
Parallel Searching in Generalized Monge Arrays with Applications
(extended abstract)

Alok Aggarwal* Dina Kravetsf

Abstract

This paper investigates the parallel time and pro-
cessor complexities of several searching problems in-
volving Monge and Monge-composite arrays. We
present array-searching algorithms for concurrent-read-
concurrent-write (CRCW) PRAMS, concurrent-read-
exclusive-write (CREW) PRAMS, hypercubes, cube-
connected-cycles, and shuffle-exchange networks. All
these algorithms run in optimal time, and their
processor-time products are all within an O(lg n) fac-
tor of the worst-case sequential bounds. Several appli-
cations of these algorithms are also given. Two appli-
cations improve previous results substantially, and the
others provide novel parallel algorithms for problems
not previously considered.

1 Introduction

1.1 Background

An m x n array A = {u[i,j]] containing real numbers
iscalledMongeifforl~i<k<mandl<j<l~n,

~[i,jJ + a[k, 11 5 a[i, I] + a[k,j] . (1.1)

Similarly, A is called inverse-Monge if for 1 5 i < k 5 m
and 1 5 j < 1 5 n,

a[i,j] + a[k, l] 2 u[i, l] + a[k,j] . (1.2)

‘IBM Research Division, T. J. Watson Research Center, York-
town Heights, NY 10598.

‘Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, MA 02139. Supported in part by the
Air Force under Contract oSR860076, the Defense Advanced
Research Projects Agency under Contract NOOO14-89-J-1988, and
the Army under Contract DAAL-03-86-K-0171.

*Laboratory for Computer Science, Massachusetts Institute
of Technology, Cambridge, MA 02139. Supported in part by
the Defense Advanced Research Projects Agency under Contract
NOOOl4-87-K-0825 and the Office of Naval Research under Con-
tract N0001486K-0593.

BDepartment of Computer Science, Duke University, Durham,
NC 27706.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

James K. Parkj Sandeep SenS

An m x n array B = {b[i, j]} is called staircase-Monge
if

1. every entry is either a real number or co,

2. b[i, j] = 00 implies b[i,l] = 00 for 1 > j and b[k,j] =
00 for k > i, and

3. for 15 i < k _< m and 15 j < 1 < n, (1.1) holds if
all four entries a[i,j], a[i, I], a[k, j], and a[k,l] are
finite.

The definition of a staircase-inverse-Monge array is
identical, except that (1.2) holds if all four entries a[i, j],
a[i, /I, a[k,j], and a[k,l] are finite. Observe that a
Monge array is only a special case of a staircase-Monge
array. Finally, a p x q x r array C = {c[i, j, k]} is called
Monge-composite if c[i, j, k] = d[i, j] + eb, k] for all i, j,
and k, where D = {d[i, j]) is a p x q Monge array and
E = {eb, k]} is a q x r Monge array.

Monge arrays have many applications. In the late
eighteenth century, G. Monge [Mon81] observed that if
unit quantities (cannonballs, for example) need to be
transported from locations X and Y (supply depots)
in the plane to locations 2 and W (artillery batteries),
not necessarily respectively, in such a way as to mini-
mize the distance traveled, then the paths followed in
transporting these quantities must not properly inter-
sect. In 1961, A. J. Hoffman [HofGl] elaborated upon
this idea and showed that a greedy algorithm correctly
solves the transportation problem for m sources and n
sinks if the corresponding m x n cost array is a Monge
array. More recently, Monge arrays have found applica-
tions in a number of other areas. F. Yao [Yao80] used
these arrays to obtain an efficient sequential algorithm
for computing optimal binary trees. Aggarwal, Klawe,
Moran, Shor, and Wilber [AKM+87] showed that the
all-farthest-neighbors problem for the vertices of a con-
vex n-gon can be solved in linear time using Monge
arrays. Aggarwal and Park [AP89b] gave efficient se-
quential algorithms based on the Monge-array abstrac-
tion for several problems in computational geometry
and VLSI river routing. Furthermore, many researchers
[AP89b, LS89, EGG1901 have used Monge arrays to
obtain efficient dynamic programming algorithms for
problems related to molecular biology. And, more re-
cently, Aggarwal and Park [AP90] have used Monge ar-

0 1990 ACM 089791-370-1/90/0007/0259 $1.50 259

rays to obtain efficient algorithms for the economic-lot
size model.

Like Monge arrays, staircase-Monge arrays have also
found applications in a number of areas. Aggarwal
and Park [AP89b]., L armore and Schieber [LS89], and
Eppstein, Giancarlo, and Galil [EGG1901 use staircase-
Monge arrays to obtain algorithms for problems related
to molecular biology. Aggarwal and Suri [AS871 used
these arrays to obtain fast sequential algorithms for
computing the following largest area empty rectangle
problem: given a rectangle containing n points, find the
largest-area rectangle that lies inside the given rectan-
gle, that does not contain any points in its interior, and
whose sides are parallel to those of the given rectangle.

