
Undiscretized Dynamic Programming: Faster Algorithms for Facility
Location and Related Problems on Trees

Rahul Shah* Martin Farach-Colton t

A b s t r a c t

In the Uncapacitated Facility Location (UFL) problem,
there is a fixed cost for opening a facility, and some
distance matrix d that determines the cost of distribut-
ing commodities from any facility i to any consumer j .
The problem is NP-hard in general and when d consists
of a distance metric in a graph [7, 12]. However, for
the case where the commodity transportation costs are
given by path lengths in a tree, an O(n 2) dynamic pro-
gramming algorithm was given by [4, 7]. We improve
this dynamic programming algorithm by using the ge-
ometry of piecewise linear]unctions and fast merging of
the binary search trees used to store these functions. We
achieve the complexity bound of O(nlogn) for the Tree
Location Problem and some related problems. Our ap-
proach gives a general method for solving tree dynamic
programming problems.

I I n t r o d u c t i o n

The UFL problem [3, 4, 7] has been studied extensively
in location theory. The essence of the model is a
trade-off between the facility placement cost and the
transportation cost. The problem is to open a subset
of facilities in order to minimize the total cost (or to
maximize profit) while satisfying all demands. Consider
a set of clients I - {1,.., m} and a set of sites J =
{1, .., n} where the facilities can be located. An instance
of the problem is specified by integers m and n, an
m x n transportation cost matrix C = {c~j} and an
n-dimensional facility setup cost vector f = { f j } , such
that] j > 0. For any set S of facilities, it is optimal
to serve a client i from a facility j for which cq is
minimum over all j E S. Thus, given S, the cost of
S is Y~4el min jes c~j + ~'~-jes fJ" The problem is to find
a set S so that the cost is minimized. In [4, 7], an
integer linear programming formulation for this problem
is given. This problem, in general, was shown to be NP-
hard [7, 12] by reduction to vertex cover. But on trees,

~ l : s h a r a h u l ~ p a u l . r u t g e r s . e d u . Dept. of Computer Sci-
ence, Rutgers University, NJ 08854

temail:martin~google.eora. Google, Inc. CA 94043 and Dept,
of Computer Science, l=tutgers Univemity, NJ 08854

various polynomial algorithms were given by [1, 4, 7l.
When defining this problem on trees (or graphs),

we take the set of clients and sites to be the entire
vertex set V. Let T -- (V, E) be a tree with vertex
set V and edge set E. The cost of opening a facility
at vertex j is]j. Each edge e E E has a nonnegative
length. The distance dij between any pair of vertices i
and j is the length of the shortest pa th for graphs. We
also associate a nonnegative weight wi with each vertex
i so that the matrix C becomes a IV I × IVI matr ix with
cij = w~dij. The problem is to select a subset S C_ V of
open facilities minimizing the following objective,

fJ + E minw, dij
j E S iEV j E s

This model is as formulated in [1, 3]. Note that the
solution set S for the problem defines the partitioning of
the tree into smaller subtrees. Each subtree corresponds
to the tree induced by vertices served by a particular
facility. Hence, the UFL problem on trees is often taken
as a special case of the tree partitioning problem (in
which each possible subtree has a weight) as in [4, 7].
Both these papers give an O(n 2) algorithm for the tree
partitioning problem. UFL is also shown to be a special
case of the generalized (where facilities have a cost and
the problem is to place <_ k facilities) formulation Of
the k-median problem in [1] where k _> n. Tamir's [1]
dynamic programming functions also give an O(n2) -
t ime dynamic programming algorithm for UFL.

We first show how to replace the "discrete" dynamic
programming functions of [1] with continuous functions
- the so-called "undiscretization" of [2]. Shah, Langer-
man and Lodha [2] dealt with locating filters in a mul-
ticast tree. This has dynamic programming solution
analogous to the facility location problem on rooted,
directed trees where facilities can only serve nodes at
lower levels. They show the undiscretized representa-
tion of monotonic function as a piecewise linear func-
tion and show how to quickly add two such functions
and probe them. in our case, there are two functions
involved in dynamic programming and the computation
of new functions is more complex than simple additions.
Also, the corresponding "undiscretized" operations as

109

in {2] do not maintain the consistency of these func-
tions in our case. If we were to use these directly, it
would give an O(n2)-time algorithm due to additional
operations to ensure consistency. Instead, we modify
the dynamic programming functions of [1] so that the
functions involved axe either convex or concave. Fur-
ther, we extend the "undiscretization" techniques and
operations to convex and concave functions such that
the consistency is maintained. These functions have
succinct representations and can be quickly updated to
construct new functions. We achieve an upper bound of
O(n log n).

