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IMPROVED ALGORITHMS FOR ECONOMIC LOT SIZE PROBLEMS
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Many problems in inventory control, production planning, and capacity planning can be formulated in terms of a simple
economic lot size model proposed independently by A. S. Manne (1958) and by H. M. Wagner and T. M. Whitin (1958).
The Manne-Wagner-Whitin model and its variants have been studied widely in the operations research and management
science communities, and a large number of algorithms have been proposed for solving various problems expressed in
terms of this model, most of which assume concave costs and rely on dynamic programming. In this paper, we show
that for many of these concave cost economic lot size problers, the dynamic programming formulation of the problem
gives rise to a special kind of array, called a Monge array. We then show how the structure of Monge arrays can be
exploited to obtain significantly faster algorithms for these economic lot size problems. We focus on uncapacitated
problems, i.e., problems without bounds on production, inventory, or backlogging; capacitated problems are considered

in a separate paper.

his paper presents efficient algorithms for prob-
lems related to economic lot size models. Eco-
nomic lot size models typically deal with production
and/or inventory systems. A product (which could be
a raw material, a purchased part, or a semifinished or
finished product in manufacturing or retailing) is pro-
duced or purchased in batch quantities and placed in
stock. As the stock is depleted by demands for the
product, more of the product must be produced or
purchased. The object of production planning is to
minimize the cost of this cycle of filling and depleting
the stock. Since there are usually a very large number
of variables that affect production planning (which
may include workforce levels, physical resources of
the firm, and external variables such as federal regu-
lations), economic lot size models typically make cer-
tain simplifying assumptions. Some researchers have
studied models with the assumption that the demands
on the inventory follow a given probabilistic distri-
bution, while others have assumed that these demands
are deterministic and known in advance. In this paper,
we study models based on the latter assumption.
Harris (1915) is usually cited as the first to study
economic lot size models that assume deterministic
demands. He considered a model that assumes
demands occur continuously over time. About three

decades ago, a different approach was independently
provided by Manne (1958) and by Wagner and Whitin
(1958); they divided time into discrete periods and
assumed that the demand in each period is known in
advance. Since 1958, the Manne-Wagner-Whitin
model has received considerable attention, and several
hundred papers have directly or indirectly discussed
this model; most of these papers have either extended
this model or provided efficient algorithms for pro-
duction problems that arise in it. (Indeed, Lee and
Denardo (1986) have provided convincing reasons
why the Manne-Wagner-Whitin model is a reasonable
one.) The references given here and those given by
Bahl, Ritzman and Gupta (1987) provide only some
of the papers related to the Manne-Wagner-Whitin
model. Today, even an introductory operations
research textbook is likely to include a chapter on
the Manne-Wagner-Whitin model and on some
of its extensions. (See, for example, Johnson and
Montgomery 1974, Wagner 1975, Denardo 1982, and
Hax and Candea 1984.) Because of the immense
interest in economic lot size models, a considerable
amount of research effort has been focused on estab-
lishing the computational complexity of various eco-
nomic lot size problems. (In particular, see Florian,
Lenstra and Rinnooy Kan 1980, Bitran and Yanasse
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1982, Luss 1982, Erickson, Monma and Veinott 1987,
and Chung and Lin 1988.)

This paper reviews the Manne-Wagner-Whitin
model and several of its extensions. It also provides
efficient algorithms for a wide variety of concave cost
production planning problems expressed in terms of
this model. We focus on uncapacitated economic lot
size problems, i.e., problems without bounds on pro-
duction, inventory, or backlogging; capacitated prob-
lems, as well as related problems involving negative
demands and shelf-life bounds, are considered in
another paper (Aggarwal and Park 1992; see also
Section 6). Our algorithms use dynamic programming
(Bellman 1957) and array searching (Aggarwal et al.
1987, Wilber 1988, Aggarwal and Park 1989, Klawe
1989, Galil and Park 1990, Eppstein 1990, Larmore
and Schieber 1991), and they typically improve the
running times of previous algorithms by factors of »
or n/lg n, where 7 is the number of time periods under
consideration; these improvements are listed in
Tables I, 11, and III. In many cases, the running times
of our algorithms are optimal to within a constant
factor or to within a factor of Ig ».

