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Abstract 

This paper investigates the parallel time and pro- 
cessor complexities of several searching problems in- 
volving Monge and Monge-composite arrays. We 
present array-searching algorithms for concurrent-read- 
concurrent-write (CRCW) PRAMS, concurrent-read- 
exclusive-write (CREW) PRAMS, hypercubes, cube- 
connected-cycles, and shuffle-exchange networks. All 
these algorithms run in optimal time, and their 
processor-time products are all within an O(lg n) fac- 
tor of the worst-case sequential bounds. Several appli- 
cations of these algorithms are also given. Two appli- 
cations improve previous results substantially, and the 
others provide novel parallel algorithms for problems 
not previously considered. 

1 Introduction 

1.1 Background 

An m x n array A = {u[i,j]] containing real numbers 
iscalledMongeifforl~i<k<mandl<j<l~n, 

~[i,jJ + a[k, 11 5 a[i, I] + a[k,j] . (1.1) 

Similarly, A is called inverse-Monge if for 1 5 i < k 5 m 
and 1 5 j < 1 5 n, 

a[i,j] + a[k, l] 2 u[i, l] + a[k,j] . (1.2) 

‘IBM Research Division, T. J. Watson Research Center, York- 
town Heights, NY 10598. 

‘Laboratory for Computer Science, Massachusetts Institute of 
Technology, Cambridge, MA 02139. Supported in part by the 
Air Force under Contract oSR860076, the Defense Advanced 
Research Projects Agency under Contract NOOO14-89-J-1988, and 
the Army under Contract DAAL-03-86-K-0171. 

*Laboratory for Computer Science, Massachusetts Institute 
of Technology, Cambridge, MA 02139. Supported in part by 
the Defense Advanced Research Projects Agency under Contract 
NOOOl4-87-K-0825 and the Office of Naval Research under Con- 
tract N0001486K-0593. 

BDepartment of Computer Science, Duke University, Durham, 
NC 27706. 

Permission to copy without fee all or part of this material is granted pro- 
vided that the copies are not made or distributed for direct commercial 
advantage, the ACM copyright notice and the title of the publication and 
its date appear, and notice is given that copying is by permission of the 
Association for Computing Machinery. To copy otherwise, or to republish, 
requires a fee and/or specific permission. 

James K. Parkj Sandeep SenS 

An m x n array B = {b[i, j]} is called staircase-Monge 
if 

1. every entry is either a real number or co, 

2. b[i, j] = 00 implies b[i,l] = 00 for 1 > j and b[k,j] = 
00 for k > i, and 

3. for 15 i < k _< m and 15 j < 1 < n, (1.1) holds if 
all four entries a[i,j], a[i, I], a[k, j], and a[k,l] are 
finite. 

The definition of a staircase-inverse-Monge array is 
identical, except that (1.2) holds if all four entries a[i, j], 
a[i, /I, a[k,j], and a[k,l] are finite. Observe that a 
Monge array is only a special case of a staircase-Monge 
array. Finally, a p x q x r array C = {c[i, j, k]} is called 
Monge-composite if c[i, j, k] = d[i, j] + eb, k] for all i, j, 
and k, where D = {d[i, j]) is a p x q Monge array and 
E = {eb, k]} is a q x r Monge array. 

Monge arrays have many applications. In the late 
eighteenth century, G. Monge [Mon81] observed that if 
unit quantities (cannonballs, for example) need to be 
transported from locations X and Y (supply depots) 
in the plane to locations 2 and W (artillery batteries), 
not necessarily respectively, in such a way as to mini- 
mize the distance traveled, then the paths followed in 
transporting these quantities must not properly inter- 
sect. In 1961, A. J. Hoffman [HofGl] elaborated upon 
this idea and showed that a greedy algorithm correctly 
solves the transportation problem for m sources and n 
sinks if the corresponding m x n cost array is a Monge 
array. More recently, Monge arrays have found applica- 
tions in a number of other areas. F. Yao [Yao80] used 
these arrays to obtain an efficient sequential algorithm 
for computing optimal binary trees. Aggarwal, Klawe, 
Moran, Shor, and Wilber [AKM+87] showed that the 
all-farthest-neighbors problem for the vertices of a con- 
vex n-gon can be solved in linear time using Monge 
arrays. Aggarwal and Park [AP89b] gave efficient se- 
quential algorithms based on the Monge-array abstrac- 
tion for several problems in computational geometry 
and VLSI river routing. Furthermore, many researchers 
[AP89b, LS89, EGG1901 have used Monge arrays to 
obtain efficient dynamic programming algorithms for 
problems related to molecular biology. And, more re- 
cently, Aggarwal and Park [AP90] have used Monge ar- 
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rays to obtain efficient algorithms for the economic-lot 
size model. 

