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Abstract  This short survey exhibits some of the important roles (generalized)
convexity plays in integer programming. In particular integral polyhe-
dra are discussed, the idea of polyhedral combinatorics is outlined and
the use of convexity concepts in algorithmic design is shown. Moreover,
combinatorial optimization problems arising from convex configurations
in the plane are discussed.
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1. Introduction

Convexity plays a crucial role in many areas of mathematics. Prob-
lems which show convex features are often easier to solve than similar
problems in general. This short survey based on personal preferences
intends to exhibit some of the roles convexity plays in discrete opti-
mization. In the next section we discuss convex polyhedra all of whose
vertices have integral coordinates. In Section 3 we outline the concept
of polyhedral combinatorics which became basic for solving N'P-hard
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problems like the travelling salesman problem. In Section 4 we show
some of the roles (generalized) convexity plays in the algorithmic design
for combinatorial optimization problems. In the last section combinato-
rial optimization problems arising from convex geometric configurations
will be discussed.

2. Convexity and integer programming

At the end of the 19th century Minkowski began to study convex
bodies which contain lattice points. In 1893 he proved the following

fundamental theorem (see also his monograph Geometry of Numbers of
1896):

Theorem 2.1 Let C be a convex body in R®, symmetric with respect
to the origin, and let the volume V(C) of C be V(C) > 2¢. Then C
contains a pair of points with integral coordinates.

In connection with the development of linear and integer programming
this area of the geometry of numbers got a new relevance. The main
theorem of linear programming states that the finite optimum of a linear
program is always attained in an extreme point (vertex) of the set of
feasible solutions. If we can derive a bound on the coordinates of vertices
of the feasible set, even if the underlying polyhedral set is unbounded,
then the feasibility and optimality of an integer program can be checked
in finitely many steps. To be more precise, let us assume that A is an
integral m X n matrix and let b € Z™. We consider the points with
integral coordinates in the convex polyhedral set

P:={zeR'|Az <b, z >0}

and call § := PNZ". The following theorem, see Nemhauser and Wolsey
(1988) Theorem 1.5.4.1., is basic that an integer programming problem
can be solved by enumeration.

Theorem 2.2 Let K := maXi<i<m, 1<j<n(l@ijl, |bi]). Ifz is an extreme
point of conv(S), then

0<z; < ((m+n)nK)* forj=12,..,n

As a consequence of this result the feasibility and optimality problems
in integer linear programming belong to the complexity class NP. Bank
and Mandel (1988) generalized this result to constraint sets described
by quasi-convex polynomials with integer coefficients.

Since integer programming can be reduced to linear programming pro-
vided that all extreme points of the feasible region have integral coordi-
nates, there is a special interest in convex polyhedral sets with integral
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vertices. A convex polyhedron
P:={zeR'|Az <b, z >0}

is called integral, if all its vertices have integral coordinates. A nice char-
acterization of integral polyhedral sets defined by arbitrary right hand
sides b has been given by Hoffman and Kruskal (1956). A matrix A is
called rotally unimodular, if any regular submatrix of A has determinant
*1. Now the following fundamental theorem holds:

Theorem 2.3 (Hoffman and Kruskal, 1956)
Let A be an integral matrix. Then the following two statements are
equivalent:

1 P(A,b) .= {z € R*|Az < b, £ > 0} is integral for all b with
P(A,b) # 0.

2 A is totally unimodular.

Important examples for problems with totally unimodular coefficient
matrices are assignment problems, transportation problems and network
flow problems. Seymour (1980) showed that totally unimodular matrices
can be recognized in polynomial time.

If we specialize the right hand side in the constraint set to b with
b; =1 for all ¢, we get the constraint sets of

» set packing problems: Az <1, z >0,
® set partitioning problems: Az =1, = >0,
® set covering problems: Az > 1, = > 0.

For this kind of problems not only totally unimodular matrices, but
even a larger class of matrices leads to integral polyhedra. We call a
matrix A with entries 0 and 1 balanced, if it does not contain a square
submatrix of odd order with row and column sums equal to 2. For
example, the following 3%3 submatrix constitutes a forbidden submatrix:

110

011

1 01
Fulkerson, Hoffman and Oppenheim (see Fulkerson et al (1974)) showed
the following result.

Theorem 2.4 IfA is balanced, then the set partitioning problem

min{c'z| Az =1, z >0}
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has integral optimal solutions.

For many years the recognition of balanced matrices has been an open
problem. In 1999, Conforti, Cornué¢jols and Rao (see Conforti et al.
(1999)) showed that balanced matrices can be recognized in polynomial
time.