In section 2, we define our notation and describe the
O(n ~) dynamic programming algorithm for the problem
given by [1]. We also show the "undiscretization" of the
dynamic programming functions using the techniques
of [2] and prove some necessary lemmas, in section 3
we describe the algorithm and derive its complexity. In
section 4, we describe the data structures used and the
operations involved. In section 5, we describe related
problems on trees where our methods apply mad in
section 6 we give concluding remarks.

2 Preliminaries and Dynamic Programming
Functions

We shall regard the tree T = (V, E) as a rooted tree
with an arbitrarily chosen root node R. If the tree is a
non-binary tree, it can be converted into a binary tree
in linear time using a technique of [1]. This is done
by splitting each vertex with k > 2 children into k - 1
vertices, with edges joining them having distance zero
and facility placement cost f j for each newly introduced
vertex being c¢. This at most doubles the number of
vertices, hence does not affect complexity. Hence, for
the rest of the paper, we shall assume that the tree is
binary. Let IV] = n and]E I = n - 1. Tv denotes the
subtree rooted at the vertex v. The size of a tree is the
number of its nodes. We denote the size of T. as sv.

Let G~(x) be the minimum objective function value
of the subproblem defined on the subtree To such that
there is at least one facility in Tv within distance x from
v. Let Fv(x) be the minimum objective function value
of the subproblem defined on Tv such that the nearest
facility in T - Tv from v is exactly at distance x from
v. Note that Gv(x) is a step-wise decreasing function
of x (i.e. it is a piecewise linear function with the slope
of each piece equal to zero.). There is a breakpoint
at Gv(x') if x t is the distance from v to some node
u E Tv, and the solution that realizes the objective
function value of G~(x') has u as the facility serving
v. Hence, each breakpoint in Gv(x) corresponds to
some unique node in T, . Gv (oo) is the minimum value
Gv(x) can achieve. GR(¢O), where R is the root, is

the final value of objective function we are interested in
minimizing. Fo(x) is a piecewise linear non-decreasing
concave function of x. Fv(c~) = G.(oo).

For any piecewise linear function F, let the size of
F, denoted IFI, be the number of breakpoints in F . Let
xl , x2, ..., xk, ..., xs. be the distances of vertices in Tv
from v in increasing order. Let l and r be left child
and right child of v, separated from v by distance xt,
Xr respectively. The dynamic programming algorithm
of Tamir [1] stores, at each vertex v, the values of G . (x)
and Fv (x) for n - 1 distinct values of x corresponding to
the distances of all other vertices in T from v. So, the
storage space at each node in their algorithm is O(n).
They show how to compute the (n - 1 discrete) values
of Gv(x) and Fv(x) in O(n) time at each node. Hence,
their algorithm runs in O(n 2) time.

By "undiscretizing" the representation of Gv and
Fv we make these functions invariant of the distances
of v from all vertices u which are not in the subtree
Tv. In the following lemmas, we shall show that
this representation of Gv and Fv takes O(so) space.
Now, if the tree T is a balanced binary tree and
the computation at each vertex v is linear in the
space required to store each function, we would get
an O(n log n)-time algorithm. However, that may not
be the case, so we design a data-structure along with
operations on it, tha t allows us to compute Fo and Gv
in O(st log ((st + st)/st)), assuming wlog that sr > st.
Roughly, the computat ion at each node is linear in
the size of its smaller subtree and logarithmic in the
size of its larger subtree. This leads to an O(nlogn)-
t ime algorithm over any tree. We present the following
recurrence relations which show the computation of the
"undiscretized" functions Gv and Fv. This are simply
Tamir 's [1] dynamic programming recurrences written
in "undiscretized" parameter x.

if v is a leaf t h e n
Gv(x) = fv and Fv(x) =min{wvx, fv}

else
Cv(0) = fv + + Fr(xr)
G~(xk) = rnin{Gv(xk_l), w~xk + Gt(xk - xt) +

whenever xk corresponds to a distance between
v and a vertex in Tt

G,,(xk) = min(G,~(xk_l), wvxk + G~-(xk - x~) +
F,(xk +

whenever xk corresponds to a distance between
v and a vertex in Tr

Gv(x) = G,(x~) whenever xk < x < xk+l
Fv(x) = min{C.(oo) , + Ft(x + xt) + Fr(x +

end if

110

LEMMA 2.1. F, is a piecewise linear non-decreasing
concave function (PLNCF) with size IF.I < s, .

