316

a-0
b - 101
c - 11
d -100

Figure 1. The binary tree corresponding to a prefix-free binary code.

level width

0 1

3 l/8

Figure 2. The Package-Merge algorithm for the Coin Collector’s problem.
Original items are singleton packages, indicated by square nodes.

The set S of width Q=3 of minimum weight
is represented by the square nodes in the enclosed region.

The algorithm is worked from the bottom of the diagram up.

317

i 2 3 4 5 6

d

1

2

8 20 - l

5 / 8 20 25

Figure 3. The minimum weight nodeset of width n- 1
and the resulting optimal tree.

Each node is shown as a number which is its weight, +;.
Circled nodes indicate tree leaves.

318

