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A b s t r a c t  

In the Uncapacitated Facility Location (UFL) problem, 
there is a fixed cost for opening a facility, and some 
distance matrix d that  determines the cost of distribut- 
ing commodities from any facility i to any consumer j .  
The problem is NP-hard in general and when d consists 
of a distance metric in a graph [7, 12]. However, for 
the case where the commodity transportation costs are 
given by path lengths in a tree, an O(n 2) dynamic pro- 
gramming algorithm was given by [4, 7]. We improve 
this dynamic programming algorithm by using the ge- 
ometry of piecewise linear ]unctions and fast merging of 
the binary search trees used to store these functions. We 
achieve the complexity bound of O(nlogn)  for the Tree 
Location Problem and some related problems. Our ap- 
proach gives a general method for solving tree dynamic 
programming problems. 

I I n t r o d u c t i o n  

The UFL problem [3, 4, 7] has been studied extensively 
in location theory. The essence of the model is a 
trade-off between the facility placement cost and the 
transportation cost. The problem is to open a subset 
of facilities in order to minimize the total cost (or to 
maximize profit) while satisfying all demands. Consider 
a set of clients I - {1,.., m} and a set of sites J = 
{1, .., n} where the facilities can be located. An instance 
of the problem is specified by integers m and n, an 
m x n transportation cost matrix C = {c~j} and an 
n-dimensional facility setup cost vector f = { f j } ,  such 
that  ] j  > 0. For any set S of facilities, it is optimal 
to serve a client i from a facility j for which cq is 
minimum over all j E S. Thus, given S, the cost of 
S is Y~4el min jes  c~j + ~'~-jes fJ" The problem is to find 
a set S so that  the cost is minimized. In [4, 7], an 
integer linear programming formulation for this problem 
is given. This problem, in general, was shown to be NP- 
hard [7, 12] by reduction to vertex cover. But on trees, 
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various polynomial algorithms were given by [1, 4, 7l. 
When defining this problem on trees (or graphs), 

we take the set of clients and sites to be the entire 
vertex set V. Let T -- (V, E)  be a tree with vertex 
set V and edge set E.  The cost of opening a facility 
at vertex j is ]j.  Each edge e E E has a nonnegative 
length. The distance dij between any pair of vertices i 
and j is the length of the shortest pa th  for graphs. We 
also associate a nonnegative weight wi with each vertex 
i so that  the matrix C becomes a IV I × IVI matr ix with 
cij = w~dij. The problem is to select a subset S C_ V of 
open facilities minimizing the following objective, 

fJ + E minw,  dij 
j E S  iEV j E s  

This model is as formulated in [1, 3]. Note that  the 
solution set S for the problem defines the partitioning of 
the tree into smaller subtrees. Each subtree corresponds 
to the tree induced by vertices served by a particular 
facility. Hence, the UFL problem on trees is often taken 
as a special case of the tree partitioning problem (in 
which each possible subtree has a weight) as in [4, 7]. 
Both these papers give an O(n 2 ) algorithm for the tree 
partitioning problem. UFL is also shown to be a special 
case of the generalized (where facilities have a cost and 
the problem is to place <_ k facilities) formulation Of 
the k-median problem in [1] where k _> n. Tamir's [1] 
dynamic programming functions also give an O(n2) - 
t ime dynamic programming algorithm for UFL. 

We first show how to replace the "discrete" dynamic 
programming functions of [1] with continuous functions 
- the so-called "undiscretization" of [2]. Shah, Langer- 
man and Lodha [2] dealt with locating filters in a mul- 
ticast tree. This has dynamic programming solution 
analogous to the facility location problem on rooted, 
directed trees where facilities can only serve nodes at 
lower levels. They show the undiscretized representa- 
tion of monotonic function as a piecewise linear func- 
tion and show how to quickly add two such functions 
and probe them. in our case, there are two functions 
involved in dynamic programming and the computation 
of new functions is more complex than simple additions. 
Also, the corresponding "undiscretized" operations as 



109 

in {2] do not maintain the consistency of these func- 
tions in our case. If we were to use these directly, it 
would give an O(n2)-time algorithm due to additional 
operations to ensure consistency. Instead, we modify 
the dynamic programming functions of [1] so that  the 
functions involved axe either convex or concave. Fur- 
ther, we extend the "undiscretization" techniques and 
operations to convex and concave functions such that  
the consistency is maintained. These functions have 
succinct representations and can be quickly updated to 
construct new functions. We achieve an upper bound of 
O(n log n). 

