
Chapter 21

Upper and Lower Bounds on Constructing Alphabetic Binary Trees

Maria Klawe*

Abstract

This paper studies the long-standing open question of

whether optimal alphabetic binary trees can be constructed

in o(nlgn) time. We show that a class of techniques for

finding optimal alphabetic trees which includes all current

methods yielding O(nlg n) time algorithms are at least as

hard as sorting in whatever model of computation is used.

We also give O(n) time algorithms for the case where all the

input weights are within a constant factor of one another

and when they are exponentially separated.

1 Overview.

The problem of finding optimal alphabetic binary trees
can be stated as follows: Given a sequence of n positive
weights wi, . . . , w,, construct a binary tree whose leaves
have these weights, such that the tree is optimal with
respect to some cost function and also has the property
that the weights on the leaves occur in order as the tree
is traversed from left to right. A tree which satisfies this
last requirement is said to be alphabetic. Although
more general cost functions can be considered (as is
done in [4] and [9]) we concentrate here on the usual
function, namely C wili where li is the level of the
ith leaf from the left in the tree. The first O(nlgn)
time solution was given in Hu and Tucker [5] in 1971,
following algorithms with higher complexity in [3] and
[6]. If we remove the restriction that the tree must be
alphabetic, then the problem becomes the well-known
problem of building Huffman trees, which is known
to have O(n lgn) time complexity in the comparison
model. Modifications of the Hu-Tuker algorithm also
running in O(nlgn) time but with simpler proofs, are
given in [a], and [4]. Th e only recent progress on this
problem has been made by Ramanan [lo] who showed
that it is possible to verify that a given alphabetic tree
on a sequence of weights is optimal in O(n) time when
the weights in the sequence are either within a constant

*Department of Computer Science, University of British
Columbia, Vancouver, BC Canada V6T 122; this research par-
tially supported by NSERC

tDepartment of Computer Science and Engineering, Univer-
sity of Washington, Seattle, WA 98195; this research partially
supported by NSERC

Brendan Mumeyt

factor, or exponentially separated (notions we define
precisely later). However, it seems substantially more
difficult to actually construct the optimal tree in linear
time in the constant factor case.

The next section summarizes current methods and
introduces the concepts needed to frame our results. In
$3, we introduce a technique, region-processing, which
forms the basis of our linear time algorithms. We start
with a fairly simple O(n) t ime algorithm for finding the
optimal alphabetic tree when the weights are within a
factor of 2. We also observe that the basic region-based
method solves the case where the input weights are
exponentially separated in O(n) time. We generalize
this technique in $4 to the case where all the weights
are within a constant factor of one another. The
generalization depends on solving a new generalized
selection problem, that may be of interest in its own
right. In $5 we give reductions of sorting problems to
Hu-Tucker based algorithms and region-based methods.
This provides fi(n lgn) t ime lower bounds for Hu-
Tucker based algorithms in the comparison model, and
indicates that region-based methods are unlikely to
yield a o(n lg n) algorithm.

2 Current Methods.

We give a brief description of the Hu-Tucker algorithm
to the extent necessary to explain our results. Complete
descriptions and explanations can be found in [5,4,
91. All Hu-Tu k c er based methods begin by building
an intermediate tree, called the lmcp tree, whose
leaves hold the given set of input weights, though not
necessarily in the correct order. The levels of the
input weights in the lmcp tree are recorded and this
information is used to build an alphabetic tree on the
input weights, with each input weight occurring at the
same level as in the lmcp tree.

Constructing this alphabetic tree can easily be done
in O(n) time, as shown in [5]. Since the cost function
depends only on the levels of the the leaf nodes, the
cost of the alphabetic tree is the same as the cost of
the lmcp tree. Hu and Tucker prove that the lmcp tree
has optimal cost in a class of trees which contains all
alphabetic trees, and hence it follows that the alphabetic
tree constructed is optimal. We are able to prove that

185

186 KLAWE AND MUMEY

in the comparison model, constructing the lmcp tree
requires s2(n lgn) time in the worst case, but since it
suffices to know only the levels of the leaf weights in
the lmcp tree and not its full structure, we can improve
on the performance of the Hu-Tucker algorithm in a
number of cases.

The Hu-Tucker algorithm maintains a worklist of
weighted nodes in the lmcp tree that have not yet been
assigned their sibling and parent. The basic step in
the algorithm consists of selecting two nodes from the
worklist to be paired off as siblings in the lmcp tree,
removing these nodes from the worklist, and inserting a
new node (their parent) in the position of the leftmost
replaced node with weight equal to the sum of the
two removed nodes. Initially the worklist is the list
of leaf nodes with the weights WI,. . . , w,, in order.
Nodes in the worklist are designated either crossable
or noncrossable. Initially all nodes are noncrossable.
When any two nodes are paired off, the resulting parent
node is designated crossable. Two nodes in the worklist
are compatible if they are adjacent, or if all the nodes
which separate them are crossable. The symbol v will
refer

to a node in the worklist and W(V) will refer to its
weight. The level of a node v in the tree is denoted by
I(V). Define an order on the nodes in the worklist by
V, < wY if w(v=) < w(v~) or if W(Q) = w(wy) and w. is
to the left of vY in the list. A pair of compatible nodes
(v,, 06) is said to be a local minimum compatible
pair (Imcp) if

and only if the following two conditions hold:
1. vb 2 vz for all nodes on compatible with node v,.