The following result of Berge (1972) with respect to set packing and
set covering problems is more along the lines of the Hoffman-Kruskal
theorem.

Theorem 2.5 Let matrix A be without O-row and 0-column. Then the
following statements are equivalent:

1 A is balanced.
2 {z|Az < b, x >0} is integral for all b with b; =1 or oco.
3 {z|Az > b, x > 0} is integral for all b with b; =1 or 0.

For a recent survey on packing and covering problems the interested
reader is referred to Cornu¢jols (2001).

3. Polyhedral combinatorics

In the following we consider combinatorial optimization problems
which can be described by

s a finite ground set E,
m  a class F of feasible solutions which are subsets F' C E, and

» cost coefficients c(e) for all elements e € E.

The cost of a feasible solution F is defined by ¢(F) := ) pc(e). The
goal is to find a feasible solution with minimum cost.

For example, the travelling salesman problem may be described by the
ground set E consisting of all edges (roads) between n vertices (cities)
of a graph. A feasible solution F corresponds to a tour through all
cities. A tour is a subset of the edges which corresponds to a cyclic
permutation ¢ of the underlying vertex set, i.e., F consists of all edges
[4,#(3)], 1 < i < |V]. Less formally spoken, a tour visits all vertices of
the graph starting from vertex 1 and does not visit any vertex twice.
The length of a tour F is given by ¢(F) := Y . c(e). The objective is
to find a tour with minimum length.

In order to model this problem with binary variables we introduce a
0-1 vector z with |E| components. A feasible solution F corresponds to

1, ifee F
‘”(F)"{ 0, ifed F.



Convexity and Discrete Optimization 27

The combinatorial optimization problem

can be written as
minc'z for x € conv{z(F), F € F}.

This means that the linear function ¢z is to be minimized over the
convex hull of finitely many points. Polyhedral combinatorics consists
in describing the polytopes given as convex hull of all feasible points by
linear inequalities. Let us discuss as examples matching problems and
symmetric travelling salesman problems.

Matching problems

A matching M is a subset of edges of an undirected, finite graph G =
(V, E) with vertex set V and edge set E where every vertex is incident
with at most one edge of M. The maximum cardinality matching prob-
lem asks for a maximum matching in G, i.e., for a matching with a
maximum number of edges. The ground set E contains the edges of G,
feasible sets are the matchings M. We want to formulate the maximum
cardinality matching problem as a binary linear program. To this end
we introduce for each edge j € E a variable z;. Let 6(v) denote the
set of edges incident with vertex v. Then we get the following obvious
necessary inequalities:

Yz < 1 forally,
j€d(o)
z > 0.

If we consider the graph K3, i.e., the complete graph with three ver-
tices and three edges (which form a triangle), then the vector £ =
(1/2,1/2,1/2) fullfills the inequalities above, but does not correspond
to a matching. Thus it is necessary to add additional constraints in the
case of a non-bipartite graph. One can show that in the case of a bipar-
tite graph the above mentioned constraints are sufficient for describing a
matching. Let v(W) denote the subset of all edges with both endpoints
in W C V. Edmonds (1965) introduced for the maximum cardinality
matchings in non-bipartite graphs the additional constraints

S oz <1/2(w] - 1),
jey(w)
forall W C V with |[W| > 3, odd.
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Theorem 3.1 (Edmonds, 1965)
The matching polytope is fully described by

> 0,

r 2
Zm,— < 1 forallveV,
j€d(v)

> oz < Y2AW|-1) forall W CV with |W|>3, odd.
jex(w)

Symmetric travelling salesman problems

As a second example we consider the symmetric travelling salesman
problem (TSP). Let again a finite, undirected graph G = (V,E) with
vertex set V and edge set £ be given. In order to describe the feasible
sets (tours) by linear inequalities we introduce a binary variable z(e) for
every edge e € E. Obviously the following inequalities must be fulfilled:

0<z(e)<1, foralle€ E, (2.1)
and
Z z(e) =2, forallve V. (2.2)
ecs(v)

But these inequalities do not fully describe tours, since they may be inci-
dence vectors of more than one cycle in G, so-called subtours. Therefore
one requires also the so-called subtour elimination constraints

> z(e)22forall WCV,2< W< V|2 (2.3)
ecd(W)

Now one can show

Theorem 3.2 The integral points lying in the convex polyhedron (2.1)-
(2.3) correspond exactly to tours.

