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Upper and Lower Bounds on Constructing Alphabetic Binary Trees 

Maria Klawe* 

Abstract 

This paper studies the long-standing open question of 

whether optimal alphabetic binary trees can be constructed 

in o(nlgn) time. We show that a class of techniques for 

finding optimal alphabetic trees which includes all current 

methods yielding O(nlg n) time algorithms are at least as 

hard as sorting in whatever model of computation is used. 

We also give O(n) time algorithms for the case where all the 

input weights are within a constant factor of one another 

and when they are exponentially separated. 

1 Overview. 

The problem of finding optimal alphabetic binary trees 
can be stated as follows: Given a sequence of n positive 
weights wi, . . . , w,, construct a binary tree whose leaves 
have these weights, such that the tree is optimal with 
respect to some cost function and also has the property 
that the weights on the leaves occur in order as the tree 
is traversed from left to right. A tree which satisfies this 
last requirement is said to be alphabetic. Although 
more general cost functions can be considered (as is 
done in [4] and [9]) we concentrate here on the usual 
function, namely C wili where li is the level of the 
ith leaf from the left in the tree. The first O(nlgn) 
time solution was given in Hu and Tucker [5] in 1971, 
following algorithms with higher complexity in [3] and 
[6]. If we remove the restriction that the tree must be 
alphabetic, then the problem becomes the well-known 
problem of building Huffman trees, which is known 
to have O(n lgn) time complexity in the comparison 
model. Modifications of the Hu-Tuker algorithm also 
running in O(nlgn) time but with simpler proofs, are 
given in [a], and [4]. Th e only recent progress on this 
problem has been made by Ramanan [lo] who showed 
that it is possible to verify that a given alphabetic tree 
on a sequence of weights is optimal in O(n) time when 
the weights in the sequence are either within a constant 
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factor, or exponentially separated (notions we define 
precisely later). However, it seems substantially more 
difficult to actually construct the optimal tree in linear 
time in the constant factor case. 

The next section summarizes current methods and 
introduces the concepts needed to frame our results. In 
$3, we introduce a technique, region-processing, which 
forms the basis of our linear time algorithms. We start 
with a fairly simple O(n) t ime algorithm for finding the 
optimal alphabetic tree when the weights are within a 
factor of 2. We also observe that the basic region-based 
method solves the case where the input weights are 
exponentially separated in O(n) time. We generalize 
this technique in $4 to the case where all the weights 
are within a constant factor of one another. The 
generalization depends on solving a new generalized 
selection problem, that may be of interest in its own 
right. In $5 we give reductions of sorting problems to 
Hu-Tucker based algorithms and region-based methods. 
This provides fi(n lgn) t ime lower bounds for Hu- 
Tucker based algorithms in the comparison model, and 
indicates that region-based methods are unlikely to 
yield a o(n lg n) algorithm. 

2 Current Methods. 

We give a brief description of the Hu-Tucker algorithm 
to the extent necessary to explain our results. Complete 
descriptions and explanations can be found in [5,4, 
91. All Hu-Tu k c er based methods begin by building 
an intermediate tree, called the lmcp tree, whose 
leaves hold the given set of input weights, though not 
necessarily in the correct order. The levels of the 
input weights in the lmcp tree are recorded and this 
information is used to build an alphabetic tree on the 
input weights, with each input weight occurring at the 
same level as in the lmcp tree. 

Constructing this alphabetic tree can easily be done 
in O(n) time, as shown in [5]. Since the cost function 
depends only on the levels of the the leaf nodes, the 
cost of the alphabetic tree is the same as the cost of 
the lmcp tree. Hu and Tucker prove that the lmcp tree 
has optimal cost in a class of trees which contains all 
alphabetic trees, and hence it follows that the alphabetic 
tree constructed is optimal. We are able to prove that 
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in the comparison model, constructing the lmcp tree 
requires s2(n lgn) time in the worst case, but since it 
suffices to know only the levels of the leaf weights in 
the lmcp tree and not its full structure, we can improve 
on the performance of the Hu-Tucker algorithm in a 
number of cases. 

The Hu-Tucker algorithm maintains a worklist of 
weighted nodes in the lmcp tree that have not yet been 
assigned their sibling and parent. The basic step in 
the algorithm consists of selecting two nodes from the 
worklist to be paired off as siblings in the lmcp tree, 
removing these nodes from the worklist, and inserting a 
new node (their parent) in the position of the leftmost 
replaced node with weight equal to the sum of the 
two removed nodes. Initially the worklist is the list 
of leaf nodes with the weights WI,. . . , w,, in order. 
Nodes in the worklist are designated either crossable 
or noncrossable. Initially all nodes are noncrossable. 
When any two nodes are paired off, the resulting parent 
node is designated crossable. Two nodes in the worklist 
are compatible if they are adjacent, or if all the nodes 
which separate them are crossable. The symbol v will 
refer 

to a node in the worklist and W(V) will refer to its 
weight. The level of a node v in the tree is denoted by 
I(V). Define an order on the nodes in the worklist by 
V, < wY if w(v=) < w(v~) or if W(Q) = w(wy) and w. is 
to the left of vY in the list. A pair of compatible nodes 
(v,, 06) is said to be a local minimum compatible 
pair (Imcp) if 

and only if the following two conditions hold: 
1. vb 2 vz for all nodes on compatible with node v,. 