2. v, 2 zlY for all nodes zlY compatible with node vb.
The lmcp tree is constructed by repeatedly combin-

ing lmcps from the worklist until a single node remains
which will be the root of the lmcp tree. This is usually
implemented by a stack-based algorithm that starts at
the beginning of the worklist and moves a pointer along
the worklist until an lmcp is found. After removing the
nodes in the lmcp and inserting the new parent node,
the pointer is moved back one node, and the search for
lmcps resumes. To check whether an lmcp has been
found, the algorithm compares the smallest node 1: be-
fore the pointer node y that is compatible with y, with
the smallest node z after y that is compatible with y.
If z < z, the algorithm concludes that z and y form an
lmc,p; otherwise it move the pointer forward one node.
The total number of pointer moves is O(n), since O(n)
nodes are placed in the worklist in total, and the num-
ber of backward moves is bounded by the number of
lmcps found, which is also O(n). Hu-Tucker methods
take O(n lg n) time because they maintain information
on which node has the minimum weight in intervals of

crossable nodes in order to find the nodes 2 and z. Up-
dating this information when an lmcp is found can take
O(lg n) time. In general, the construction of the lmcp
tree is not unique, since the lmcps may be combined in
different orders, but, as proved in [5], the resulting tree
is unique. Thus, for any node v in the worklist, we can
define the lmcp partner of 21 to be the node that is the
sibling of ‘u in the lmcp tree.

3 Region-based Methods.

We present a new approach for finding optimal alpha-
betic binary trees in which the input weights wi are first
classified according to their order of magnitude, base 2.
Define the category of a node of weight w to be [lg w] .
A maximal length sequence in the worklist of weights
with the same category is called a region. By keeping
a stack of regions, and only considering regions whose
adjacent regions have higher category, we can restrict
most of our attention to the pairings occurring within
these regions. We call this region-processing. This is
motivated by the situation where all input weights are
within a factor of 2. If this is the case, it is easy to
determine the leaf levels in the lmcp tree using Theo-
rem 3.1.

THEOREM 3.1. Given a sequence of n crossable
nodes which are within a factor of two, after the first

[(n + 1)/2] lmcps h ave been found and combined, the
new sequence will consist of [n/2] nodes whose weights
are again within a factor of two. Furthermore, if we
keep combining lmcps, the resulting lmcp tree will be
balanced, with the leaves differing in level by at most
one. Specifically, the 2(n - Z[‘g”]) smallest weights will
be at level [lgn] + 1 and the others will be at level [lgn].

Proof. We note that since all the nodes are cross-
able, this reduces the problem to building a Huffman
tree, where the result is known. We present a new proof,
which provides insight to the actual behavior of the al-
gorithm, and motivates our results to follow.

Let the initial sequence of nodes in the worklist
be vi,... , w, and let c be a real number such that
c 5 W(Q) < 2c for i = 1 to n. Whenever two nodes
form an lmcp and combine, the weight of the new node
is greater than 2c, so it will not be involved in another
lmcp until there are less than two nodes smaller than
2c. When n is odd, after (n - 1)/2 pairings have
occurred, the worklist contains only one node of weight
less than 2c, namely the largest weight node present in
the original sequence. We call this node the wallflower.
The wallfower forms an lmcp with the smallest weight
newly formed node. When n is even the largest weight
node present in the original sequence

merges with another original node. Thus, regardless
of whether n is odd or even, the rightmost (there may

CONSTRUCTING ALPHABETIC BINARY TREES

be more than one) largest weight node will merge during
the [(n+l)/2]th lmcp pairing. At this stage the worklist
will contain exactly [n/2] nodes, none of which are
original nodes, and their weights will be within a factor
of two, as we show below.

This is obvious if n is even, so suppose n is odd,
and let o be the node with the smallest weight, w(w) =
VJ(V;) + I, among the first (n - 1)/2 newly formed
nodes. Clearly the rest of the first (n - 1)/2 newly
formed nodes have weights less than ~T..v(v). Let vk be
the wallflower.

The next node formed is the parent of v and 2)k, and
has weight VJ(Q)+WJ(V~)+~(V~). Now, since the original
weight sequence was within a factor of two, W(Q) <
W(7Ji)+W(Wj) = W(o), SO w(~k)+w(~i)+w(~j) < 2W(W),
which completes the proof. One further observation
that will be important is that the weight of the parent
of the wallflower is strictly greater than the weight of
the other (n - 1)/2 nodes in the current worklist.