Furthermore, Aggarwal and Klawe [AK881 and Klawe
and Kleitman [KK88] h ave demonstrated other applica
tions of staircase-Monge arrays in computational geom-
etry.

Finally, both Monge and Monge-composite arrays
have found applications in parallel computation. In
particular, Aggarwal and Park [APSSa] exploit Monge
arrays to obtain efficient CRCW- and CREW-PRAM
algorithms for certain geometric problems, and they
exploit Monge-composite arrays to obtain efficient
CRCW- and CREW-PRAM algorithms for string edit-
ing and other related problems. (See also [AALM88].)
Similarly, Atallah, Kosaraju, Larmore, Miller, and Teng
[AKL+89] have used Monge-composite arrays to con-
struct Huffman and other such codes on CRCW- and
CREW-PRAMS.

Unlike
Monge and Monge-composite arrays, staircase-Monge
arrays have not been studied in a parallel setting (in
spite of their immense utility). Furthermore, even for
Monge and Monge-composite arrays, the study of paral-
lel array-search algorithms has so far been restricted to
CRCW- and CREW-PRAMS. In this paper, we fill in
these gaps by providing efficient algorithms for search-
ing in Monge, staircase-Monge, and Monge-composite
arrays in the CRCW- and CREW-PRAM models of par-
allel computation, a.5 well as in several interconnection
networks including the hypercube, the cube-connected
cycles, and the shuffle-exchange network. However, be-
fore we can describe our results, we need a few defini-
tions; these are provided in the next subsection.

1.2 Definitions

The row-maxima problem for a two-dimensional array
is that of finding the maximum entry in each row of the
array. (If a row has several maxima, then we take the
leftmost one.) In dealing with Monge arrays we assume
that for any given i and j, a processor can compute the
(i, j)-th entry of this array in O(1) time. For parallel
machines without global memory we need to use a more

restrictive model. The details of this model will be given
in later sections. Aggarwal, Klawe, Moran, Shor, and
Wilber [AKM+87] showed that the row-maximum prob-
lem for an m x n Monge array can be solved in O(m+ n)
time. Also, Aggarwal and Park [APSSa] have shown
that the row-maximum problem for such an array can
be solved in O(lg n +lg m) time on an (n + m)-processor
CRCW-PRAM, and in O(lg nmlglgnm) time on an

((n + 4/k k 4-P rocessor CREW-PRAM. Note that
all the algorithms dealing with finding row-maxima in
Monge and inverse-Monge arrays can also be used to
solve the analogously-defined row-minima problem for
the same arrays since reversing the order of an array’s
columns and/or negating its entries allows us to move
back and forth among these problems.

Unfortunately, the row-minima and row-maxima
problems are not interchangeable when dealing with
staircase-Monge and staircase-inverse-Monge arrays.
Aggarwal and Klawe [AK881 showed that the row-
minimum problem for an m x n staircase-Monge ar-
ray can be solved in O((m + n) lg lg(m + n)) sequential
time, and Klawe and Kleitman [KK88] have improved
the time bound to O(m + ncr(m)), where a(.) is the in-
verse Ackermann’s function. However, if we wanted to
solve the row-maximum problem (instead of the row-
minimum problem) for an m x n staircase-Monge ar-
ray, then we could, in fact, employ the sequential algo-
rithm given in [AKM+87] and solve the row-maximum
problem in O(m + n) time. No parallel algorithms
were known for solving the row-minimum problem for
staircase-Monge arrays.

Given a p x q x r Monge-composite array, for 1 5 i < p
and 1 5 j 5 q, the (i, j)-th tube consists of all those en-
tries of the array whose first two coordinates are i and
j, respectively. The tube maxima problem for a p x q x T
Monge-composite array is that of finding the maximum
entry in each tube of the array. (If a tube has sev-
eral maxima, then we take the one with the minimum
third coordinate.) For sequential computation, the re-
sult of [AKM+87] can be trivially used to solve the tube
maxima problem in O((p + r)q) time. Aggarwal and
Park [APSSa] and Atallah, Apostolico, Larmore, and
McFaddin [AALM88] h ave independently shown that
the tube maxima problem for an n x n x n Monge-
composite array can be solved in O(lgn) time using
n2/ lg n processors on a CREW-PRAM, and recently,
Atallah [At&391 has shown that this tube-maxima prob-
lem can be solved in O(lg lg n) time using n2/ lg lg n pro
cessors on a CRCW-PRAM. In view of the applications,
we assume that the two n x n Monge arrays D = {dij}
and E = {ejk} that together form the Monge composite
array, are stored in the global memory of the PRAM.
Again, for parallel machines without a global memory,
we need to use a more restrictive model; the details of
this model will be given later. No efficient algorithms

260

(other than the one that simulates the CRCW-PRAM
algorithm) were known for solving the tube-maxima
problem for a hypercube or a shuffle-exchange network.