Proof. By induction on the height of v. For leaf v,
F,(z) = min{w.x, f ,} is initially an increasing linear
function with slope wv, eventually becoming a constant
function f~. It has exactly one breakpoint at x =
fv /wv. For internal node v with children l and r,
wvx + Ft(x + x~) + Fr(x + xr) is a summation of
three PLNCFs whose number of break points are not
more than 0, st, st, respectively, by induction. Since
the sum of PLNCFs is a PLNCF whose number of
breakpoints is at most the sum of the original two,
[wvx + Ft(x + xt) + F,.(x + x~)[< s~ + s~. Taking the
minimum of this function with a constant G~(oo) will
add at most one more breakpoint, and still maintain the
PLNCF property. Hence, [Fv] < s, .

[]

The new breakpoint added due to taking the mini-
mum of PLNCF with a constant function is said to cor-
respond to v. Thus, it clear from the above proof that
each breakpoint in F , corresponds to a unique vertex in
T..

LEMMA 2.2. Gv is a piecewise non-increasing step
function(PDSF) with number of steps IG~I < s..

Proof. The only values of x where Gv(x) can change
value axe when x equals distance of v from some
vertex in Tv. So it is a piecewise step function and
[G,~(x)l < s, . Also, from the definition of G. and the
dynamic programming recurrence we get that G . is non-
increasing.

[]

c 0 l r ~ Define G v (x) to be the convex hull function
of Gv(z). That is, G~ ° ~ is a convex function such
that YxG~nZ(x) < G~(x) and any convex function
H(x) such that VxH(x) < G,(x) satisfies VxH(x) <
c.=,,=(=).

Note that G~ °n= is a piecewise linear non-increasing
convex function (PLDXF). The set of breakpoints of
GC~ °'~ is a subset of breakpoints of G, . Thus, the
number of breakpoints [G~ [< [G~[< s, . Also,
it is clear from the proof of the previous lemma tha t
each breakpoint in G , corresponds to some vertex in Tv.
From the dynamic programming recurrence relations it
is clear that each breakpoint in G. comes either from
breakpoints of Gt or G~ or the vertex v itself for Gv(O).
The figure illustrates these three functions.

1~ t c~ " ' -

/

_ . _ - - - -

p s ~

X

LEMMA 2.3. For any breakpoint at y in Gl (or G,-)
that is not in G~ °'*= (or G~°'~=), there will not be a
corresponding breakpoint at y + xt in G~v °n~.

Proof. Gv would possibly have the breakpoint y + x~
corresponding to breakpoint y in Gt with Gv(y + xt) =
wv(y + zt) + Fr(y + xl + Xr) + Gt(y). Since y does
not belong to the breakpoints of G[°n=, there are two
breakpoints t , u in Gl such tha t t < y < u and
Gt(y) > (u-u)Gz(O+(~-t)Gz(u) That mearm that the U - - t

point (y, Gt(y)), lies above the line formed by points
(t, Gl(t)) and (u, Gt(u)). Since H(x) = w, (x + xt) +
Fr(z + xt + xr) is a concave function of x, H(y) >_
(u-V)H(0+(V-e)H(-) Hence, summing up, G,(y + xt) >

l / , - - t

((u+=,)- (~+xz))G~(~)+((~+=D-(~+=D)O.(,,)
(~+=D-Ct+=,) . So y+xt is not

COlrlX a breakpoint in G~ .

[]

LEMMA 2.4. At each vertex v, computing G~, °"z instead
of G,, is sufficient to carry on the recursion and G~ °nz is
sufficient for computing the minimum objective function
for T.

COnz Proof. For any vertex v, G v (oo) -- Gv(co) and since
Gn(oo) is the final value we are interested in, it is
sufficient to compute GC~ nx. Now we only need to show
how to compute Gv e°nx, given G~ °nx, Get °nx, F~ and Fr
where l and v are left and right children of some node

CO~,S$ v. If v is a leaf, then G v (x) = Gv(x) = Jr. Given the
previous lemma, we compute G~ °nx by taking H(x) as
the convex hull function of min{wvx + G~"~n=(x - Xl) +
F~(z + x~), w~x + G~°nX(x - xr) + Ft(x + xt) } and then
making it non-increasing by taking a break point t where
H(x) achieves minimum and defining G~ °nx (x) = H(x)
for all x _< t and G~"~(x) ---- H(t) for all x > t.