One of the critical contributions of this paper (and
of Aggarwal and Park 1992) is our identification of
the Monge arrays that arise in connection with the
economic lot size model; it is these arrays that allow
us to apply known array-searching techniques and
improve the time bounds of previous algorithms for
economic lot size problems so dramatically. We also
raise several unresolved questions regarding the time
complexities of various problems formulated in terms
of the economic lot size model. It is our hope that
these open questions will stimulate interest in the
economic lot size model among researchers in theo-
retical computer science and related areas.

Recently, two groups of researchers from the oper-
ations research community—Federgruen and Tzur
(1990, 1991) and Wagelmans, van Hoesel and Kolen
(1992)—have independently obtained some of the
results presented in this paper using very different
techniques. We will briefly describe their work and
contrast it with our own in the final section of this
paper.

The remainder of this paper is organized as follows.
In Section 1, we review the Manne-Wagner-Whitin
model and several of its extensions, and we also list
the main results of this paper. In Section 2, we discuss
some of the techniques used in obtaining our results,
and then in the Sections 3-5, we present our improved
algorithms for three different types of economic lot
size problems. Finally, in Section 6, we discuss several
extensions to our work, relate our results to the afore-

mentioned work of Federgruen and Tzur (1990, 1991)
and of Wagelmans, van Hoesel and Kolen (1992), and
present some open problems.

1. DEFINITIONS AND RESULTS

This section defines several variants of the economic
lot size model and lists our algorithmic results for
these models. Subsection 1.1 focuses on the basic
economic lot size model, in which no backlogging of
demand is allowed, while subsection 1.2 examines an
extension to the basic model that does allow backlog-
ging, and subsection 1.3 considers two infinite-plan-
ning horizon variants of the backlogging model.

1.1. The Basic Model

To describe the basic economic lot sizing model pro-
posed by Manne (1958) and Wagner and Whitin
(1958), we use the notation employed by Denardo.
Demand for the product in question occurs during
each of n consecutive time periods (i.e., intervals of
time) numbered 1 through #. The demand that occurs
during a given period can be satisfied by produc-
tion during that period or during any earlier period,
as inventory is carried forward in time. (This basic
model differs from the backlogging model described
in subsection 1.2 in that demand is not allowed to
accumulate and be satisfied by future production.)
Without loss of generality, we assume both the initial
inventory (at the beginning of the first period) and the
final inventory (at the end of period ») are zero. The
model includes production costs and inventory costs,
and the objective is to schedule production to satisfy
demand at minimum total cost.

The data in this model are the demands, the pro-
duction cost functions, and the inventory cost func-
tions. In particular, for 1 < i < n,

d; = the demand during period i;
¢i(x) =the cost of producing x units of inventory
during period 7; and
h;(y) = the cost of storing y units of inventory from
period i — 1 to period i;

where we assume d; = 0 for all /. Furthermore, the
model has 2n + 1 variables x,, ..., x,and y,, ...,
VYnt1, Where for 1 < i <n,

x; = the production during period i,
andforl <isn+1,

y: = the inventory stored from period i — 1 to
period .

Demand, production, and inventory occur in real



quantities, and the problem of meeting demand at
minimal total cost has the following mathematical
representation:

minimize i {ci(x) + hd )

=1

subject to the constraints

yl=yn+l=0
xi=z0 forl <si<n,
yiz0 for 1 <i<n, and

Vvit+xi=d +yy. forl<i<n.

