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Abstract for 0 5 ir 5 iz 5 n and 0 5 jr 5 j2 5 m 

We introduce the shortest path in complete bipartite 
&graph (SPCB) problem: Given a weighted complete 
bipartite digraph G = (X, Y, E) with X = (20,. . , ,z,} 
and Y = {yc,. . . , ym}, find a shortest path from zc 
to x,, in G. For arbitrary weights, the problem needs 
at least st(nm) time to solve. We show if the weight 
matrices are concave, the problem can be solved in 
O(n + m log n) time. 

As applications, we discuss the traveling salesman 
problem for points on a convex polygon and the mini- 
mum latency tour problem for points on a straight line. 
The known algorithms for both problems require O(n2) 
time. Using our SPCB algorithm, we show they can 
be solved in O(n log n) time. These results solve two 
open questions posed by Marcotte and Suri [lo]; and by 
Afrati et. al. [l]. 

Concave matrices were first discussed in [12] and 
have been very successfully used in solving various 
problems (see [2, 3, 4, 6, 7, 8, 9, 11, 12, 131 and 
the references cited within). In this paper, we show 
that if both A and B are concave, the SPCB problem 
can be solved in O(n + mlog n) time. (Even for this 
special case, no algorithm with o(nm) running time 
is previously known). In designing our algorithm, we 
extend the algorithms by Wilber for solving the least 
weight subsequence problem [ll] and the algorithm in 
[3] for solving the column minima searching problem in 
monotone matrices. The concavity of matrices plays a 
crucial role in our algorithm. 

1 Introduction 

Let G= (X,Y,E) b e a complete bipartite digraph with 
x= (xi),..., z,} and Y = (~0,. .,,ym}. Eachedge e E 
E has a real-valued weight w(e). We use 2; 4 uj and 
v/ + ci to denote the edges. Let A[O..n,O..m] be the 
matrix with A[i, j] = w(zi + yj) and B[O..m,O..n] be 
the matrix with B[i, j] = 2u(yi + zj), (In applications, 
A and B are not explicitly stored. Rather, an entry is 
computed in O(1) time when it is needed). The weight 
of a path P in G is defined to be w(P) = Cespw(e). 
The shortest path in complete bipartite digraph (SPCB) 
problem is: given such a digraph G, find a path P in G 
from tc to x, such that w(P) is minimized. (We require 
that G contains no negative cycles, since otherwise the 
shortest path of G is not well-defined.) For arbitrary 
weight matrices, we need at least n(nm) time to solve 
the problem since all edges of G must be examined. A 
matrix M[i)..n,O..m] is called concave if the following 
hold: 

The setting of the SPCB problem is quite general 
and it may be used to solve other problems. In 
particular, we discuss two of its applications which solve 
two open questions. The first one is the Z+aveling 
Salesman problem (TSP) for points on an n-vertex 
convex polygon Q. Given two points z and y on Q, 
we want to find a Hamiltonian path P containing all 
points of Q from x to y such that the total weight of 
P is minimized, where the Euclidean distance is used. 
This problem can be solved in O(n2) time by dynamic 
programming [lo]. It was posed in [lo] as an open 
question whether there exists an o(n2) algorithm for 
solving the problem. We show the problem can be 
reduced to the SPCB problem and solved in O(n log n) 
time. 

(1.1) Wl,jlI + M[i;!,j21 I M[i2,jl] + WLj2] 
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The second application is the Minimum Latency 
TOUT (MLT) problem [5]. Given a set S of n points, 
a symmetric distance matrix, and a tour T which visits 
the points of S, the latency of a point p is the length of 
the tour from the staring point to p. The total latency 
w(T) is the sum of the latencies of all points, We wish to 
find a tour T such that ur(T) is minimized. This problem 
is also known as delivery-man or traveling repairman 
problem in the literature [5]. The MLT problem is 
very different from the TSP problem in nature [5]. For 
general case, it is NP-complete [5]. Even for points on 
a tree or on a convex polygon, it is not known whether 
the MLT problem is in P or NP-complete [5]. The case 
where points are on a straight line was considered in 
[l, 51. This case is interesting since it is exactly the 
following disk head scheduling problem: A disk head 
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moves along a straight line L. The head must visit a set 
of n points on L in order to satisfy disk access requests. 
The time needed to travel is proportional to the distance 
being traveled. Once the head reaches a point, the disk 
access time can be ignored. We want to find a tour of 
the head such that the average delay (or equivalently, 
the total delay) of all requests is minimized. The MLT 
problem for this special case can be solved in O(n2) time 
by dynamic programming [l, 51. We show the problem 
can be reduced to the SPCB problem and solved in 
O( 12 log n) time. 

The present paper is organized as follows. In 
section 2, we introduce definitions and background. 
Our algorithm for solving the SPCB problem and its 
analysis are given in sections 3 and 4. In sections 5 
and 6, we present algorithms for the TSP problem for 
convex polygon and the MLT problem for straight line, 
respectively. 

2 Definitions and Background 

Given two matrices A[O..n,O..m] and B[O..m,O..n], the 
product C[O..n,O..n] = A x B is defined by: 

(24 C[i, j] = o<yi<nm(4i, 4 + BP, jl> - - 
For 0 5 i < n and 0 5 j 5 n, let 1(i,j) denote 

the smallest index k that realizes the minimum value 
in (2.2) (i.e. C[i, j] = A[i, I(i, j)] + B[I(i, j), j]). The 
following lemmas were proved in [12]. 

