
Shortest Path in Complete Bipartite Digraph Problem and its Applications

Xin He* Zhi-Zhong Chen t

Abstract for 0 5 ir 5 iz 5 n and 0 5 jr 5 j2 5 m

We introduce the shortest path in complete bipartite
&graph (SPCB) problem: Given a weighted complete
bipartite digraph G = (X, Y, E) with X = (20,. . , ,z,}
and Y = {yc,. . . , ym}, find a shortest path from zc
to x,, in G. For arbitrary weights, the problem needs
at least st(nm) time to solve. We show if the weight
matrices are concave, the problem can be solved in
O(n + m log n) time.

As applications, we discuss the traveling salesman
problem for points on a convex polygon and the mini-
mum latency tour problem for points on a straight line.
The known algorithms for both problems require O(n2)
time. Using our SPCB algorithm, we show they can
be solved in O(n log n) time. These results solve two
open questions posed by Marcotte and Suri [lo]; and by
Afrati et. al. [l].

Concave matrices were first discussed in [12] and
have been very successfully used in solving various
problems (see [2, 3, 4, 6, 7, 8, 9, 11, 12, 131 and
the references cited within). In this paper, we show
that if both A and B are concave, the SPCB problem
can be solved in O(n + mlog n) time. (Even for this
special case, no algorithm with o(nm) running time
is previously known). In designing our algorithm, we
extend the algorithms by Wilber for solving the least
weight subsequence problem [ll] and the algorithm in
[3] for solving the column minima searching problem in
monotone matrices. The concavity of matrices plays a
crucial role in our algorithm.

1 Introduction

Let G= (X,Y,E) b e a complete bipartite digraph with
x= (xi),..., z,} and Y = (~0,. .,,ym}. Eachedge e E
E has a real-valued weight w(e). We use 2; 4 uj and
v/ + ci to denote the edges. Let A[O..n,O..m] be the
matrix with A[i, j] = w(zi + yj) and B[O..m,O..n] be
the matrix with B[i, j] = 2u(yi + zj), (In applications,
A and B are not explicitly stored. Rather, an entry is
computed in O(1) time when it is needed). The weight
of a path P in G is defined to be w(P) = Cespw(e).
The shortest path in complete bipartite digraph (SPCB)
problem is: given such a digraph G, find a path P in G
from tc to x, such that w(P) is minimized. (We require
that G contains no negative cycles, since otherwise the
shortest path of G is not well-defined.) For arbitrary
weight matrices, we need at least n(nm) time to solve
the problem since all edges of G must be examined. A
matrix M[i)..n,O..m] is called concave if the following
hold:

The setting of the SPCB problem is quite general
and it may be used to solve other problems. In
particular, we discuss two of its applications which solve
two open questions. The first one is the Z+aveling
Salesman problem (TSP) for points on an n-vertex
convex polygon Q. Given two points z and y on Q,
we want to find a Hamiltonian path P containing all
points of Q from x to y such that the total weight of
P is minimized, where the Euclidean distance is used.
This problem can be solved in O(n2) time by dynamic
programming [lo]. It was posed in [lo] as an open
question whether there exists an o(n2) algorithm for
solving the problem. We show the problem can be
reduced to the SPCB problem and solved in O(n log n)
time.

(1.1) Wl,jlI + M[i;!,j21 I M[i2,jl] + WLj2]

Tartment of Computer Science, State University of New
York at Buffalo, Buffalo, NY 14260. Research supported in part
by NSF grant CCR-9205982. e-mail:xinhe@cs.bui%lo.edu

‘Department of Mathematical Sciences, Tokyo Denki Univer-
sity, Hatoyama, Saitama 350-03, Japan.

The second application is the Minimum Latency
TOUT (MLT) problem [5]. Given a set S of n points,
a symmetric distance matrix, and a tour T which visits
the points of S, the latency of a point p is the length of
the tour from the staring point to p. The total latency
w(T) is the sum of the latencies of all points, We wish to
find a tour T such that ur(T) is minimized. This problem
is also known as delivery-man or traveling repairman
problem in the literature [5]. The MLT problem is
very different from the TSP problem in nature [5]. For
general case, it is NP-complete [5]. Even for points on
a tree or on a convex polygon, it is not known whether
the MLT problem is in P or NP-complete [5]. The case
where points are on a straight line was considered in
[l, 51. This case is interesting since it is exactly the
following disk head scheduling problem: A disk head

230

231

moves along a straight line L. The head must visit a set
of n points on L in order to satisfy disk access requests.
The time needed to travel is proportional to the distance
being traveled. Once the head reaches a point, the disk
access time can be ignored. We want to find a tour of
the head such that the average delay (or equivalently,
the total delay) of all requests is minimized. The MLT
problem for this special case can be solved in O(n2) time
by dynamic programming [l, 51. We show the problem
can be reduced to the SPCB problem and solved in
O(12 log n) time.

The present paper is organized as follows. In
section 2, we introduce definitions and background.
Our algorithm for solving the SPCB problem and its
analysis are given in sections 3 and 4. In sections 5
and 6, we present algorithms for the TSP problem for
convex polygon and the MLT problem for straight line,
respectively.