Finally, we illustrate the utility of Monge arrays by
the following example. Suppose we are given a convex
polygon and that we divide it into two convex chains
P and Q (containing m and n vertices, respectively)
by removing two edges, as is shown in Figure 1.1. Let

PI,..-,Pm denote the vertices of P in counterclockwise
order and let ~1,. . . , qn denote the vertices of Q in coun-
terclockwise order. Then for 1 5 i < JG 5 m and
1 5 j < 1 5 n, consider the quadrilateral formed by
pi, pk, qj, and 41. By the quadrangle inequality (which
states that the sum of the lengths of the diagonals of
any quadrilateral is greater than the sum of the lengths
of any pair of opposite sides), we have

Thus, if we imagine an m x n array A = {ai,j} where
ai,j is the Euclidean distance from vertex pi E P to ver-
tex qj E Q, then by (1.2) this array is inverse-Monge.
Moreover, any entry of this array can be computed in
constant time, since it is just the Euclidean distance
between two points. Thus, using the row-maxima algo-
rithm of [AKM+87], we can find the farthest vertex in
Q for every vertex in P in O(m + n) time.

1.3 Main Results of this Paper

The time and processor complexities of algorithms
for computing row-maxima in two-dimensional Monge,
row-minima in twodimensional staircase-Monge ar-
rays and tube-maxima in three-dimensional Monge-
composite arrays are listed in Tables 1.1, 1.2 and 1.3,
respectively. Observe that Tables 1.1 and 1.2 show that
our results for staircase-Monge arrays subsume those for
Monge arrays.

In the following, we list some applications of these
new array-searching algorithms; some details regarding
the third application are given in the appendix, whereas
details regarding the other applications will appear in
the final version of this paper.

1. The largest-area empty rectangle problem. Consider
the following problem: given a rectangle containing
n points, compute the largest-area rectangle that
is contained in the given rectangle, whose sides are
parallel to the given rectangle, and that does not
contain any of the n given points in its interior.
For the sequential case, Aggarwal and Suri [AS871
gave an O(nlg’ n)-time algorithm for solving this
problem, and recently, Aravind and Pandurangan
[AP89c] have provided two parallel algorithm for
the CREW-PRAM; one algorithm takes O(lg3n)
time and uses O(nlgn) processors and the other

algorithm takes O(lg n) time and uses 0(f&l pro-
cessors. Using the results on staircase-Monge ar-
rays, we can obtain an O(lg2 n)-time algorithm on
a CRCW-PRAM with nlog n processors and an
O(lg2 n lg lg n)-time algorithm on a CREW-PRAM
with n lg n/ lg Ig n processors. Consequently, for
both CRCW-PRAMS and CREW-PRAMS our al-
gorithms improve the processor-time product.

2. The largest-area (not necessarily empty) rectangle
problem. Consider the following problem: given
a set of n planar points, compute the largest-area
rectangle that is formed by taking any two of the
n points as the rectangle’s opposite corners and
whose sides are parallel to the z- and y-axes. For
this problem, we use the algorithms developed here
to obtain an optimal CRCW-PRAM algorithm that
takes O(lg n) time and uses n processors. This geo-
metric problem is motivated by the following prob-
lem in electronic circuit simulation and has been
recently studied by Melville [Mel89]. Imagine an
integrated circuit containing n nodes. Because of
the nature of integrated circuit fabrication, there
will be leakage paths between all pairs of nodes. For
which pair of nodes is a leakage path (between those
nodes) most detrimental to circuit performance? In
[Mel89], M 1 ‘II e vr e ar g ues that this pair of nodes cor-
respond to the pair forming the largest-area rect-
angle.

3. The nearest-visible-, nearest-invisible-, jarthest-
visible-, and farthest-invisible-neighbors problems
for convex polygons. Consider the following prob-
lem which we call the nearest-visible-neighbor
(nearest-invisible-neighbor) problem: given two
non-intersecting convex polygons P and Q, deter-
mine for each vertex 3: of P, the vertex of Q near-
est to z that is visible (not visible, respectively)
to x. If P and Q contain m and n vertices, re-
spectively, then the nearest-visible-neighbor prob-
lem can be easily solved in O(lg(m + n)) time us-
ing ((m + n)/ lg(m + n)) processors on a CREW-
PRAM. Furthermore, we can use the row-minima
algorithm developed for staircase-Monge arrays to
show that the nearest-invisible-neighbor problem
can be solved in O(lg(m + n)) time on a CRCW-
PRAM with n + m processors and in O(lg(m +

n)kk(m+n)) t ime using fm+n)/lglg(m+n) pro-
cessors on a CREW-PRAM. The farthest-visible-
neighbor (farthest-invisible-neigbor) problem for P
and Q can be defined similarly, and it can be
solved in the same time and processor bounds
as the nearest-visible-neighbor (nearest-invisible-
neighbor, respectively) problem.