It should be noted that a linear program with constraints (2.1)-(2.3)
can be solved in polynomial time, even if there are exponentially many
inequalities of the form (2.3). The convex polytope described by (2.1)-
(2.3) may, however, have fractional vertices which do not correspond
to tours. Thus further inequalities must be added which cut off such
fractional vertices. There are many classes of such additional inequalities
known, e.g. comb inequalities, clique tree inequalities and many others.
The interested reader is referred to e.g. Grotschel, Lovasz and Schrij-
ver (see Grotschel et al. (1988)). It should be noted that a complete
characterization of the convex hull of all tours is not known in general.
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Since the polytope described by (2.1)-(2.3) may have non-integral ex-
treme points, the following separation problem plays an important role
for solving the TSP: If the optimal solution for the linear program with
the feasible set (2.1)-(2.3) is not integral, we have to add a so-called
cutting plane, i.e., a linear constraint which is fulfilled by all tours, but
which cuts off the current infeasible point. Usually such a cutting plane
is determined by heuristics and is taken from the class of comb inequal-
ities, clique tree inequalities or other facet defining families of linear
inequalities for the TSP polytope.

4. (Generalized) Convexity and algorithms

In this section we will point out that convexity also plays an important
role in algorithms for solving a convex or linear integer program. Let
fi(x), 1 <1 < m, be quasiconvex functions defined on a region D C R*
and consider the convex integer program

minimize dz (2.4)
subject to  fi(z) <0 1<i<m, (2.5)
z integer. (2.6)

Branch and bound method

When we use a branch and bound method for solving (4)-(6), we first
solve the underlying convex program without the constraint z being
integral. If the solution z* is integral, we are done. Otherwise, say, ]
is not integral. We create two new problems by adding either

1 < [a7]

or
T > [:EI] + 1.

Instead of solving these two subproblems we can - due to the convexity
of the level sets - fix the variable z; to [z]] and [z]] + 1, respectively.
Therefore we solve a problem with 1 = [z]] and a problem with z; =
[z1] + 1. Now assume that the solution of the first subproblem with
the additional constraint z; = [z}] is still not integral. Then we must
generate three new subproblems in the next branching step, namely
two subproblems for fixing a new variable to an integer value and one
subproblem with fixing % to [z}] — 1. For details, see e.g. Burkard
(1972). Thus the convexity of the level sets helps to fix variables which
accelerates the solution of the problem.

Cutting plane methods
Given problem (2.4)-(2.6), we first solve again the underlying convex
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program without the constraint  being integral. If the solution obtained
in this way is not integral, we search for a valid inequality which cuts
off this solution, but which does not cut off any feasible integral solution
(separation problem). If no valid inequality can be found, we branch
(branch and cut method). This method uses essentially the fact that the
intersection of two convex sets is again convex.

Subgradient optimization
For hard combinatorial optimization problems often a strong lower
bound can be computed by a Lagrangean relaxation approach which
uses the minimization of a non-smooth convex function. Held and Karp
(1971) used such an approach very successfully for the symmetric travel-
ling salesman problem, see also Held et al. (1974). We will illustrate this
approach by considering the axial 3-dimensional assignment problem.
The axial 3-dimensional assignment problem can be formulated in the

following way:

n n n

min Z Z Z CijkTijk
i=1 j=1k=1
n

s.t. .’I)ijk=1, i=1,2,...,n,

.
If
-

Tk = 1, i=L12,...,n,

-,
I
=

M:
M- I I

(Bijk————l, k=1,2,...,n,

-

-

It
A
.

il
—

ziji € {0,1} for all 1 <i,5,k <n.

Karp (1972) showed that this problem is N'P-hard. In order to com-
pute strong lower bounds we take two blocks of the constraints into the
objective function via Lagrangean multipliers:

L(m,e) :=

n n
min Z Z Z(cmk + 7 + €)Tijk — Z i — Z €

i=1 j=1k=1
such that

n n

Zinjk=1, k=1,2,.
i=1j=1

zijk € {0,1}, 1<4,5,k <mn,

TeER, ce R,
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L(m,¢€) is a concave function as minimum of affine-linear functions.
For finding its maximum a subgradient method can be used: Start with
7" := € := 0, use a greedy algorithm for evaluating L(n",€") and let Tk
be the corresponding optimal solution. Define v}, := |{z ; x|Zis,jk =
1}| — 1 for all ig = 1,2,...,n and wh = [{zf;, (l@ijok = 1} — 1 for
all jo = 1,2,...,n. If o™ = w" = (0,0,...,0), then the maximum is
reached. Otherwise 7 and € are updated with a suitable step length A,

=g+ Aw", €Tli=e + A"

and the next iteration is started. For details see Burkard and Rudolf
(1993).