Like Monge arrays, staircase-Monge arrays have also 
found applications in a number of areas. Aggarwal 
and Park [AP89b]., L armore and Schieber [LS89], and 
Eppstein, Giancarlo, and Galil [EGG1901 use staircase- 
Monge arrays to obtain algorithms for problems related 
to molecular biology. Aggarwal and Suri [AS871 used 
these arrays to obtain fast sequential algorithms for 
computing the following largest area empty rectangle 
problem: given a rectangle containing n points, find the 
largest-area rectangle that lies inside the given rectan- 
gle, that does not contain any points in its interior, and 
whose sides are parallel to those of the given rectangle. 

Furthermore, Aggarwal and Klawe [AK881 and Klawe 
and Kleitman [KK88] h ave demonstrated other applica 
tions of staircase-Monge arrays in computational geom- 
etry. 

Finally, both Monge and Monge-composite arrays 
have found applications in parallel computation. In 
particular, Aggarwal and Park [APSSa] exploit Monge 
arrays to obtain efficient CRCW- and CREW-PRAM 
algorithms for certain geometric problems, and they 
exploit Monge-composite arrays to obtain efficient 
CRCW- and CREW-PRAM algorithms for string edit- 
ing and other related problems. (See also [AALM88].) 
Similarly, Atallah, Kosaraju, Larmore, Miller, and Teng 
[AKL+89] have used Monge-composite arrays to con- 
struct Huffman and other such codes on CRCW- and 
CREW-PRAMS. 

Unlike 
Monge and Monge-composite arrays, staircase-Monge 
arrays have not been studied in a parallel setting (in 
spite of their immense utility). Furthermore, even for 
Monge and Monge-composite arrays, the study of paral- 
lel array-search algorithms has so far been restricted to 
CRCW- and CREW-PRAMS. In this paper, we fill in 
these gaps by providing efficient algorithms for search- 
ing in Monge, staircase-Monge, and Monge-composite 
arrays in the CRCW- and CREW-PRAM models of par- 
allel computation, a.5 well as in several interconnection 
networks including the hypercube, the cube-connected 
cycles, and the shuffle-exchange network. However, be- 
fore we can describe our results, we need a few defini- 
tions; these are provided in the next subsection. 

1.2 Definitions 

The row-maxima problem for a two-dimensional array 
is that of finding the maximum entry in each row of the 
array. (If a row has several maxima, then we take the 
leftmost one.) In dealing with Monge arrays we assume 
that for any given i and j, a processor can compute the 
(i, j)-th entry of this array in O(1) time. For parallel 
machines without global memory we need to use a more 

restrictive model. The details of this model will be given 
in later sections. Aggarwal, Klawe, Moran, Shor, and 
Wilber [AKM+87] showed that the row-maximum prob- 
lem for an m x n Monge array can be solved in O( m+ n) 
time. Also, Aggarwal and Park [APSSa] have shown 
that the row-maximum problem for such an array can 
be solved in O(lg n +lg m) time on an (n + m)-processor 
CRCW-PRAM, and in O(lg nmlglgnm) time on an 

((n + 4/k k 4-P rocessor CREW-PRAM. Note that 
all the algorithms dealing with finding row-maxima in 
Monge and inverse-Monge arrays can also be used to 
solve the analogously-defined row-minima problem for 
the same arrays since reversing the order of an array’s 
columns and/or negating its entries allows us to move 
back and forth among these problems. 

Unfortunately, the row-minima and row-maxima 
problems are not interchangeable when dealing with 
staircase-Monge and staircase-inverse-Monge arrays. 
Aggarwal and Klawe [AK881 showed that the row- 
minimum problem for an m x n staircase-Monge ar- 
ray can be solved in O((m + n) lg lg(m + n)) sequential 
time, and Klawe and Kleitman [KK88] have improved 
the time bound to O(m + ncr(m)), where a(.) is the in- 
verse Ackermann’s function. However, if we wanted to 
solve the row-maximum problem (instead of the row- 
minimum problem) for an m x n staircase-Monge ar- 
ray, then we could, in fact, employ the sequential algo- 
rithm given in [AKM+87] and solve the row-maximum 
problem in O(m + n) time. No parallel algorithms 
were known for solving the row-minimum problem for 
staircase-Monge arrays. 