4. The string editing problem and other related prob-
lems. Consider the following problem: given two

261

Figure 1.1: For 1 5 i < k 5 m and 1 5 j C 1 5 n, d(p;, qj) + d(pk, qr) 2 d(pi, qt) + d(pk, qj).

Model Time Processors Reference

CRCW-PRAM wg n> n [APSSa]
CREW-PRAM O(lg n lglg n) nlkkn [APSSa]
hypercube, etc. O(k n k k 4 4 k k n Theorem 3.2

Table 1.1: Row-maxima results for an n x n Monge array.

input strings 2 = ~1x2.. . x., and y = yiyz . . . yt,
s = 1x1 and t =]y], find a sequence of edit op-
erations transforming t to y, such that the sum
of the individual edit operations’ costs is mini-
mized. Three different types of edit operations
are allowed: we can delete the symbol zi at cost
O(zi), insert the symbol yj at cost I(yj), or sub-
stitute the symbol x; for the symbol yj at cost
S(zi, yj). In [WF74], Wagner and Fischer gave
an O(st)-time sequential algorithm for this prob-
lem. PRAM algorithms for this problem were pro-
vided in [AP89a, AALM88J; these algorithms re-
duce the string editing problem to a shortest-paths
problem in a special kind of directed graph called
a grid-DAG and use array-searching to solve this
shortest-paths problem. (Details of this reduction
and other problems related to grid-DAGs are given
in [AP89a].) Using our tube-maxima algorithms
for hypercubes and related networks, we show that
the string editing problem for an m-character start
string and an n-character target string can be
solved in O(lg n lg m) time on an nm-processor hy-
percube, cube-connected cycles, or shuffle-exchange
network. This improves the result of Ranka and
Sahni [RS88], who obtained algorithms for a SIMD
hypercube that determine a minimum cost edit se-
quence to transform one string of length n into an-
other string of length n. For n2p, 1 5 p 5 n, pro-
cessors, they give an algorithm that runs in time

2 PRAM Algorithms for
Searching in Staircase-Monge
Arrays

In this section, we give CREW- and CRCW-PRAM

O(e+ lg2n); for p2, nlgn 5 p” _< n2, pro-

cessors, they give an algorithm that runs in time
0($&i.

algorithms for computing row minima in staircase-
Monge arrays. We begin with a number of technical
lemmas.

Lemma 2.1 The row minima of an m x n Monge array
can be computed in O(lg m+lg n) time using (ml lg m)+
n processors in the CRCW-PRAM model.

Proof The row minima of an n x n Monge array can
be computed in O(lgn) time using n processors on a
CRCW-PRAM [AP89a, AALM88]. We consider two
cases.
Case 1: If m > n, then consider the n x n array
A’ that is formed by taking every [m/n]-th row of
A; clearly, this array is Monge, and using [AP89a], its
row minima can be computed in O(lg n) time using n
processors. Furthermore, it is easily seen that at most
[m/nln + m = 0(m en ries of A need be considered) t

262

Model Time Processors Reference

CRCW-PRAM Otk 4 n Theorem 2.3
CREW-PRAM O(lg n lg lg n) n/ lg k n Theorem 2.3
hypercube, etc. Otk n kk 4 n/ k k n Theorem 3.3

Table 1.2: Row-minima results for an n x n staircase-Monge array.

I Model II Time I Processors I Reference I

Table 1.3: Tube maxima results for an n x n x n Monge-composite array.

for the remaining row minima. Hence, these row min-
ima can be computed in O(lg m) time using m/ lgm
processors.
Case 2: If m < n, we partition the array into [n/m]
square arrays of size m x m (except possibly the last
one). For each such array, we compute the row min-
ima in O(lg m) time using m processors for each array.
Note that the total number of processors required is at
most [n/mlm = n + 1. The minima for each row of
the original array can be computed by computing the
minimum of [n/ml elements which are the row minima
of the partitioned array. This can be done in O(lgn)
time using n/ lg n processors. H

In [AKBB], Agg arwal and Klawe gave an O((m +
n) lgk(m+n))-t ime sequential algorithm for finding the
row minima of an m x n staircase-Monge array. This
was subsequently improved to O(m + ncr(m)) time by
Klawe and Kleitman [KKBB]. In the discussion below we
extend the results of [AP89a] to staircase-Monge arrays.

Let A = {u[i, j]} b e an m x n staircase-Monge array,
m 2 n, and for 1 < i 5 m, let fi be the smallest index
such that a[;, fii] = 00. Let Ri denote the (is)-th row of
the array, where s = [m/nJ, and let Ri denote the row
obtained by changing the j-th column entry of l+ to an
00 for each j with f(i+r)s 5 j < fib, Furthermore, let
At denote the array consisting of the rows Rf. Clearly,
At is a staircase-Monge array. We claim the following
lemma.