LEMMA 2.1. If both A and B are concave, so is C. 

LEMMA 2.2. FOT any i, j (0 2 i < n, 0 5 j < n), we 
have: I(i, j) 5 I(i, j + 1) 5 I(i + 1, j + 1). 

Remark: The definitions of concavity and the 
matrix product in [12] are slightly different from the 
definitions used here. In [12], a concave matrix is an 
upper triangular matrix such that the condition (1.1) 
is true for ir 5 i2 I: jr 5 j,. In the matrix product 
definition (2.2), the minimumis taken over i 5 k 5 j. 
Under these definitions, Yao proved Lemmas 2.1 and 
2.2. Under our definitions, Lemmas 2.1 and 2.2 can be 
proved by using similar method. 

Let (i, j) and (i’, j’) be two pairs of indices. If i 5 i’ 
and j 5 j’, we write (i, j) 4 (i’, j’). By Lemma 2.2, 
(i, j) + (i’, j’) implies I(i, j) 5 I(i’, j’). We have the 
following lemma: 

LEMMA 2.3. Let (il, jl), (iz, jr), . . .,(ip, jp) be p pairs 
of indices such that (il, jr) < (il+l, j,+l) for all 1 5 1 < 
p. Then I(il, jl), I(&, jz), . . . , I(&, jp) can be computed 
in O(m logp) tim’e. 

Proof. This can be done in a binary search fashion. In 
the first stage, we find Ip/2 = I(&+., jp/a) in O(m) time. 
In the second stage, we find I(&, j& (by searching 
k in the range 0 5 k 5 I& and 1(&/a, jsp/4) (by 
searching k in the range I+ 2 k < m). This totally 
needs O(m) time. In general, each stage takes O(m) 
time and there are logp stages. This proves the lemma. 
0 

Consider a matrix M[O..n,O..m]. For each column 
index 0 5 j 5 m, let i(j) be the smallest row index such 
that M(i(j), j) equals the minimum value in the jth 
column of M. The column minima searching problem 
for M is to find the i(j)% for all 0 5 j 5 m. M is 
called monotone if i(jl) 2 i(jz) for all 0 5 jr < j, 2 m. 
M is totally monotone if every 2 x 2 submatrix of M is 
monotone [3]. If M is concave, it is easy to check that 
M is totally monotone. For a totally monotone matrix 
M, the column minimasearching problem for M can be 
solved in O(n + m) time, provided that each entry of 
M can be evaluated in O(1) time [3]. Following [8], we 
refer to the algorithm in [3] as SMAWK algorithm, 

The following least weight subsequence (LWS) 
problem was introduced in [8]. Given a sequence 

{~OJl,..., t,,} and a real-valued weight function 
w(zi,zj) defined for indices 0 5 i < j ‘5 n, find an 
integer k 2 1 and a sequence S = (0 = is < ir < 

< i&i < ik = n} such that the total weight 
w(S) = C:=, ~u(zi,-~, zi,) is minimized. The weight 
function w is concave if the following hold: 

(2.3) 

If w is concave, Hirschberg and Larmore showed 
that the LWS problem can be solved in O(nlogn) time 
[8]. Similar algorithms were also developed in [6, 71. 
Wilber discovered an elegant linear time algorithm for 
solving this problem [II]. All these algorithms assume 
each entry w(i, j) can be computed in constant time. 
From now on we only consider the concave LWS problem 
and the phrase “LWS problem” always means the 
concave LWS problem. We will show that an instance 
of the SPCB problem defined by concave matrices A 
and B can be reduced to an instance of an enhanced 
version of the LWS problem. However, in the reduced 
problem, the weight matrix w is the product matrix 
A x B (with operators min and +). Thus an entry 
w(zi, Zj) cannot be evaluated in O(1) time. So when 
solving our problem, Wilber’s algorithm and its analysis 
must be modified. 
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An instance of the enhanced LWS problem is 
a sequence (20, 21, . . . , z,,} and a real-valued concave 
weight function (satisfying inequality (1.1)) w(zi, Zj) 
defined on all 0 5 i, j 5 n such that w(zi, zi) 1 0 
for all 0 5 i < n. We want to find a sequence 
s = (0 = io, il,. . .,ik = n}, (ic,. . ., ik are not 
necessarily in increasing order), such that w(S) = 

CL1 4x ilB1, xii) is minimized. In terms of graph 
formulation, we are given a complete digraph G with 
vertex set (20, xi, . . . , x,,} and a weight function w, we 
wish to find a shortest xc to x, path in G. An edge 
xi + xj is called a forward (backward) edge if i < j 
(i > j). 

LEMMA 2.4. For any instance of the enhanced LWS 
problem, there exists a shortest xo to x,, path consisting 
of only forward edges. 