Given a p x q x r Monge-composite array, for 1 5 i < p 
and 1 5 j 5 q, the (i, j)-th tube consists of all those en- 
tries of the array whose first two coordinates are i and 
j, respectively. The tube maxima problem for a p x q x T 
Monge-composite array is that of finding the maximum 
entry in each tube of the array. (If a tube has sev- 
eral maxima, then we take the one with the minimum 
third coordinate.) For sequential computation, the re- 
sult of [AKM+87] can be trivially used to solve the tube 
maxima problem in O((p + r)q) time. Aggarwal and 
Park [APSSa] and Atallah, Apostolico, Larmore, and 
McFaddin [AALM88] h ave independently shown that 
the tube maxima problem for an n x n x n Monge- 
composite array can be solved in O(lgn) time using 
n2/ lg n processors on a CREW-PRAM, and recently, 
Atallah [At&391 has shown that this tube-maxima prob- 
lem can be solved in O(lg lg n) time using n2/ lg lg n pro 
cessors on a CRCW-PRAM. In view of the applications, 
we assume that the two n x n Monge arrays D = {dij} 
and E = {ejk} that together form the Monge composite 
array, are stored in the global memory of the PRAM. 
Again, for parallel machines without a global memory, 
we need to use a more restrictive model; the details of 
this model will be given later. No efficient algorithms 
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(other than the one that simulates the CRCW-PRAM 
algorithm) were known for solving the tube-maxima 
problem for a hypercube or a shuffle-exchange network. 

Finally, we illustrate the utility of Monge arrays by 
the following example. Suppose we are given a convex 
polygon and that we divide it into two convex chains 
P and Q (containing m and n vertices, respectively) 
by removing two edges, as is shown in Figure 1.1. Let 

PI,..-,Pm denote the vertices of P in counterclockwise 
order and let ~1,. . . , qn denote the vertices of Q in coun- 
terclockwise order. Then for 1 5 i < JG 5 m and 
1 5 j < 1 5 n, consider the quadrilateral formed by 
pi, pk, qj, and 41. By the quadrangle inequality (which 
states that the sum of the lengths of the diagonals of 
any quadrilateral is greater than the sum of the lengths 
of any pair of opposite sides), we have 

Thus, if we imagine an m x n array A = {ai,j} where 
ai,j is the Euclidean distance from vertex pi E P to ver- 
tex qj E Q, then by (1.2) this array is inverse-Monge. 
Moreover, any entry of this array can be computed in 
constant time, since it is just the Euclidean distance 
between two points. Thus, using the row-maxima algo- 
rithm of [AKM+87], we can find the farthest vertex in 
Q for every vertex in P in O(m + n) time. 

1.3 Main Results of this Paper 

The time and processor complexities of algorithms 
for computing row-maxima in two-dimensional Monge, 
row-minima in twodimensional staircase-Monge ar- 
rays and tube-maxima in three-dimensional Monge- 
composite arrays are listed in Tables 1.1, 1.2 and 1.3, 
respectively. Observe that Tables 1.1 and 1.2 show that 
our results for staircase-Monge arrays subsume those for 
Monge arrays. 

In the following, we list some applications of these 
new array-searching algorithms; some details regarding 
the third application are given in the appendix, whereas 
details regarding the other applications will appear in 
the final version of this paper. 

1. The largest-area empty rectangle problem. Consider 
the following problem: given a rectangle containing 
n points, compute the largest-area rectangle that 
is contained in the given rectangle, whose sides are 
parallel to the given rectangle, and that does not 
contain any of the n given points in its interior. 
For the sequential case, Aggarwal and Suri [AS871 
gave an O(nlg’ n)-time algorithm for solving this 
problem, and recently, Aravind and Pandurangan 
[AP89c] have provided two parallel algorithm for 
the CREW-PRAM; one algorithm takes O(lg3n) 
time and uses O(nlgn) processors and the other 

algorithm takes O(lg n) time and uses 0( f&l pro- 
cessors. Using the results on staircase-Monge ar- 
rays, we can obtain an O(lg2 n)-time algorithm on 
a CRCW-PRAM with nlog n processors and an 
O(lg2 n lg lg n)-time algorithm on a CREW-PRAM 
with n lg n/ lg Ig n processors. Consequently, for 
both CRCW-PRAMS and CREW-PRAMS our al- 
gorithms improve the processor-time product. 