Lemma 2.2 Given the row minima of A’, we can com-
pute the row minima of A in O(lg m + lg n) time using
(m/lgm) + n processors on a CRCW-PRAM.

Proof From [AK88], the minima of At induce parti-
tioning of A such that certain regions can be left out
from further searching for row minima because of the
Monge condition. The feasible regions (for row minima)

can be categorized into two classes: Monge arrays and
staircase-Monge arrays (see Figure 2.2). Within each
class, the arrays have non-overlapping columns (except
possibly for the columns in which the minima of At oc-
cur) and have s rows. There are at most 2(n+l) feasible
Monge arrays and at most n+l feasible staircase-Monge
arrays. It can be shown that the total number of ele-
ments in each category of the arrays is O(m). Thus,
a brute-force search of these elements suffices to find
the row minima. Clearly, this can be done in O(lgm)
time using (ml lg m) p rocessors, since the maximum
row-length of any array is n (which is less than m).
Finally, because we have changed certain entries of the
Ri’s to co, we need to reconsider the minima we have
for these rows. Since there were no more than n entries
of A that were changed to 00 in producing A’, we can
find the minima in these rows by brute force in O(lgn)
time using n processors. In our above discussion, we
ignored the issue of processor allocation. We shall now
show that it can be done within the same bounds.

Let us look at the positions of the row minima of A’
more carefully (see Figure 2.2). We would like to char-
acterize the feasible Monge regions in a manner that will
enable us to do the processor allocation quickly. Notice
that if the minima of R:+, lies to the left of minima
of R:, then there is at most one feasible Monge region
(J’s in Figure 2.2) where the minima of the rows in A
between Rf and Ri,, can lie and this can be quickly de-
termined. However, if the minima of Rf lies to the left of
Rf+, then there can be more than one feasible Monge re-
gion where the minima can lie (l?d and Fr,). The number
of extra feasible Monge regions that need to be consid-
ered in this case is equal to the number of minima which
are “bracketed” by the minima of Rj. We define “brack-
eted” as follows. Minima ml is said to bracket another
minima rnz if ml is the closest north-west neighbor of
mz, i.e., ml lies above and to the left of ms and among

263

B: 000000000000
moooooooooocaoo

000000000000000000000000000000000000

Figure 2.1: Decompo&n of B’ into B:, . . . , Bt.

all the minima which have this property with respect
to m2, the row of ml is the maximum. We implement
this as follows. We first form a list L = (II, Zz, . . . , I,)
such that the i-th element of this list corresponds to
the minima of Ri. We then store the column number
(y-coordinate) of this minimum in L(i). For every el-
ement of this array, we have to determine the nearest
neighbor to its left which has a y-coordinate less than it.
In [BBG+89], B er k man, Breslauer, Galil, Schieber, and
Vishkin define the All Nearest Smallest Value (ANSV)
problem as follows: given a list A = (al, a~, . . . , a,) of
elements from a totally ordered domain, determine for
each ai, 1 5 i < n, the nearest element to its left and
the nearest element to its right that are less than oi (if
they exist). Moreover, they also give an algorithm that
executes in O(lg n) time using O(n/ lg n) processors in
the CREW-PRAM model. Thus, an application of their
ANSV algorithm followed by sorting enables us to allo-
cate processors. If we use an O(lgn)-time, n-processor
sorting algorithm, then the entire procedure can be done
optimally in O(lgn) time. n

Given this, we can state the following result.

Theorem 2.3 The row minima of an n x n staircase-
Monge array can be computed in O(lg n lg lg n) time us-
ing n/ lg lgn processors in the CREW-PRAM model.
and in O(lgn) time using n processors in the CRCW-
PRAM model

Proof We give only the CRCW-PRAM algorithm; the
CREW-PRAM algorithm is analogous. We use an ap-
proach very similar to [AP89a].

1. Given the n x n staircase-Monge array B, define
f;, R’s and Rf as before, except that s = 1,/Z].
Obtain B* from B. Let u = [n/fil. Clearly, Bt
is a 2~ x n staircase-Monge array. Furthermore, Bt
can be decomposed into at most u Monge arrays

Bi,.. . , Bt, such that each Bf is a ui x vi array, for
ui 5 u and some vi > 0 (See Figure 2.1). Using
the algorithm of [AP89a], and Lemma 2.1, the row
minima for these arrays can be computed in O(lg n)
time using

u ”
C(Ui/lgui+ui) ‘- C(fi/lg\/;i+vi) = o(n)
i=l

processors.

i=l

2. These minima would induce a partition of the ar-
ray B, similar to that of Figure 2.2. We shall first
determine the minima in all the feasible Monge ar-
rays using Lemma 2.1. This can be done in O(lg n)
time using

c(s+ Vi) = O(n)
i=l

processors.