Let us call the pairings up to this point a phase of
the algorithm, and consider how the phase affects the
levels of the leaves in the lmcp tree. Obviously the phase
contributes one to the level of each leaf in the lmcp tree
if n is even. When n is odd, this is true for all the leaves
except for the two whose parent was paired with the
wallflower. These two, which we call the wallflower’s
step-children, have had their level increase by exactly
two. Since the wallflower’s parent has the unique largest
weight in the worklist at the end of the phase, at the
end of each later phase this node’s ancestor always has
the unique largest weight in the worklist. Thus each
later phase contributes exactly one to the level of the
wallflower’s step-children. Applying this argument to
the step-children of wallflowers from later phases proves
that the level of any two leaves in the lmcp tree differs
by at most one. Since the lmcp tree which has optimal
cost, the smallest weight original nodes must be at the
bottom level, i.e. the largest numbered level. Thus for
some integer z, we have the 22 smallest weight original
nodes on level [lg n]+l , and the remaining n-2x original
nodes on level [lg n]. We require t + n - 2x = 211snl, so
x = 11. - @34.

COROLLARY 3.1. There is a linear time algorithm
for finding an optimal alphabetic binary tree on a se-
quence of input weights which differ at most by a factor
of two.

In point form, the algorithm for finding the levels
of the leaves in the alphabetic tree is as follows:

1. Initialize the worklist to contain the original input
sequence. Note that all nodes are noncrossable.

2. Use a stack-based method to find lmcps and pair
them off, removing each pair of nodes from the

187

worklist, and placing the parent in a temporary
list but not in the worklist. These newly formed
nodes can be left out of the worklist because their
weights are greater than any of the original weights,
and hence need not be considered in the search for
lmcps. This process continues until there are zero
or one nodes left in the worklist, and as discussed
in the remarks on stack-based algorithms in $2,
requires only O(n) t ime because of the absence
of crossable nodes in the worklist. If a single
node x remains (n is odd and x is the wallflower),
scan through the temporary list of newly formed
crossable nodes to find the smallest node y. Pair t
with y, and replace y in the temporary list by its
parent.

At this stage we have m = [n/2] crossable nodes
in the temporary list. Moreover the new nodes are
still within a factor of two, by the same argument
as in the proof of the preceding theorem.

We can now, by the preceding theorem, directly
find the levels of every leaf in the lmcp tree for the
remaining m crossable nodes in O(n) time, using
a linear time selection algorithm [l] to find the
2(m - 21’sml)th weight in the temporary list. This
node and nodes with smaller weights have level
[Ig m] + 1, and the remaining nodes are assigned
level [lgm]. Given this, it is trivial to compute the
levels of the nodes in the original input sequence in
an additional O(n) time.

With knowledge of the leaf levels we can construct
the optimal alphabetic tree for the input sequence
in O(n) time.
A similar technique can be applied to predict how

nodes in a region R with lowest category number
combine to form nodes in a region with the next
category number. Notice that when the number of
nodes in R is odd, its wallflower will pair with the
smallest weight node in the set consisting of the lmcps
formed out of R and the compatible nodes from the
two regions adjacent to R. When the gap in category
number between adjacent regions is large enough, this
method yields faster performance than the Hu-Tucker
algorithm. The complete algorithm is described in [9].
Its basic idea is to maintain a stack of the current regions
in the worklist, and process the region at the top of
the stack if its adjacent regions have greater category.
If not, the stack pointer is advanced. The cost of
processing a region of size r is O(r lg r). Since processing
a region yields a new region of half the size, it is easy
to verify that this method has O(n lg n) running time.
If the input weights {wi} are exponentially separated,

188

i.e. if there is a constant C such that for all integers
k,]{i :]lgwiJ = k}] < C, then it is also easy to
verify that this method yields an O(n) time algorithm,
since each region can be processed in constant time as
the size is bounded by 2C. The ideas in Theorem 3.1
can also be used to reduce the cost of processing a
region of size r to below O(r lg r) when the difference in
category numbers is great enough, which may be useful
in implementations. Details are given in [9].

4 The Constant Factor Case.

We now describe the linear time algorithm for weights
within a constant factor, i.e. such that max{wi/wj} < u
for some constant 6. As before it suffices to determine
the levels of the leaf nodes in the lmcp tree. We use a
region-based method to process the weights region by
region in increasing order by category number until we
are left with a single region of crossable nodes. We then
apply Theorem 3.1 to determine the lmcp tree levels
of the nodes in this final region, and work backwards
to find the lmcp tree levels of the original weights. In
order to achieve the linear time bound, when processing
a region we cannot afford to determine which nodes pair
together in lmcps, nor the weights of the lmcps formed.
Instead we work with coarser information about the
structure of the lmcp tree. An interval of nodes in a
region’s worklist is lmcp-closed if the lmcp partner of
each node in the interval is also in the interval. Our
algorithm works by partitioning the region’s worklist
into lmcp-closed intervals, and replacing each lmcp-
closed interval, by a nod&group representing the
lmcps formed out of that interval. From the definition
of lmcp, it is easy to see that internally reordering an
interval of crossable nodes, or pushing a larger crossable
node to the right of a smaller noncrossable node does not
affect the construction of the lmcp tree. Our algorithm
uses such rearrangements of the worklist in finding the
partition into lmcp-closed intervals.