2. v, 2 zlY for all nodes zlY compatible with node vb. 
The lmcp tree is constructed by repeatedly combin- 

ing lmcps from the worklist until a single node remains 
which will be the root of the lmcp tree. This is usually 
implemented by a stack-based algorithm that starts at 
the beginning of the worklist and moves a pointer along 
the worklist until an lmcp is found. After removing the 
nodes in the lmcp and inserting the new parent node, 
the pointer is moved back one node, and the search for 
lmcps resumes. To check whether an lmcp has been 
found, the algorithm compares the smallest node 1: be- 
fore the pointer node y that is compatible with y, with 
the smallest node z after y that is compatible with y. 
If z < z, the algorithm concludes that z and y form an 
lmc,p; otherwise it move the pointer forward one node. 
The total number of pointer moves is O(n), since O(n) 
nodes are placed in the worklist in total, and the num- 
ber of backward moves is bounded by the number of 
lmcps found, which is also O(n). Hu-Tucker methods 
take O(n lg n) time because they maintain information 
on which node has the minimum weight in intervals of 

crossable nodes in order to find the nodes 2 and z. Up- 
dating this information when an lmcp is found can take 
O(lg n) time. In general, the construction of the lmcp 
tree is not unique, since the lmcps may be combined in 
different orders, but, as proved in [5], the resulting tree 
is unique. Thus, for any node v in the worklist, we can 
define the lmcp partner of 21 to be the node that is the 
sibling of ‘u in the lmcp tree. 

3 Region-based Methods. 

We present a new approach for finding optimal alpha- 
betic binary trees in which the input weights wi are first 
classified according to their order of magnitude, base 2. 
Define the category of a node of weight w to be [lg w] . 
A maximal length sequence in the worklist of weights 
with the same category is called a region. By keeping 
a stack of regions, and only considering regions whose 
adjacent regions have higher category, we can restrict 
most of our attention to the pairings occurring within 
these regions. We call this region-processing. This is 
motivated by the situation where all input weights are 
within a factor of 2. If this is the case, it is easy to 
determine the leaf levels in the lmcp tree using Theo- 
rem 3.1. 

THEOREM 3.1. Given a sequence of n crossable 
nodes which are within a factor of two, after the first 

[(n + 1)/2] lmcps h ave been found and combined, the 
new sequence will consist of [n/2] nodes whose weights 
are again within a factor of two. Furthermore, if we 
keep combining lmcps, the resulting lmcp tree will be 
balanced, with the leaves differing in level by at most 
one. Specifically, the 2(n - Z[‘g”]) smallest weights will 
be at level [lgn] + 1 and the others will be at level [lgn]. 

Proof. We note that since all the nodes are cross- 
able, this reduces the problem to building a Huffman 
tree, where the result is known. We present a new proof, 
which provides insight to the actual behavior of the al- 
gorithm, and motivates our results to follow. 

Let the initial sequence of nodes in the worklist 
be vi,... , w, and let c be a real number such that 
c 5 W(Q) < 2c for i = 1 to n. Whenever two nodes 
form an lmcp and combine, the weight of the new node 
is greater than 2c, so it will not be involved in another 
lmcp until there are less than two nodes smaller than 
2c. When n is odd, after (n - 1)/2 pairings have 
occurred, the worklist contains only one node of weight 
less than 2c, namely the largest weight node present in 
the original sequence. We call this node the wallflower. 
The wallfower forms an lmcp with the smallest weight 
newly formed node. When n is even the largest weight 
node present in the original sequence 

merges with another original node. Thus, regardless 
of whether n is odd or even, the rightmost (there may 
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be more than one) largest weight node will merge during 
the [(n+l)/2]th lmcp pairing. At this stage the worklist 
will contain exactly [n/2] nodes, none of which are 
original nodes, and their weights will be within a factor 
of two, as we show below. 

This is obvious if n is even, so suppose n is odd, 
and let o be the node with the smallest weight, w(w) = 
VJ(V;) + I, among the first (n - 1)/2 newly formed 
nodes. Clearly the rest of the first (n - 1)/2 newly 
formed nodes have weights less than ~T..v(v). Let vk be 
the wallflower. 

The next node formed is the parent of v and 2)k, and 
has weight VJ(Q)+WJ(V~)+~(V~). Now, since the original 
weight sequence was within a factor of two, W(Q) < 
W(7Ji)+W(Wj) = W(o), SO w(~k)+w(~i)+w(~j) < 2W(W), 
which completes the proof. One further observation 
that will be important is that the weight of the parent 
of the wallflower is strictly greater than the weight of 
the other (n - 1)/2 nodes in the current worklist. 