In section 2, we define our notation and describe the 
O(n ~) dynamic programming algorithm for the problem 
given by [1]. We also show the "undiscretization" of the 
dynamic programming functions using the techniques 
of [2] and prove some necessary lemmas, in section 3 
we describe the algorithm and derive its complexity. In 
section 4, we describe the data structures used and the 
operations involved. In section 5, we describe related 
problems on trees where our methods apply mad in 
section 6 we give concluding remarks. 

2 Preliminaries and Dynamic  Programming  
Functions 

We shall regard the tree T = (V, E)  as a rooted tree 
with an arbitrarily chosen root node R. If the tree is a 
non-binary tree, it can be converted into a binary tree 
in linear time using a technique of [1]. This is done 
by splitting each vertex with k > 2 children into k - 1 
vertices, with edges joining them having distance zero 
and facility placement cost f j  for each newly introduced 
vertex being c¢. This at most doubles the number of 
vertices, hence does not affect complexity. Hence, for 
the rest of the paper, we shall assume that  the tree is 
binary. Let IV] = n and ]E I = n -  1. Tv denotes the 
subtree rooted at the vertex v. The size of a tree is the 
number of its nodes. We denote the size of T.  as sv. 

Let G~(x) be the minimum objective function value 
of the subproblem defined on the subtree To such that  
there is at least one facility in Tv within distance x from 
v. Let Fv(x) be the minimum objective function value 
of the subproblem defined on Tv such that  the nearest 
facility in T - Tv from v is exactly at distance x from 
v. Note that  Gv(x) is a step-wise decreasing function 
of x (i.e. it is a piecewise linear function with the slope 
of each piece equal to zero.). There is a breakpoint 
at Gv(x') if x t is the distance from v to some node 
u E Tv, and the solution that realizes the objective 
function value of G~(x') has u as the facility serving 
v. Hence, each breakpoint in Gv(x) corresponds to 
some unique node in T, .  Gv (oo) is the minimum value 
Gv(x) can achieve. GR(¢O), where R is the root, is 

the final value of objective function we are interested in 
minimizing. Fo(x) is a piecewise linear non-decreasing 
concave function of x. Fv(c~) = G.(oo).  

For any piecewise linear function F,  let the size of 
F,  denoted IFI, be the number of breakpoints in F .  Let 
xl ,  x2, ..., xk, ..., xs.  be the distances of vertices in Tv 
from v in increasing order. Let l and r be left child 
and right child of v, separated from v by distance xt, 
Xr respectively. The dynamic programming algorithm 
of Tamir [1] stores, at each vertex v, the values of G .  (x) 
and Fv (x) for n -  1 distinct values of x corresponding to 
the distances of all other vertices in T from v. So, the 
storage space at each node in their algorithm is O(n). 
They show how to compute the ( n -  1 discrete) values 
of Gv(x) and Fv(x) in O(n) time at each node. Hence, 
their algorithm runs in O(n 2) time. 

By "undiscretizing" the representation of Gv and 
Fv we make these functions invariant of the distances 
of v from all vertices u which are not in the subtree 
Tv. In the following lemmas, we shall show that  
this representation of Gv and Fv takes O(so) space. 
Now, if the tree T is a balanced binary tree and 
the  computation at each vertex v is linear in the 
space required to store each function, we would get 
an O(n log n)-time algorithm. However, that  may not 
be the case, so we design a data-structure along with 
operations on it, tha t  allows us to compute Fo and Gv 
in O(st log ((st + st)/st)), assuming wlog that sr > st. 
Roughly, the computat ion at each node is linear in 
the size of its smaller subtree and logarithmic in the 
size of its larger subtree. This leads to an O(nlogn)- 
t ime algorithm over any tree. We present the following 
recurrence relations which show the computation of the 
"undiscretized" functions Gv and Fv. This are simply 
Tamir 's [1] dynamic programming recurrences written 
in "undiscretized" parameter  x. 

if  v is a leaf t h e n  
Gv(x) = fv and Fv(x) =min{wvx, fv} 

else 
Cv(0) = fv + + Fr(xr) 
G~(xk) = rnin{Gv(xk_l), w~xk + Gt(xk - xt) + 

whenever xk corresponds to a distance between 
v and a vertex in Tt 

G,,(xk) = min(G,~(xk_l), wvxk + G~-(xk - x~) + 
F,(xk + 

whenever xk corresponds to a distance between 
v and a vertex in Tr 

Gv(x) = G,(x~) whenever xk < x < xk+l 
Fv(x) = min{C.(oo) ,  + Ft(x + xt) + Fr(x + 

end if  
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LEMMA 2.1. F, is a piecewise linear non-decreasing 
concave function (PLNCF) with size IF.I < s, .  