The worklist thus is now an ordered list of node-
groups, in which each noncrossable node appears as a
singleton node-group, but intervals of crossable nodes
within a region may appear in groups of arbitrary size.
A set of nodes in the worklist is realizable if it is
the union of a set of node-groups in the worklist. The
algorithm performs certain types of selection operations
on realizable sets of nodes in the worklist. For example,
on reaching the point where the worklist contains a
single region of crossable nodes, determines the smallest
k of these nodes in order to apply Theorem 3.1. These
selection operations may require that some of the node-
groups be refined, in order that the result be in the
form of realizable sets. For example, suppose N is a
realizable set of nodes in the worklist. Determining ,_

KLAWE AND MUMEY

the largest [smallest] node II in N requires replacing
the node-group containing v by a node-group list in
which v is a singleton node-group, unless v is already
a singleton. Similarly, determining the k smallest
nodes in N requires a node-group list in which the
desired set is the union of a set of node-groups in
the refined list. To perform such operations efficiently
we provide selection algorithms for realizable sets that
determine the appropriate refinements. This is the
concept underlying fast selection systems.

DEFINITION 4.1. For any A 2 1, we say a
(multi)set S has a A fast selection system if:

Va E [O,l], in A]S] time we can produce two sets
S; and Sz, each with A fast selection systems such
thatS=S;US,+,VzES; andVyES2, z.Ly,
;rzi y 1 = LcIISIJ. (We call this un a-partition

V3: > 0, in A]S] time, we can compute the rank
of x in S, denoted by rs(x), and produce two sets
SIX and $P, each with A fast selection systems
such that Ssz = {y E S : y 5 x} and S>” = {y E
S : y > x}. (The rank of x in S is the number of
elements in S less than or equal to x.)

In A]S] time we can compute IS].

In addition, when interpreted in the con-
text of node-group lists, we require that the sets
5’; , ,572, S’s”, 5”” be realizable. We use the term layer
h for the regions in the worklist with category number
h, and process the regions in the worklist a layer at a
time beginning with the smallest layer. Processing layer
h consists of creating node-group lists representing the
new nodes formed in layer h + 1. Consider the ques-
tion of creating a node-group list representing the new
nodes, T, formed from a single region R of r nodes. If r
is even, because the regions adjacent to R in the worklist
have higher category numbers, R is lmcp-closed and the
node-group list for T is a single node-group. If T is odd,
then the only node of R whose lmcp partner is not in R
is its wallflower Z. It is straightforward to prove that z
is the largest node in the subset {y E R : y is crossable
or y is noncrossable and is in an odd-numbered position
from an end of R}. Note that this subset is realizable,
so z can be identified by fast selection, and we create a
node-group gl representing the lmcps formed from the
nodes on the left of Z, and another one, gr for those from
the right, respectively. To determine the lmcp partner
of z we need to know the smallest node v in gr U gr,
which again is realizable. We complete the processing
of z by comparing v with the smallest compatible nodes
on either side of gr, gr in the worklist (found using se-
lection on realizable sets), and replace J and its partner
by a singleton node-group representing this lmcp. This

CONSTRUCTING ALPHABETIC BINARY TREES 189

singleton node group may be in layer h + 2, in which least m. Note that c,,, IAil 2 fjAl by the definition
case we place it as far to the right as possible (in front
of the first node in layer h + 2 or higher). The remain-

of M. Hence]A - B] = I UisJ AZ,,] > al.41 and so we

ing challenge is to construct the fast selection systems
reduce the problem to finding a P-partition in B, where

for realizable sets which is done by induction on layer
/3 = a/-#. We set A, = BP and AZ = UiE~At,2 U Bi.

number.
In this case we reduce the problem to one at most 3/4 of

We may assume that when we begin processing
the original size in (6 + 3A)]A] time. Since B is a union

layer it, we have a node-group list for each region and
of sets with A fast selection systems, an easy inductive

a fast selection system for any realizable set in the
argument on the size of A shows that we can produce

node-group list representing a region in layer h. The
A; and AZ in &(6 + 3A)IAI 2 36A]A] time.

base case is covered by the usual linear time selection The fact that As”, A>x, A; and Ai each have 36A

algorithm since all weights in the bottom layer are fast selection systems again follows easily by induction

known explicitly. A key tool is the construction of a fast on IAl since they are unions of sets with A fast selection

selection system for the union of sets with fast selection systems.

systems. This is provided by the following theorem. We are now ready to show how to construct a DA

THEOREM 4.1. Let A = Uy=,Ai, where each Ai fast selection system for a realizable set S in layer h + 1

has a A fast selection system. Then A has a 36A fast g iven A fast selection systems for realizable sets in layer

selection system. h. By the preceding theorem we may assume that there
are no singleton node-groups in the representation of

Proof. Let z be any value. We can compute the S, since otherwise we can use the usual linear time
rank of z in A easily since TA(Z) = ~~=‘=,r~~(z). selection algorithmfor the set S* of nodes in S occurring
Moreover Asz = Ui”,,Af” and A>” = l&A)“. The as singletons, and use the selection systems for S*
time cost for this is the cost of finding RH, plus and S - S* to get a selection system for S. This
the cost of constructing the Af” and A)“. This is assumption says that there is a set {&} of disjoint

C;=“=, AlAil + C;zI AlAil = 2AlAI. lmcp-closed realizable intervals in layer h such that S is

For (Y E [0, 11, we construct A; and AZ as follows. the lmcps formed from V = Q&. We first show how
For each i compute A<,, , AL,, , and rni = minAL,z. to find the smallest weight node in S by proving that