2. The largest-area (not necessarily empty) rectangle 
problem. Consider the following problem: given 
a set of n planar points, compute the largest-area 
rectangle that is formed by taking any two of the 
n points as the rectangle’s opposite corners and 
whose sides are parallel to the z- and y-axes. For 
this problem, we use the algorithms developed here 
to obtain an optimal CRCW-PRAM algorithm that 
takes O(lg n) time and uses n processors. This geo- 
metric problem is motivated by the following prob- 
lem in electronic circuit simulation and has been 
recently studied by Melville [Mel89]. Imagine an 
integrated circuit containing n nodes. Because of 
the nature of integrated circuit fabrication, there 
will be leakage paths between all pairs of nodes. For 
which pair of nodes is a leakage path (between those 
nodes) most detrimental to circuit performance? In 
[Mel89], M 1 ‘II e vr e ar g ues that this pair of nodes cor- 
respond to the pair forming the largest-area rect- 
angle. 

3. The nearest-visible-, nearest-invisible-, jarthest- 
visible-, and farthest-invisible-neighbors problems 
for convex polygons. Consider the following prob- 
lem which we call the nearest-visible-neighbor 
(nearest-invisible-neighbor) problem: given two 
non-intersecting convex polygons P and Q, deter- 
mine for each vertex 3: of P, the vertex of Q near- 
est to z that is visible (not visible, respectively) 
to x. If P and Q contain m and n vertices, re- 
spectively, then the nearest-visible-neighbor prob- 
lem can be easily solved in O(lg(m + n)) time us- 
ing ((m + n)/ lg(m + n)) processors on a CREW- 
PRAM. Furthermore, we can use the row-minima 
algorithm developed for staircase-Monge arrays to 
show that the nearest-invisible-neighbor problem 
can be solved in O(lg(m + n)) time on a CRCW- 
PRAM with n + m processors and in O(lg(m + 

n)kk(m+n)) t ime using fm+n)/lglg(m+n) pro- 
cessors on a CREW-PRAM. The farthest-visible- 
neighbor (farthest-invisible-neigbor) problem for P 
and Q can be defined similarly, and it can be 
solved in the same time and processor bounds 
as the nearest-visible-neighbor (nearest-invisible- 
neighbor, respectively) problem. 

4. The string editing problem and other related prob- 
lems. Consider the following problem: given two 
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Figure 1.1: For 1 5 i < k 5 m and 1 5 j C 1 5 n, d(p;, qj) + d(pk, qr) 2 d(pi, qt) + d(pk, qj). 

Model Time Processors Reference 

CRCW-PRAM wg n> n [APSSa] 
CREW-PRAM O(lg n lglg n) nlkkn [APSSa] 
hypercube, etc. O(k n k k 4 4 k k n Theorem 3.2 

Table 1.1: Row-maxima results for an n x n Monge array. 

input strings 2 = ~1x2.. . x., and y = yiyz . . . yt, 
s = 1x1 and t = ]y], find a sequence of edit op- 
erations transforming t to y, such that the sum 
of the individual edit operations’ costs is mini- 
mized. Three different types of edit operations 
are allowed: we can delete the symbol zi at cost 
O(zi), insert the symbol yj at cost I(yj), or sub- 
stitute the symbol x; for the symbol yj at cost 
S(zi, yj). In [WF74], Wagner and Fischer gave 
an O(st)-time sequential algorithm for this prob- 
lem. PRAM algorithms for this problem were pro- 
vided in [AP89a, AALM88J; these algorithms re- 
duce the string editing problem to a shortest-paths 
problem in a special kind of directed graph called 
a grid-DAG and use array-searching to solve this 
shortest-paths problem. (Details of this reduction 
and other problems related to grid-DAGs are given 
in [AP89a].) Using our tube-maxima algorithms 
for hypercubes and related networks, we show that 
the string editing problem for an m-character start 
string and an n-character target string can be 
solved in O(lg n lg m) time on an nm-processor hy- 
percube, cube-connected cycles, or shuffle-exchange 
network. This improves the result of Ranka and 
Sahni [RS88], who obtained algorithms for a SIMD 
hypercube that determine a minimum cost edit se- 
quence to transform one string of length n into an- 
other string of length n. For n2p, 1 5 p 5 n, pro- 
cessors, they give an algorithm that runs in time 

2 PRAM Algorithms for 
Searching in Staircase-Monge 
Arrays 

In this section, we give CREW- and CRCW-PRAM 

O(e+ lg2n); for p2, nlgn 5 p” _< n2, pro- 

cessors, they give an algorithm that runs in time 
0($&i. 

algorithms for computing row minima in staircase- 
Monge arrays. We begin with a number of technical 
lemmas. 