3. For the feasible staircase-Monge regions, we call
the algorithm recursively by subdividing the arrays
into s x s pieces. (For the arrays which have less
than s columns we use the scheme of [APSSa] and
Lemma 2.2 to bound the number of processors to

O(n).)

4. To find the minimum of every row, we choose the
minimum of the minimum elements of the Monge
arrays and the staircase-Monge array.

We can write down the recurrence relation for the
time complexity as

T(n) = T(A) + 0(1&p) ,

which yields T(n) = O(lg n). The processor complexity
is O(n) from our previous discussion. n

264

Corollary 2.4 The row minima of an m x n staircase-
Monge array can be computed in O(lgm + lgn) time
using (m/Igm) + n processors on a CRCW-PRAM.

Proof The proof follows on the lines of Lemma 2.1.
The case corresponding to m 5 n is easy. Partition
the array into [n/ml arrays of size m x m. Compute
the row minima (in lgm time using n processors) and
then compute the minimum in each row from the [n/ml
elements. This can be done in the required time using
n/ lg n processors. For the case m 2 n, we use a scheme
similar to Lemma 2.2. In this case, however, we actually
compute the minima of a n x n array in O(lgn) time
using n processors. The bounds follow from Lemma 2.2.
n

3 Algorithms for Hypercubes
and Related Networks

In this section, we give three hypercube algorithms for
searching in Monge arrays. The first algorithm com-
putes the row-maxima of two-dimensional Monge ar-
rays, the second algorithm computes the row-minima of
two-dimensional staircase-Monge arrays, and the third
computes the tube maxima of three-dimensional Monge
arrays. We then argue that these algorithms can also be
used for shuffle-exchange graphs and other hypercube-
like networks.

Each of our hypercube algorithms is based on the cor-
responding CREW-PRAM algorithm. However, there
are three important issues that need to be addressed
in converting from CREW-PRAM algorithms to hyper-
cube algorithms:

1. we can no longer use Brent’s theorem [Bre74],

2. we must deal more carefully with the issue of pro-
cessor allocation, and

3. we need to worry about data movement through
the hypercube.

This last issue requires a bit more explanation. Since
the hypercube lacks a global memory, our assump-
tion that any entry of the Monge, staircase-Monge, or
Monge-composite array in question can be computed in
constant time is no longer valid, at least in the con-
text of our applications. We instead use the follow-
ing model. In the case of two-dimensional Monge and
staircase-Monge arrays A = {u[i, j]}, we assume there
are two vectors v[l], . . . , v[m] and w[l], . . . , ul[n] (where
initially the i-th hypercube processor’s local memory
holds v[;] and w[i]), such that a processor needs to know
both v[i] and wb] before it can compute a[i, j] in con-
stant time. Similarly, in the case of Monge-composite
arrays C = {c[i, j, k]}, where c[;, j, k] = d[i, j] + eb, h],

D = {d[i,j]) and E = {eb,k]} are Monge arrays, and
initially the entries of D and E are uniformly distributed
among the local memories of the hypercube’s processors,
we assume that a processor needs to know both d[i, j]
and eb, k] before it can compute c[;, j, k]. The manner
in which the v[i], ~$1, d[i, j], and eb, k] are distributed
through the hypercube is then an important considera-
tion.

We begin with a technical lemma that gives the flavor
of our approach to the three issues mentioned above.

Lemma 3.1 Given an m x n Monge array A =
{a[i,j]), m 2 n, suppose we know the maximum in ev-
ery ([m/n])-th row of A. Then we can compute the
remaining row maxima of A in O(lgmlglgm) time us-
ing a (2m/ lg lgm)-processor hypercube.

Proof Assume that m and n are powers of 2. We first
show how to compute the remaining row maxima of A
in O(lg m) time using 2m processor hypercube. Let j(i)
denote the index of the column containing the maximum
entry of row i[m/nJ, for 1 2 Ic L n. Also, let j(0) = 0
and j(n + 1) = n. Furthermore, for 1 5 i 5 n + 1,
let Ai denote the subarray of A containing rows (i -
1) [m/nJ + 1 through min{i]m/n] - 1, m} and columns
j(i - 1) through j(i). Let IAil denote the number of
elements in Ai. Since A is Monge, the maxima in rows
(i - l)[m/nj + 1 through min{;]m/nj - 1,m) must
lie in Ai. Thus, the total number of elements under
consideration for the row maxima is

n+l n+l

c IAil = x([m/n] - l)(j(i) - j(i - 1) + 1) 5 2m.
i=l i=l

Since we have 2m processors and 2m candidates for
row maxima, we can determine the row maxima by do-
ing a parallel prefix operation provided that we can dis-
tribute the data evenly among the processors. More
specifically, we need to distribute the data so that

1. processors responsible for entries in Ai have the
values j(i) and j(i - l),

2. there is one array entry per processor, and

3. the processors dealing with the entries in the same
row of the array are “neighbors” in the parallel pre-
fix.