2 Definitions and Background

Given two matrices A[O..n,O..m] and B[O..m,O..n], the
product C[O..n,O..n] = A x B is defined by:

(24 C[i, j] = o<yi<nm(4i, 4 + BP, jl> - -
For 0 5 i < n and 0 5 j 5 n, let 1(i,j) denote

the smallest index k that realizes the minimum value
in (2.2) (i.e. C[i, j] = A[i, I(i, j)] + B[I(i, j), j]). The
following lemmas were proved in [12].

LEMMA 2.1. If both A and B are concave, so is C.

LEMMA 2.2. FOT any i, j (0 2 i < n, 0 5 j < n), we
have: I(i, j) 5 I(i, j + 1) 5 I(i + 1, j + 1).

Remark: The definitions of concavity and the
matrix product in [12] are slightly different from the
definitions used here. In [12], a concave matrix is an
upper triangular matrix such that the condition (1.1)
is true for ir 5 i2 I: jr 5 j,. In the matrix product
definition (2.2), the minimumis taken over i 5 k 5 j.
Under these definitions, Yao proved Lemmas 2.1 and
2.2. Under our definitions, Lemmas 2.1 and 2.2 can be
proved by using similar method.

Let (i, j) and (i’, j’) be two pairs of indices. If i 5 i’
and j 5 j’, we write (i, j) 4 (i’, j’). By Lemma 2.2,
(i, j) + (i’, j’) implies I(i, j) 5 I(i’, j’). We have the
following lemma:

LEMMA 2.3. Let (il, jl), (iz, jr), . . .,(ip, jp) be p pairs
of indices such that (il, jr) < (il+l, j,+l) for all 1 5 1 <
p. Then I(il, jl), I(&, jz), . . . , I(&, jp) can be computed
in O(m logp) tim’e.

Proof. This can be done in a binary search fashion. In
the first stage, we find Ip/2 = I(&+., jp/a) in O(m) time.
In the second stage, we find I(&, j& (by searching
k in the range 0 5 k 5 I& and 1(&/a, jsp/4) (by
searching k in the range I+ 2 k < m). This totally
needs O(m) time. In general, each stage takes O(m)
time and there are logp stages. This proves the lemma.
0

Consider a matrix M[O..n,O..m]. For each column
index 0 5 j 5 m, let i(j) be the smallest row index such
that M(i(j), j) equals the minimum value in the jth
column of M. The column minima searching problem
for M is to find the i(j)% for all 0 5 j 5 m. M is
called monotone if i(jl) 2 i(jz) for all 0 5 jr < j, 2 m.
M is totally monotone if every 2 x 2 submatrix of M is
monotone [3]. If M is concave, it is easy to check that
M is totally monotone. For a totally monotone matrix
M, the column minimasearching problem for M can be
solved in O(n + m) time, provided that each entry of
M can be evaluated in O(1) time [3]. Following [8], we
refer to the algorithm in [3] as SMAWK algorithm,

The following least weight subsequence (LWS)
problem was introduced in [8]. Given a sequence

{~OJl,..., t,,} and a real-valued weight function
w(zi,zj) defined for indices 0 5 i < j ‘5 n, find an
integer k 2 1 and a sequence S = (0 = is < ir <

< i&i < ik = n} such that the total weight
w(S) = C:=, ~u(zi,-~, zi,) is minimized. The weight
function w is concave if the following hold:

(2.3)

If w is concave, Hirschberg and Larmore showed
that the LWS problem can be solved in O(nlogn) time
[8]. Similar algorithms were also developed in [6, 71.
Wilber discovered an elegant linear time algorithm for
solving this problem [II]. All these algorithms assume
each entry w(i, j) can be computed in constant time.
From now on we only consider the concave LWS problem
and the phrase “LWS problem” always means the
concave LWS problem. We will show that an instance
of the SPCB problem defined by concave matrices A
and B can be reduced to an instance of an enhanced
version of the LWS problem. However, in the reduced
problem, the weight matrix w is the product matrix
A x B (with operators min and +). Thus an entry
w(zi, Zj) cannot be evaluated in O(1) time. So when
solving our problem, Wilber’s algorithm and its analysis
must be modified.

232

An instance of the enhanced LWS problem is
a sequence (20, 21, . . . , z,,} and a real-valued concave
weight function (satisfying inequality (1.1)) w(zi, Zj)
defined on all 0 5 i, j 5 n such that w(zi, zi) 1 0
for all 0 5 i < n. We want to find a sequence
s = (0 = io, il,. . .,ik = n}, (ic,. . ., ik are not
necessarily in increasing order), such that w(S) =

CL1 4x ilB1, xii) is minimized. In terms of graph
formulation, we are given a complete digraph G with
vertex set (20, xi, . . . , x,,} and a weight function w, we
wish to find a shortest xc to x, path in G. An edge
xi + xj is called a forward (backward) edge if i < j
(i > j).

LEMMA 2.4. For any instance of the enhanced LWS
problem, there exists a shortest xo to x,, path consisting
of only forward edges.

Proof. Let P be a shortest path from ~0 to x,, in
G such that the number of edges in P is minimum.
Since w(zj, 2i) 2 0 for all i, P contains no self loops.
Toward a contradiction, suppose P contains a backward
edge. Let zi, + Q,+~ be the first backward edge of
P. Thus il > ir+i and il > it-i. By the concavity
of w and the assumption w(ti, zi) > 0 for all zi, we
have: w(xilml, xir+l) i w(~i,-~, xi,+l) + w(G,, xii) I
4%~~1 P Xi,) + w(Xi, I Xi,+,). Thus, if the two edges
xi,-1 -+ xi, + xil+l in P are replace by a single edge
Xif-1 --$ xir+l, we get a path P’ such that w(P’) 5 w(P)
and the number of edges in P’ is one less than that in
P. This contradicts the choice of P. 0

Lemma 2.4 implies that there are no negative cycles
in any instance of the enhanced LWS problem. It also
implies we can ignore all backward edges and self-loops
when solving the enhanced LWS problem.