[]

I I I

U F L (v) {
if v is a leaf t h e n

G~ °n~ = createG(fv);
F~ = createF(w~, f,);

else
(G~ °nz, Fl) =- UFL(I);

C o ? l g (G r , Fr) = UFL(r);
gO = f , + probeF(Fl, xt) + probeF(Fr, x~);
G 1 = add_dissolveFinG(G~ °'~, F~, xl, x~);
G 2 = add_probeFforG(G c°~, Fz, x~, xz);
G 2 = add_point(G 2, (0, gO));
G 3 = min_mergeG(G 1, G ~);
Gv ~n~ = add-lineG(G a, Wv);
9in f = probeG(G ~ nz, co);
Fv = add_mer ge(Ft , F~ , xt , x:~);
Fv = add l ine_pruneF (Fv , wv, gi~ Y) ;

e n d if
CO~,X return (G~ , Fv),

Table 1: Undiscretized Algorithm

3 A l g o r i t h m and Ana lys i s

We are now ready to present the algorithm to compute
the functions defined in section 2. We describe UFL(v)
which is a recursive procedure that returns (G~ °nx, F~).
Recall that l and r are the left and right children of v
at distances xz and xr respectively. Wlog, we assume

3.1 A l g o r i t h m . The algorithm presented in table 1
above is nothing but a translation of the dynamic pro-
gramming recurrences shown in section 2. The proce-
dures in the algorithm mainly perform four functions:
create new PLFs with unit size, make a unit update
in the existing PLF, evaluate a PLF at some point or
add two PLFs. Depending on the relative sizes and the
types of PLFs, these operations need to be carried out
differently.

3.2 D a t a S t r u c t u r e O p e r a t i o n s . Here we describe
each of the operations used in the algorithm above
and give their running times. The corresponding data
structure operations are described in section 4.

creatcG(c): returns a constant PLDXF with value iden-
tically c for all x. Running time O(1).

createF(d,c): returns a PLNCF with exactly one
breakpoint at x = c/d. The slope of the first line
segment from 0 to c/d is d and the slope of the line
segment from c/d to co is 0. The running time is
O(1).

probeG(G, t): takes the PLDXF G and a value t as pa-
rameters and returns the y value of the breakpoint
in G just less than t. Running time O(log]G]).

probeF(F,t): takes the PLNCF F and a value t as
parameters and returns the value F(t) . Running
time O(log IFI).

add-line_pruneF(F, d, c): adds a linear function with
slope d to PLNCF F and then finds the point of
intersection t of PLNCF F with constant c, and
makes F(x) = c for all x > t. Running time
O(log]FI) plus time for deleting all breakpoints
u > t i n F .

add_lineG(G, d): adds a linear function with slope d to
PLDXF G. Then prunes the function as required
to restore non-increasing behavior. Running time
O(log IGI).

add_point(G, (t ,u)): inserts a new breakpoint t with
function value u into a PLDXF G and then restores
convexity by deleting points in neighborhood of t
if necessary. Running time O(log IGI) plus time for
deletions.

add-merge(F1, F2, t l , t2): adds two PLNCFs F1, F:
shifted back by values tl~ t2 respectively. Running
time O([F2I log l~'lI+IP2t). IF~f

rain_merge(G1, G2): lists the breakpoints of PLDXF
G2 and inserts them along with their function
values into PLDX_F G1 sequentially in increasing
order, restoring convexity after each insertion by
deleting few points if necessary. Returns G2.
Running time O(IG2] +]G21 log IG'l+IG21) plus the

fc21
time for deletions.

add_probeFforG(G,F, ts, t f): lists all breakpoints in
PLDXF G and shifts them forward (add) by tg + t f .
Sequentially probes PLNCF F at these values and
adds the return value to the function value at
breakpoints in G. Shifts them backwards (delete)
by t f . Now, with these points in sorted order,
takes the convex hull and generates a new PLDXF.
Running time O(IG [+ IGI log ~) .

add_dissolveFinG(G, F, ts, t /) : inserts the linear seg-
ments in PLNCF F sequentially in PLDXF G,
adding the linear value to breakpoints in G. It also
checks and restores convexity around each break-
point of F . Running time O(IFI + IFI log vll-q~Ff)
plus time for deletions.