Lemma 2.1 The row minima of an m x n Monge array 
can be computed in O(lg m+lg n) time using (ml lg m)+ 
n processors in the CRCW-PRAM model. 

Proof The row minima of an n x n Monge array can 
be computed in O(lgn) time using n processors on a 
CRCW-PRAM [AP89a, AALM88]. We consider two 
cases. 
Case 1: If m > n, then consider the n x n array 
A’ that is formed by taking every [m/n]-th row of 
A; clearly, this array is Monge, and using [AP89a], its 
row minima can be computed in O(lg n) time using n 
processors. Furthermore, it is easily seen that at most 
[m/nln + m = 0( m en ries of A need be considered ) t 
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Model Time Processors Reference 

CRCW-PRAM Otk 4 n Theorem 2.3 
CREW-PRAM O(lg n lg lg n) n/ lg k n Theorem 2.3 
hypercube, etc. Otk n kk 4 n/ k k n Theorem 3.3 

Table 1.2: Row-minima results for an n x n staircase-Monge array. 

I Model II Time I Processors I Reference I 

Table 1.3: Tube maxima results for an n x n x n Monge-composite array. 

for the remaining row minima. Hence, these row min- 
ima can be computed in O(lg m) time using m/ lgm 
processors. 
Case 2: If m < n, we partition the array into [n/m] 
square arrays of size m x m (except possibly the last 
one). For each such array, we compute the row min- 
ima in O(lg m) time using m processors for each array. 
Note that the total number of processors required is at 
most [n/mlm = n + 1. The minima for each row of 
the original array can be computed by computing the 
minimum of [n/ml elements which are the row minima 
of the partitioned array. This can be done in O(lgn) 
time using n/ lg n processors. H 

In [AKBB], Agg arwal and Klawe gave an O((m + 
n) lgk(m+n))-t ime sequential algorithm for finding the 
row minima of an m x n staircase-Monge array. This 
was subsequently improved to O(m + ncr(m)) time by 
Klawe and Kleitman [KKBB]. In the discussion below we 
extend the results of [AP89a] to staircase-Monge arrays. 

Let A = {u[i, j]} b e an m x n staircase-Monge array, 
m 2 n, and for 1 < i 5 m, let fi be the smallest index 
such that a[;, fii] = 00. Let Ri denote the (is)-th row of 
the array, where s = [m/nJ, and let Ri denote the row 
obtained by changing the j-th column entry of l+ to an 
00 for each j with f(i+r)s 5 j < fib, Furthermore, let 
At denote the array consisting of the rows Rf. Clearly, 
At is a staircase-Monge array. We claim the following 
lemma. 

Lemma 2.2 Given the row minima of A’, we can com- 
pute the row minima of A in O(lg m + lg n) time using 
(m/lgm) + n processors on a CRCW-PRAM. 

Proof From [AK88], the minima of At induce parti- 
tioning of A such that certain regions can be left out 
from further searching for row minima because of the 
Monge condition. The feasible regions (for row minima) 

can be categorized into two classes: Monge arrays and 
staircase-Monge arrays (see Figure 2.2). Within each 
class, the arrays have non-overlapping columns (except 
possibly for the columns in which the minima of At oc- 
cur) and have s rows. There are at most 2(n+l) feasible 
Monge arrays and at most n+l feasible staircase-Monge 
arrays. It can be shown that the total number of ele- 
ments in each category of the arrays is O(m). Thus, 
a brute-force search of these elements suffices to find 
the row minima. Clearly, this can be done in O(lgm) 
time using (ml lg m) p rocessors, since the maximum 
row-length of any array is n (which is less than m). 
Finally, because we have changed certain entries of the 
Ri’s to co, we need to reconsider the minima we have 
for these rows. Since there were no more than n entries 
of A that were changed to 00 in producing A’, we can 
find the minima in these rows by brute force in O(lgn) 
time using n processors. In our above discussion, we 
ignored the issue of processor allocation. We shall now 
show that it can be done within the same bounds. 