Consider a SPCB instance defined by a complete
bipartite digraph G = (X,Y, E) and concave weight
matrices A and B. Let G’ be the complete digraph on X
with concave weight matrix w = A x B. If w(xi, xi) >_ 0
for all 0 5 i 5 n, then G’, w define an instance of the
enhanced LWS problem.

LEMMA 2.5. Let A and B be two concave matrices
such that all main diagonal entries of the matrix w =
A x B are non-negative. If the enhanced LWS problem
defined by w can be solved in T(n,m) time, then the
SPCB problem defined by A and B can be solved in
O(T(n, m) + m log n) time.

Proof. In order to solve the SPCB problem defined by
matrices A and B, we first solve the enhanced LWS
problem defined by the matrix w = A x B. Let
P’ = (0 = is < ii < . . .ik = n} be the solution path

found. We compute ji, jz, . . . , jk, where jl = I(il-1, il).
Since (ic, ii) 4 (ii, in) 4 . . . 4 (&-I, ik), this can be
done in O(mlog n) time by Lemma 2.3. It can be shown
the path P = {XO = xi,, + yjI + xi1 + . . . + yjr -+
Xi, = 2,) is a solution for the SPCB problem. 0

We would like to use Wilber’s algorithm in [ll] to
solve our enhanced LWS problem. However, Wilber’s
algorithm is for the (ordinary) LWS problem defined by
a triangular matrix while our problem is defined by a full
matrix. Also, Wilber’s algorithm assumes w(i, j) can
be evaluated in O(1) time while an entry in w = A x B
needs O(m) time to evaluate. We address these issues
in the following sections.

3 Wilber’s Algorithm

In this subsection, we briefly describe Wilber’s algo-
rithm for solving the LWS problem. Then we show how
to use Wilber’s algorithm to solve the enhanced LWS
problem.

Consider an instance of the LWS problem with the
sequence {xc, 21,. . . , x,} and the weight matrix w. Let
f(0) = 0 and, for 1 2 j < n, let f(j) be the weight of the
lowest weight subsequence between 20 and zj. For 0 _<
i < j < n, let g(i, j) be the weight of the lowest weight
subsequence between x0 and zj whose next to the last
element is ti. (That is, the lowest weight subsequence
of the form 0 = lo < 11 < . . . < l&l = i < lk = j).
Then we have:

Adding f(;i)+f(iz) to both sides of inequality (2.3)
and apply definition (3.4), we get:

(3.5) SGlJl) +s(iz,jz) I S(~l,jZ) +g(i2,h)

for 0 5 ii 6 i2 5 jl 5 jz 5 n

We extend g to a full (n + 1) x (n + 1) matrix by
setting g(i, j) = +oo for 0 5 j 5 i _< n. It is easy to
verify that the extended matrix g is totally monotone.
Our goal is to determine the row index of the minimum
value in each column of g. So we would like to simply
apply SMAWK algorithm. But we cannot, because for
i < j, the value of g(i, j) depends on f(i) which depends
on all values of g(l,i) for 0 2 1 < i. So we cannot
compute the value of g in O(1) time as required by
SMAWK algorithm.

Wilber’s algorithm starts in the upper left corner of
g and work rightwards and downwards, at each iteration
learning enough new values for f to be able to compute

233

enough new values of g. Actually, during one step of
each iteration, the algorithm might “pretend” to know
values of f that it really does not have. At the end
of the iteration, the assumed value of f is checked for
validity.

We use f(j) and g(i, j) to refer to the correct value
of f and g. The currently computed value for f(j)
is denoted by F(j), and will sometimes be incorrect.
The currently computed value of g(i, j) is denoted by
G[i,j], and is always computed as F[i] + ur(i, j). So
G[i, j] = g(i, j) iff F(i) = f(i). The algorithm does
not explicitly store the matrices w,g, G. Rather, their
entries are calculated when needed. Let G[il, i2; ji,j,]
denote the submatrix of G consisting of the intersection
of rows ii through i2 and columns ji through j2.
G[ir, i2; j] denotes the intersection of rows ii through i2
with column j. The rows of G are indexed from 0 and
the columns are indexed from 1. Wilber’s algorithm is
as follows.

Wilber’s Algorithm:

F[O] t c t r + 0.

while (c < n) do:
1.

2.

3.

4.

5.

p+min{2c-r+l,n}.

Apply SMAWK algorithm to find the minimum in
each column of submatrix S = G[r, c; c + 1, p] . For
j E [c + 1, p], let FL] = the minimum value found
in G[r, c; j].

Apply SMAWK algorithm to find the minimum in
each column of the submatrix T = G[c+ 1, p- 1; c+
2,p]. For j E [c+ 2,p], let H[j] = the minimum
value found in G[c+ l,p- l;j].

If there is an integer j E [c + 2,p] such that
HE] < Flj], then set je to the smallest such
integer. Otherwise, set jc c p + 1.

if (j, = p + 1) then c c p; else F[jo] +- Hbo];
r cc+ 1; c c je.