Proof. Let P be a shortest path from ~0 to x,, in 
G such that the number of edges in P is minimum. 
Since w(zj, 2i) 2 0 for all i, P contains no self loops. 
Toward a contradiction, suppose P contains a backward 
edge. Let zi, + Q,+~ be the first backward edge of 
P. Thus il > ir+i and il > it-i. By the concavity 
of w and the assumption w(ti, zi) > 0 for all zi, we 
have: w(xilml, xir+l) i w(~i,-~, xi,+l) + w(G,, xii) I 
4%~~1 P Xi,) + w(Xi, I Xi,+, ). Thus, if the two edges 
xi,-1 -+ xi, + xil+l in P are replace by a single edge 
Xif-1 --$ xir+l, we get a path P’ such that w(P’) 5 w(P) 
and the number of edges in P’ is one less than that in 
P. This contradicts the choice of P. 0 

Lemma 2.4 implies that there are no negative cycles 
in any instance of the enhanced LWS problem. It also 
implies we can ignore all backward edges and self-loops 
when solving the enhanced LWS problem. 

Consider a SPCB instance defined by a complete 
bipartite digraph G = (X,Y, E) and concave weight 
matrices A and B. Let G’ be the complete digraph on X 
with concave weight matrix w = A x B. If w(xi, xi) >_ 0 
for all 0 5 i 5 n, then G’, w define an instance of the 
enhanced LWS problem. 

LEMMA 2.5. Let A and B be two concave matrices 
such that all main diagonal entries of the matrix w = 
A x B are non-negative. If the enhanced LWS problem 
defined by w can be solved in T(n,m) time, then the 
SPCB problem defined by A and B can be solved in 
O(T(n, m) + m log n) time. 

Proof. In order to solve the SPCB problem defined by 
matrices A and B, we first solve the enhanced LWS 
problem defined by the matrix w = A x B. Let 
P’ = (0 = is < ii < . . .ik = n} be the solution path 

found. We compute ji, jz, . . . , jk, where jl = I(il-1, il). 
Since (ic, ii) 4 (ii, in) 4 . . . 4 (&-I, ik), this can be 
done in O(mlog n) time by Lemma 2.3. It can be shown 
the path P = {XO = xi,, + yjI + xi1 + . . . + yjr -+ 
Xi, = 2,) is a solution for the SPCB problem. 0 

We would like to use Wilber’s algorithm in [ll] to 
solve our enhanced LWS problem. However, Wilber’s 
algorithm is for the (ordinary) LWS problem defined by 
a triangular matrix while our problem is defined by a full 
matrix. Also, Wilber’s algorithm assumes w(i, j) can 
be evaluated in O(1) time while an entry in w = A x B 
needs O(m) time to evaluate. We address these issues 
in the following sections. 

3 Wilber’s Algorithm 

In this subsection, we briefly describe Wilber’s algo- 
rithm for solving the LWS problem. Then we show how 
to use Wilber’s algorithm to solve the enhanced LWS 
problem. 

Consider an instance of the LWS problem with the 
sequence {xc, 21,. . . , x,} and the weight matrix w. Let 
f(0) = 0 and, for 1 2 j < n, let f(j) be the weight of the 
lowest weight subsequence between 20 and zj. For 0 _< 
i < j < n, let g(i, j) be the weight of the lowest weight 
subsequence between x0 and zj whose next to the last 
element is ti. (That is, the lowest weight subsequence 
of the form 0 = lo < 11 < . . . < l&l = i < lk = j). 
Then we have: 

Adding f(;i)+f(iz) to both sides of inequality (2.3) 
and apply definition (3.4), we get: 

(3.5) SGlJl) +s(iz,jz) I S(~l,jZ) +g(i2,h) 

for 0 5 ii 6 i2 5 jl 5 jz 5 n 

We extend g to a full (n + 1) x (n + 1) matrix by 
setting g(i, j) = +oo for 0 5 j 5 i _< n. It is easy to 
verify that the extended matrix g is totally monotone. 
Our goal is to determine the row index of the minimum 
value in each column of g. So we would like to simply 
apply SMAWK algorithm. But we cannot, because for 
i < j, the value of g(i, j) depends on f(i) which depends 
on all values of g(l,i) for 0 2 1 < i. So we cannot 
compute the value of g in O(1) time as required by 
SMAWK algorithm. 

Wilber’s algorithm starts in the upper left corner of 
g and work rightwards and downwards, at each iteration 
learning enough new values for f to be able to compute 
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enough new values of g. Actually, during one step of 
each iteration, the algorithm might “pretend” to know 
values of f that it really does not have. At the end 
of the iteration, the assumed value of f is checked for 
validity. 

We use f(j) and g(i, j) to refer to the correct value 
of f and g. The currently computed value for f(j) 
is denoted by F(j), and will sometimes be incorrect. 
The currently computed value of g(i, j) is denoted by 
G[i,j], and is always computed as F[i] + ur(i, j). So 
G[i, j] = g(i, j) iff F(i) = f(i). The algorithm does 
not explicitly store the matrices w,g, G. Rather, their 
entries are calculated when needed. Let G[il, i2; ji,j,] 
denote the submatrix of G consisting of the intersection 
of rows ii through i2 and columns ji through j2. 
G[ir, i2; j] denotes the intersection of rows ii through i2 
with column j. The rows of G are indexed from 0 and 
the columns are indexed from 1. Wilber’s algorithm is 
as follows. 

Wilber’s Algorithm: 

F[O] t c t r + 0. 

while (c < n) do: 
1. 