Let us call the pairings up to this point a phase of 
the algorithm, and consider how the phase affects the 
levels of the leaves in the lmcp tree. Obviously the phase 
contributes one to the level of each leaf in the lmcp tree 
if n is even. When n is odd, this is true for all the leaves 
except for the two whose parent was paired with the 
wallflower. These two, which we call the wallflower’s 
step-children, have had their level increase by exactly 
two. Since the wallflower’s parent has the unique largest 
weight in the worklist at the end of the phase, at the 
end of each later phase this node’s ancestor always has 
the unique largest weight in the worklist. Thus each 
later phase contributes exactly one to the level of the 
wallflower’s step-children. Applying this argument to 
the step-children of wallflowers from later phases proves 
that the level of any two leaves in the lmcp tree differs 
by at most one. Since the lmcp tree which has optimal 
cost, the smallest weight original nodes must be at the 
bottom level, i.e. the largest numbered level. Thus for 
some integer z, we have the 22 smallest weight original 
nodes on level [lg n]+l , and the remaining n-2x original 
nodes on level [lg n]. We require t + n - 2x = 211snl, so 
x = 11. - @34. 

COROLLARY 3.1. There is a linear time algorithm 
for finding an optimal alphabetic binary tree on a se- 
quence of input weights which differ at most by a factor 
of two. 

In point form, the algorithm for finding the levels 
of the leaves in the alphabetic tree is as follows: 

1. Initialize the worklist to contain the original input 
sequence. Note that all nodes are noncrossable. 

2. Use a stack-based method to find lmcps and pair 
them off, removing each pair of nodes from the 
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worklist, and placing the parent in a temporary 
list but not in the worklist. These newly formed 
nodes can be left out of the worklist because their 
weights are greater than any of the original weights, 
and hence need not be considered in the search for 
lmcps. This process continues until there are zero 
or one nodes left in the worklist, and as discussed 
in the remarks on stack-based algorithms in $2, 
requires only O(n) t ime because of the absence 
of crossable nodes in the worklist. If a single 
node x remains (n is odd and x is the wallflower), 
scan through the temporary list of newly formed 
crossable nodes to find the smallest node y. Pair t 
with y, and replace y in the temporary list by its 
parent. 

At this stage we have m = [n/2] crossable nodes 
in the temporary list. Moreover the new nodes are 
still within a factor of two, by the same argument 
as in the proof of the preceding theorem. 

We can now, by the preceding theorem, directly 
find the levels of every leaf in the lmcp tree for the 
remaining m crossable nodes in O(n) time, using 
a linear time selection algorithm [l] to find the 
2(m - 21’sml)th weight in the temporary list. This 
node and nodes with smaller weights have level 
[Ig m] + 1, and the remaining nodes are assigned 
level [lgm]. Given this, it is trivial to compute the 
levels of the nodes in the original input sequence in 
an additional O(n) time. 

With knowledge of the leaf levels we can construct 
the optimal alphabetic tree for the input sequence 
in O(n) time. 
A similar technique can be applied to predict how 

nodes in a region R with lowest category number 
combine to form nodes in a region with the next 
category number. Notice that when the number of 
nodes in R is odd, its wallflower will pair with the 
smallest weight node in the set consisting of the lmcps 
formed out of R and the compatible nodes from the 
two regions adjacent to R. When the gap in category 
number between adjacent regions is large enough, this 
method yields faster performance than the Hu-Tucker 
algorithm. The complete algorithm is described in [9]. 
Its basic idea is to maintain a stack of the current regions 
in the worklist, and process the region at the top of 
the stack if its adjacent regions have greater category. 
If not, the stack pointer is advanced. The cost of 
processing a region of size r is O(r lg r). Since processing 
a region yields a new region of half the size, it is easy 
to verify that this method has O(n lg n) running time. 
If the input weights {wi} are exponentially separated, 
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i.e. if there is a constant C such that for all integers 
k, ]{i : ]lgwiJ = k}] < C, then it is also easy to 
verify that this method yields an O(n) time algorithm, 
since each region can be processed in constant time as 
the size is bounded by 2C. The ideas in Theorem 3.1 
can also be used to reduce the cost of processing a 
region of size r to below O(r lg r) when the difference in 
category numbers is great enough, which may be useful 
in implementations. Details are given in [9]. 

4 The Constant Factor Case. 

We now describe the linear time algorithm for weights 
within a constant factor, i.e. such that max{wi/wj} < u 
for some constant 6. As before it suffices to determine 
the levels of the leaf nodes in the lmcp tree. We use a 
region-based method to process the weights region by 
region in increasing order by category number until we 
are left with a single region of crossable nodes. We then 
apply Theorem 3.1 to determine the lmcp tree levels 
of the nodes in this final region, and work backwards 
to find the lmcp tree levels of the original weights. In 
order to achieve the linear time bound, when processing 
a region we cannot afford to determine which nodes pair 
together in lmcps, nor the weights of the lmcps formed. 
Instead we work with coarser information about the 
structure of the lmcp tree. An interval of nodes in a 
region’s worklist is lmcp-closed if the lmcp partner of 
each node in the interval is also in the interval. Our 
algorithm works by partitioning the region’s worklist 
into lmcp-closed intervals, and replacing each lmcp- 
closed interval, by a nod&group representing the 
lmcps formed out of that interval. From the definition 
of lmcp, it is easy to see that internally reordering an 
interval of crossable nodes, or pushing a larger crossable 
node to the right of a smaller noncrossable node does not 
affect the construction of the lmcp tree. Our algorithm 
uses such rearrangements of the worklist in finding the 
partition into lmcp-closed intervals. 