Proof. By induction on the height of v. For leaf v, 
F,(z)  = min{w.x,  f ,}  is initially an increasing linear 
function with slope wv, eventually becoming a constant 
function f~. It has exactly one breakpoint at x = 
fv /wv.  For internal node v with children l and r, 
wvx + Ft(x + x~) + Fr(x + xr) is a summation of 
three PLNCFs whose number of break points are not 
more than 0, st, st, respectively, by induction. Since 
the sum of PLNCFs is a PLNCF whose number of 
breakpoints is at most the sum of the original two, 
[wvx + Ft(x + xt) + F,.(x + x~)[ < s~ + s~. Taking the 
minimum of this function with a constant G~(oo) will 
add at most one more breakpoint, and still maintain the 
PLNCF property. Hence, [Fv] < s, .  

[] 

The new breakpoint added due to taking the mini- 
mum of PLNCF with a constant function is said to cor- 
respond to v. Thus, it clear from the above proof that  
each breakpoint in F ,  corresponds to a unique vertex in 
T.. 

LEMMA 2.2. Gv is a piecewise non-increasing step 
function(PDSF) with number of steps IG~I < s.. 

Proof. The only values of x where Gv(x) can change 
value axe when x equals distance of v from some 
vertex in Tv. So it is a piecewise step function and 
[G,~(x)l < s, .  Also, from the definition of G.  and the 
dynamic programming recurrence we get that  G .  is non- 
increasing. 

[] 

c 0 l r ~  Define G v (x) to be the convex hull function 
of Gv(z). That  is, G~ ° ~  is a convex function such 
that  YxG~nZ(x) < G~(x) and any convex function 
H(x) such that  VxH(x)  < G,(x)  satisfies VxH(x) < 
c.=,,=(=). 

Note that  G~ °n= is a piecewise linear non-increasing 
convex function (PLDXF). The set of breakpoints of 
GC~ °'~ is a subset of breakpoints of G, .  Thus, the 
number of breakpoints [G~ [ < [G~[ < s, .  Also, 
it is clear from the proof of the previous lemma tha t  
each breakpoint in G ,  corresponds to some vertex in Tv. 
From the dynamic programming recurrence relations it 
is clear that  each breakpoint in G.  comes either from 
breakpoints of Gt or G~ or the vertex v itself for Gv(O). 
The figure illustrates these three functions. 

1~ ......... t c~ " ' - . . . . .  

/ 

_ . _  - - - -  

p s ~ 

X 

LEMMA 2.3. For any breakpoint at y in Gl (or G,-) 
that is not in G~ °'*= (or G~°'~=), there will not be a 
corresponding breakpoint at y + xt in G~v °n~. 

Proof. Gv would possibly have the breakpoint y + x~ 
corresponding to breakpoint y in Gt with Gv(y + xt) = 
wv(y + zt) + Fr(y + xl + Xr) + Gt(y). Since y does 
not belong to the breakpoints of G[ °n=, there are two 
breakpoints t , u  in Gl such tha t  t < y < u and 
Gt(y) > (u-u)Gz(O+(~-t)Gz(u) That  mearm that  the U - - t  

point (y, Gt(y)), lies above the line formed by points 
(t, Gl(t)) and (u, Gt(u)). Since H(x)  = w, (x  + xt) + 
Fr(z  + xt + xr) is a concave function of x, H(y) >_ 
(u-V)H(0+(V-e)H(-) Hence, summing up, G,(y + xt) > 

l / , - - t  

((u+=,)- (~+xz))G~(~)+((~+=D-(~+=D)O.(,,) 
(~+=D-Ct+=,) . So y+xt  is not 

COlrlX a breakpoint in G~ . 

[] 

LEMMA 2.4. At each vertex v, computing G~, °"z instead 
of G,, is sufficient to carry on the recursion and G~ °nz is 
sufficient for computing the minimum objective function 
for T.  

COnz Proof. For any vertex v, G v (oo) -- Gv(co) and since 
Gn(oo) is the final value we are interested in, it is 
sufficient to compute GC~ nx. Now we only need to show 
how to compute Gv e°nx, given G~ °nx, Get °nx, F~ and Fr 
where l and v are left and right children of some node 

CO~,S$ v. If v is a leaf, then G v (x) = Gv(x) = Jr. Given the 
previous lemma, we compute G~ °nx by taking H(x) as 
the convex hull function of min{wvx  + G~"~n=(x - Xl) + 
F~(z + x~), w~x + G~°nX(x - xr) + Ft(x + xt) } and then 
making it non-increasing by taking a break point t where 
H(x) achieves minimum and defining G~ °nx (x) = H(x) 
for all x _< t and G~"~(x) ---- H(t)  for all x > t. 