2. 

3. 

4. 

5. 

p+min{2c-r+l,n}. 

Apply SMAWK algorithm to find the minimum in 
each column of submatrix S = G[r, c; c + 1, p] . For 
j E [c + 1, p], let FL] = the minimum value found 
in G[r, c; j]. 

Apply SMAWK algorithm to find the minimum in 
each column of the submatrix T = G[c+ 1, p- 1; c+ 
2,p]. For j E [c+ 2,p], let H[j] = the minimum 
value found in G[c+ l,p- l;j]. 

If there is an integer j E [c + 2,p] such that 
HE] < Flj], then set je to the smallest such 
integer. Otherwise, set jc c p + 1. 

if (j, = p + 1) then c c p; else F[jo] +- Hbo]; 
r cc+ 1; c c je. 

Fig 1 shows the submatrices S and T during a 
typical iteration. Each time we are at the beginning 
of the loop, the following invariants hold: 

(1) r 2 0 and c 2 r; 
(2) JIA = f(j) for i E K44; 
(3) All minima in columns c + 1 through n of g are 

in rows 2 r; 
Thees invariants are clearly satisfied at the start 

when r = c = 0. 
Invariant (2) implies G[i, j] = g(i, j) for all j and 

i E [0, c]. So the entries of S are the same as the 
corresponding entries of g. Thus S is totally monotone 

r C P 

Figure 1: A typical iteration of Wilber’s algorithm 

and for each j E [c + 1, p], step 2 sets FE] to the 
minimum value of g(r, c; j). Since S contains all finite- 
valued cells in column c + 1 of g that are in rows 2 r, 
F[c + I] = f(c + 1) at the end of step 2. On the other 
hand, we do not necessarily have F[j] = f(j) for any 
j E [c + 2, p], since g has finite-valued cells in those 
columns that are in rows > r and not in S. 

In step 3, we proceed as if FL] = f(j) for all 
j E [c+ l,p- 11. s ince this may be false, some of the 
values in T may be bogus. However, T is always totally 
monotone for if we add F[ii] + F[iz] to both sides of 
(2.3), we get G[h,jl] + G[G,h] I G[il,hl + G[h,hl. 
Thus SMAWK algorithm works correctly and Hb] is set 
to the minimum value of the subcolumn G[c+ 1, p- 1; j]. 

In step 4, we verify that F[j] = f(j) for j E [c+2,p] 
(this is the case if Hb] 1 FL] for all j E [c + 2,p]); or 
find the smallest j where this condition fails (this is the 
case if Hb] < Fb] for some j E [c + 2,p]). In either 
case, c and r are set accordingly at step 5 so that the 
loop invariants hold. 

Next we discuss how to use Wilber’s algorithm to 
solve an instance of the enhanced LWS problem defined 
by weight matrix w. Let L denote the portion of w 
consisting of the entries on and below the main diagonal 
of w. Let w’ be the matrix obtained from w by replacing 
all entries in L by $00. Then w’ defines an instance 
of the (ordinary) LWS problem. By Lemma 2.4, the 
solution for the problem defined by w’ is identical to 
the solution for the problem defined by ur. If each 
entry of w can be computed in G(1) time, we can 
use Wilber’s algorithm on w’ to solve the problem. 
However, if the enhanced LWS problem is derived from 
an instance of the SPCB problem, the entries of the 
matrix w = A x B cannot be computed in G(1) time. In 
this case, we cannot afford to change w to w’ since doing 
so will distroy some properties of w that are crucial for 
obtaining a fast algorithm. Fortunately, we have: 
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LEMMA 3.1. Wilber’s algorithm solves the enhanced 
LWS problem without changing the weight matrix w. 

Proof It is enough to show that the entries in L have 
no effects on the computation of Wilber’s algorithm, 
regardless of whether they are changed to +oo or not. 
The only place where Wilber’s algorithm needs the 
entries in L is step 3, where SMAWK algorithm is 
applied to the submatrix T. For each j E [c + 2, p], 
let FL] and Hb] be the minimum value of column j in 
S and T, respectively. 

There are three cases: 

(4 Gl 5 W.4; 
(b) F[j] > Hb] and Hb] is not in L (i.e. Hb] = 

G[i, j] .for some i < j); 
(c) F[j] > Hb] and H[j] is in L (i.e. Hb] = G[i,j] 

for some i >_ j). 
In cases (a) and (b), the values in L does not affect 

the computation. In the following we show case (c) 
cannot occur. Toward a contradiction, assume there 
exist indices j E [c + 2,p] and i such that i >, j and 
Hfj] = G[i, j] < FL]. 

Case 1: i = j. Then Hb] = G[j, j] = FL] + 
w(j, j) 1 FL]. This is impossible. 