The worklist thus is now an ordered list of node- 
groups, in which each noncrossable node appears as a 
singleton node-group, but intervals of crossable nodes 
within a region may appear in groups of arbitrary size. 
A set of nodes in the worklist is realizable if it is 
the union of a set of node-groups in the worklist. The 
algorithm performs certain types of selection operations 
on realizable sets of nodes in the worklist. For example, 
on reaching the point where the worklist contains a 
single region of crossable nodes, determines the smallest 
k of these nodes in order to apply Theorem 3.1. These 
selection operations may require that some of the node- 
groups be refined, in order that the result be in the 
form of realizable sets. For example, suppose N is a 
realizable set of nodes in the worklist. Determining ,_ 
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the largest [smallest] node II in N requires replacing 
the node-group containing v by a node-group list in 
which v is a singleton node-group, unless v is already 
a singleton. Similarly, determining the k smallest 
nodes in N requires a node-group list in which the 
desired set is the union of a set of node-groups in 
the refined list. To perform such operations efficiently 
we provide selection algorithms for realizable sets that 
determine the appropriate refinements. This is the 
concept underlying fast selection systems. 

DEFINITION 4.1. For any A 2 1, we say a 
(multi)set S has a A fast selection system if: 

Va E [O,l], in A]S] time we can produce two sets 
S; and Sz, each with A fast selection systems such 
thatS=S;US,+,VzES; andVyES2, z.Ly, 
;rzi y 1 = LcIISIJ. (We call this un a-partition 

V3: > 0, in A]S] time, we can compute the rank 
of x in S, denoted by rs(x), and produce two sets 
SIX and $P, each with A fast selection systems 
such that Ssz = {y E S : y 5 x} and S>” = {y E 
S : y > x}. (The rank of x in S is the number of 
elements in S less than or equal to x.) 

In A]S] time we can compute IS]. 

In addition, when interpreted in the con- 
text of node-group lists, we require that the sets 
5’; , ,572, S’s”, 5”” be realizable. We use the term layer 
h for the regions in the worklist with category number 
h, and process the regions in the worklist a layer at a 
time beginning with the smallest layer. Processing layer 
h consists of creating node-group lists representing the 
new nodes formed in layer h + 1. Consider the ques- 
tion of creating a node-group list representing the new 
nodes, T, formed from a single region R of r nodes. If r 
is even, because the regions adjacent to R in the worklist 
have higher category numbers, R is lmcp-closed and the 
node-group list for T is a single node-group. If T is odd, 
then the only node of R whose lmcp partner is not in R 
is its wallflower Z. It is straightforward to prove that z 
is the largest node in the subset {y E R : y is crossable 
or y is noncrossable and is in an odd-numbered position 
from an end of R}. Note that this subset is realizable, 
so z can be identified by fast selection, and we create a 
node-group gl representing the lmcps formed from the 
nodes on the left of Z, and another one, gr for those from 
the right, respectively. To determine the lmcp partner 
of z we need to know the smallest node v in gr U gr, 
which again is realizable. We complete the processing 
of z by comparing v with the smallest compatible nodes 
on either side of gr, gr in the worklist (found using se- 
lection on realizable sets), and replace J and its partner 
by a singleton node-group representing this lmcp. This 
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singleton node group may be in layer h + 2, in which least m. Note that c,,, IAil 2 fjAl by the definition 
case we place it as far to the right as possible (in front 
of the first node in layer h + 2 or higher). The remain- 

of M. Hence ]A - B] = I UisJ AZ,,] > al.41 and so we 

ing challenge is to construct the fast selection systems 
reduce the problem to finding a P-partition in B, where 

for realizable sets which is done by induction on layer 
/3 = a/-#. We set A, = BP and AZ = UiE~At,2 U Bi. 

number. 
In this case we reduce the problem to one at most 3/4 of 

We may assume that when we begin processing 
the original size in (6 + 3A)]A] time. Since B is a union 

layer it, we have a node-group list for each region and 
of sets with A fast selection systems, an easy inductive 

a fast selection system for any realizable set in the 
argument on the size of A shows that we can produce 

node-group list representing a region in layer h. The 
A; and AZ in &( 6 + 3A)IAI 2 36A]A] time. 

base case is covered by the usual linear time selection The fact that As”, A>x, A; and Ai each have 36A 

algorithm since all weights in the bottom layer are fast selection systems again follows easily by induction 

known explicitly. A key tool is the construction of a fast on IAl since they are unions of sets with A fast selection 

selection system for the union of sets with fast selection systems. 

systems. This is provided by the following theorem. We are now ready to show how to construct a DA 

THEOREM 4.1. Let A = Uy=,Ai, where each Ai fast selection system for a realizable set S in layer h + 1 

has a A fast selection system. Then A has a 36A fast g iven A fast selection systems for realizable sets in layer 

selection system. h. By the preceding theorem we may assume that there 
are no singleton node-groups in the representation of 