Assume that that each processor has a unique in-
dex 1 . . .2m and that processors 1.. . n + 2 con-
tain j(0). . .j(n). We first merge lists 1.. .2m and
j(0). . .j(n + 1). This can be done in O(lgm) time
[LLS89]. Then, we distribute the values i and j(i) to
all the elements of the sorted list between j(i - 1) and
j(i). This can be done using one parallel prefix opera-
tion which takes O(lgm) time. Similarly, we distribute

265

the values i and j(i) to all the elements of the sorted
list between j(i) and j(i + 1).

Now there are exactly]Ai] processors containing the
value j(i), i and j(i + 1). Let the group of proces-
sors responsible for entries in Ai be Gi = (ai, . . . , ai +
]A;]). Furthermore, we subdivide Gi into groups of
j(i) - j(i - l), th e width of Ai, so that processors
(Q,.. .) Ui + j(i) - j(i - 1)) are responsible for the en-
tries in the first row of A;, processors (ai + j(i) - j(i -
1) f l,... ,ai + 2(j(i) - j(; - 1)) + 1) are responsi-
ble for the second row of Ai, and so forth. Notice
that because each processor has the values i, j(i) and
j(i - l), it can determine in O(1) time the entry of A
for which it is responsible. We call processors responsi-
ble for row (column) s the s-row (s-column) processors.
With the processors thus allocated, we distribute the
appropriate values of the distance vectors to the first-
row and first-column processors of Ai. Assume that
the distance vectors v[l], . . . ,v[m] and w[l], . . . , u~[n]
are stored in processors 1. . . m. First, we send val-
ues urb(i - l)], . . . ,ullj(i)] to the corresponding first-
row processors of Ai for 1 2 i 5 n + 1. Notice that
our allocation of processors allows us to accomplish the
previous step via isotone routing which can be done
in O(lgm) time [LLS89]. Similarly, we send values
V[(i-l)]m/nJ+l], . . . , v [min{ i [m/n] - 1, m}] to the cor-
responding first-column processors of Ai for all a’. Next,
we have the first-row processors of Ai distribute their w
values down the columns and first-column processors of
Ai distribute their v values down the rows. This can be
accomplished with two parallel prefix operations.

Having distributed all the data appropriately, we run
a segmented parallel prefix operation with each row of
Ai forming a segment.

We must now reduce the number of processors used
from 2m to 2m/lglg m. For the CREW-PRAM, this
was accomplished using Brent’s theorem [Bre74]. For
the hypercube, we must do this directly. The basic idea
is to use the fact that p processors can compute the
maximum of m numbers, m 2 p, in O(m/p + lgm)
time. H

Theorem 3.2 The row maxima of an n x n Monge ar-
ray A = {a[i,j]} can be computed in O(lg n lg lg n) time
on an (n/ lglgn)-processor hypercube.

Proof We omit the bulk of this proof, but note one
further issue that must considered in transforming a
CREW-PRAM algorithm into a hypercube algorithm.
Specifically, we need to ensure that the size of every
subproblem we solve recursively is a power of two, so
that the subproblem can be assigned to and solved by
a complete sub-hypercube. n

Theorem 3.3 The row minima of an n x n slaircase-
Monge array A = {a[i,j]} can be computed in

O(lg n lg lg n) time on an (n/ Ig lg n)-processor hyper-
cube.

Proof Omitted. n

Theorem 3.4 The row maxima of an n x n x n Monge-
composite array C = {c[i,j, k]} can be computed in
O(lg n) time on an (n2)-processor hypercube.

Proof Omitted. n

Note that for the tube maxima problem, we do not
achieve the same processor bound obtained by Aggar-
wal and Park [APSSa] for CREW-PRAMS. Aggarwal
and Park give an O(lgn)-time, (n2)-processor CREW-
PRAM algorithm and then reduce the processor bound
to n”/ lg n without affecting the asymptotics of the time
bound. Unfortunately, the trick they use in reducing
the number of processors is not readily applied to our
hypercube algorithm, because of the problems with the
movement of data; this will be described in the final
version of this paper.

References

[AALM88]

[AK881

[AKL+89]

A. Apostolico, M. J. Atallah, L. L. Lar-
more, and 11. S. McFaddin. Efficient paral-
lel algorithms for string editing and related
problems. In Proceedings of the 26th Aller-
ton Conference on Communication, Con-
trol, and Computing, pages 253-263, Octo-
ber 1988.

A. Aggarwal and M. M. Klawe. Applications
of generalized matrix searching to geometric
algorithms. Discrete Applied Mathematics,
1988. To appear. Presented at the Work-
shop on Computational Combinatorics, Si-
mon Fraser University, August 1987.

M. J. Atallah, S. R. Kosaraju, L. L. Lar-
more, G. Miller, and S. Teng. Construct-
ing trees in parallel. In Proceedings of the
1st Annual ACM Symposium on Parallel Al-
gorithms and Architectures, pages 421-431,
June 1989.