In the above, the first constraint assures that the
initial and final inventories are zero, while the second
and third constraints limit production and inventory
to nonnegative values. (Requiring inventory to be
nonnegative ensures that the demand in period i is
satisfied by production during that period or during
earlier periods.) Finally, matter must be conserved, so
the fourth constraint requires that the sum of the
inventory at the start of a period and the produc-
tion during that period equals the sum of the demand
during that period and the inventory at the start of
the next period.

The production levels x, ., X, completely
describe a production plan or production schedule, as
for 1 <i<n+ 1, we must have

vi=(d+ ... +do) — (0 + .+ xo). ()

We will say that a particular schedule is feasible if its
production levels and the inventory levels determined
by (2) satisfy the constraints of (1). Moreover, we will
say that a particular schedule is optimal if it is a feasible
production schedule that minimizes Y7, {c(x) +
h{ y,)} over all feasible production schedules.

The basic economic lot size problem can also be
formulated as a network flow problem. (This formu-
lation was first proposed by Zangwill 1968.) Consider
the directed graph depicted in Figure 1. This graph
consists of a single source, capable of generating a
net outflow of Y., d;, and » sinks, such that the ith
sink requires d; units of net inflow. Furthermore, for
| < i< n, there is an arc from the source to ith sink
with associated cost function ¢;(-), and for 2 < i < n,
there is an arc from the (i — 1)st sink to the ith sink
with associated cost function A,(-). A minimum cost
flow for this graph corresponds to an optimal produc-
tion schedule for the associated economic lot size
problem.

If the c¢(-) and A(-) are allowed to be arbitrary
functions, then the basic economic lot size problem is
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Figure 1. The basic economic lot size problem can be
formulated as a network flow problem.

presumably quite difficult to solve, as Florian, Lenstra
and Rinnooy Kan have shown it is (weakly) NP-hard.
In view of this difficulty, certain assumptions are often
made about the lot size problem’s cost functions; we
review some of these assumptions below.

1. In their pioneering papers, Manne (1958) and
Wagner and Whitin (1958) assumed that for

I<i<n,

o) = 10 if x = 0,
=709 + ¢'x if x>0,

and 4,(y) = hly, where ¢! and the ¢? and A} are all
nonnegative constants. (The assumption that ¢' = 0
can be dropped, as changing c' affects only the cost of
the optimal production schedule and not its structure.)
Wagner and Whitin also provided an O(n?)-time algo-
rithm for computing an optimal production plan.
Note that the setup costs ¢? are what make this prob-
lem interesting; if ¢? = 0 for all i, then the problem
can be solved trivially.

2. Wagner (1960) showed that the O(n?)-time
algorithm of Wagner and Whitin can still be used
if for 1 < i < n, the function ¢;(x) is an arbitrary
concave function (or more precisely, it is concave
on [0, +), the relevant portion of its domain) and
hi(y) = hly, where the A} are again nonnegative
constants.

3. Zabel (1964) and Eppen, Gould and Pashigian
(1969) considered a somewhat simpler cost structure;
for 1 < i < n, they assumed that

o) = 10 if x = 0,
MY +elx if x>0,

0

and h(y) = hly, where the ¢?, ¢!, and h! are all
nonnegative constants. (The assumption that ¢! = 0
for | < i< n can be dropped, as changing all the c!
by the same amount affects only the cost of the
optimal production schedule and not its structure.)
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For this cost structure, both Zabel and Eppen, Gould
and Pashigian provided some additional properties of
an optimal production schedule. Both papers also
exploited these propertics to obtain algorithms for
computing an optimal schedule that run faster in
practice but which still require quadratic time in the
worst case.

4. Zangwill (1969) again assumed that

o = 10 if x = 0,
M + elx if x>0,

for 1 < i < n, but he allowed the A,(-) to be arbitrary
concave functions. For this cost structure, he showed
that Wagner and Whitin’s approach still yields an
O(n*)-time algorithm for computing an optimal pro-
duction schedule (see also subsection 1.2).