Proof. Let z be any value. We can compute the S, since otherwise we can use the usual linear time 
rank of z in A easily since TA(Z) = ~~=‘=,r~~(z). selection algorithmfor the set S* of nodes in S occurring 
Moreover Asz = Ui”,,Af” and A>” = l&A)“. The as singletons, and use the selection systems for S* 
time cost for this is the cost of finding RH, plus and S - S* to get a selection system for S. This 
the cost of constructing the Af” and A)“. This is assumption says that there is a set {&} of disjoint 

C;=“=, AlAil + C;zI AlAil = 2AlAI. lmcp-closed realizable intervals in layer h such that S is 

For (Y E [0, 11, we construct A; and AZ as follows. the lmcps formed from V = Q&. We first show how 
For each i compute A<,, , AL,, , and rni = minAL,z. to find the smallest weight node in S by proving that 

This can all be done in 2A]A] time. Compute the in O(A]S]) time we can reduce the problem to finding 

median m of the multiset M = U~==,Mi where A4i the smallest weight node in a realizable subset S’ of S 

contains exactly (Ai I copies of mi. This can be done where IS’] 2 ]S]/2. D uring the reduction we perform 

in 6lAI time using the selection algorithm of Blum et refinements on the node-group lists for layer h, but 

al [l]. Now compute TA(rn) as above, in A]A] time. If the definition of fast selection systems assures that the 

l”A(m) = lalAll we are done, as we can take A, = A<“’ existence of A fast selection systems for realizable sets 

and Ai = A>m. If not we may assume rA(m) > [cxIAI] in layer h is not affected. Finding the smallest node is a 

since a symmetric argument handles the other case. special case of finding an a-partition, but the algorithm 

Let J = {i + : rni 2 m}, let B = A - U~~JA~~,~ and is slightly simpler. Moreover, since it is a subroutine 

note that every element in A - B is at least m. If used in finding general o-partitions, presenting it first 

IBI < LcxIAI], since rA(m) > [cIIAIJ there must be at ‘larifies the exposition’ 
least [cIIAIJ - IBI 1 e ements in A - B that equal m. Thus The set V is realizable, so in AlV] time we can find 

it suffices to identify a subset D of these elements with the l/2-partition V = Vli2 n V&. For each Ri we write 

IDI = [cYIAI] - IBI and take A; = B u D. TO find D R7 = Ri n V$ and R? = Ri n Vzs. we assume, 
we first find (AL,p)5m for each i in J. Every element in by reordering if necessary, that for each interval C of 

U~E.J(A~,~)~“’ must equal m, and thus it suffices to take crossable nodes in Ri, we have Cn Rf preceding Cn Rf . 

D to be any subset of lJie~(At,~)<“’ of the appropriate 
We now run an algorithm on R; to partition nodes 

size. Such a subset can easily be obtained by taking each 
of Ri into three lmcp-closed sets, Ri = Rf- U Rf+ U 

(A2p” until adding another set will result in more 
R7+ according to whether the node and its lmcp 

than LcxIAIJ - IBI. At this point fast selection can be 
pirtner are in the same class in the partition & = 
R; U@+ M 

used on this (AI?;,Q )‘” to obtain a subset that will bring 
oreover, for each node z in Rr’ (the set in 

which z and its lcmp parter p(z) are in different classes), 
the total number of elements to exactly [cIIAI] - IBI. th e algorithm explicitly determines z and p(z), and 
Thus in this case we will have obtained Ai and AZ in hence can create a singleton node-group for the lmcp 
at most (6 + 5A)(A] t ime. If IBI 2 IAl - LaIAIJ we may of z and p(z). 
take(A-B)cA$, since every element in A - B is at We use the terms -interval [+interval] to refer to 
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a maximal interval of nodes in Ri which lies entirely in 
Ri [R,+] . Ob . vlously Ri is an alternating sequence of - 
intervals and +intervals. Also, -intervals and +intervals 
are realizable sets. We first note that if any two 
consecutive -intervals are separated by a +interval that 
does not contain 

noncrossable nodes, we may push the +interval to 
the right of the righthand -interval without affecting 
the formation of Imcps. Thus in linear time, we 
can rearrange each Ri so that there is at least one 
noncrossable node in each +interval except for possibly 
one on the right end of Ri. If the number of nodes 
in a -interval, I, is even, for each z E I we have 
p(x) E I. This follows from the fact that S is realizable, 
and that each node-group of S represents the lmcps 
formed out of a consecutive interval in layer h. Next, 
for each -interval, I, with an odd number of nodes, 
we use the A fast selection system to find its local 
wallflower, i.e. the largest node in I which is either 
crossable or is noncrossable and in an odd-numbered 
position relative to I. Note that each local wallflower 
x is now represented by a singleton node-group and 
we know its weight. Let I’ be the set resulting from 
removing the local wallflower from I if it has one. It 
is not hard to prove that for each z E I’ we have 