Case 2: i > j. In this case, H[j] = G[i, j] = 
F[i] + w(i, j). Recall that F[i] is the minimum value 
of the subcolumn G[r, c; i]. Suppose F[i] = G[t, i] = 
F[t]+w(t, i) for some T 2 t 5 c. Note that t 5 c < i and 
j < i. By the concavity of w, we have: w(t, j)+w(i, i) 5 
w(t, i) + w(i, j). Since w(i, i) >_ 0 for all i, we have: 

W = F[i] + w(Q) = l-qt] + w(t, i) + w(i, j) 2 
F[t] + w(t,j) + w(i, i) 2 F[t] + w(t,j) = G[t,j] 2 Fjj]. 
This contradicts the assumption that Hfi] < FL]. 0 

4 Implementation and Time Analysis 

In this section, we discuss how to use Wilber’s algorithm 
to solve an instance of the enhanced LWS problem 
derived from an instance of the SPCB problem. Namely, 
the enhanced LWS problem is defined by the matrix 
C = A x B where C[i, i] 1 0 for all i. During 
each stage of Wilber’s algorithm (steps 2 and 3)) we 
need to find column minima of submatrices S and 
T. Both S and T have the form C’[r, c; q,p] where 
C’[i, j] = F[i] +C[i, f for some known value F[ij. Since 
C’[i, j] cannot be computed in O(1) time, we cannot 
use SMAWK algorithm. Instead, we use the algorithm 
given in the following lemma. (Similar methods was 
used in [2]). 

LEMMA 4.1. The column minima searching problem for 
the submatrix C’[r, c; q,p] with T 5 q and c _< p can be 
solved in O((c - r) + (p - q) + (k2 - kl)) time, where 
kl = I(r, r) and kz = I(p) p). 

Proof. By Lemma 2.2, for each i E [r, c] and j E [q, p], 
C[i, j] = mim<k<,(A[i, Ic] + B[lc, j]) can be computed 
by searching k-in the range k E [ICI, kz]. For j E [q, p], 
let d(j) denote the column minimum of C’[r, c; j]. Then: 

For i E [r,c] and k E [kl, k~], let A’[i, k] = 
F[i] + A[i, ICI. Then A’ is totally monotone. For each 
k E [kl, Icz], let J[lc] be the minimum of the subcolumn 
A’[r, c; k]. 

Fork E [kl,kz] andj E [q,p], let B’[k,j] = B[k,j]+ 
J[k]. Then B’ is totally monotone. Clearly, d(j) is 
the minimum of the subcolumn B’[kl, k,; j]. Thus the 
column minima d(j)‘s of C’[r, c; q, p] can be found by 
two applications of SMAWK algorithm, once on A’ and 
once on B’. So the total time is O((c - r) + (k;~ - kl)) + 
O((kz-h)+(p-q)) = O((c-r)+(p-q)+(kz-kl)). 
cl 

Each iteration of Wilber’s algorithm is completely 
specified by three parameters: r, c,p. Let ri, ci,pi be 
the values of these parameters at the beginning of the 
ith iteration. ri+l, ci+l, pi+1 are calculated in step 5 as 
follows: 

case 1: “then” part of step 5 is executed. In 
this case, ri+l = ri; ci+l = pi; and (la) p;+l = 
2ci+1 -ri+l+l, if it is 2 n; or (lb) pi+1 = n, otherwise. 

Case 2: “else” part is executed. In this case, 

ri+i = Ci + 1, Ci+l = Jo (ci + 2 5 jo 2 pi); and (2a) 
Pit1 = 2Ci+l- r+l+ 1, if it is 5 n; or (2b) pi+1 = n, 
otherwise. 

If the case la (or lb, 2a, 2b, resp.) applies to the 
ith iteration, we call it a type la (or lb, 2a, 2b, resp.) 
iteration. We call [ri,pi] the ith span; pi and pi the left 
and the right end of the ith span, resp. Note that after 
a type la or lb iteration, the left end of the (i + 1)st 
span is not changed, the right end of the (i + 1)st span 
increases. After a type 2a or 2b iteration, the left end 
of the (i + 1)st span increases, the right end of (i + 1)st 
span may increase or decrease. For an interval [t,t + l] 
(0 5 t < n), we say a span [rj,pi] covers [t,t + 11, if 
ri 5 t and t + 1 5 pi. Since the left, end of spans never 
decreases, the spans “move’, from left to right. Once 
the left end of a span is 2 t + 1, [t, t + l] will never be 
covered by subsequent spans. We make the following 
observations. 

(1) If a type la or lb iteration follows a type lb or 
2b iteration, the algorithm terminates immediately. 

(2) If the ith iteration is of type la, then: pi+1 - 
r;+l = (2ci+.l-r+l+l)-ri.+l = 2(pi-ri)+l. Namely, 
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the length of the (i + 1)st span is 1 + twice the length 
of the ith span. 

(3) Suppose the ith iteration is of type 2a or 2b. 
Since pi < 2ci - ri + 1, we have ci 2 (pi + ri - 1)/2. 
Hence: pi+1 = ci + 1 2 (pi + ri - 1)/2 + 1. 

(4) Suppose an interval [t,t + l] is covered by the 
ith span [ri,pi]. If the ith iteration is of type la or 
lb, and the (i + 1)st iteration is of type 2a or 2b, then 

ri+2 =ci+l+l=pi+l>t+l. Hence[t,t+l]isnot 
covered by [ri+z,pi+z] and subsequent spans. 

LEMMA 4.2. Any interval [t,t + l] (0 2 t < n) is 
covered by al most 2 log n + 2 spans. 