[]  
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U F L ( v ) {  
if v is a leaf t h e n  

G~ °n~ = createG(fv); 
F~ = createF(w~, f,); 

else 
(G~ °nz, Fl) =- UFL(I); 

C o ? l g  (G r , Fr) = UFL(r);  
gO = f ,  + probeF( Fl, xt) + probeF( Fr, x~); 
G 1 = add_dissolveFinG(G~ °'~, F~, xl, x~); 
G 2 = add_probeFforG(G c°~,  Fz, x~, xz); 
G 2 = add_point(G 2, (0, gO)); 
G 3 = min_mergeG(G 1, G ~); 
Gv ~n~ = add-lineG(G a, Wv); 
9in f = probeG( G ~  nz, co); 
Fv = add_mer ge( Ft , F~ , xt , x:~); 
Fv = add l ine_pruneF ( Fv , wv, gi~ Y ) ; 

e n d  if 
CO~,X return (G~ , Fv), 

Table 1: Undiscretized Algorithm 

3 A l g o r i t h m  and  Ana lys i s  

We are now ready to present the algorithm to compute 
the functions defined in section 2. We describe UFL(v) 
which is a recursive procedure that returns (G~ °nx, F~). 
Recall that l and r are the left and right children of v 
at distances xz and xr respectively. Wlog, we assume 

3.1 A l g o r i t h m .  The algorithm presented in table 1 
above is nothing but  a translation of the dynamic pro- 
gramming recurrences shown in section 2. The proce- 
dures in the algorithm mainly perform four functions: 
create new PLFs with unit size, make a unit update 
in the existing PLF, evaluate a PLF at some point or 
add two PLFs. Depending on the relative sizes and the 
types of PLFs, these operations need to be carried out 
differently. 

3.2 D a t a  S t r u c t u r e  O p e r a t i o n s .  Here we describe 
each of the operations used in the algorithm above 
and give their running times. The corresponding data  
structure operations are described in section 4. 

creatcG(c): returns a constant PLDXF with value iden- 
tically c for all x. Running time O(1). 

createF(d,c): returns a PLNCF with exactly one 
breakpoint at x = c/d. The slope of the first line 
segment from 0 to c/d is d and the slope of the line 
segment from c/d  to co is 0. The running time is 
O(1). 

probeG(G, t): takes the PLDXF G and a value t as pa- 
rameters and returns the y value of the breakpoint 
in G just less than t. Running time O(log ]G]). 

probeF(F,t):  takes the PLNCF F and a value t as 
parameters and returns the value F(t) .  Running 
time O(log IFI). 

add-line_pruneF(F, d, c): adds a linear function with 
slope d to PLNCF F and then finds the point of 
intersection t of PLNCF F with constant c, and 
makes F(x) = c for all x > t. Running time 
O(log ]FI) plus time for deleting all breakpoints 
u > t i n F .  

add_lineG(G, d): adds a linear function with slope d to 
PLDXF G. Then prunes the function as required 
to restore non-increasing behavior. Running time 
O(log IGI). 

add_point(G, (t ,u)): inserts a new breakpoint t with 
function value u into a PLDXF G and then restores 
convexity by deleting points in neighborhood of t 
if necessary. Running time O(log IGI) plus time for 
deletions. 

add-merge(F1, F2, t l , t2):  adds two PLNCFs F1, F: 
shifted back by values tl~ t2 respectively. Running 
time O([F2I log l~'lI+IP2t ). IF~f 

rain_merge(G1, G2): lists the breakpoints of PLDXF 
G2 and inserts them along with their function 
values into PLDX_F G1 sequentially in increasing 
order, restoring convexity after each insertion by 
deleting few points if necessary. Returns G2. 
Running time O(IG2] + ]G21 log IG'l+IG21) plus the 

fc21 
time for deletions. 

add_probeFforG(G,F, ts, t f):  lists all breakpoints in 
PLDXF G and shifts them forward (add) by tg + t f .  
Sequentially probes PLNCF F at these values and 
adds the return value to the function value at 
breakpoints in G. Shifts them backwards (delete) 
by t f .  Now, with these points in sorted order, 
takes the convex hull and generates a new PLDXF. 
Running time O(IG [ + IGI log ~ ) .  