P(X) E 1’9 so we set Rim to be the union of the 
I’. We now remove the node-groups representing the 
nodes in Ri- from the node-group list of &. We will 
process this reduced list in O(AlRil) time to determine 
the lmcp partner of each local wallflower, and define 
Ri+ as the set of local wallflowers (i.e. the nodes in 
Ri which still remain in the list) together with their 
lmcp partners. R’+ is Ri - (Rr- U Rz+). We first 
identify, for each end of a +interval, the smallest weight 
node in the +interval compatible from that end of the 
interval. For each +interval that contains at most one 
noncrossable node, we also identify its smallest weight 
crossable node. This can be done in O(AIRil) time 
using fast selection systems. We now run a linear 
time stack-based algorithm to find the lmcp partner 
of each local wallflower. Starting at the leftmost local 
wallflower, x, by checking its smallest compatible nodes 
on each side, y and Z, and, in the case that z is 
the only noncrossable node separating x from the next 
local wallflower, checking the weight of the next local 
wallflower, we determine whether we know that x forms 
an lmcp with one of y or z. If not, we move on to the 
next local wallflower, and continue with the usual stack- 
based approach. It is straightforward to check that upon 
removal of an lmcp involving a local wallflower, 2, the 
necessary information on the affected +intervals can be 
updated in constant time, and this guarantees the linear 
time bound. 

For j = --,++, -+, let Vj be the union of the 
nodes in the Rj , and let Sj be the nodes formed from 
Vi. We note that all the nodes in S-- are less than 
the nodes in S++, though it is possible there are nodes 
in S-+ that are smaller than some in S-- and others 
in S-+ that are greater than some in S++. In addition 
we know that both IS-1 and IS++1 are less than (S(/2 
since IS’-- I = IS’++ I. We also know all the nodes (and 
their weights) explicitly in S-+, and hence can find the 
smallest node in VT+ in 0( I,‘?-+[) time. Thus it suffices 
to find the smallest node in S--, and taking S’ = S-- 
completes the proof. The analogous technique works to 
find the largest node in S, or the rank of a node z and 
the sets Ssx and S’” in O(AlSl) time. We will call the 
process of determining the sets S--, S-+, S++ sifting. 

Now suppose we wish to find 5’; and 5’2 for some 
(Y E [0, 11. We assume cr < l/2 since the case (Y > l/2 is 
analogous. Let p = max{cr, 3/7}. We repeat the sifting 
process as before, except that we find the 

P-partition V = Vf U V’p+. For each set Ri we now 

set Rf = Ri n VL and Rt = R n Vp’, and define the 

sets Rj, Vj, Sj as before for j = --, -+, ++. 
Let y = IV--l/lVl = IS--[/ISI. For the sake of 

simplicity we ignore floors and ceilings for the moment. 
It is not hard to see that we have IV-+1 = 2(/3 - y)lVl 
and IV++1 = (y+ 1-2p)lVl. Thus IS-+1 = 2(/3-r)lSl 
and IS++1 = (y + 1 - 2p)ISI. Using the algorithm 
described above we find, in O(AlSl) time, the largest 
node s- in S-- and the smallest node s+ in S++ 
respectively. Let S-+ = Si U Sz U S’s where Si contains 
the nodes in S-f less than or equal to s-, and S’s 
contains the nodes in S-+ greater than or equal to 
s+. We can find these sets using the usual linear time 
selection algorithm on S-+ . 

Let A = S-- U Sr, let 6 = IAI, and let 2 = S-+. 
If 121 2 crlSI, we set p = alSI/IZI, and using the 
standard linear time selection algorithm we find a p 
partition 2 = 2; U 2,‘. We now prove that there is 
always one of the sets A, S - A, 2: whose nodes we can 
remove from S, because we can assume that they are in 
one of the sets of the o-partition. Moreover, we prove 
that the set we remove contains at least 1/7th of the 
nodes in S. 

First note that each node in S - A has weight at 
least as large as any node in A, so if IAl 2 alSl then we 
place the nodes in S-A in Sz and reduce the problem to 
finding the a(lSI/IAl)-partition of A. Symmetrically if 

I4 I 4Sl we ~1 ace the nodes in A in S; and reduce the 
problem to finding the (1 - cr)( ISl/( ISI - IAl))-partition 
of S - A. A similar argument applies to removing 
the nodes in 2: when we have 121 > (YISI, and we 
reduce the problem to finding the cr(lSl/(lSl - lZ,+l))- 
partition of S-2:. We now consider the sizes of the sets 
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involved. If y 2 p/3 we have 121 > 4pIS1/3 2 (YISI and 
lqtl = (w-Y)--~)IsI 2 (P-27Wl L WI/3 2 PI/7 
since /3 2 (Y and p >_ 3/7. Now suppose y 2 p/3. 
We have 7 2 l/7 so IAl 2 IS’-- I 2 lSl/7, and 
IS - Al > IS++1 = IS-- I. Thus in all cases there is 
a set of size at least ISI/ that can be removed, and we 
have reduced the problem to a realizable set of size at 
most 615’1/7 in O(AlSl) time. 