Proof. Let [ril, pill, ha, pi,], - . . , [~;,,piJ be all spans 
covering [t, t + 11, where il < i2 < . . . < ik. Thus, 
ril 2 t and t + 1 5 pi, for all 1 5 1 5 k. Let 1 be the 
first index such that the ilth iteration is of type la or 
type lb. (If no such 1 exists, let 1 = k). We first show 
k-l slogn+2. 

Case 1: The ilth iteration is of type lb. If the 
(ii +l)st iteration is of type la or lb, then the algorithm 
terminates by observation (1). If the (i, + 1)st iteration 
is of type 2a or 2b, then by observation (4), [t, t + l] is 
not coverted by [ril+2,pi,+2] and all subsequent spans. 

Case 2: The i,th iteration is of type la. Let s be the 
largest integer such that the iterations il , il+ 1, . . . , il +s 
are all of type la. Clearly, [t , t + l] is covered by all spans 

[%+1, Pi,+11 9 * * * > [ri,+s,pi,+s]. By observation (a), each 
type la iteration doubles the length of the span. Since 
the length of any span is at most n, we have s 5 logn. 
The (il + s + 1)st iteration is of either type lb or 2a or 
2b. If it is of type 2a or 2b, then by the observation 
(4), [t,t + l] is not covered by the (il + s + 2)nd and 
all subsequent spans. If the (if + s + 1)st iteration is 
of type lb, then similar to case 1, the algorithm either 
terminates at the (il + s + 2)nd iteration; or [t, t + l] 
is not covered by the (i, + s + 2)nd and all subsequent 
spans. 

In either case, the number of spans following the 
irth iteration that cover [t, t + l] is at most logn+ 2. So 
k - 12 log n + 2. Next we show 1 5 log n and this will 
complete the proof of the lemma. 

For each 1 5 h < I, the ihth iteration is of type 2a or 
2b. Fix an index h. For each j 2 ih, let Lj = (t+l)-rj. 
By the fact that t+l < pi, and observation (3), we have: 

L if&+1 = (t + 1) - rih+l 5 (t + 1) - ((pih + rib - 

I)/2 + 1) = (2t -pi, - rib + I)/2 2 (t - rih)/2 < Li,/2. 
Since the left end of the spans never decreases, this 

implies that Lih+l 5 Lib+1 < Lib/2. This is true for 
all 1 5 h < 1. Hence Li, < Li,/2’. If I > logn, then 
Li, becomes 0 and the interval [t, t + l] is not ,covered 
by [ri, ,pi,] and subsequent spans. So we must have 
1 5 log n. This proves the lemma. 0 

THEOREM 4.1. Given two concave matrices A, B such 
that the main diagonal entries of the matrix C = A x B 
are non-negative, the SPCB problem defined by A and 
B can be solved in O(n + mlogn) time. 

Proof. Given an instance of the SPCB problem de- 
fined by matrices A and B, we first compute 
qo, O), w, l), - * -I I(n,n). This takes O(mlogn) time 
by Lemma 2.3. Then we use Wilber’s algorithm to 
solve the enhanced LWS problem defined by the matrix 
C = A x B. But instead of using SMAWK algorithm, 
we use the subroutine in Lemma 4.1 for finding column 
minima in S and T. If we can show the time needed 
by these subroutine calls is O(n + m log n), the theorem 
will follow from Lemma 2.5. 

Consider the ith iteration. We need to find the 
column minima of Sj = G[ri,c(;ci + l,pJ and T; = 
G[ci+l,pi-l;ci+2,pi]. Let ICI = I(ri,ri), k2 = I(pi,pi) 
and ks = I(Ci + 1,Ci + 1). Since ri < Ci + 1 5 pi, 
we have: kl 5 k3 5 Ic2 by Lemma 2.2. By Lemma 
4.1, the searching of Si needs O((ci - ri) + (pi - ci - 
1) + (Ic2 - ICI)) = O((pi - ri) + (k2 - ICI)) time. The 
searching time of T; is O((pi - 1 - ci - 1) + (pi - ci - 
2) + (k2 - k3)) = O((pi - ri) + (kg - ICI)). Thus the 
total time needed to search Si and Ti in all iterations 
is CE, O((p; - Q) + (I(pi,pi) - I(ri, pi))), where K is 
the total number of iterations. Since Wilber’s algorithm 
takes O(n) time, the term CL, O(pi - ri) is bounded 
by O(n). On the other hand, 

K pi-1 

t + 1, t + 1) - I(& t)) = 
i=l t=ti 

c (I@ + 1,i + 1) - I(V)) t,i where [t,t+l]E[ri,pi] 

By Lemma 4.2, each interval [t, t + l] is covered by at 
most 2 log n + 2 s 
by: 

P 
ans. Thus the above sum is bounded 

O(lognC:z., (I(t +l,t+l)-l(t,t))) = O(mlogn) 
as to be shown. 0 

5 TSP Problems for Points on a Convex 
Polygon 

Let Q be a convex polygon. For any two points 2, y E Q, 
let d(z, y) be the Euclidean distance between t and y. 
Let P be a path connecting points on Q. Given two 
points 2, y of Q, we wish to find a Hamiltonian path P 
of Q from 2 toy such that the weight u(P) = CeEP d(e) 
is minimized. By a geometric argument, one can show 
the optimal path P is simple (i.e. no two edges of P 
cross each other). 
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Let Qx = {Z = 20, ~1,. . . , Z, = y} be the points 
of Q from z to y in clockwise order. Let Qy = {Z = 
YO,Yl,...,Ym = y} be the points of Q from z to y in 

counterclockwise order. Let 2i 3 zj denote the portion 

of Qx from xi to X) and yi 5 yj denote the portion of 
&y from Yi t0 Yj. 