Let us look at the positions of the row minima of A’ 
more carefully (see Figure 2.2). We would like to char- 
acterize the feasible Monge regions in a manner that will 
enable us to do the processor allocation quickly. Notice 
that if the minima of R:+, lies to the left of minima 
of R:, then there is at most one feasible Monge region 
(J’s in Figure 2.2) where the minima of the rows in A 
between Rf and Ri,, can lie and this can be quickly de- 
termined. However, if the minima of Rf lies to the left of 
Rf+, then there can be more than one feasible Monge re- 
gion where the minima can lie (l?d and Fr,). The number 
of extra feasible Monge regions that need to be consid- 
ered in this case is equal to the number of minima which 
are “bracketed” by the minima of Rj. We define “brack- 
eted” as follows. Minima ml is said to bracket another 
minima rnz if ml is the closest north-west neighbor of 
mz, i.e., ml lies above and to the left of ms and among 
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B: 000000000000 
moooooooooocaoo 

000000000000000000000000000000000000 

Figure 2.1: Decompo&n of B’ into B:, . . . , Bt. 

all the minima which have this property with respect 
to m2, the row of ml is the maximum. We implement 
this as follows. We first form a list L = (II, Zz, . . . , I,) 
such that the i-th element of this list corresponds to 
the minima of Ri. We then store the column number 
(y-coordinate) of this minimum in L(i). For every el- 
ement of this array, we have to determine the nearest 
neighbor to its left which has a y-coordinate less than it. 
In [BBG+89], B er k man, Breslauer, Galil, Schieber, and 
Vishkin define the All Nearest Smallest Value (ANSV) 
problem as follows: given a list A = (al, a~, . . . , a,) of 
elements from a totally ordered domain, determine for 
each ai, 1 5 i < n, the nearest element to its left and 
the nearest element to its right that are less than oi (if 
they exist). Moreover, they also give an algorithm that 
executes in O(lg n) time using O(n/ lg n) processors in 
the CREW-PRAM model. Thus, an application of their 
ANSV algorithm followed by sorting enables us to allo- 
cate processors. If we use an O(lgn)-time, n-processor 
sorting algorithm, then the entire procedure can be done 
optimally in O(lgn) time. n 

Given this, we can state the following result. 

Theorem 2.3 The row minima of an n x n staircase- 
Monge array can be computed in O(lg n lg lg n) time us- 
ing n/ lg lgn processors in the CREW-PRAM model. 
and in O(lgn) time using n processors in the CRCW- 
PRAM model 

Proof We give only the CRCW-PRAM algorithm; the 
CREW-PRAM algorithm is analogous. We use an ap- 
proach very similar to [AP89a]. 

1. Given the n x n staircase-Monge array B, define 
f;, R’s and Rf as before, except that s = 1,/Z]. 
Obtain B* from B. Let u = [n/fil. Clearly, Bt 
is a 2~ x n staircase-Monge array. Furthermore, Bt 
can be decomposed into at most u Monge arrays 

Bi,.. . , Bt, such that each Bf is a ui x vi array, for 
ui 5 u and some vi > 0 (See Figure 2.1). Using 
the algorithm of [AP89a], and Lemma 2.1, the row 
minima for these arrays can be computed in O(lg n) 
time using 

u ” 
C(Ui/lgui+ui) ‘- C(fi/lg\/;i+vi) = o(n) 
i=l 

processors. 

i=l 

2. These minima would induce a partition of the ar- 
ray B, similar to that of Figure 2.2. We shall first 
determine the minima in all the feasible Monge ar- 
rays using Lemma 2.1. This can be done in O(lg n) 
time using 

c(s+ Vi) = O(n) 
i=l 

processors. 

3. For the feasible staircase-Monge regions, we call 
the algorithm recursively by subdividing the arrays 
into s x s pieces. (For the arrays which have less 
than s columns we use the scheme of [APSSa] and 
Lemma 2.2 to bound the number of processors to 

O(n).) 

4. To find the minimum of every row, we choose the 
minimum of the minimum elements of the Monge 
arrays and the staircase-Monge array. 

We can write down the recurrence relation for the 
time complexity as 

T(n) = T(A) + 0(1&p) , 

which yields T(n) = O(lg n). The processor complexity 
is O(n) from our previous discussion. n 
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Corollary 2.4 The row minima of an m x n staircase- 
Monge array can be computed in O(lgm + lgn) time 
using (m/Igm) + n processors on a CRCW-PRAM. 