It is easy to use the above ideas to compute, in 
O(AlSl) time, the rank in S of any node 2, as well 
as finding Ss” and S’“. Moreover, computing ISI is 
trivial from the node-group list for S. Combining these 
observations yields a DA fast selection system for any 
realizable set in layer h + 1, where the constant D is 
independent of h. It is interesting to note that the 
largest portion of D is a result of applying Theorem 4.1 
to merge the selection system for the singleton node- 
groups with the selection system for the larger node- 
groups. 

The arguments above yield an O(Db) fast selec- 
tion system for realizable sets in layer h. By divid- 
ing all the original weights by the smallest weight, we 
may assume that they lie between 1 and cr, and hence 
we must process at most Hga + 11 layers before reach- 
ing the point where the worklist is a single region con- 
taining only crossable nodes. At this point we have 
a O(D’g”(S() = O(n) fast selection system, and we 
can apply Theorem 3.1 to determine the levels of these 
nodes, which we then use to determine the levels of the 
original weights. 

5 Hardness Results. 

We begin with a simple hardness result that shows con- 
structing the intermediate lmcp tree produced by Hu- 
Tucker baaed algorithms in any model of computation 
is at least as difficult as sorting in that model. We 
also give a more complicated reduction from sorting to 
constructing the optimal alphabetic tree by means of a 
region-based method. 

5.1 Finding the hncp tree. 

We will need the following simple lemma (proof 
omitted). 

LEMMA 5.1. Let x1, x2,. . .,x, be distinct real 
numbers drawn from [2,4). Let yi = $x[i,2~+1, for 
i = 1. ..2n. If (yl,..., yzn) is given as input to any 
tmcp finding algorithm, the set of the first n lmcps 
found, disregarding order, will be 

{(Yl>YZ)>(Y3,Y4),. --,(YZn-l,Y2n)}. 

THEOREM 5.1. We can reduce sorting sequences of 
size n to finding the lmcp tree in O(n) time. 

Proof. Assume n is even. Let xi, x2,. .,x, be 
drawn from [2,4). Define the yi as above and consider 
the behavior of some lmcp-combining algorithm on the 
input sequence ~1,. . . , yz,,. According to Lemma 5.1, 
after n lmcps have been combined there will be n cross- 
able nodes in the worklist with the weights xi,. . . , z,. 
The only lmcp in the list is the smallest pair of nodes 
in {xi,. . . , xn} which combine to form a new node with 
weight at least 4. The next lmcp will be the second 
smallest pair of nodes from {xi, . . . , x,} and so on. 
Hence the next n/2 lmcps found sort {xi,. . . , x,} by 
pairs. Moreover, the fully sorted order of the xi can 
be recovered from the lmcp tree (independent of how it 
was constructed) by searching the tree depth-first, and 
always searching the least weight subtree first, since the 
nodes corresponding to {xi, . . . , x,} will be encountered 
in sorted order. This shows that sorting can be reduced 
to finding the lmcp tree in O(n) time. 

5.2 Region-based Methods. 

In light of the linear-time algorithm for the constant 
factor case, it is natural to look for a o(nlgn) time 
region-based method of determining level numbers for 
the general case. As before, we would hope to avoid 
determining all the lmcps. The wallflower is the difficult 
case to handle because it is the only node in its region 
that pairs with a node outside its region. Since the 
wallflower may pair with the lmcp formed from the 
two smallest nodes in its region, one might expect that 
a region-based method following this general approach 
would determine the smallest two nodes in each region. 
However, the following theorem gives an sZ(n ig n) lower 
bound for such a method in any model in which an 
information theoretic argument can be applied. 

THEOREM 5.2. With O(n) additional work, any 
region-based method that constructs a tree with the same 
leaf levels as the lmcp tree, and such that the smallest 
two nodes in- each region root the same set of leaves 
as the corresponding nodes in the lmcp tree, can be 
used to soti sequences possessing a particular structure. 
Moreover, the number of distinct orderings among such 
sequences is R(n”(“)). 

Proof. We show the existence of a sufficently large 
class of input sequences, such that for any sequence 
in the class, a region-processing algorithm which accu- 
rately finds the smallest two nodes in each region deter- 
mines the structure of the lmcp tree up to isomorphism. 
The proof is completed by showing that for these se- 
quences, the sorted order can be determined from the 
lmcp tree in O(n) time. 

The input sequences we consider consist of approxi- 
mately fi regions, each containing about fi nodes, 
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and such that the category of a given region is one 
more than the region on its left. We assume n = 
k2 + 3k + 4, where k is a positive integer. The input 
list will consist of weights which form successively in- 
creasing regions. The first region will contain weights 
values in [l, 2), the next [2,4), then [4,8), etc. De- 
note the jth value in the ith region by yij. The first 
region will have 4k + 4 weights; the remaining have 
2(k - l), 2(k - 2), 2(k - 3), . . . ,2 weights respectively. 
Note that 4k+4+2(k-1)+2(k-2)+. . .+2 = k2+3k+4. 
Let 21 < 22 < . . . < z211+1 be real numbers in [2,4). 
The values for the {yij} will be determined from the 
{zi}. As the proof depends on the crossability of nodes, 
the values come in pairs so that the leaf nodes initially 
combine in pairs (this will be.proved in Lemma 5.2). 