Fig 1 shows the submatrices S and T during a
typical iteration. Each time we are at the beginning
of the loop, the following invariants hold:

(1) r 2 0 and c 2 r;
(2) JIA = f(j) for i E K44;
(3) All minima in columns c + 1 through n of g are

in rows 2 r;
Thees invariants are clearly satisfied at the start

when r = c = 0.
Invariant (2) implies G[i, j] = g(i, j) for all j and

i E [0, c]. So the entries of S are the same as the
corresponding entries of g. Thus S is totally monotone

r C P

Figure 1: A typical iteration of Wilber’s algorithm

and for each j E [c + 1, p], step 2 sets FE] to the
minimum value of g(r, c; j). Since S contains all finite-
valued cells in column c + 1 of g that are in rows 2 r,
F[c + I] = f(c + 1) at the end of step 2. On the other
hand, we do not necessarily have F[j] = f(j) for any
j E [c + 2, p], since g has finite-valued cells in those
columns that are in rows > r and not in S.

In step 3, we proceed as if FL] = f(j) for all
j E [c+ l,p- 11. s ince this may be false, some of the
values in T may be bogus. However, T is always totally
monotone for if we add F[ii] + F[iz] to both sides of
(2.3), we get G[h,jl] + G[G,h] I G[il,hl + G[h,hl.
Thus SMAWK algorithm works correctly and Hb] is set
to the minimum value of the subcolumn G[c+ 1, p- 1; j].

In step 4, we verify that F[j] = f(j) for j E [c+2,p]
(this is the case if Hb] 1 FL] for all j E [c + 2,p]); or
find the smallest j where this condition fails (this is the
case if Hb] < Fb] for some j E [c + 2,p]). In either
case, c and r are set accordingly at step 5 so that the
loop invariants hold.

Next we discuss how to use Wilber’s algorithm to
solve an instance of the enhanced LWS problem defined
by weight matrix w. Let L denote the portion of w
consisting of the entries on and below the main diagonal
of w. Let w’ be the matrix obtained from w by replacing
all entries in L by $00. Then w’ defines an instance
of the (ordinary) LWS problem. By Lemma 2.4, the
solution for the problem defined by w’ is identical to
the solution for the problem defined by ur. If each
entry of w can be computed in G(1) time, we can
use Wilber’s algorithm on w’ to solve the problem.
However, if the enhanced LWS problem is derived from
an instance of the SPCB problem, the entries of the
matrix w = A x B cannot be computed in G(1) time. In
this case, we cannot afford to change w to w’ since doing
so will distroy some properties of w that are crucial for
obtaining a fast algorithm. Fortunately, we have:

234

LEMMA 3.1. Wilber’s algorithm solves the enhanced
LWS problem without changing the weight matrix w.

Proof It is enough to show that the entries in L have
no effects on the computation of Wilber’s algorithm,
regardless of whether they are changed to +oo or not.
The only place where Wilber’s algorithm needs the
entries in L is step 3, where SMAWK algorithm is
applied to the submatrix T. For each j E [c + 2, p],
let FL] and Hb] be the minimum value of column j in
S and T, respectively.

There are three cases:

(4 Gl 5 W.4;
(b) F[j] > Hb] and Hb] is not in L (i.e. Hb] =

G[i, j] .for some i < j);
(c) F[j] > Hb] and H[j] is in L (i.e. Hb] = G[i,j]

for some i >_ j).
In cases (a) and (b), the values in L does not affect

the computation. In the following we show case (c)
cannot occur. Toward a contradiction, assume there
exist indices j E [c + 2,p] and i such that i >, j and
Hfj] = G[i, j] < FL].

Case 1: i = j. Then Hb] = G[j, j] = FL] +
w(j, j) 1 FL]. This is impossible.

Case 2: i > j. In this case, H[j] = G[i, j] =
F[i] + w(i, j). Recall that F[i] is the minimum value
of the subcolumn G[r, c; i]. Suppose F[i] = G[t, i] =
F[t]+w(t, i) for some T 2 t 5 c. Note that t 5 c < i and
j < i. By the concavity of w, we have: w(t, j)+w(i, i) 5
w(t, i) + w(i, j). Since w(i, i) >_ 0 for all i, we have:

W = F[i] + w(Q) = l-qt] + w(t, i) + w(i, j) 2
F[t] + w(t,j) + w(i, i) 2 F[t] + w(t,j) = G[t,j] 2 Fjj].
This contradicts the assumption that Hfi] < FL]. 0

4 Implementation and Time Analysis

In this section, we discuss how to use Wilber’s algorithm
to solve an instance of the enhanced LWS problem
derived from an instance of the SPCB problem. Namely,
the enhanced LWS problem is defined by the matrix
C = A x B where C[i, i] 1 0 for all i. During
each stage of Wilber’s algorithm (steps 2 and 3)) we
need to find column minima of submatrices S and
T. Both S and T have the form C’[r, c; q,p] where
C’[i, j] = F[i] +C[i, f for some known value F[ij. Since
C’[i, j] cannot be computed in O(1) time, we cannot
use SMAWK algorithm. Instead, we use the algorithm
given in the following lemma. (Similar methods was
used in [2]).

LEMMA 4.1. The column minima searching problem for
the submatrix C’[r, c; q,p] with T 5 q and c _< p can be
solved in O((c - r) + (p - q) + (k2 - kl)) time, where
kl = I(r, r) and kz = I(p) p).