5. Finally, Veinott (1963) showed that even if both
the ¢;(-) and the A,(-) are arbitrary concave functions,
Wagner and Whitin’s approach gives an O(n?)-time
algorithm.

Observe that if we interpret f(x) as the cost of produc-
ing (or storing) x items, then a concave f(-) implies
decreasing marginal costs, or equivalently, economies
of scale. Microeconomic theories often assume econ-
omies of scale, which is one of the reasons why the
economic lot size model with linear or concave costs
has received so much attention.

In Section 3, we provide efficient algorithms for
several of the cost structures discussed above. The
time complexities of these algorithms are listed in
Table 1. The new algorithms use dynamic program-
ming, as well as some recently developed techniques
for searching in what are known as Monge arrays.

(For definitions of these arrays and for searching tech-
niques related to them, see subsection 2.2.)

1.2. The Backlogging Model

Until now, we have assumed that the demand for a
particular period is satisfied by production during that
period or during earlier periods. Zangwill (1966)
extended the basic model by relaxing this assumption
and allowing demand to go unsatisfied during some
period, provided it is satisfied eventually by produc-
tion in some subsequent period. (Satisfying demand
with future production is known as backlogging
demand.) Zangwill’s extension changes the formula-
tion of the economic lot size problem given in sub-
section 1.1 in that it allows the variables y, through
v, in (1) to be negative. Equation 2 still identifies y; as
the total production during periods 1 through i — 1
less the total demand during those periods; however,
when y; is negative, it now represents a shortage of
—y; units of unfulfilled (backlogged) demand that must
be satisfied during periods i through »n. Furthermore,
when y; is nonnegative, 4;();) remains equal to the
cost of y; units of inventory at the start of period i,
but when y; is negative, A;(y,) becomes the cost of
having a shortage of y; units at the start of period .
To simplify our notation, we define backlogging
cost functions g;(-) such that g,_,(—y) = hi(y;) for
2<isn

The backlogging economic lot size problem, like
the basic problem, can also be formulated as a network
flow problem. We use the same single-source, »n-sink
directed graph as for the basic economic lot size
problem, except that for 2 < i < n, we add an arc
from the ith sink to the (i — 1)st sink with associated
cost function g;_,(.). This new graph is depicted

Table 1
A Summary of Our Results for the Basic Economic Lot Size Problem

Cost Structure

Results of This

Previous Results Paper?

c(0)=0 o(n?)
(Wagner and Whitin

c(x)=¢c? + clxforx>0

O(n)
(Theorem 2)

=0 assumed ¢! = ¢')

hi(y) = hly

a<cl+h

¢(0)=0 O(n?) O(nlg n)

ci(x)=c? + cixforx>0 (Zabel) (Theorem 3)

=0 (Eppen, Gould and

hi(y) = hiy Pashigian)

¢i(+) and h;(-) concave on?) No improvement
(Veinott)

“ The results are bounds on the time to find an optimal production schedule, where # is the number of periods.



in Figure 2. Again, a minimum cost flow for this
graph corresponds to an optimal production schedule
for the associated economic lot size problem with
backlogging.

As is the case for the basic economic lot size prob-
lem (given in subsection 1.1), the backlogging eco-
nomic lot size problem is (weakly) NP-hard if arbitrary
cost functions are allowed. For this reason, researchers
have studied several different restricted cost structures,
some of which are listed below.

1. Zangwill (1966) assumed that the ¢;(-), 4;(-), and
g:(-) are all arbitrary concave functions and provided
an O(n’)-time dynamic programming algorithm for
computing an optimal production plan.

2. Zangwill (1969) assumed that

o(x) = 0 if x =0,
=000+ elx if x>0,

for 1 < i < n (where ¢' and the ¢? are nonnegative
constants) and that the /,(-) and g;(-) are arbitrary
concave functions. For this cost structure, he provided
an O(n®)-time algorithm for computing an optimal
production plan.