Proof The proof follows on the lines of Lemma 2.1. 
The case corresponding to m 5 n is easy. Partition 
the array into [n/ml arrays of size m x m. Compute 
the row minima (in lgm time using n processors) and 
then compute the minimum in each row from the [n/ml 
elements. This can be done in the required time using 
n/ lg n processors. For the case m 2 n, we use a scheme 
similar to Lemma 2.2. In this case, however, we actually 
compute the minima of a n x n array in O(lgn) time 
using n processors. The bounds follow from Lemma 2.2. 
n 

3 Algorithms for Hypercubes 
and Related Networks 

In this section, we give three hypercube algorithms for 
searching in Monge arrays. The first algorithm com- 
putes the row-maxima of two-dimensional Monge ar- 
rays, the second algorithm computes the row-minima of 
two-dimensional staircase-Monge arrays, and the third 
computes the tube maxima of three-dimensional Monge 
arrays. We then argue that these algorithms can also be 
used for shuffle-exchange graphs and other hypercube- 
like networks. 

Each of our hypercube algorithms is based on the cor- 
responding CREW-PRAM algorithm. However, there 
are three important issues that need to be addressed 
in converting from CREW-PRAM algorithms to hyper- 
cube algorithms: 

1. we can no longer use Brent’s theorem [Bre74], 

2. we must deal more carefully with the issue of pro- 
cessor allocation, and 

3. we need to worry about data movement through 
the hypercube. 

This last issue requires a bit more explanation. Since 
the hypercube lacks a global memory, our assump- 
tion that any entry of the Monge, staircase-Monge, or 
Monge-composite array in question can be computed in 
constant time is no longer valid, at least in the con- 
text of our applications. We instead use the follow- 
ing model. In the case of two-dimensional Monge and 
staircase-Monge arrays A = {u[i, j]}, we assume there 
are two vectors v[l], . . . , v[m] and w[l], . . . , ul[n] (where 
initially the i-th hypercube processor’s local memory 
holds v[;] and w[i]), such that a processor needs to know 
both v[i] and wb] before it can compute a[i, j] in con- 
stant time. Similarly, in the case of Monge-composite 
arrays C = {c[i, j, k]}, where c[;, j, k] = d[i, j] + eb, h], 

D = {d[i,j]) and E = {eb,k]} are Monge arrays, and 
initially the entries of D and E are uniformly distributed 
among the local memories of the hypercube’s processors, 
we assume that a processor needs to know both d[i, j] 
and eb, k] before it can compute c[;, j, k]. The manner 
in which the v[i], ~$1, d[i, j], and eb, k] are distributed 
through the hypercube is then an important considera- 
tion. 

We begin with a technical lemma that gives the flavor 
of our approach to the three issues mentioned above. 

Lemma 3.1 Given an m x n Monge array A = 
{a[i,j]), m 2 n, suppose we know the maximum in ev- 
ery ([m/n])-th row of A. Then we can compute the 
remaining row maxima of A in O(lgmlglgm) time us- 
ing a (2m/ lg lgm)-processor hypercube. 

Proof Assume that m and n are powers of 2. We first 
show how to compute the remaining row maxima of A 
in O(lg m) time using 2m processor hypercube. Let j(i) 
denote the index of the column containing the maximum 
entry of row i[m/nJ, for 1 2 Ic L n. Also, let j(0) = 0 
and j(n + 1) = n. Furthermore, for 1 5 i 5 n + 1, 
let Ai denote the subarray of A containing rows (i - 
1) [m/nJ + 1 through min{i]m/n] - 1, m} and columns 
j(i - 1) through j(i). Let IAil denote the number of 
elements in Ai. Since A is Monge, the maxima in rows 
(i - l)[m/nj + 1 through min{;]m/nj - 1,m) must 
lie in Ai. Thus, the total number of elements under 
consideration for the row maxima is 

n+l n+l 

c IAil = x( [m/n] - l)(j(i) - j(i - 1) + 1) 5 2m. 
i=l i=l 

Since we have 2m processors and 2m candidates for 
row maxima, we can determine the row maxima by do- 
ing a parallel prefix operation provided that we can dis- 
tribute the data evenly among the processors. More 
specifically, we need to distribute the data so that 

1. processors responsible for entries in Ai have the 
values j(i) and j(i - l), 

2. there is one array entry per processor, and 

3. the processors dealing with the entries in the same 
row of the array are “neighbors” in the parallel pre- 
fix. 