Proof. By Lemma 2.2, for each i E [r, c] and j E [q, p],
C[i, j] = mim<k<,(A[i, Ic] + B[lc, j]) can be computed
by searching k-in the range k E [ICI, kz]. For j E [q, p],
let d(j) denote the column minimum of C’[r, c; j]. Then:

For i E [r,c] and k E [kl, k~], let A’[i, k] =
F[i] + A[i, ICI. Then A’ is totally monotone. For each
k E [kl, Icz], let J[lc] be the minimum of the subcolumn
A’[r, c; k].

Fork E [kl,kz] andj E [q,p], let B’[k,j] = B[k,j]+
J[k]. Then B’ is totally monotone. Clearly, d(j) is
the minimum of the subcolumn B’[kl, k,; j]. Thus the
column minima d(j)‘s of C’[r, c; q, p] can be found by
two applications of SMAWK algorithm, once on A’ and
once on B’. So the total time is O((c - r) + (k;~ - kl)) +
O((kz-h)+(p-q)) = O((c-r)+(p-q)+(kz-kl)).
cl

Each iteration of Wilber’s algorithm is completely
specified by three parameters: r, c,p. Let ri, ci,pi be
the values of these parameters at the beginning of the
ith iteration. ri+l, ci+l, pi+1 are calculated in step 5 as
follows:

case 1: “then” part of step 5 is executed. In
this case, ri+l = ri; ci+l = pi; and (la) p;+l =
2ci+1 -ri+l+l, if it is 2 n; or (lb) pi+1 = n, otherwise.

Case 2: “else” part is executed. In this case,

ri+i = Ci + 1, Ci+l = Jo (ci + 2 5 jo 2 pi); and (2a)
Pit1 = 2Ci+l- r+l+ 1, if it is 5 n; or (2b) pi+1 = n,
otherwise.

If the case la (or lb, 2a, 2b, resp.) applies to the
ith iteration, we call it a type la (or lb, 2a, 2b, resp.)
iteration. We call [ri,pi] the ith span; pi and pi the left
and the right end of the ith span, resp. Note that after
a type la or lb iteration, the left end of the (i + 1)st
span is not changed, the right end of the (i + 1)st span
increases. After a type 2a or 2b iteration, the left end
of the (i + 1)st span increases, the right end of (i + 1)st
span may increase or decrease. For an interval [t,t + l]
(0 5 t < n), we say a span [rj,pi] covers [t,t + 11, if
ri 5 t and t + 1 5 pi. Since the left, end of spans never
decreases, the spans “move’, from left to right. Once
the left end of a span is 2 t + 1, [t, t + l] will never be
covered by subsequent spans. We make the following
observations.

(1) If a type la or lb iteration follows a type lb or
2b iteration, the algorithm terminates immediately.

(2) If the ith iteration is of type la, then: pi+1 -
r;+l = (2ci+.l-r+l+l)-ri.+l = 2(pi-ri)+l. Namely,

235

the length of the (i + 1)st span is 1 + twice the length
of the ith span.

(3) Suppose the ith iteration is of type 2a or 2b.
Since pi < 2ci - ri + 1, we have ci 2 (pi + ri - 1)/2.
Hence: pi+1 = ci + 1 2 (pi + ri - 1)/2 + 1.

(4) Suppose an interval [t,t + l] is covered by the
ith span [ri,pi]. If the ith iteration is of type la or
lb, and the (i + 1)st iteration is of type 2a or 2b, then

ri+2 =ci+l+l=pi+l>t+l. Hence[t,t+l]isnot
covered by [ri+z,pi+z] and subsequent spans.

LEMMA 4.2. Any interval [t,t + l] (0 2 t < n) is
covered by al most 2 log n + 2 spans.

Proof. Let [ril, pill, ha, pi,], - . . , [~;,,piJ be all spans
covering [t, t + 11, where il < i2 < . . . < ik. Thus,
ril 2 t and t + 1 5 pi, for all 1 5 1 5 k. Let 1 be the
first index such that the ilth iteration is of type la or
type lb. (If no such 1 exists, let 1 = k). We first show
k-l slogn+2.

Case 1: The ilth iteration is of type lb. If the
(ii +l)st iteration is of type la or lb, then the algorithm
terminates by observation (1). If the (i, + 1)st iteration
is of type 2a or 2b, then by observation (4), [t, t + l] is
not coverted by [ril+2,pi,+2] and all subsequent spans.

Case 2: The i,th iteration is of type la. Let s be the
largest integer such that the iterations il , il+ 1, . . . , il +s
are all of type la. Clearly, [t , t + l] is covered by all spans

[%+1, Pi,+11 9 * * * > [ri,+s,pi,+s]. By observation (a), each
type la iteration doubles the length of the span. Since
the length of any span is at most n, we have s 5 logn.
The (il + s + 1)st iteration is of either type lb or 2a or
2b. If it is of type 2a or 2b, then by the observation
(4), [t,t + l] is not covered by the (il + s + 2)nd and
all subsequent spans. If the (if + s + 1)st iteration is
of type lb, then similar to case 1, the algorithm either
terminates at the (il + s + 2)nd iteration; or [t, t + l]
is not covered by the (i, + s + 2)nd and all subsequent
spans.