112

3.3 Ana lys i s . Here, we show that our algorithm
solves the UFL problem on a tree in O(nlogn). The
time required by functions createF and createG is con-
stant per leaf. Hence the total time for these operation
over the entire algorithm is O(n). The time required
for each of probeG, probeF, add_line_pruneF, add_lineG
and add_point operations is bounded above by O(logn)
and each operation is carried out at most once at
each vertex v. Hence, the time taken by these op-
eration over the entire algorithm is bounded above
by O(nlogn). In operations involving deletions, the
t ime taken is O(logn) per deletion. Once the break-
point is deleted it never re-enters the da ta structure.
Hence the total number of deletions is bounded above
by 2n (for F and G) and the total cost of deletion is
O(nlogn) over the entire algorithm. What remains
to be shown is that the total cost of "merge" op-
erations rain_merge, add_merge, add_probeF forG a n d

add_dissolveFinG is bounded by O(n log n).

THEOREM 3.1. The total time required to compute
all the '~rnerge" operations in Tv (in UFL(v)) is
O(s~ log sv).

Proof. By induction on height of v. If v is a leaf
then in UFL(v), there axe no "merge" operations,
so the claim is true. Note that for any x _> y >
2, O(y + ylog((x + y)/y)) is asymptotically same as
O(ylog((x + y)/y)). So, for any internal node v with
left child 1 and right child r, with st ~ Sr by induction
we get tha t the total cost of "merge" operations is
O(sl log sl) +O(s r log st) + O(sr log ((sl + sr)/sr)). This
is bounded above by O(sv log sv).

[]

4 D a t a S t r u c t u r e s

Here, we describe the data-structures used to store
the functions F~ and G~ ~n~ which axe PLNCF and
PLDXF respectively. The main data-structure is a
height balanced binary search tree. We shall use
AVL trees which can be merged fast using Brown and
Taxjan's fast merging algorithm [8].

4.1 F a s t M e r g i n g A l g o r i t h m . Brown and Tax-
jan [8] described the algorithm to merge two binary
search trees which represent ordered lists. They use
AVL trees which axe height balanced. If T1 and T2 axe
AVL trees representing sorted lists of m and n elements
respectively, with m > n, they insert the elements from
T2 into 2"1 in sorted order to obtain a new AVL tree
with m + n elements. Rather than doing each inser-
tion independently of the others by starting each search

from the root, the search for the insertion of a new ele-
ment is started from the position of previously inserted
element, climbing up to the first ancestor(LCA) having
the next element to search in its subtree, and continue
searching down the tree from there. Brown and Tax-
jan show this can be done in O(nlog((m + n)/n)). It
is easy to show that the upper bound of the length of
the walk performed during the insertions of n sorted
elements is indeed O(nlog((m + n)/n)). This is done
by considering the distance traveled in two parts, one
tha t is within the top log n levels of AVL tree and the
other which is within the bot tom log((m + n)/n) levels
of the tree. For m ~ n >_ 2 both of these are bounded
above by O(u log((m + n)/n)). They additionally show
how to maintain the height balance during these op-
erations. Also n values, given in sorted order, can be
accessed (searched) in the tree containing m nodes in
O(n log(m/n)) time by the same algorithm.

Sorted lists represented as height-balanced trees

_ _ (,o .~)

Merging by sequential insertions (square nodes have been inserted)

4.2 R e p r e s e n t a t i o n o f P L N C F . For storing the
PLNCF F we will maintain the breakpoints sorted by
their x coordinate in an AVL tree. Along with the x
coordinate of the breakpoint each node also contains
two numbers a and b such that the linear segment in
PLNCF to the left of this breakpoint has the equation
y = Ax + B where A (resp. B) is the sum of all the a
(resp. b) values on the path from the node to the root
of the tree. Along with this, we also store a number
x °$I which records the offset of the x values within the
tree. The actual x coordinate of a breakpoint is its
x coordinate stored in the data structure node minus

113

x °]1. T h e function value F (x) is given by y --- A x t T B
where x ~ = x + x ° f f and A, B represent the equat ion of
the line passing through x ~ in the da t a s t ructure . Note
tha t given the breakpoints and equat ions of the line
segments joining them in sorted order, we can construct
the d a t a s t ruc ture for F in l inear t ime of size i.e. O(IFI) .
Similarly, given the da ta s t ruc ture representing F we
can list all the breakpoints and equat ions of lines in
O(IFI) . Given this, we describe how the operat ions in
3.2 are carried out.

createF(d , c): Create an AVL tree with singleton node,
with x --- c/d, a = d, b = 0. Set x ° I f ~- O.

probeF(F, t): Let t ~ = t + x ° f l . Search for t r in the
d a t a s t ruc ture and reach the node at coordinate u
in the da t a s t ructure such tha t u > t ~ and there
is no breakpoint s such t ha t u > s > t r in the
d a t a s tructure. Let A and B be the sums of the a
and b values from root to u. These values can be
computed along the search path. Re tu rn A t ~ + B.
If there is no such value u then access (search) the
r ightmost breakpoint and re tu rn its y value with
obta ined by A, B, x values at tha t breakpoint .