This can all be done in 2A]A] time. Compute the in O(A]S]) time we can reduce the problem to finding

median m of the multiset M = U~==,Mi where A4i the smallest weight node in a realizable subset S’ of S

contains exactly (Ai I copies of mi. This can be done where IS’] 2]S]/2. D uring the reduction we perform

in 6lAI time using the selection algorithm of Blum et refinements on the node-group lists for layer h, but

al [l]. Now compute TA(rn) as above, in A]A] time. If the definition of fast selection systems assures that the

l”A(m) = lalAll we are done, as we can take A, = A<“’ existence of A fast selection systems for realizable sets

and Ai = A>m. If not we may assume rA(m) > [cxIAI] in layer h is not affected. Finding the smallest node is a

since a symmetric argument handles the other case. special case of finding an a-partition, but the algorithm

Let J = {i + : rni 2 m}, let B = A - U~~JA~~,~ and is slightly simpler. Moreover, since it is a subroutine

note that every element in A - B is at least m. If used in finding general o-partitions, presenting it first

IBI < LcxIAI], since rA(m) > [cIIAIJ there must be at ‘larifies the exposition’
least [cIIAIJ - IBI 1 e ements in A - B that equal m. Thus The set V is realizable, so in AlV] time we can find

it suffices to identify a subset D of these elements with the l/2-partition V = Vli2 n V&. For each Ri we write

IDI = [cYIAI] - IBI and take A; = B u D. TO find D R7 = Ri n V$ and R? = Ri n Vzs. we assume,
we first find (AL,p)5m for each i in J. Every element in by reordering if necessary, that for each interval C of

U~E.J(A~,~)~“’ must equal m, and thus it suffices to take crossable nodes in Ri, we have Cn Rf preceding Cn Rf .

D to be any subset of lJie~(At,~)<“’ of the appropriate
We now run an algorithm on R; to partition nodes

size. Such a subset can easily be obtained by taking each
of Ri into three lmcp-closed sets, Ri = Rf- U Rf+ U

(A2p” until adding another set will result in more
R7+ according to whether the node and its lmcp

than LcxIAIJ - IBI. At this point fast selection can be
pirtner are in the same class in the partition & =
R; U@+ M

used on this (AI?;,Q)‘” to obtain a subset that will bring
oreover, for each node z in Rr’ (the set in

which z and its lcmp parter p(z) are in different classes),
the total number of elements to exactly [cIIAI] - IBI. th e algorithm explicitly determines z and p(z), and
Thus in this case we will have obtained Ai and AZ in hence can create a singleton node-group for the lmcp
at most (6 + 5A)(A] t ime. If IBI 2 IAl - LaIAIJ we may of z and p(z).
take(A-B)cA$, since every element in A - B is at We use the terms -interval [+interval] to refer to

190 KLAWE AND MUMEY

a maximal interval of nodes in Ri which lies entirely in
Ri [R,+] . Ob . vlously Ri is an alternating sequence of -
intervals and +intervals. Also, -intervals and +intervals
are realizable sets. We first note that if any two
consecutive -intervals are separated by a +interval that
does not contain

noncrossable nodes, we may push the +interval to
the right of the righthand -interval without affecting
the formation of Imcps. Thus in linear time, we
can rearrange each Ri so that there is at least one
noncrossable node in each +interval except for possibly
one on the right end of Ri. If the number of nodes
in a -interval, I, is even, for each z E I we have
p(x) E I. This follows from the fact that S is realizable,
and that each node-group of S represents the lmcps
formed out of a consecutive interval in layer h. Next,
for each -interval, I, with an odd number of nodes,
we use the A fast selection system to find its local
wallflower, i.e. the largest node in I which is either
crossable or is noncrossable and in an odd-numbered
position relative to I. Note that each local wallflower
x is now represented by a singleton node-group and
we know its weight. Let I’ be the set resulting from
removing the local wallflower from I if it has one. It
is not hard to prove that for each z E I’ we have

P(X) E 1’9 so we set Rim to be the union of the
I’. We now remove the node-groups representing the
nodes in Ri- from the node-group list of &. We will
process this reduced list in O(AlRil) time to determine
the lmcp partner of each local wallflower, and define
Ri+ as the set of local wallflowers (i.e. the nodes in
Ri which still remain in the list) together with their
lmcp partners. R’+ is Ri - (Rr- U Rz+). We first
identify, for each end of a +interval, the smallest weight
node in the +interval compatible from that end of the
interval. For each +interval that contains at most one
noncrossable node, we also identify its smallest weight
crossable node. This can be done in O(AIRil) time
using fast selection systems. We now run a linear
time stack-based algorithm to find the lmcp partner
of each local wallflower. Starting at the leftmost local
wallflower, x, by checking its smallest compatible nodes
on each side, y and Z, and, in the case that z is
the only noncrossable node separating x from the next
local wallflower, checking the weight of the next local
wallflower, we determine whether we know that x forms
an lmcp with one of y or z. If not, we move on to the
next local wallflower, and continue with the usual stack-
based approach. It is straightforward to check that upon
removal of an lmcp involving a local wallflower, 2, the
necessary information on the affected +intervals can be
updated in constant time, and this guarantees the linear
time bound.