In either case, the number of spans following the
irth iteration that cover [t, t + l] is at most logn+ 2. So
k - 12 log n + 2. Next we show 1 5 log n and this will
complete the proof of the lemma.

For each 1 5 h < I, the ihth iteration is of type 2a or
2b. Fix an index h. For each j 2 ih, let Lj = (t+l)-rj.
By the fact that t+l < pi, and observation (3), we have:

L if&+1 = (t + 1) - rih+l 5 (t + 1) - ((pih + rib -

I)/2 + 1) = (2t -pi, - rib + I)/2 2 (t - rih)/2 < Li,/2.
Since the left end of the spans never decreases, this

implies that Lih+l 5 Lib+1 < Lib/2. This is true for
all 1 5 h < 1. Hence Li, < Li,/2’. If I > logn, then
Li, becomes 0 and the interval [t, t + l] is not ,covered
by [ri, ,pi,] and subsequent spans. So we must have
1 5 log n. This proves the lemma. 0

THEOREM 4.1. Given two concave matrices A, B such
that the main diagonal entries of the matrix C = A x B
are non-negative, the SPCB problem defined by A and
B can be solved in O(n + mlogn) time.

Proof. Given an instance of the SPCB problem de-
fined by matrices A and B, we first compute
qo, O), w, l), - * -I I(n,n). This takes O(mlogn) time
by Lemma 2.3. Then we use Wilber’s algorithm to
solve the enhanced LWS problem defined by the matrix
C = A x B. But instead of using SMAWK algorithm,
we use the subroutine in Lemma 4.1 for finding column
minima in S and T. If we can show the time needed
by these subroutine calls is O(n + m log n), the theorem
will follow from Lemma 2.5.

Consider the ith iteration. We need to find the
column minima of Sj = G[ri,c(;ci + l,pJ and T; =
G[ci+l,pi-l;ci+2,pi]. Let ICI = I(ri,ri), k2 = I(pi,pi)
and ks = I(Ci + 1,Ci + 1). Since ri < Ci + 1 5 pi,
we have: kl 5 k3 5 Ic2 by Lemma 2.2. By Lemma
4.1, the searching of Si needs O((ci - ri) + (pi - ci -
1) + (Ic2 - ICI)) = O((pi - ri) + (k2 - ICI)) time. The
searching time of T; is O((pi - 1 - ci - 1) + (pi - ci -
2) + (k2 - k3)) = O((pi - ri) + (kg - ICI)). Thus the
total time needed to search Si and Ti in all iterations
is CE, O((p; - Q) + (I(pi,pi) - I(ri, pi))), where K is
the total number of iterations. Since Wilber’s algorithm
takes O(n) time, the term CL, O(pi - ri) is bounded
by O(n). On the other hand,

K pi-1

t + 1, t + 1) - I(& t)) =
i=l t=ti

c (I@ + 1,i + 1) - I(V)) t,i where [t,t+l]E[ri,pi]

By Lemma 4.2, each interval [t, t + l] is covered by at
most 2 log n + 2 s
by:

P
ans. Thus the above sum is bounded

O(lognC:z., (I(t +l,t+l)-l(t,t))) = O(mlogn)
as to be shown. 0

5 TSP Problems for Points on a Convex
Polygon

Let Q be a convex polygon. For any two points 2, y E Q,
let d(z, y) be the Euclidean distance between t and y.
Let P be a path connecting points on Q. Given two
points 2, y of Q, we wish to find a Hamiltonian path P
of Q from 2 toy such that the weight u(P) = CeEP d(e)
is minimized. By a geometric argument, one can show
the optimal path P is simple (i.e. no two edges of P
cross each other).

236

Let Qx = {Z = 20, ~1,. . . , Z, = y} be the points
of Q from z to y in clockwise order. Let Qy = {Z =
YO,Yl,...,Ym = y} be the points of Q from z to y in

counterclockwise order. Let 2i 3 zj denote the portion

of Qx from xi to X) and yi 5 yj denote the portion of
&y from Yi t0 Yj.

Let P be an optimal Hamiltonian path from xc = yc
tox, = ym. We assume both the first and the last edge
of P are in Qy . Then P must be of the following form.
(See Fig 2. For clarity, the points in &x and Qy are
drawn on two vertical lines).

n m

edges in P

dummy edges in P

io=O 0

Figure 2: Optimal path in a convex polygon

= 20 = yo -2 y. X Y
Xi0 11 + 21 + zil + Yjjl+l + Yj, +

x x Y
Xil+l -i * a * --+ Zi, = X,-l --i Yjljr+l + Ym = Xn

for some 0 < ji < . . . c j, < m - 1 and 0 = ie < ii <
. . . n - 1. We use the following dummy path
PI =‘;;, z * - 20 + jl + il + j, -k iz + . . . --t j,-l +
it-1 + jt + it = n - 1) to represent P. Each edge
ir-1 + jl and jl --f il in P’ is called a dummy edge. P
is completely specified by P’.