3. Blackburn and Kunreuther (1974) and Lundin and
Morton (1975) assumed that

e(x) = 0 if x =0,
M7 + elx if x>0,

gi(z) = glz, and h,(y) = hly, where the ¢?, ¢/, g!, and
h! are all nonnegative. For this case, they obtained
some characteristics of optimal production schedules;
these characteristics are generalizations of those given
by Eppen, Gould and Pashigian for the basic model
(i.e., the one without backlogging). Both papers also
gave algorithms for determining an optimal produc-
tion plan, but these algorithms again take quadratic
time in the worst case (though Lundin and Morton

7 &0 Z 8,() q 2,() 8,

Figure 2. The backlogging economic lot size problem
can be formulated as a network flow
problem.
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argued that their algorithm does run faster in practice
than Zangwill’s algorithm).

4. Finally, Morton (1978) considered a very simple
cost structure in which

(x) = 0 if x=0,
alx) = A+ c'x ifx>0,

gi(z) = g'z, and hi(y) = h'y, where ¢', g', h', and the
¢? are again nonnegative. For this case, Morton pro-
vided a very simple O(n?®)-time algorithm, which
seems to run quite efficiently in practice.

In Section 4, we provide asymptotically faster algo-
rithms for most of the cost structures discussed above.
The time complexities of these algorithms are listed
in Table II. We again use both paradigms, viz.,
dynamic programming and searching in Monge
arrays.

1.3. Two Periodic Models

Since market demands often display periodic behavior
(which may arise, for example, because of the inherent
cyclicity in seasonal demands), Graves and Orlin
(1985) and Erickson, Monma and Veinott (1987) have
studied two different variants of the backlogging eco-
nomic lot size problem that assume the planning
horizon is infinite, i.e., we are planning for an infinite
number of periods, but the costs and demands are
periodic with periodicity 7.

Erickson, Monma and Veinott considered the prob-
lem of finding an infinite production schedule with
minimum average cost per period, subject to the con-
straint that the production schedule also have peri-
odicity n. Equivalently, they want a minimum cost,
n-period production schedule for periods i through
i + n — 1, where i is allowed to vary between 1
and n. Their model can be interpreted in a graph-
theoretic sense as the backlogging flow network (given
in Figure 2) with two additional arcs—one corre-
sponding to inventory and the other corresponding to
backlogging—Dbetween the first sink and the nth sink.
For this problem, Erickson, Monma and Veinott
obtained an O(»?)-time algorithm.

The second periodic variant of the backlogging
problem, considered by Graves and Orlin, is also
concerned with finding an infinite production sched-
ule with minimum average cost per period. However,
the schedule is not restricted to have periodicity »;
instead, an assumption is made about the limiting
behavior of the g;(-) and 4,(-) (see Section 5 for more
details). For this problem, Graves and Orlin gave an
O(p*n®)-time algorithm, where p is a parameter that
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Table I1
A Summary of Our Results for the Economic Lot Size Problem With Backlogging
Results of This
Cost Structure Previous Results Paper”

¢(0)=0 O(n? o(n)
c(x)=c?+ cixforx>0 (Morton assumed ¢} = c'; (Theorem 4)
=0 gl=g' hi=hn)
&(z) =giz
hi(y) = hly
c<chi+gl
ol <cl+h
c(0)=0 o(n? O(nlgn)
cx)=c? + clxforx>0 (Blackburn and Kunreuther (Theorem 5)
=0 and Lundin and Morton)
&(z)=glz
hi(y) = hly
¢(0)=0 O(n?) No improvement

a(x)=c?+ c¢'xforx>0
=0
hi(-) and g(-) concave

ai(+), hi(+), and gi(-) concave o(n?
(Zangwill 1966)

(Zangwill 1969)

o(n?)
Theorem 6

“The results are bounds on the time to find an optimal production schedule, where # is the number of periods.

depends upon production, inventory, and backlogging
costs.