For j = --,++, -+, let Vj be the union of the
nodes in the Rj , and let Sj be the nodes formed from
Vi. We note that all the nodes in S-- are less than
the nodes in S++, though it is possible there are nodes
in S-+ that are smaller than some in S-- and others
in S-+ that are greater than some in S++. In addition
we know that both IS-1 and IS++1 are less than (S(/2
since IS’-- I = IS’++ I. We also know all the nodes (and
their weights) explicitly in S-+, and hence can find the
smallest node in VT+ in 0(I,‘?-+[) time. Thus it suffices
to find the smallest node in S--, and taking S’ = S--
completes the proof. The analogous technique works to
find the largest node in S, or the rank of a node z and
the sets Ssx and S’” in O(AlSl) time. We will call the
process of determining the sets S--, S-+, S++ sifting.

Now suppose we wish to find 5’; and 5’2 for some
(Y E [0, 11. We assume cr < l/2 since the case (Y > l/2 is
analogous. Let p = max{cr, 3/7}. We repeat the sifting
process as before, except that we find the

P-partition V = Vf U V’p+. For each set Ri we now

set Rf = Ri n VL and Rt = R n Vp’, and define the

sets Rj, Vj, Sj as before for j = --, -+, ++.
Let y = IV--l/lVl = IS--[/ISI. For the sake of

simplicity we ignore floors and ceilings for the moment.
It is not hard to see that we have IV-+1 = 2(/3 - y)lVl
and IV++1 = (y+ 1-2p)lVl. Thus IS-+1 = 2(/3-r)lSl
and IS++1 = (y + 1 - 2p)ISI. Using the algorithm
described above we find, in O(AlSl) time, the largest
node s- in S-- and the smallest node s+ in S++
respectively. Let S-+ = Si U Sz U S’s where Si contains
the nodes in S-f less than or equal to s-, and S’s
contains the nodes in S-+ greater than or equal to
s+. We can find these sets using the usual linear time
selection algorithm on S-+ .

Let A = S-- U Sr, let 6 = IAI, and let 2 = S-+.
If 121 2 crlSI, we set p = alSI/IZI, and using the
standard linear time selection algorithm we find a p
partition 2 = 2; U 2,‘. We now prove that there is
always one of the sets A, S - A, 2: whose nodes we can
remove from S, because we can assume that they are in
one of the sets of the o-partition. Moreover, we prove
that the set we remove contains at least 1/7th of the
nodes in S.

First note that each node in S - A has weight at
least as large as any node in A, so if IAl 2 alSl then we
place the nodes in S-A in Sz and reduce the problem to
finding the a(lSI/IAl)-partition of A. Symmetrically if

I4 I 4Sl we ~1 ace the nodes in A in S; and reduce the
problem to finding the (1 - cr)(ISl/(ISI - IAl))-partition
of S - A. A similar argument applies to removing
the nodes in 2: when we have 121 > (YISI, and we
reduce the problem to finding the cr(lSl/(lSl - lZ,+l))-
partition of S-2:. We now consider the sizes of the sets

CONSTRUCTING ALPHABETIC BINARY TREES 191

involved. If y 2 p/3 we have 121 > 4pIS1/3 2 (YISI and
lqtl = (w-Y)--~)IsI 2 (P-27Wl L WI/3 2 PI/7
since /3 2 (Y and p >_ 3/7. Now suppose y 2 p/3.
We have 7 2 l/7 so IAl 2 IS’-- I 2 lSl/7, and
IS - Al > IS++1 = IS-- I. Thus in all cases there is
a set of size at least ISI/ that can be removed, and we
have reduced the problem to a realizable set of size at
most 615’1/7 in O(AlSl) time.

It is easy to use the above ideas to compute, in
O(AlSl) time, the rank in S of any node 2, as well
as finding Ss” and S’“. Moreover, computing ISI is
trivial from the node-group list for S. Combining these
observations yields a DA fast selection system for any
realizable set in layer h + 1, where the constant D is
independent of h. It is interesting to note that the
largest portion of D is a result of applying Theorem 4.1
to merge the selection system for the singleton node-
groups with the selection system for the larger node-
groups.

The arguments above yield an O(Db) fast selec-
tion system for realizable sets in layer h. By divid-
ing all the original weights by the smallest weight, we
may assume that they lie between 1 and cr, and hence
we must process at most Hga + 11 layers before reach-
ing the point where the worklist is a single region con-
taining only crossable nodes. At this point we have
a O(D’g”(S() = O(n) fast selection system, and we
can apply Theorem 3.1 to determine the levels of these
nodes, which we then use to determine the levels of the
original weights.

5 Hardness Results.

We begin with a simple hardness result that shows con-
structing the intermediate lmcp tree produced by Hu-
Tucker baaed algorithms in any model of computation
is at least as difficult as sorting in that model. We
also give a more complicated reduction from sorting to
constructing the optimal alphabetic tree by means of a
region-based method.

5.1 Finding the hncp tree.

We will need the following simple lemma (proof
omitted).