add_dissolveFinG(G, F, ts, t / ) :  inserts the linear seg- 
ments in PLNCF F sequentially in PLDXF G, 
adding the linear value to breakpoints in G. It also 
checks and restores convexity around each break- 
point of F .  Running time O(IFI + IFI log vll-q~Ff ) 
plus time for deletions. 
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3.3 Ana lys i s .  Here, we show that our algorithm 
solves the UFL problem on a tree in O(nlogn). The 
time required by functions createF and createG is con- 
stant per leaf. Hence the total time for these operation 
over the entire algorithm is O(n). The time required 
for each of probeG, probeF, add_line_pruneF, add_lineG 
and add_point operations is bounded above by O(logn) 
and each operation is carried out at most once at 
each vertex v. Hence, the time taken by these op- 
eration over the entire algorithm is bounded above 
by O(nlogn). In operations involving deletions, the 
t ime taken is O(logn) per deletion. Once the break- 
point is deleted it never re-enters the da ta  structure. 
Hence the total number of deletions is bounded above 
by 2n (for F and G) and the total cost of deletion is 
O(nlogn) over the entire algorithm. What  remains 
to be shown is that  the total cost of "merge" op- 
erations rain_merge, add_merge, add_probeF forG a n d  

add_dissolveFinG is bounded by O(n log n). 

THEOREM 3.1. The total time required to compute 
all the '~rnerge" operations in Tv (in UFL(v)) is 
O(s~ log sv). 

Proof. By induction on height of v. If v is a leaf 
then in UFL(v), there axe no "merge" operations, 
so the claim is true. Note that  for any x _> y > 
2, O(y + ylog((x + y)/y)) is asymptotically same as 
O(ylog((x + y)/y)). So, for any internal node v with 
left child 1 and right child r, with st ~ Sr by induction 
we get tha t  the total cost of "merge" operations is 
O(sl log sl) +O(s r  log st) + O(sr log ((sl + sr)/sr)). This 
is bounded above by O(sv log sv). 

[] 

4 D a t a  S t r u c t u r e s  

Here, we describe the data-structures used to store 
the functions F~ and G~ ~n~ which axe PLNCF and 
PLDXF respectively. The main data-structure is a 
height balanced binary search tree. We shall use 
AVL trees which can be merged fast using Brown and 
Taxjan's fast merging algorithm [8]. 

4.1 F a s t  M e r g i n g  A l g o r i t h m .  Brown and Tax- 
jan [8] described the algorithm to merge two binary 
search trees which represent ordered lists. They use 
AVL trees which axe height balanced. If T1 and T2 axe 
AVL trees representing sorted lists of m and n elements 
respectively, with m > n, they insert the elements from 
T2 into 2"1 in sorted order to obtain a new AVL tree 
with m + n elements. Rather than doing each inser- 
tion independently of the others by starting each search 

from the root, the search for the insertion of a new ele- 
ment is started from the position of previously inserted 
element, climbing up to the first ancestor(LCA) having 
the next element to search in its subtree, and continue 
searching down the tree from there. Brown and Tax- 
jan show this can be done in O(nlog((m + n)/n)). It 
is easy to show that  the upper bound of the length of 
the walk performed during the insertions of n sorted 
elements is indeed O(nlog((m + n)/n)). This is done 
by considering the distance traveled in two parts, one 
tha t  is within the top log n levels of AVL tree and the 
other which is within the bot tom log((m + n)/n) levels 
of the tree. For m ~ n >_ 2 both of these are bounded 
above by O(u log((m + n)/n)). They additionally show 
how to maintain the height balance during these op- 
erations. Also n values, given in sorted order, can be 
accessed (searched) in the tree containing m nodes in 
O(n log(m/n)) time by the same algorithm. 

Sorted lists represented as height-balanced trees 

_ _  ( ,o .~)  

Merging by sequential insertions (square nodes have been inserted) 

4.2 R e p r e s e n t a t i o n  o f  P L N C F .  For storing the 
PLNCF F we will maintain the breakpoints sorted by 
their x coordinate in an AVL tree. Along with the x 
coordinate of the breakpoint each node also contains 
two numbers a and b such that  the linear segment in 
PLNCF to the left of this breakpoint has the equation 
y = Ax + B where A (resp. B) is the sum of all the a 
(resp. b) values on the path  from the node to the root 
of the tree. Along with this, we also store a number 
x °$I which records the offset of the x values within the 
tree. The actual x coordinate of a breakpoint is its 
x coordinate stored in the data  structure node minus 
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x °]1. T h e  function value F ( x )  is given by y --- A x  t T B 
where x ~ = x + x ° f f  and A, B represent the  equat ion of 
the line passing through x ~ in the da t a  s t ructure .  Note 
tha t  given the breakpoints  and equat ions  of the line 
segments joining them in sorted order,  we can construct  
the d a t a  s t ruc ture  for F in l inear t ime of size i.e. O(IFI) .  
Similarly, given the  da ta  s t ruc ture  representing F we 
can list all the  breakpoints  and equat ions of  lines in 
O(IFI) .  Given this, we describe how the  operat ions  in 
3.2 are carried out.  