[AKM+87] A. Aggarwal, M. M. Klawe, S. Moran,
P. Shor, and R. Wilber. Geometric applica-
tions of a matrix-searching algorithm. Algo-
rithmica, 2(2):195-208, 1987. An earlier ver-
sion of this paper appears in Proceedings of
the 2nd Annual ACM Symposium on Com-
putational Geometry, June 1986.

[APSSa] A. Aggarwal and J. Park. Parallel search-
ing in multidimensional monotone arrays.

266

[AP89b]

[AP89c]

[AP90]

[AS871

[Ata89]

[BBG+89]

[Bre74]

[EGG1901

[HofG l]

Journal of Algorithms, 1989. Submitted.
Portions of this paper appear in Proceed-
ings of the 29th Annual IEEE Symposium
on Foundations of Computer Science, pages
497-512, October 1988.

A. Aggarwal and J. Park. Sequential search-
ing in multidimensional monotone arrays.
Journal of Algorithms, 1989. Submitted.
Portions of this paper appear in Proceed-
ings of the 29th Annual IEEE Symposium
on Foundations of Computer Science, pages
497-512, October 1988.

S. Aravind and C. Pandurangan. Efficient
parallel algorithms for some rectangle prob-
lems. Unpublished manuscript. Department
of Computer Science, Indian Institute of
Technology, Madras, India, 1989.

A. Aggarwal and J. Park. Improved algo-
rithms for economic lot-size problems. Un-
published manuscript, 1990.

A. Aggarwal and S. Suri. Fast algorithms
for computing the largest empty rectangle.
In Proceedings of the 3rd Annual ACMSym-
posium on Computational Geometry, pages
278-290, June 1987.

M. J. Atallah. A faster parallel algorithm
for a matrix searching problem. Technical
report, Purdue University, 1989.

0. Berkman, D. Breslauer, Z. Galil,
B. Schieber, and U. Vishkin. Highly par-
allelizable problems. In Proceedings of the
&fst Annual ACM Symposium on Theory of
Computation, pages 309-319, 1989.

R. P. Brent. The parallel evaluation of gen-
eral arithmetic expressions. Journal of the
ACM, 2(2):201-206, 1974.

D. Eppstein, Z. Galil, R. Giancarlo, and
G. F. Italiano. Sparse dynamic program-
ming. Journal of the ACM, 1990. To appear.
An earlier version of this paper appears in
Proceedings of the 1st Annual ACM-SIAM
Symposium on Discrete Algorithms, pages
513-522, January 1990 (is this right?).

A. J. Hoffman. On simple transporta-
tion problems. In Convexity: Proceedings
of Symposia in Pure Mathematics, Vol. 7,
pages 317-327. American Mathematical So-
ciety, 1961.

267

[KK88]

[LLS89]

[LS89]

[Me1891

[Mon8 l]

W881

[WF74]

[Yao80]

M. M. Klawe and D. J. Kleitman. An almost
linear time algorithm for generalized matrix
searching. Technical Report RJ 6275, IBM
Research Division, Almaden Research Cen-
ter, August 1988.

F. T. Leighton, C. E. Leiserson, and
E. Schwabe. Theory of parallel and vlsi com-
putation: Lecture notes for 18.435/6.848.
Research Seminar Series MIT/LCS/RSS
6, Massachusetts Institute of Technology,
March 1989.

L. L. Larmore and B. Schieber. On-line
dynamic programming with applications to
the prediction of RNA secondary structure.
In Proceedings of the 1st Annual ACM Sym-
posium on Discrete Algorithms, pages 503-
512, January 1989.

R. C. Melville. An implementation tech-
nique for geometry algorithms. Unpublished
manuscript. A. T. & T. Bell Laboratories,
Murray Hill, NJ, 1989.

G. Monge. Deblai et remblai. MCmoires de
1’Academie des Sciences, 1781.

S. Ranka and S. Sahni. String editing on a
SIMD hypercube multicomputer. Computer
Science Technical Report 8829, University
of Minnesota, March 1988. Submitted to
Journal on Parallel and Distributed Com-
puting.

R. A. Wagner and M. J. Fischer. The string
to string correction problem. Journal of the
ACM, 21(1):168-173, 1974.

F. F. Yao. Efficient dynamic programming
using quadrangle inequalities. In Proceed-
ings of the 12th Annual ACM Symposium
on Theory of Computing, pages 429-435,
1980.

m
-z-

m
-7i

m

m
Ti-

Fi feasible Mange arrays

m2 m3

pi feasible staircase-Monge arrays

Figure 2.2: The regions covered by one of the mi patterns indicate the infeasible zones for minima. Many of the regions are
made forbidden by more than one mi. In other words, many entries of the array could be covered by more than one pattern;
in this case, we show arbitrarily one such pattern. Minimum rn2 is bracketed by ml.

268