LEMMA 5.1. Let x1, x2,. . .,x, be distinct real
numbers drawn from [2,4). Let yi = $x[i,2~+1, for
i = 1. ..2n. If (yl,..., yzn) is given as input to any
tmcp finding algorithm, the set of the first n lmcps
found, disregarding order, will be

{(Yl>YZ)>(Y3,Y4),. --,(YZn-l,Y2n)}.

THEOREM 5.1. We can reduce sorting sequences of
size n to finding the lmcp tree in O(n) time.

Proof. Assume n is even. Let xi, x2,. .,x, be
drawn from [2,4). Define the yi as above and consider
the behavior of some lmcp-combining algorithm on the
input sequence ~1,. . . , yz,,. According to Lemma 5.1,
after n lmcps have been combined there will be n cross-
able nodes in the worklist with the weights xi,. . . , z,.
The only lmcp in the list is the smallest pair of nodes
in {xi,. . . , xn} which combine to form a new node with
weight at least 4. The next lmcp will be the second
smallest pair of nodes from {xi, . . . , x,} and so on.
Hence the next n/2 lmcps found sort {xi,. . . , x,} by
pairs. Moreover, the fully sorted order of the xi can
be recovered from the lmcp tree (independent of how it
was constructed) by searching the tree depth-first, and
always searching the least weight subtree first, since the
nodes corresponding to {xi, . . . , x,} will be encountered
in sorted order. This shows that sorting can be reduced
to finding the lmcp tree in O(n) time.

5.2 Region-based Methods.

In light of the linear-time algorithm for the constant
factor case, it is natural to look for a o(nlgn) time
region-based method of determining level numbers for
the general case. As before, we would hope to avoid
determining all the lmcps. The wallflower is the difficult
case to handle because it is the only node in its region
that pairs with a node outside its region. Since the
wallflower may pair with the lmcp formed from the
two smallest nodes in its region, one might expect that
a region-based method following this general approach
would determine the smallest two nodes in each region.
However, the following theorem gives an sZ(n ig n) lower
bound for such a method in any model in which an
information theoretic argument can be applied.

THEOREM 5.2. With O(n) additional work, any
region-based method that constructs a tree with the same
leaf levels as the lmcp tree, and such that the smallest
two nodes in- each region root the same set of leaves
as the corresponding nodes in the lmcp tree, can be
used to soti sequences possessing a particular structure.
Moreover, the number of distinct orderings among such
sequences is R(n”(“)).

Proof. We show the existence of a sufficently large
class of input sequences, such that for any sequence
in the class, a region-processing algorithm which accu-
rately finds the smallest two nodes in each region deter-
mines the structure of the lmcp tree up to isomorphism.
The proof is completed by showing that for these se-
quences, the sorted order can be determined from the
lmcp tree in O(n) time.

The input sequences we consider consist of approxi-
mately fi regions, each containing about fi nodes,

192 KLAWE AND MUMEY

and such that the category of a given region is one
more than the region on its left. We assume n =
k2 + 3k + 4, where k is a positive integer. The input
list will consist of weights which form successively in-
creasing regions. The first region will contain weights
values in [l, 2), the next [2,4), then [4,8), etc. De-
note the jth value in the ith region by yij. The first
region will have 4k + 4 weights; the remaining have
2(k - l), 2(k - 2), 2(k - 3), . . . ,2 weights respectively.
Note that 4k+4+2(k-1)+2(k-2)+. . .+2 = k2+3k+4.
Let 21 < 22 < . . . < z211+1 be real numbers in [2,4).
The values for the {yij} will be determined from the
{zi}. As the proof depends on the crossability of nodes,
the values come in pairs so that the leaf nodes initially
combine in pairs (this will be.proved in Lemma 5.2).

Consider the following recursively generated binary
tree built from the {xi}. If internal nodes are assigned
the sum of the weights of their children, then it has the
property that the left child of any node is always less
than the right.

that doesn’t blank); with blank); with blank); with
blank); with blank); with blank); with blank); with

blank); with

Figure 2: The ordering tree

The input weight list is as follows, with regions
distinguished by height.

Y3,1, Y3,2

Y2,1, f/2,2, Y2,3, Y2,4

Yl,l, Y1,2,. . . , ?41,15, ?h,lS

that doesn’t blank); with blank); with blank); with
Now consider the behavior of any region-based

blank); with blank); with blank); with blank); with
algorithm which finds the smallest two lmcps in every

blank); with
region. The region chosen to process will always be
the first one on the left, as the regions present are

there are always be an even number of nodes in every

x15 x16
Proof. We may assume that we begin by combining

Figure 1: Tree generated from {Xi}

Figure 1 shows the tree built for k = 3. The tree
built for k = 2 is the subtree rooted at the left child of
the root. The tree for k = 4 has this tree as the left child
of its root, with the right child of the root consisting of
an arm with leaf weights 217 + . . . $ 224, ~25 + . . . $

zsg, c2g + 230,231, ~32 from left to right.
The purpose of this tree is to assign values to

the {Yij). Randomly distribute consecutive pairs
(Yl,j,Yl,j+l), j = 1,3,. . ., 4k + 3, among the 2k + 2 low-
est terminal leaves in this tree. For j = 1,. . . ,4k + 4,
let yij be half the weight of the leaf that it is associ-
ated with. Then assign values to consecutive pairs of
the 2(k - l){yzj} by distributing them among the next
lowest terminal leaves and so on. This new tree is called
the ordering tree, and is shown in Figure 2. It records
how the weights were assigned, and also their sorted or-
der.