Consider the following recursively generated binary 
tree built from the {xi}. If internal nodes are assigned 
the sum of the weights of their children, then it has the 
property that the left child of any node is always less 
than the right. 

that doesn’t blank); with blank); with blank); with 
blank); with blank); with blank); with blank); with 

blank); with 

Figure 2: The ordering tree 

The input weight list is as follows, with regions 
distinguished by height. 

Y3,1, Y3,2 

Y2,1, f/2,2, Y2,3, Y2,4 

Yl,l, Y1,2,. . . , ?41,15, ?h,lS 

that doesn’t blank); with blank); with blank); with 
Now consider the behavior of any region-based 

blank); with blank); with blank); with blank); with 
algorithm which finds the smallest two lmcps in every 

blank); with 
region. The region chosen to process will always be 
the first one on the left, as the regions present are 

there are always be an even number of nodes in every 

x15 x16 
Proof. We may assume that we begin by combining 

Figure 1: Tree generated from {Xi} 

Figure 1 shows the tree built for k = 3. The tree 
built for k = 2 is the subtree rooted at the left child of 
the root. The tree for k = 4 has this tree as the left child 
of its root, with the right child of the root consisting of 
an arm with leaf weights 217 + . . . $ 224, ~25 + . . . $ 

zsg, c2g + 230,231, ~32 from left to right. 
The purpose of this tree is to assign values to 

the {Yij). Randomly distribute consecutive pairs 
(Yl,j,Yl,j+l), j = 1,3,. . ., 4k + 3, among the 2k + 2 low- 
est terminal leaves in this tree. For j = 1,. . . ,4k + 4, 
let yij be half the weight of the leaf that it is associ- 
ated with. Then assign values to consecutive pairs of 
the 2(k - l){yzj} by distributing them among the next 
lowest terminal leaves and so on. This new tree is called 
the ordering tree, and is shown in Figure 2. It records 
how the weights were assigned, and also their sorted or- 
der. 

all the lmcps in the lowest (largest level) region. From 
Lemma 5.1 we know that since the weights come in 
consecutive pairs of the same weight, these pairs will 
eventually form lmcps and combine, in agreement with 
the ordering tree. At this stage the lowest region in the 
worklist consists of crossable nodes interspersed with 
some noncrossable ones, which again come in pairs. It 
is easily seen from the ordering tree that there is always 
an even number of crossable nodes smaller than the 
consecutive pairs of noncrossable nodes in the lowest 
region. Thus we know that these crossable nodes 
will pair off first, and then the consecutive pairs of 
noncrossable leaf nodes will pair off as is shown in the 
ordering tree. It is clear from the ordering tree, that 
this process continues and the lmcp-tree, with every 
internal node’s children ordered by increasing weight is 
isomorphic to the ordering tree. 

We can now easily predict how the weights will be 
distributed on the tree T that our algorithm produces. 
We know that the last region processed will contain just 
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two nodes. Since these nodes will be the two smallest 
nodes in that region, their weights must match the 
weights of the same nodes in the lmcp tree. The smallest 
node will thus root all the leaves on the left branch of 
root the ordering tree, while the second smallest (the 
largest, in this case) node will root all the leaves on the 
right branch. In time proportional to the number of 
leaves we find, we can traverse the right branch of our 
tree and find all the leaves and hence weights {yij} that 
are on the right branch of the ordering tree. Since there 
are only a constant number of leaves per level, we can 
afford to sort each level, and hence begin sorting each 
of the regions in the initial input list. We now use this 
idea recursively on the subtree rooted at the smallest 
node of the last region. This lets us find all the leaves 
in the right branch of the left branch from the root 
in the ordering tree. Again, we may sort the weights 
present by region, and append them to the beginning 
of the sorted region lists created previously. This will 
take time proportional to the number of nodes in this 
branch. By repeating this process, we will completely 
determine every input weight’s location in the ordering 
tree, and from this information produce sorted lists of 
the weights in each region in the input. All this takes 
only O(n) time to do, once the tree T is known. 

The input sequences that we consider are subject to 
the restriction that the first 4k + 4 weights come before 
the next 2(k - 1) which come before the next 2(k - 2) 
and so on. The total number of different orderings of 
these sequences is 

(2k + S)!(k - l)!(k - 2)!. . . (2)! 

> ([k/2]!p’4 
> [k/4][k/41[k/21 

= R( k@@‘)). 

Since k = O(ni), this number is Q(n@(“)). 

6 Conclusions. 

In this paper we have extended the ideas of Hu and 
Tucker for 

constructing optimal alphabetic binary trees. In 
particular, we have used their basic idea of lmcp tree 
construction together the new idea of region-processing 
to give O(n) time algorithms to solve the cases where 
the input weights are within a constant factor, or ex- 
ponentially separated. The constant factor case makes 
use of a new technique for doing generalized selection 
in O(n) time. We show that any natural method em- 
ploying either the idea of lmcp tree construction or the 
idea of region-processing may force us to sort a substan- 
tial amount of the input. The basic question of whether 
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there is a general o(n lg n) time algorithm for finding op- 
timal alphabetic binary trees for this problem remains 
open. 
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