In Section 5, we give efficient algorithms for both
Erickson, Monma and Veinott’s problem and Graves
and Orlin’s problem. The time complexities of these
algorithms are given in Table III.

2. MAIN TECHNIQUES USED

In this section, we sketch some of the techniques used
in obtaining our results. Subsection 2.1 gives the basic
dynamic programming framework developed by pre-

vious researchers for solving economic lot size prob-
lems. Subsection 2.2 presents the array-searching
techniques that we combine with the techniques of
subsection 2.1 to obtain our improved results.

2.1. Arborescent Flows and Dynamic
Programming

As we mentioned in subsections 1.1 and 1.2, both the
basic and backlogging variants of the economic lot
size problem can be formulated as network flow prob-
lems. Moreover, if the cost functions ¢;(-), gi(+), and
h;(+) assigned to these networks’ edges are all concave,

Table II1
A Summary of Our Results for the Two Periodic Economic Lot Size Problems
Results of This
Problem and Cost Structure Previous Results Paper
Erickson, Monma and Veinott’s problem None o(n?

c(0)=0 (Theorem 7)
c(x)=c+ c'xforx>0
=0

hi(-) and g;(-) concave and nondecreasing

Erickson, Monma and Veinott’s problem
ci(+), hi(+), and gi(-) concave

Graves and Orlin’s problem
¢+), hi(+), and g(-) concave

own?) No improvement
(Erickson, Monma
and Veinott)

o(p*n’)
(Graves and Orlin)

o(p*n’)
(Theorem 8)

“The results are bounds on the time to find an optimal production schedule, where # is the periodicity and p is a function of the

a(+), &(+), and Ay(-).



then we need only consider flows of a certain type in
finding a minimum cost flow. Specifically a flow in
an uncapacitated directed graph G is called arbores-
cent if the directed edges of G carrying nonzero flow,
when viewed as undirected edges, form an undirected
acyclic graph on the vertices of G. As the following
theorem shows, we can restrict our attention to arbo-
rescent flows in network flow problems with concave
edge cost functions.

Theorem 1. (folklore; see Zangwill 1968 and
Erickson, Monma and Veinott 1987) Consider the
flow problem associated with a directed graph G, where
each arc e of G is assigned a cost function c{-) and
the only constraint on the flow f, on arc e is f, = 0. If
¢.(+) is concave for all arcs e, then some minimum cost
flow in G is arborescent.

This theorem appears (in one form or another) in
all the papers dealing with the economic lot size
problem that we consider. It is important because it
implies that we need only consider production sched-
ules that supply the demand for period i from at most
one of the following sources: production during period
i, inventory from period i — 1, or, in the case of the
backlogging model, demand backlogged to period
i + 1. Consequently, the basic and backlogging eco-
nomic lot size problems have dynamic programming
formulations. Specifically, let E(1) = 0, and for
1 <js<n+1,let E(j) denote the minimum cost of
supplying the demands of periods 1 through j — 1
such that the inventory y; carried forward to (or back-
logged from) period j is zero. This definition implies
that E(n + 1) is the cost of the desired optimal
production schedule for periods 1 through n. More-
over, as suggested in Figures 3 and 4, if P;is an optimal
production schedule achieving E(), then there exists
an / in the range 1 < i < j such that P, can be
decomposed into a single period of production satis-
fying the demands of periods i through j — 1, and an
optimal production schedule achieving E(i). Thus, if
we let djj = Yl dy, for | <i<j<n+ I, then for the
basic problem,

E(j) = min {E(i) + cld)) + jﬁ: hm(dmj)}a

I<i<j m=i+1

and for the backlogging problem,

k=1

E(j) = min {E(i) + addi) + X gnldime)