all the lmcps in the lowest (largest level) region. From
Lemma 5.1 we know that since the weights come in
consecutive pairs of the same weight, these pairs will
eventually form lmcps and combine, in agreement with
the ordering tree. At this stage the lowest region in the
worklist consists of crossable nodes interspersed with
some noncrossable ones, which again come in pairs. It
is easily seen from the ordering tree that there is always
an even number of crossable nodes smaller than the
consecutive pairs of noncrossable nodes in the lowest
region. Thus we know that these crossable nodes
will pair off first, and then the consecutive pairs of
noncrossable leaf nodes will pair off as is shown in the
ordering tree. It is clear from the ordering tree, that
this process continues and the lmcp-tree, with every
internal node’s children ordered by increasing weight is
isomorphic to the ordering tree.

We can now easily predict how the weights will be
distributed on the tree T that our algorithm produces.
We know that the last region processed will contain just

CONSTRUCTING ALPHABETIC BINARY TREES

two nodes. Since these nodes will be the two smallest
nodes in that region, their weights must match the
weights of the same nodes in the lmcp tree. The smallest
node will thus root all the leaves on the left branch of
root the ordering tree, while the second smallest (the
largest, in this case) node will root all the leaves on the
right branch. In time proportional to the number of
leaves we find, we can traverse the right branch of our
tree and find all the leaves and hence weights {yij} that
are on the right branch of the ordering tree. Since there
are only a constant number of leaves per level, we can
afford to sort each level, and hence begin sorting each
of the regions in the initial input list. We now use this
idea recursively on the subtree rooted at the smallest
node of the last region. This lets us find all the leaves
in the right branch of the left branch from the root
in the ordering tree. Again, we may sort the weights
present by region, and append them to the beginning
of the sorted region lists created previously. This will
take time proportional to the number of nodes in this
branch. By repeating this process, we will completely
determine every input weight’s location in the ordering
tree, and from this information produce sorted lists of
the weights in each region in the input. All this takes
only O(n) time to do, once the tree T is known.

The input sequences that we consider are subject to
the restriction that the first 4k + 4 weights come before
the next 2(k - 1) which come before the next 2(k - 2)
and so on. The total number of different orderings of
these sequences is

(2k + S)!(k - l)!(k - 2)!. . . (2)!

> ([k/2]!p’4
> [k/4][k/41[k/21

= R(k@@‘)).

Since k = O(ni), this number is Q(n@(“)).

6 Conclusions.

In this paper we have extended the ideas of Hu and
Tucker for

constructing optimal alphabetic binary trees. In
particular, we have used their basic idea of lmcp tree
construction together the new idea of region-processing
to give O(n) time algorithms to solve the cases where
the input weights are within a constant factor, or ex-
ponentially separated. The constant factor case makes
use of a new technique for doing generalized selection
in O(n) time. We show that any natural method em-
ploying either the idea of lmcp tree construction or the
idea of region-processing may force us to sort a substan-
tial amount of the input. The basic question of whether

193

there is a general o(n lg n) time algorithm for finding op-
timal alphabetic binary trees for this problem remains
open.

References

Dl

PI

[31

[41

P4

[61

PI

[81

PI

[W

t111

M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest and
R. E. Tarjan. Time bounds for selection. Journal of
Computer and System Sciences, Vol. 7, No. 4, pp. 448-
461, 1972.
A. M. Garsia and M. L. Wachs. A New Algorithm
for Minimum Cost Binary Trees. SIAM Journal of
Computing, Vol. 6, No. 4, pp. 622-642, 1977.
E. N. Gilbert and E. F. Moore. Variable length encod-
ings. Bell System Technical Journal, Vol. 38,
pp. 933-968, 1959.
T. C. Hu, D. J. Kleitman and J. K. Tamaki. Binary
Trees Optimum Under Various Criteria. SIAM Journal
of Applied Mathematics, Vol. 37, No. 2, pp. 246-256,
1979.
T. C. Hu and A. C. Tucker. Optimal Computer Search
Trees and Variable-Length Alphabetical Codes. SIAM
Journal of Applied Mathematics, Vol. 21, No. 4, pp.
514-532, 1971.
D. E. Knuth. Optimum binary search trees. Acta Infor-
matica, Vol. 1, pp. 14-25, 1971.
D. E. Knuth. The Art of Computer Programming, Vol.
1: Fundamental Algorithms. Addison-Wesley, Reading,
MA, 1968.
D. E. Knuth. The Art of Computer Programming, Vol.
3: Sorting and Searching. Addison-Wesley, Reading,
MA, 1973.
B. M. Mumey Some new results for Constructing Opti-
mal Alphabetic Binary Trees. M. SC. Thesis. University
of British Columbia, 1992.
P. Ramanan. Testing the optimality of alphabetic trees.
Theoretical Computer Science. to appear.
F. F. Yao. Speed-up in dynamic programming. SIAM
Journal on Algebraic and Discrete Methods, Vol. 3,
No. 4, pp. 532-540, 1982.