Let P be an optimal Hamiltonian path from xc = yc 
tox, = ym. We assume both the first and the last edge 
of P are in Qy . Then P must be of the following form. 
(See Fig 2. For clarity, the points in &x and Qy are 
drawn on two vertical lines). 

n m 

edges in P 

dummy edges in P 

io=O 0 

Figure 2: Optimal path in a convex polygon 

= 20 = yo -2 y. X Y 
Xi0 11 + 21 + zil + Yjjl+l + Yj, + 

x x Y 
Xil+l -i * a * --+ Zi, = X,-l --i Yjljr+l + Ym = Xn 

for some 0 < ji < . . . c j, < m - 1 and 0 = ie < ii < 
. . . n - 1. We use the following dummy path 
PI =‘;;, z * - 20 + jl + il + j, -k iz + . . . --t j,-l + 
it-1 + jt + it = n - 1) to represent P. Each edge 
ir-1 + jl and jl --f il in P’ is called a dummy edge. P 
is completely specified by P’. 

For each dummy edge il-1 -+ j, in PI, the edge 
zil,l + Zil-l+i is not in P, while the edge yjl + xi,-l+l 
is in P. For each dummy edge j, + i, in P’, the edge 
yjl -+ yj,+i is not in P, while the edge xi1 + yj,+l is in 
P. This motivates the following definition of the weighs 
of dummy edges: 

Af+i, Yj] = W(Xi --) Yj) = d(Xi+l, Yj) - d(Xi, Xi+l); 

B[Yj P xil = W(Yj -+ Xi) = d(Yj+l, Xi) - d(Yj, Yj+l). 
Note that A[zo, yc] = B[yc,zs] = 0. Let SX = 

Cyii’ d(zi-1, xi) and Sy = CT=“=, d(yj-1, yj). One can 
verify that the total weight of P is: 

(5.6) = Sx + SV + 

t 
Cr Ax 
I=1 I=1 

Although the above discussion is carried out by 
assuming the first and the last edges of P are in Qy , 
it also applies to other cases. (If the first edge of P is 
in Qx, let ji = 0. If the last edge of P is in Qx, let 
jt=m- 1). It is easy to verify equation (5.6) is valid 
for these cases too. Since the term SX + Sy in (5.6) 
is fixed, in order to minimize w(P), we only need to 
minimize the reduced weight: 

dP’> = C:=l A[xit-l, Yjtl + C:=l B[yja 9 till- 
Let G = (X, Y, E) be the complete bipartite digraph 

with X = {x0,x1,..., x,-d, Y = (~0,. . .,Y,+I) and 
the weight matrices A and B. Then a dummy path 
P’ with minimum reduced weight w(P’) is exactly a 
shortest path in G from xe to x,+i. For 0 < i < i’ 5 
n-landO< j< j’<m-1,bythedefiztionofA 
and the fact that Q is a convex polygon, we have: 

A[i, j] + A[?, j’] - A[i, j’] - A[?, j] = d(xi+l, yj) + 

d(Xil+l f Yjl) - d(Xi+l, Yj’) - d(G)+1 t Yj) I 0 
Thus A is concave. Similarly, we can show B is also 

concave. Let C = A x B. Then: 

C[i, i] = o<~~-l[d(Xi+l, Yj) - d(Xi,Xi+l) + 
-- 

4Yj+l I Xi) - 4Yj 2 Yj+l)l 

By the triangle inequality, each term in min sign is > 0. 
So C[;, i] 1 0 for all i. By Theorem 4.1, we have: 

THEOREM 5.1. The TSP problem for an N-point con- 
vex polygon can be solved in O(N log N) time. 

6 Minimum Latency Problem for Points on a 
Straight Line 

Consider a set S of n + 1 points, a symmetric distance 
matrix d[O..n, O..n], and a tour T which visits the points 
of S in the order pe,pi, . . . ,p,, starting at ps. Let 
d(pi-1, pi) be the distance traveled along T between 
pi,1 and pi- Then the latency of pi on T is w(pi) = 
Ci,, d(Pj-l,Pj). The total latency W(T) of T is the 
sum of the latencies of all points: w(T) = CyCI I&). 
Or, equivalently: 

(6.7) w(T) = &(PM,P~(~ - k + 1) 
k=l 

We wish to find a tour T with minimum w(T). In 
this section, we show that the MLT problem for points 
on a straight line can be reduced to the SPCB problem. 
LetS={z, ,... xr,xc=ye=O,yi ,..., y,}beasetof 
noints on the real line from left to right. We overload zi 
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(and yi) to denote both a point and the distance from Similarly, the contribution of RI to w(T) is: 
it to the origin. The tour starts at the point 0. Define: 

- Zk-1)(n - Ic + 1) 
kc1 

w(TY) = f&k - !/k-l)@ - k + 1) 
k=l 

w(Tx) is the total latency of the tour TX that starts 
at 20 = 0 and travels the points 21, ~2,. . . , zn. ur(Ty) 
is the total latency of the tour Ty that starts at ~0 = 0 
and travels the points yl, ~2,. . . , ym. 