For each dummy edge il-1 -+ j, in PI, the edge
zil,l + Zil-l+i is not in P, while the edge yjl + xi,-l+l
is in P. For each dummy edge j, + i, in P’, the edge
yjl -+ yj,+i is not in P, while the edge xi1 + yj,+l is in
P. This motivates the following definition of the weighs
of dummy edges:

Af+i, Yj] = W(Xi --) Yj) = d(Xi+l, Yj) - d(Xi, Xi+l);

B[Yj P xil = W(Yj -+ Xi) = d(Yj+l, Xi) - d(Yj, Yj+l).
Note that A[zo, yc] = B[yc,zs] = 0. Let SX =

Cyii’ d(zi-1, xi) and Sy = CT=“=, d(yj-1, yj). One can
verify that the total weight of P is:

(5.6) = Sx + SV +

t
Cr Ax
I=1 I=1

Although the above discussion is carried out by
assuming the first and the last edges of P are in Qy ,
it also applies to other cases. (If the first edge of P is
in Qx, let ji = 0. If the last edge of P is in Qx, let
jt=m- 1). It is easy to verify equation (5.6) is valid
for these cases too. Since the term SX + Sy in (5.6)
is fixed, in order to minimize w(P), we only need to
minimize the reduced weight:

dP’> = C:=l A[xit-l, Yjtl + C:=l B[yja 9 till-
Let G = (X, Y, E) be the complete bipartite digraph

with X = {x0,x1,..., x,-d, Y = (~0,. . .,Y,+I) and
the weight matrices A and B. Then a dummy path
P’ with minimum reduced weight w(P’) is exactly a
shortest path in G from xe to x,+i. For 0 < i < i’ 5
n-landO< j< j’<m-1,bythedefiztionofA
and the fact that Q is a convex polygon, we have:

A[i, j] + A[?, j’] - A[i, j’] - A[?, j] = d(xi+l, yj) +

d(Xil+l f Yjl) - d(Xi+l, Yj’) - d(G)+1 t Yj) I 0
Thus A is concave. Similarly, we can show B is also

concave. Let C = A x B. Then:

C[i, i] = o<~~-l[d(Xi+l, Yj) - d(Xi,Xi+l) +
--

4Yj+l I Xi) - 4Yj 2 Yj+l)l

By the triangle inequality, each term in min sign is > 0.
So C[;, i] 1 0 for all i. By Theorem 4.1, we have:

THEOREM 5.1. The TSP problem for an N-point con-
vex polygon can be solved in O(N log N) time.

6 Minimum Latency Problem for Points on a
Straight Line

Consider a set S of n + 1 points, a symmetric distance
matrix d[O..n, O..n], and a tour T which visits the points
of S in the order pe,pi, . . . ,p,, starting at ps. Let
d(pi-1, pi) be the distance traveled along T between
pi,1 and pi- Then the latency of pi on T is w(pi) =
Ci,, d(Pj-l,Pj). The total latency W(T) of T is the
sum of the latencies of all points: w(T) = CyCI I&).
Or, equivalently:

(6.7) w(T) = &(PM,P~(~ - k + 1)
k=l

We wish to find a tour T with minimum w(T). In
this section, we show that the MLT problem for points
on a straight line can be reduced to the SPCB problem.
LetS={z, ,... xr,xc=ye=O,yi ,..., y,}beasetof
noints on the real line from left to right. We overload zi

237

(and yi) to denote both a point and the distance from Similarly, the contribution of RI to w(T) is:
it to the origin. The tour starts at the point 0. Define:

- Zk-1)(n - Ic + 1)
kc1

w(TY) = f&k - !/k-l)@ - k + 1)
k=l

w(Tx) is the total latency of the tour TX that starts
at 20 = 0 and travels the points 21, ~2,. . . , zn. ur(Ty)
is the total latency of the tour Ty that starts at ~0 = 0
and travels the points yl, ~2,. . . , ym.

Consider an optimal tour T for S. We assume the
first edge is to the right and the last edge is to the left.
Then T must be of the following form (see Fig 3):

II %

i kJ

: R,
:
: L2 :

: 1’
R, * :

: * :

X i;n i, i, 0 1,

Figure 3: Optimal tour for points on a straight line

~;=jlml+l(xk - XL-l)@ - /iZ + 1)

Summing up and simplifying, we have:

w(T) = & w(k) + C;=, I
= C:=I c3;,flml+l(Yk - Yk-l)(m - h + I)+

CL1 Yj,-1 [(n + m - h-1 -i-l) - (n - h-i)]+

CL Yh Kn - LI) + (n + m - ir-1 - jr)]+
Cj=l Gl-1 [(n + m - G-1 - jr-~)+
(n+m-if-1 - A) - (m - $)I + Cf=, xi, [m - $1

= w(Tx) + w(Ty)+

CL,’ Yii Lrn - jr] + & J/jr [2n + m - 2ir-1 - jl]+
Cfzi Xi, [2n + m - 2h - jr] + Ci=, 2i, [m - jr]

= w(Tx) + I + cf=, Yj, [2n + 2m - 26-l - 2j1]

+ CL0 xi, [2n + 2m - 2il - 2jl]

(The following facts are used in the last step: m-j, = 0;

A A A A Yh = 0; 2n + m - 2it - j, = 0; and q, = 0. In the
Xi0 = Yjo = X0 = YO + Yjl + Xi1 4 Yj2 + Xi2 e. e first summation of the last equation, the value of i-1

A A A
-+ xi*-1 + Yj/jr = z/m *Xi, = Xn

is irrelevant and we may define i-1 = -1). Define the
reduced weight of T’ to be:

for some 0 = jo < jl < , . . j,-l < jt = m and

o= 2.0 < il < . . . it-1 < it = n. (zi 3 yj denotes a
path from xi to yj consisting of several edges). We use
the following dummy iow T’ = (0 = i. -+ j, + il +

w(T’) = 2 yj, [n + m - ir-1 - ji] +
I=0

. . . 4 it-1 + j, = m --+ it = n} to represent T. For t
each 1 5 1 5 t, let Lr denote the subpath zilwl 3 yj,. CXi,[n+m-4 -51