add_l ine_pruneF(F, d, c): Shift the equa t ion of the line.
T h e slope remains the same, bu t the y-intercept
instead of zero is now - d x °I f . So add the tuple
(d , - d x ° f]) to tuple (a, b) a t the root . T h e slope
of the r ightmost (infinite) line segment, assumed to
be 0 by the da t a structure, is no longer zero, but
d. To make it consistent and correct, p rune the
funct ion at y = c. For this, search the breakpoint
wi th smallest x Cleftmost) value s ta r t ing from root
wi th its y value bigger than c. This search can
be carried out in the same way as an AVL search
because y monotonical ly increases wi th x. Then,
set the x value of this breakpoint to (c - B) / A
where A, B are sum of a, b values f rom root to this
breakpoint . Now delete all the breakpoints from
the d a t a s t ructure with x > (c - B) / A .

add-merge (F1 ,F~ , t l , t 2) : Assume IFll _> IF21. In F1
set x~ f l = x~ I I + t l . Delete all b reakpoin ts in F1
wi th x < x~ I I . Similarly, in F2 set x~ I I = x~ I I + t2
and delete breakpoints similarly. Before adding
F1 and F2, we need to align their offsets. Since
IF21 < IF1 l, list all the breakpoints of da t a s t ructure
for F2 and list all the equat ions of the line segments
in increasing order. We subtrac t (x~ I I - x ~ I I)
f rom each x coordinate and for each line segment
A x + B, we add A(x~ f l - x~ f f) to B. W i t h this
t ransformat ion the offset of F2 is same as tha t of
FI . Now, use Brown and Tar jan ' s Fast Merging
Algori thm to insert the breakpoints of F2 in F1.

When a breakpoint u is inserted, we have to add the
equat ion of line segment y --- a x + B on the left of u
to all points in the d a t a s t ructure between u and the
previously inserted point s. This can be done by
updat ing the a, b values along the walk f rom s to u
performed dur ing the merge algori thm. To do this,
add tuple (~, ~) to (a, b) values at the L C A (s , u).
Then, on the pa th from L C A (s , u) to s, whenever
we choose a right child af ter a (non empty) series of
left children, subt rac t (a, /3) from the node where
the decision is made and add the (c~,/3) in the vice-
versa case. On the pa th from L C A (s , u) to u,
do the same thing reversing the sense of left and
right. For completeness sake, we s ta te t ha t the
values of C a, b} at the nodes can be preserved dur ing
ro ta t ion and double- ro ta t ion operat ions involved in
AVL insertions and deletions. Th e offset of the new
P L N C F is same as tha t of F1.

4.3 R e p r e s e n t a t i o n o f P L D X F . Here, again we
mainta in the breakpoints of P L D X F G in the AVL
tree. Also, the tuple Ca, b) is s tored along wi th x
value. However, unlike PLNCF, it doesn ' t represent
the equat ion of l ine-segment to the left. In fact, in this
case, it is only used to ob ta in the y value (same as G(x))
at a par t icular breakpoint . Th e value is calculated as
y = A x + B where A, B are same as in the previous
subsection, x ° f f is defined similarly, except t ha t i t
records the addi t ion required to the x values in the d a t a
s t ructure to reflect the correct x values. P L D X F G can
be listed and constructed from the list in l inear t ime, as
in the case of PLNCF.

createG(c): Create an AV-L tree with a singleton node.
Set x = 0 , a = 0 , b = c . S e t x ° I ! = 0 .

probeG(G, t): t' = t - x ° l i . Search for t r in the AVL
tree and reach the breakpoint u < t ' such tha t there
is no breakpoint s with u < s < t t. Re tu rn the y
value at u calculated as A u + B where A, B are
sums of a, b values along the pa th from root to the
breakpoint a t u.

add_l ine(G,d): Take the y intercept of the line as
+dx °I f . Add (d, dx ° f f) to the tuple (a, b) at the
root. Now, to ensure non-increasing character , we
delete points from behind (right to left) till we reach
a point u, the point to the left of which has higher
y value. Then , we do not delete u and halt .

add_point(G, (t, u)) : Insert a breakpoin t a t t - - x °I1.
Calculate the inheri ted y value u p at this point. Set"
a = 0, b = u - u'. Now, having inserted this point
we need to main ta in convexi ty and non-increasing
property. Check left and right neighbors of this