createF(d ,  c): Create  an AVL tree with singleton node, 
with x --- c/d,  a = d, b = 0. Set x ° I f  ~- O. 

probeF(F,  t): Let  t ~ = t + x ° f l .  Search for t r in the 
d a t a  s t ruc ture  and reach the  node at  coordinate  u 
in the  da t a  s t ructure  such tha t  u > t ~ and  there 
is no breakpoint  s such t ha t  u > s > t r in the 
d a t a  s tructure.  Let  A and B be the  sums of the  a 
and b values from root  to u. These  values can be 
computed  along the search path.  Re tu rn  A t  ~ + B. 
If there  is no such value u then access (search) the 
r ightmost  breakpoint  and re tu rn  its y value with 
obta ined by  A, B, x values at  tha t  breakpoint .  

add_l ine_pruneF(F,  d, c): Shift the  equa t ion  of the  line. 
T h e  slope remains the  same, bu t  the  y-intercept  
instead of  zero is now - d x  °I f .  So add the  tuple  
( d , - d x  ° f] )  to tuple ( a, b) a t  the root .  T h e  slope 
of the r ightmost  (infinite) line segment,  assumed to 
be 0 by the  da t a  structure,  is no longer zero, but  
d. To make it consistent and correct,  p rune  the 
funct ion at  y = c. For this,  search the  breakpoint  
wi th  smallest x Cleftmost) value s ta r t ing  from root 
wi th  its y value bigger than  c. This  search can 
be carried out  in the  same way as an  AVL search 
because y monotonical ly  increases wi th  x. Then,  
set the x value of this breakpoint  to ( c -  B ) / A  
where A, B are sum of a, b values f rom root  to  this 
breakpoint .  Now delete all the  breakpoints  from 
the  d a t a  s t ructure  with x > ( c -  B ) / A .  

add-merge (F1 ,F~ , t l , t 2 ) :  Assume IFll _> IF21. In F1 
set x~ f l  = x~ I I  + t l .  Delete all b reakpoin ts  in F1 
wi th  x < x~ I I .  Similarly, in F2 set x~ I I  = x~ I I  + t2 
and delete breakpoints  similarly. Before adding 
F1 and F2, we need to  align their  offsets. Since 
IF21 < IF1 l, list all the  breakpoints  of  da t a  s t ructure  
for F2 and list all the  equat ions  of  the line segments 
in increasing order. We subtrac t  (x~ I I  - x ~  I I )  
f rom each x coordinate  and for each line segment 
A x  + B,  we add A(x~ f l  - x~ f f )  to B.  W i t h  this 
t ransformat ion  the  offset of F2 is same as tha t  of 
FI .  Now, use Brown and Tar jan ' s  Fast  Merging 
Algori thm to insert the breakpoints  of  F2 in F1. 

When a breakpoint  u is inserted, we have to  add the 
equat ion of line segment y --- a x  + B on the  left of  u 
to all points in the d a t a  s t ructure  between u and the  
previously inserted point  s. This  can be done by 
updat ing the  a, b values along the walk f rom s to  u 
performed dur ing the merge algori thm. To do this, 
add tuple (~, ~) to (a, b) values at  the  L C A ( s ,  u).  
Then,  on the  pa th  from L C A ( s ,  u) to s, whenever  
we choose a right child af ter  a (non empty)  series of  
left children, subt rac t  (a, /3) from the  node where 
the decision is made  and add the (c~,/3) in the  vice- 
versa case. On the  pa th  from L C A ( s ,  u) to  u, 
do the same thing reversing the  sense of  left and  
right. For completeness sake, we s ta te  t ha t  the  
values of C a, b} at  the  nodes can be preserved dur ing  
ro ta t ion and double- ro ta t ion  operat ions involved in 
AVL insertions and deletions. Th e  offset of the  new 
P L N C F  is same as tha t  of F1. 