Let RI denote the subpath yj, 5 zi,. The contribution I=0

of LJ to w(T) can be calculated as follows. Then we have:

W(b) = (Yj,,, + xilel)(n + m - Li -jr-l)+

C2=jjrel+l(Yk - yk-l)(n d- m - h-1 - k •k 1)
xi,-,)(n + m - 4-l - jr-l)+

+=j,-,+l(Yk - Yk-l>(n - il-l)+

%j,-,+l(vk - Yk-l)(m - k + 1)

(6.8) w(T) = w(Tx) + w(Ty) + 2w(T’)

Although the above discussion is carried out, by
assuming the first, edge of T is to the right and the last
edge is to the left, it also applies to other cases. (If the
first edge is to the left,, let j, = 0. If the last, edge is t,o
the right, let it-1 = 7~ and delete the subpath Rt from
T). It can be verified that (6.8) is valid for those cases

238

too. Since the term w(Tx) + w(T’) is fixed, in order to
minimize w(T), we need to minimize w(T’).

Let G = (X, Y, E) be the complete bipartite di-

graph with X = {~o,~I,...,G), Y = {YO,Y~,.-.,Y~)
and the weight matrices A[O..n, O..m] and B[O..m, O..n]
defined as follows:

A[& j] = w(q +3/i)=yi(n+m-i-j);and

Bb, i] = W(yj + Xi) = Zi(7l + m - i - j)

Note that A[O,O] = B[O,O] = 0. It is easy to check
that a dummy tour T’ with minimum reduced weight
w(T’) is exactly a shortest path in G from 20 to sn.
For 0 s i < i’ < n and 0 5 j < j’ 2 m, we have:
(A[i,j]+A[i’,j’])-(A[i,j’]+A[i’,j]) = (i’-i)(yj-yj’) <
0. Thus A is concave. Similarly, we can show B is also
concave. Since all entries of A and B are non-negative,

all entries of C = A x B are non-negative. Thus, by
Theorem 4.1, we have:

THEOREM 6.1, The MLT problem for N points on
straight line can be solved in O(N log N) time.

Open Problems: The setting of the SPCB prob-
lem is quite general. It is intersting to find other appli-
cations of the SPCB problem. In particular, we tried to
use this technique to solve the MLT problem for points
on a convex polygon. In the two applications discussed
in this paper, the optimal paths are simple (i.e. no two
edges of the path cross). Unfortunately, the optimal
tour in the MLT problem for points on a convex polygon
does not have this crucial property. It will be interest-
ing to find a polynomial time algorithm for solving the
MLT problem for this case.

References

[l] F. Afrati, S. Cosmadakis, C. Papadimitriou, G. Papa-
georgiou, and N. Papkostantinou, The Complexity of
the Traveling Repairman Problem, Informatique Theo-
rique et Applications (Theoretical Informatics and Ap-
plications) 20(l), 1986, pp. 79-87.

[2] A. Aggarwal and J. Park, Notes on Searching in Mul-
tidimensional Monotone Arrays, in Proc. 29th IEEE
FOCS, 1988, pp. 497-512.

[3] A. AggarwaI, M. M. Klawe, S. Moran, P. Shor and R.
WiIber, Geometric Applications of a Matrix Searching
Algorithm, Algorithmica 2, 1987, pp. 195-208.

[4] M. J. Atallah, S. R. Kosaraju, L. L. Larmore, G. L.
MiIIer, and S-H Teng, Constructing Trees in Parallel,
in Proc. ACM SPAA, 1989, pp, 421-431.

[5] A. Blum, P. ChaIasani, D. Coppersmith, B. PuIIey-
blank, P. Raghavan and M. Sudan, The Minimum La-
tency Problem, in Proc. 26th ACM STOC, 1994, pp.
163-171.

[S] D. Eppstein, Sequence Comparison with Mixed Convex
and Concave Costs, J. of Algorithms 11, 1990, pp. 85-
101.

[7] Z. GaIiI and R. G iancarlo, Speeding-up Dynamic Pro-
gramming with Applications to Molecular Biology,
Theoretical Computer Science 64, 1989, pp. 107-118.

[8] D. S. Hirschberg and L. L. Larmore, The Least Weight
Subsequence Problem, SIAM J. Comput. 16(4), 1987,
pp. 628-638.

[9] M. M. Klawe and D. J. Kleitman, An Almost Linear
Time Algorithm for Generalized Matrix Searching,
SIAM J. Disc. Math. 3(l), 1990, pp. 81-97.

[lo] 0. Marcotte and S. Sud, Fast Matching Algorithms for
Points on a Polygon, SIAM J. Comput. 20(3), 1991, pp.
405-422.

[ll] R. Wiiber, The Concave Least-Weight Subsequence
Problem Revisited, J. of Algorithms 9, 1988, pp. 418-
425.

[12] F. F. Yao, Efficient Dynamic Programming Using
Quadrangle Inequalities, in Proc, 12th ACM STOC,
1980, pp. 429-435.

[13] F. F. Yao, Speed-up in Dynamic Programming, SIAM
J. Alg. Meth. 3(4), 1982, pp. 532-540.