114

point in sorted order. If this point lies above the
line formed by joining these neighbors then delete
the newly inserted point and return. If not then
from this newly inserted point we go rightwards
and delete all the points which have y values higher
than u. Now, we traverse leftwards in the AVL
tree and check the points in decreasing order of x
coordinates. We keep track of slopes of segments
formed by adjacent pairs of points. In the case
of convex functions, the slope (which is negative
always) should decrease as we move leftwards. If
we find that the slope increased then we delete the
breakpoint to the right of that segment. And we
continue, till we find the decreasing slope. Then
we stop. i f the inserted point is a leftmost point
then we do the similar convexifying step towards
the right. In this procedure, there are only a
constant number of more accesses than the number
of deletions. We charge the cost of access of the
deleted point to the deletion operation. So, the
time taken by this procedure is same as the t ime
taken for access, which is O(log [GI).

min_merge(G1,G2): Assume IGI[> IG~I. Assume
offset x~ H of IG21 is 0. List all the points in [G2[
in increasing order of x with their x and y values.
Subtract offset x~ 11 of G1 from all x values. Now
using Brown and Tarjan's algorithm, insert these
points into the AVL tree representing G1 along
with their y values as in add_point and also perform
the convexifying step around each insertion. The
offset of the new PLDXF is the same as that of G1.
Again, we access only a constant number of extra
undeleted points per insertion. Also, these accesses
are in the neighborhood of newly inserted points.
Charging the cost of accessing deleted points to
deletion, it can be shown that the total cost is
O([G2[+ [G2[log((lGl[+ [G2[)/[G2[)) plus the cost
of deletion.

add_probeFforG(G, F, tg, t j) : We first list all the
breakpoints of G in increasing order with their x
and y values. We then add tg to each x value.
For each breakpoint x in G, we check the values
of probeF(F, x + tf) and add them to their corre-
sponding y values in G. Now, we keep only those
points in G which form a convex function. Since
the points are already sorted, the convex hull can
be computed in linear time. For sequential probes
in F we again use Brown and Tarjan's algorithm.

add_dissolveFinG(G, F, tg,tl): We list all the break-
points in F along with the equations of segments
and transform them accordingly as in add_merge

considering the values x~ If, 5g°] ff, w h i c h are x off-
sets of G, F respectively, and tg, t I. The offset of
the new da ta structure will be same as that of G.
Now we virtually insert the breakpoints of F and
actually insert linear segments of F into G. By
this we mean that we do update the (a, b) values
along the Brown and Tarjan's Merging walk per-
formed during the algorithm but do not actually in-
sert points. However, we remember the locations of
each virtually inserted breakpoint of F in G. There
could be a possible region of concavity aromld this
virtual breakpoint. Again we apply a convexifying
step around these virtual breakpoints to make G
convex and non-increasing. The figure illustrates
convexifying step involved.

~ piecewise convex (add dissolveFinG)

convexifying step i " " ~ ~ /
around vi~mal i
breakpoint i ~

virtual breakpoint of F non-increasing PLDXF

X m

5 R e l a t e d P r o b l e m s

Several generalizations of the UFL problem on trees
have been proposed. The tree partitioning problem by
Cornuejols, Nemhauser and Wosley [7] was shown to
be a generalization of the Economic Lot Sizing (ELS)
problem as well as of UFL. Shaw [4] gives the tree par-
titioning generalization of UFL, Facility Constrained
Covering (FCC) problem, Customer Constrained Cov-
ering (CCC) problem and Generic Customer Covering
(GCC) problem. They give O(n 2) algorithms for solv-
ing all these problems on trees. As noted earlier the
tree partitioning problem differs from the UFL prob-
lem on trees in the sense that the transportat ion cost
can be arbitrary and not linear, in particular with tree
distances. Since the problem size involved in Tree Parti-
tioning is O(na), our algorithm can hardly hope to beat
O(n2). The same is true in the case of GCC, where
each customer has a specified subtree in which a facility
is needed in order to cover that customer. However, our
technique applies well to FCC, CCC and ELS, giving a
time complexity of O(n log n) for the first two that for
ELS is O(n). Also, related is the problem of placing ill-
ters in a multicast tree for which an O(n log h) algorithm
was given by Shah, Langerman and Lodha [2] which mo-

115

tivates our work. We briefly outline these problems and
the "undiscretized" functions which can be used to solve
them.