4.3 R e p r e s e n t a t i o n  o f  P L D X F .  Here, again we 
mainta in  the breakpoints  of P L D X F  G in the AVL 
tree. Also, the  tuple  Ca, b) is s tored along wi th  x 
value. However, unlike PLNCF,  it doesn ' t  represent 
the equat ion of l ine-segment to  the left. In fact,  in this  
case, it is only used to ob ta in  the y value (same as G(x ) )  
at  a par t icular  breakpoint .  Th e  value is calculated as 
y = A x  + B where A, B are same as in the  previous 
subsection, x ° f f  is defined similarly, except  t ha t  i t  
records the addi t ion required to the  x values in the  d a t a  
s t ructure  to reflect the  correct  x values. P L D X F  G can  
be listed and constructed from the  list in l inear t ime, as 
in the case of PLNCF.  

createG(c): Create  an AV-L tree with a singleton node. 
Set x = 0 ,  a = 0 ,  b = c .  S e t x  ° I ! = 0 .  

probeG(G, t): t' = t - x ° l i .  Search for t r in the AVL 
tree and reach the breakpoint  u < t '  such tha t  there  
is no breakpoint  s with u < s < t t. Re tu rn  the y 
value at u calculated as A u  + B where A, B are 
sums of a, b values along the pa th  from root  to  the  
breakpoint  a t  u. 

add_l ine(G,d):  Take the  y intercept  of  the  line as 
+dx  °I f .  Add ( d, dx ° f f )  to  the  tuple  (a, b) at the 
root.  Now, to  ensure non-increasing character ,  we 
delete points from behind (right to  left) till we reach 
a point  u, the point  to  the left of which has higher  
y value. Then ,  we do not delete u and halt .  

add_point(G, (t, u)) :  Insert a breakpoin t  a t  t - -  x °I1. 
Calculate the inheri ted y value u p at  this point.  Set" 
a = 0, b = u - u'. Now, having inserted this point  
we need to main ta in  convexi ty  and non-increasing 
property.  Check left and right neighbors of  this 
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point in sorted order. If this point lies above the 
line formed by joining these neighbors then delete 
the newly inserted point and return. If not then 
from this newly inserted point we go rightwards 
and delete all the points which have y values higher 
than u. Now, we traverse leftwards in the AVL 
tree and check the points in decreasing order of x 
coordinates. We keep track of slopes of segments 
formed by adjacent pairs of points. In the case 
of convex functions, the slope (which is negative 
always) should decrease as we move leftwards. If 
we find that  the slope increased then we delete the 
breakpoint to the right of that  segment. And we 
continue, till we find the decreasing slope. Then 
we stop. i f  the inserted point is a leftmost point 
then we do the similar convexifying step towards 
the  right. In this procedure, there are only a 
constant number of more accesses than the number 
of deletions. We charge the cost of access of the 
deleted point to the deletion operation. So, the 
time taken by this procedure is same as the  t ime 
taken for access, which is O(log [GI). 

min_merge(G1,G2): Assume IGI[ > IG~I. Assume 
offset x~ H of IG21 is 0. List all the points in [G2[ 
in increasing order of x with their x and y values. 
Subtract  offset x~ 11 of G1 from all x values. Now 
using Brown and Tarjan's algorithm, insert these 
points into the AVL tree representing G1 along 
with their y values as in add_point and also perform 
the convexifying step around each insertion. The 
offset of the new PLDXF is the same as that  of G1. 
Again, we access only a constant number of extra 
undeleted points per insertion. Also, these accesses 
are in the neighborhood of newly inserted points. 
Charging the cost of accessing deleted points to 
deletion, it can be shown that  the total cost is 
O([G2[ + [G2[ log((lGl[ + [G2[)/[G2[)) plus the cost 
of deletion. 

add_probeFforG(G, F, tg, t j ) :  We first list all the 
breakpoints of G in increasing order with their x 
and y values. We then add tg to each x value. 
For each breakpoint x in G, we check the values 
of probeF(F, x + tf) and add them to their corre- 
sponding y values in G. Now, we keep only those 
points in G which form a convex function. Since 
the points are already sorted, the convex hull can 
be computed in linear time. For sequential probes 
in F we again use Brown and Tarjan's algorithm. 

add_dissolveFinG(G, F, tg,tl): We list all the break- 
points in F along with the equations of segments 
and transform them accordingly as in add_merge 

considering the values x~ If, 5g°] ff, w h i c h  are x off- 
sets of G, F respectively, and tg, t I. The offset of 
the new da ta  structure will be same as that  of G. 
Now we virtually insert the breakpoints of F and 
actually insert linear segments of F into G. By 
this we mean that  we do update the (a, b) values 
along the Brown and Tarjan's Merging walk per- 
formed during the algorithm but  do not actually in- 
sert points. However, we remember the locations of 
each virtually inserted breakpoint of  F in G. There 
could be a possible region of concavity aromld this 
virtual breakpoint.  Again we apply a convexifying 
step around these virtual breakpoints to make G 
convex and non-increasing. The figure illustrates 
convexifying step involved. 