Other techniques

In connection with the application of semidefinite programming to com-
binatorial optimization problems, various other techniques from convex
optimization were applied to discrete optimization problems. One of the
most interesting approaches is due to Brixius and Anstreicher (2001) and
concerns quadratic assignment problems (QAPs). Quadratic assignment
problems which are very important for the practice, but notoriously hard
to solve, can be stated as trace minimization problems of the form

mintr (AXB 4+ C)X?,

where A, B and C are given nXn matrices and X is an nXn permutation
matrix. First, one can relax the permutation matrix to an orthogonal
matrix with row and column sum equal to 1. Then one can separate
the linear and the quadratic term in the objective function. Brixius
and Anstreicher interpret the relaxed problem in terms of semidefinite
programming and evaluate a new bound which requires the solution of
a convex quadratic program. This is performed via an interior point
algorithm. The solution of the quadratic program allows to fix variables
for the studied QAP and leads to very good computational results.

S. Convex configurations and combinatorial
optimization problems

Many combinatorial optimization problems become easier to solve, if
the input stems from convex sets. For example, the following fact about
the planar travelling salesman problem (TSP), i.e., a TSP where
the distances between the cities are given by (Euclidean) distances in
the plane, is well known. Assume that the cities lie on the boundary
of a convex set in the plane. Then an optimal solution is obtained by
passing through the cities in clockwise or counterclockwise order on the
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boundary. The reason for this is that in an optimal Hamiltonian cycle
in the Euclidean plane the edges of the cycle never cross due to the
quadrilateral inequality. Due to convexity every other solution than the
clockwise or anticlockwise tour would have some crossing edges. It can
be tested in O(nlogn) time whether n given points in the plane lie on
the boundary of a convex set, see e.g. Preparata and Shamos (1988).
Their cyclic order can be found within the same time. If a distance
matrix for a planar TSP is given, it can be tested in O(n?) time whether
this is a distance matrix of vertices of a convex polygon or not (see
Hotje’s procedure in Burkard (1990)). Thus the case of a planar TSP
whose cities are vertices of a convex polygon can easily be recognized
and solved even though the planar TSP is N'P-hard in general (see
Papadimitriou (1977)).

The same arguments as above apply, if the distances between cities
are measured in the [3-norm and the cities are vertices of a rectilinearly
convex set in the plane. A region R is called rectilinearly convex if every
horizontal or vertical line intersects R in an interval.

The distance matrix C' = (¢;;) of a planar TSP whose vertices lie on
the boundary of a convex polygon has a special structure. The matrix
fulfills the so-called Kalmanson conditions

Gjtemw X cpt+cy foralll<i<j<k<l<n, (2.7)
cit+cjy £ cp+cey foralll<i<j<k<i<n. (2.8)

Kalmanson (1975) showed that a TSP whose distance matrix fulfills
these Kalmanson conditions has the tour < 1,2,...,mn—1,n > as optimal
solution, i.e. the travelling salesperson starts in city 1, goes then to city
2, and so on until she or he returns from city n to city 1. The definition of
the Kalmanson property depends on a suited numbering of the rows and
columns (i.e. of the cities) of the distance matrix. If after a renumbering
of the rows and columns a matrix becomes a Kalmanson matrix, we
speak of a permuted Kalmanson matrix. Permuted Kalmanson matrices
can be recognised in O(n?) time by a method due to Christopher, Farach
and Trick (see Christopher et al. (1996) and Burkard et al. (1998)).
Permuted Kalmanson matrices are also interesting in connection with
the so-called master tour problem. A master tour & for a set V of cities
fulfills the following property: forevery V! C V an optimum travelling
salesman tour for V' is obtained by removing from = the cities that are
not in V'. Deineko, Rudolf and Woeginger (see Deineko et al. (1998))
showed that the master tour property holds if and only if the distance
matrix is a permuted Kalmanson matrix.



Convexity and Discrete Optimization 33

Now let us turn to the minimum spanning tree problem (MST).
Let a finite undirected and connected graph G = (V, E) with vertex set
V and edge set E be given. Every edge e has a positive length c(e).
(MST) asks for a spanning tree T = (V, Er), Er C E, of G such that

Y o)

e€Erp

is minimum. If n points in the plane are given, the graph G is given by
the complete complete graph K, of these points and the edge lengths
are given as (Euclidean) distances between the points. We have

Theorem 5.1 A minimum spanning tree for n points in the plane can
be computedin O(nlogn) time. If the points lie on the boundary of a
convex set and are given in cyclic order, the MST problem can be solved
in O(n) time.