Consider an optimal tour T for S. We assume the 
first edge is to the right and the last edge is to the left. 
Then T must be of the following form (see Fig 3): 

II % 

i kJ 

: R, 
: 
: L2 : 

: 1’ 
R, * : 

: * : 

X i;n i, i, 0 1, 

Figure 3: Optimal tour for points on a straight line 

~;=jlml+l(xk - XL-l)@ - /iZ + 1) 

Summing up and simplifying, we have: 

w(T) = & w(k) + C;=, I 
= C:=I c3;,flml+l(Yk - Yk-l)(m - h + I)+ 

CL1 Yj,-1 [(n + m - h-1 -i-l) - (n - h-i)]+ 

CL Yh Kn - LI) + (n + m - ir-1 - jr)]+ 
Cj=l Gl-1 [(n + m - G-1 - jr-~)+ 
(n+m-if-1 - A) - (m - $)I + Cf=, xi, [m - $1 

= w(Tx) + w(Ty)+ 

CL,’ Yii Lrn - jr] + & J/jr [2n + m - 2ir-1 - jl]+ 
Cfzi Xi, [2n + m - 2h - jr] + Ci=, 2i, [m - jr] 

= w(Tx) + I + cf=, Yj, [2n + 2m - 26-l - 2j1] 

+ CL0 xi, [2n + 2m - 2il - 2jl] 

(The following facts are used in the last step: m-j, = 0; 

A A A A Yh = 0; 2n + m - 2it - j, = 0; and q, = 0. In the 
Xi0 = Yjo = X0 = YO + Yjl + Xi1 4 Yj2 + Xi2 e. e first summation of the last equation, the value of i-1 

A A A 
-+ xi*-1 + Yj/jr = z/m *Xi, = Xn 

is irrelevant and we may define i-1 = -1). Define the 
reduced weight of T’ to be: 

for some 0 = jo < jl < , . . j,-l < jt = m and 

o= 2.0 < il < . . . it-1 < it = n. (zi 3 yj denotes a 
path from xi to yj consisting of several edges). We use 
the following dummy iow T’ = (0 = i. -+ j, + il + 

w(T’) = 2 yj, [n + m - ir-1 - ji] + 
I=0 

. . . 4 it-1 + j, = m --+ it = n} to represent T. For t 
each 1 5 1 5 t, let Lr denote the subpath zilwl 3 yj,. CXi,[n+m-4 -51 

Let RI denote the subpath yj, 5 zi,. The contribution I=0 

of LJ to w(T) can be calculated as follows. Then we have: 

W(b) = (Yj,,, + xilel)(n + m - Li -jr-l)+ 

C2=jjrel+l(Yk - yk-l)(n d- m - h-1 - k •k 1) 
xi,-,)(n + m - 4-l - jr-l)+ 

+=j,-,+l(Yk - Yk-l>(n - il-l)+ 

%j,-,+l(vk - Yk-l)(m - k + 1) 

(6.8) w(T) = w(Tx) + w(Ty ) + 2w(T’) 

Although the above discussion is carried out, by 
assuming the first, edge of T is to the right and the last 
edge is to the left, it also applies to other cases. (If the 
first edge is to the left,, let j, = 0. If the last, edge is t,o 
the right, let it-1 = 7~ and delete the subpath Rt from 
T). It can be verified that (6.8) is valid for those cases 
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too. Since the term w(Tx) + w(T’) is fixed, in order to 
minimize w(T), we need to minimize w(T’). 

Let G = (X, Y, E) be the complete bipartite di- 

graph with X = {~o,~I,...,G), Y = {YO,Y~,.-.,Y~) 
and the weight matrices A[O..n, O..m] and B[O..m, O..n] 
defined as follows: 

A[& j] = w(q +3/i)=yi(n+m-i-j);and 

Bb, i] = W(yj + Xi) = Zi(7l + m - i - j) 

Note that A[O,O] = B[O,O] = 0. It is easy to check 
that a dummy tour T’ with minimum reduced weight 
w(T’) is exactly a shortest path in G from 20 to sn. 
For 0 s i < i’ < n and 0 5 j < j’ 2 m, we have: 
(A[i,j]+A[i’,j’])-(A[i,j’]+A[i’,j]) = (i’-i)(yj-yj’) < 
0. Thus A is concave. Similarly, we can show B is also 
concave. Since all entries of A and B are non-negative, 

all entries of C = A x B are non-negative. Thus, by 
Theorem 4.1, we have: 

THEOREM 6.1, The MLT problem for N points on 
straight line can be solved in O(N log N) time. 

Open Problems: The setting of the SPCB prob- 
lem is quite general. It is intersting to find other appli- 
cations of the SPCB problem. In particular, we tried to 
use this technique to solve the MLT problem for points 
on a convex polygon. In the two applications discussed 
in this paper, the optimal paths are simple (i.e. no two 
edges of the path cross). Unfortunately, the optimal 
tour in the MLT problem for points on a convex polygon 
does not have this crucial property. It will be interest- 
ing to find a polynomial time algorithm for solving the 
MLT problem for this case. 
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