5.1 Faci l i ty C o n s t r a i n e d Cover ing P r o b l e m .
This problem was first studied by Kolen [3]. In this
problem, there exists a radius sj for each facility j
which has a set-up cost of f j . A customer i can be
served by a facility j only if the distance dii between
them is at most sj. If a customer i is not served by
any facility, then a penalty cost of qi is incurred. Here,
for each v we define Gv(x) as the optimal subproblem
value in subtree T. assuming that there is at least one
facility in Tv whose radius of influence covers at least
distance x beyond v in T - T.. And we define Fv(x) as
the optimal subproblem value in subtree Tv assuming
that the distanced covered in T~ by the most influential
facility in T - Tv is exactly x. Here G~ is a stepwise
increasing function and Fv is a stepwise decreasing
function of x, with G~(0) = F,(0). Similar recurrences
hold and the data structure using the fast merging of
BSTs can be used to give an O(nlogn) algorithm. The
data structure operations are much simpler here since
slopes and convexity issues need not be handled.

5.2 C u s t o m e r C o n s t r a i n e d Cove r ing P r o b l e m .
This problem is also due to Kolen [3] and it differs
from the FCC in that instead of a radius for facility,
there is a radius of attraction ri for each customer ci.
Here, we define Gv and Fv in exactly the same way as
in the UFL problem in this paper. In this case, G .
is a stepwise decreasing function and Fv is a stepwise
increasing function with Gv(cc) = Fv(oc). As in FCC,
we get an O(n log n) algorithm.

5.3 E c o n o m i c L o t Sizing P r o b l e m [7]. There is
demand di in period i, i = 1, .., n. The fixed cost of
producing in period j is f j and the variable cost is pj.
The variable storage and backorder costs are c + and cf .
This problem can be seen as UFL on a path, with the
distance function on each edge being c + in one direction

and c~ in the other. G~(x) and F,(x) can again be
similarly defined with the minor modification that x
for G~ means upward distance while x for Fv means
downward distance. Since there is no merge involved,
these "undiscretized" functions can be constructed by
sequential insertions in O(n) time.

6 R e m a r k s a n d F u t u r e W o r k

Another generalization of UFL was given by Tamir [1]
which has UFL as a particular case of the general
model for k-median problem. Again, the dynamic
programming functions here can be undiscretized but

this involves two parameters, mid an effective data
structure for handling this is not known. [1] gives an
O(kn 2) algorithm for the k-median problem. The
number of facilities opened in UFL can be controlled by
varying the facility costs. In this sense, faster algorithms
for UFL can in effect lead to faster algorithms for k-
median on trees.

References

[1] A. Tamir, "An O(pn 2) algorithm for the p-median and
related problems on tree graphs", Operations Research
Letters, 19:59-9~, 1996.

[2] It. Shah, S. Langerman and S. Lodha,"Algorithms for
efficient filtering in content-based multicast", To ap-
pear in 9th annual European Symposium on Algorithms
(ESA), 2001.

[3] A. Kolen, "Solving covering problems and the unca-
pacitated plant location problem on trees", European
Journal of Operations Research, 12, 266-278, 1983.

[4] D. Shaw,"A unified limited column generation ap-
proach for facility location problems on trees", Annuals
of Operations Research, 87, 363-382, 1999.

[5] R. Hassin and A. Tamir, "Improved complexity bounds
for location problems on the real line", operations
Research Letters, 10, 395-402, 1991.

[6] A. Tamir and T. Lowe, "The generalized p-forest
problem on a tree network", Networks 22, 217-230,
1992.

[7] G. Cornuejols, G.L. Nemhauscr and L.A. Wesley, "The
uncapacitated facility location problem", in P.B. Mir-
chandani and R.L. Francis(eds), Discrete Location The-
ory, Wiley, New York, 1990, pp. 119-171.

[8] M. Brown and R. Tarjan, "A fast merging algo-
rithra" ,Journal of A CM, 26(2), pp 211-225, Apr 79.

[9] A. Aho, J. Hopcroft and J. UUman, "The design and
analysis of computer algorithms", Addison-Wesley,
Reading, Mass, 1974

[10] G. Adel'son-Vel'skii and Y. Landis, "An algorithm for
the organization of information", Dokl. Akad. Nauk
SSSR 1~6, 263-266, (in Russian) English translation
in Soviet Math. Dokl., 3-1962, pp1259-1262.

[11] C. Crane, "Linear lists and priority queues as balanced
binary trees", PhD Thesis, Stanford University, 1972.

[12] M. Garey and D. Johnson, "Computers and intractabil-
ity: A guide to the theory of NP-completeness", Free-
man, San Francisco, California, 1979.