The idea behind this theorem is (see e.g. Mehlhorn (1984b)) that a
minimum spanning tree of the given points contains only edges of the
Delauney triangulation of these points. According to Aggarwal et al.
(1989) the Delaunay triangulation of vertices of a convex polygon can
be computed in O(n) time. The Delaunay triangulation leads to a planar
graph. Mehlhorn (1984a) showed that the MST in a planar graph can
be solved in O(n) time.

Similar results hold for the maximum spanning tree problem (see
Monma et al. (1990)).

Now let us turn to the Steiner tree problem (STP) which has many
applications in network design or VLSI design. The Steiner tree problem
asks for the shortest connection of k given points, called terminals where
it is allowed to introduce additional points, the so-called Steiner points.
For example, if the terminals are the vertices of an equilateral triangle,
then the center of gravity of the triangle is introduced as Steiner point.
The connection of the Steiner point with each of the terminals yields the
shortest Steiner tree of the given points. The length of a Steiner tree
is again measured as sum of the lengths of all edges in the tree. The
Steiner tree problem is N'P-hard in general (see Garey et al. (1977)). A
Steiner tree problem is called Euclidean, if the terminals lie in the plane
and all distances are measured in the Euclidean metric. For Euclidean
Steiner tree problems, Provan (1988) showed the following result.

Theorem 5.2 [f the terminals of a Euclidean Steiner tree problem lie
on the boundary of a convex set in the plane, then there exists a fully
polynomial approximation scheme, i.e., there is an algorithm which con-
structs for any fixed € > 0 a Steiner tree T of length I(T') such that

IT) < (1+¢)- Opt
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where Opt is the optimum value of the problem under consideration and
where the running time of the algorithm is polynomial in n and 1]e.

An even better result can be shown if the distances between vertices
are measured in the l;-norm. This problem plays a special role in VLSI
design where the connections between points use only horizontal or ver-
tical lines of a grid. Provan (1988) showed

Theorem 5.3 If the n terminal nodes of a Steiner tree problem lie on
the boundary of a rectilinearly convex set and the distances between ver-
tices are measured in the ly-norm, then the Steiner tree problem can be
solved in O(n®) time.

Now let us turn to matching and assignment problems in the
plane. Let 2n points on the boundary of a convex set in the plane be
given. We consider the complete graph Ko, whose vertices are these
points and whose edge lengths are the Euclidean distances between the
points. The weight of a matching M equals the sum of all edge lengths of
M. Marcotte and Suri (1991) showed that a minimum weight matching
in this Kgy, can be found in O(n logn) time. Moreover, they showed that
a maximum weight matching can be found in linear time.

Next we color n vertices of this Ka, red and n vertices blue and we
allow edges only between vertices of different color. This gives rise to a
matching problem in a bipartite graph (assignment problem). Marcotte
and Suri (1991) showed also that the assignment problem defined above
can be solved in O(nlogn) time. Moreover, the verification of a mini-
mum matching can be performed in O(n - a(n)) steps, where a(n) is the
very slow growing inverse Ackermann function.

6. Conclusion

In the previous sections we outlined some of the important roles con-
vexity plays in theory and practice of integer programming. But there
are many other areas in discrete optimization, where (generalized) con-
vexity is crucial. Let me just mention location problems, combinatorial
optimization problems involving Monge arrays and submodular func-
tions.

In location theory one wants to place one or more service centers
such that the customers are served best. Classical location models lead
to convex objective functions. The convexity of these functions is ex-
ploited in fast algorithms for solving these problems. For example, the
simple form of Goldman’s algorithm (see Goldman (1971)) for finding
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the 1-median in a tree is mainly due to the convexity of the correspond-
ing objective function.

Secondly, I would like to mention Monge arrays. A real m x n
matrix C = (¢;5) is called Monge matrix, if

Cij+es<ciste foralll<i<r<m, 1<j<s<n. (29)

Many combinatorial optimization problems turn out to be easier to solve,
if the problems are related to a Monge matrix. For example, if the cost
coefficients of a transportation problem fulfill the Monge property (2.9),
then the transportation problem can be solved in a greedy way by the
north west corner rule. Or, if the distances of a travelling salesman
problem fulfill the Monge property, then the TSP can be solved in linear
time. A survey on Monge properties and combinatorial optimization
can be found in Burkard, Klinz and Rudolf (see Burkard et al. (1996)).
Monge matrices are closely related to submodular functions. A set
function f : 2¥ — R is called submodular, if

FX)+f(Y) > f(XUY)+ f(XNY) forall X,Y CV.

Submodular functions exhibit many features similar to convex functions
and they play among others an important role in combinatorial opti-
mization problems involving matroids. For details, the reader is referred
to the pioneering work of Murota (1998).
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