~ piecewise convex (add dissolveFinG) 

convexifying step i " " ~  ~ /  
around vi~mal i 
breakpoint i ~ . . . . . . . . . . .  

virtual breakpoint of F non-increasing PLDXF 

X m 

5 R e l a t e d  P r o b l e m s  

Several generalizations of the UFL problem on trees 
have been proposed. The tree partitioning problem by 
Cornuejols, Nemhauser and Wosley [7] was shown to 
be a generalization of the Economic Lot Sizing (ELS) 
problem as well as of UFL. Shaw [4] gives the tree par- 
titioning generalization of UFL, Facility Constrained 
Covering (FCC) problem, Customer Constrained Cov- 
ering (CCC) problem and Generic Customer Covering 
(GCC) problem. They give O(n 2) algorithms for solv- 
ing all these problems on trees. As noted earlier the 
tree partitioning problem differs from the UFL prob- 
lem on trees in the sense that the transportat ion cost 
can be arbitrary and not  linear, in particular with tree 
distances. Since the problem size involved in Tree Parti-  
tioning is O(na), our algorithm can hardly hope to beat  
O(n2). The same is true in the case of GCC, where 
each customer has a specified subtree in which a facility 
is needed in order to cover that  customer. However, our 
technique applies well to FCC, CCC and ELS, giving a 
time complexity of O(n log n) for the first two that  for 
ELS is O(n). Also, related is the problem of placing ill- 
ters in a multicast tree for which an O(n log h) algorithm 
was given by Shah, Langerman and Lodha [2] which mo- 
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tivates our work. We briefly outline these problems and 
the "undiscretized" functions which can be used to solve 
them. 

5.1 Faci l i ty  C o n s t r a i n e d  Cover ing  P r o b l e m .  
This problem was first studied by Kolen [3]. In this 
problem, there exists a radius sj for each facility j 
which has a set-up cost of f j .  A customer i can be 
served by a facility j only if the distance dii between 
them is at most sj. If a customer i is not served by 
any facility, then a penalty cost of qi is incurred. Here, 
for each v we define Gv(x) as the optimal subproblem 
value in subtree T. assuming that  there is at least one 
facility in Tv whose radius of influence covers at least 
distance x beyond v in T - T.. And we define Fv(x) as 
the optimal subproblem value in subtree Tv assuming 
that  the distanced covered in T~ by the most influential 
facility in T - Tv is exactly x. Here G~ is a stepwise 
increasing function and Fv is a stepwise decreasing 
function of x, with G~(0) = F,(0). Similar recurrences 
hold and the data structure using the fast merging of 
BSTs can be used to give an O(nlogn) algorithm. The 
data structure operations are much simpler here since 
slopes and convexity issues need not be handled. 

5.2 C u s t o m e r  C o n s t r a i n e d  Cove r ing  P r o b l e m .  
This problem is also due to Kolen [3] and it differs 
from the FCC in that  instead of a radius for facility, 
there is a radius of attraction ri for each customer ci. 
Here, we define Gv and Fv in exactly the same way as 
in the UFL problem in this paper. In this case, G .  
is a stepwise decreasing function and Fv is a stepwise 
increasing function with Gv(cc) = Fv(oc). As in FCC, 
we get an O(n log n) algorithm. 

5.3 E c o n o m i c  L o t  Sizing P r o b l e m  [7]. There is 
demand di in period i, i = 1, .., n. The fixed cost of 
producing in period j is f j  and the variable cost is pj. 
The variable storage and backorder costs are c + and cf .  
This problem can be seen as UFL on a path, with the 
distance function on each edge being c + in one direction 

and c~ in the other. G~(x) and F,(x)  can again be 
similarly defined with the minor modification that  x 
for G~ means upward distance while x for Fv means 
downward distance. Since there is no merge involved, 
these "undiscretized" functions can be constructed by 
sequential insertions in O(n) time. 

6 R e m a r k s  a n d  F u t u r e  W o r k  

Another generalization of UFL was given by Tamir [1] 
which has UFL as a particular case of the general 
model for k-median problem. Again, the dynamic 
programming functions here can be undiscretized but 

this involves two parameters, mid an effective data  
structure for handling this is not known. [1] gives an 
O(kn 2) algorithm for the k-median problem. The 
number of facilities opened in UFL can be controlled by 
varying the facility costs. In this sense, faster algorithms 
for UFL can in effect lead to faster algorithms for k- 
median on trees. 
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