Assume that that each processor has a unique in- 
dex 1 . . .2m and that processors 1.. . n + 2 con- 
tain j(0). . .j(n). We first merge lists 1.. .2m and 
j(0). . .j(n + 1). This can be done in O(lgm) time 
[LLS89]. Then, we distribute the values i and j(i) to 
all the elements of the sorted list between j(i - 1) and 
j(i). This can be done using one parallel prefix opera- 
tion which takes O(lgm) time. Similarly, we distribute 
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the values i and j(i) to all the elements of the sorted 
list between j(i) and j(i + 1). 

Now there are exactly ]Ai] processors containing the 
value j(i), i and j(i + 1). Let the group of proces- 
sors responsible for entries in Ai be Gi = (ai, . . . , ai + 
]A;]). Furthermore, we subdivide Gi into groups of 
j(i) - j(i - l), th e width of Ai, so that processors 
(Q,.. . ) Ui + j(i) - j(i - 1)) are responsible for the en- 
tries in the first row of A;, processors (ai + j(i) - j(i - 
1) f l,... ,ai + 2(j(i) - j(; - 1)) + 1) are responsi- 
ble for the second row of Ai, and so forth. Notice 
that because each processor has the values i, j(i) and 
j(i - l), it can determine in O(1) time the entry of A 
for which it is responsible. We call processors responsi- 
ble for row (column) s the s-row (s-column) processors. 
With the processors thus allocated, we distribute the 
appropriate values of the distance vectors to the first- 
row and first-column processors of Ai. Assume that 
the distance vectors v[l], . . . ,v[m] and w[l], . . . , u~[n] 
are stored in processors 1. . . m. First, we send val- 
ues urb(i - l)], . . . ,ullj(i)] to the corresponding first- 
row processors of Ai for 1 2 i 5 n + 1. Notice that 
our allocation of processors allows us to accomplish the 
previous step via isotone routing which can be done 
in O(lgm) time [LLS89]. Similarly, we send values 
V[(i-l)]m/nJ+l], . . . , v [min{ i [m/n] - 1, m}] to the cor- 
responding first-column processors of Ai for all a’. Next, 
we have the first-row processors of Ai distribute their w 
values down the columns and first-column processors of 
Ai distribute their v values down the rows. This can be 
accomplished with two parallel prefix operations. 

Having distributed all the data appropriately, we run 
a segmented parallel prefix operation with each row of 
Ai forming a segment. 

We must now reduce the number of processors used 
from 2m to 2m/lglg m. For the CREW-PRAM, this 
was accomplished using Brent’s theorem [Bre74]. For 
the hypercube, we must do this directly. The basic idea 
is to use the fact that p processors can compute the 
maximum of m numbers, m 2 p, in O(m/p + lgm) 
time. H 

Theorem 3.2 The row maxima of an n x n Monge ar- 
ray A = {a[i,j]} can be computed in O(lg n lg lg n) time 
on an (n/ lglgn)-processor hypercube. 

Proof We omit the bulk of this proof, but note one 
further issue that must considered in transforming a 
CREW-PRAM algorithm into a hypercube algorithm. 
Specifically, we need to ensure that the size of every 
subproblem we solve recursively is a power of two, so 
that the subproblem can be assigned to and solved by 
a complete sub-hypercube. n 

Theorem 3.3 The row minima of an n x n slaircase- 
Monge array A = {a[i,j]} can be computed in 

O(lg n lg lg n) time on an (n/ Ig lg n)-processor hyper- 
cube. 

Proof Omitted. n 

Theorem 3.4 The row maxima of an n x n x n Monge- 
composite array C = {c[i,j, k]} can be computed in 
O(lg n) time on an (n2)-processor hypercube. 

Proof Omitted. n 

Note that for the tube maxima problem, we do not 
achieve the same processor bound obtained by Aggar- 
wal and Park [APSSa] for CREW-PRAMS. Aggarwal 
and Park give an O(lgn)-time, (n2)-processor CREW- 
PRAM algorithm and then reduce the processor bound 
to n”/ lg n without affecting the asymptotics of the time 
bound. Unfortunately, the trick they use in reducing 
the number of processors is not readily applied to our 
hypercube algorithm, because of the problems with the 
movement of data; this will be described in the final 
version of this paper. 
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Figure 2.2: The regions covered by one of the mi patterns indicate the infeasible zones for minima. Many of the regions are 
made forbidden by more than one mi. In other words, many entries of the array could be covered by more than one pattern; 
in this case, we show arbitrarily one such pattern. Minimum rn2 is bracketed by ml. 
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