+ ji hm( dm‘j)},

m=k+1
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Figure 3. Consider any instance of the basic economic
lot size problem, and suppose that P; is a
minimum cost arborescent production
schedule satisfying the demands of periods
1 through j — 1 such that no inventory is
carried forward to period j. Furthermore,
suppose that P;’s last production occurs dur-
ing period i. Since P; is arborescent, the
demands of periods i through j — 1 must all
be satisfied by the production during period
i. Moreover, the subschedule of P; corre-
sponding to periods 1 through i — 1 (indi-
cated by the shaded region) must be a
minimum cost arborescent production
schedule satisfying the demands of periods
1 through i — 1 such that no inventory is
carried forward to period i.

provided we view summations of the form >,.-«...)
as evaluating to 0 if i > j.

Note that these dynamic programming formula-
tions for the basic and backlogging economic lot size
problems give O(n?)-time and O(n?%)-time algorithms,
respectively, for computing the cost of an optimal
production schedule; we merely evaluate E(1), E(2),
..., E(n + 1) in the naive fashion. Furthermore, we
can extract an optimal production schedule (not just
its cost) in O(n) additional time, provided for each
E(j) we remember the i such that

J—1

E(j) = EG) + c(d)) + X hpldyn))

m=i+1

or the / and k such that

k=1

E(J) = E(l) + C/\'(dl‘j) + 2 gm(dumﬁ-l)

m=i

3 hldn).

m=k+1

2.2. Searching in Monge Arrays

In this subsection, we first define the notion of a
Monge array and then relate Monge arrays to dynamic
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1

Figure 4. Consider any instance of the backlogging
economic lot size problem, and suppose
that P; is a minimum-cost arborescent pro-
duction schedule satisfying the demands of
periods 1 through j — 1 such that no inven-
tory is carried forward to or backlogged
from period j. Furthermore, suppose that
P/’s last production occurs during period k
and that i is first period whose demand is
satisfied by this production. Since P, is arbo-
rescent, the demands of periods i through
Jj — 1 must all be satisfied by the produc-
tion during period k. Moreover, the sub-
schedule of P; corresponding to periods 1
through i — 1 (indicated by the shaded
region) must be a minimum cost arbores-
cent production schedule satisfying the
demands of periods 1 through i — 1 such
that no inventory is carried forward to or
backlogged from period i.

programming. An m X n two-dimensional array
A = {a[i, j]} is said to satisfy the Monge condition if
forl<i<mand 1 <j<n,

ali, jl +ali + L,j+ 1] < afi,j+ 11 + a[i + 1, J].

Similarly, A4 is said to satisfy the inverse Monge con-
ditionifforl <i<mand 1 <j<n,

ali, jl1+ali+ 1,j+ 1]=ali,j+ 1]+ ali + 1, J].

For d = 3, a d-dimensional array A4 is said to satisfy
the Monge condition if every two-dimensional plane
of A (corresponding to fixed values of all but two of
A’s d coordinates) satisfies the Monge condition. Sim-
ilarly, A4 is said to satisfy the inverse Monge condition
if every two-dimensional plane of A4 satisfies the
inverse Monge condition. Finally, an array satisfying
the Monge condition is called Monge, and an array
satisfying the inverse Monge condition is called inverse
Monge.

Note that an m X n array 4 = {a[i, j]} is Monge if
andonlyiffor |l si<k<smand 1 <j</<n,

ali, j1 + alk, 11 < a[i, 1] + alk, j),

as it is not hard to show that this latter property
follows from the Monge condition. In fact, this prop-
erty is often the one used in the literature to define
two-dimensional Monge arrays.

Two-dimensional Monge arrays were first consid-
ered by Hoffman (1963); he showed (among other
things) that a fast greedy algorithm solves the classical
transportation problem if and only if the problem’s
cost array is Monge. Higher-dimensional Monge
arrays were introduced by Aggarwal and Park (1989).

Monge arrays are closely related to submodular
functions: We can view a 2 X 2 X ... X 2
d-dimensional Monge array 4 = {a[i\, b, ..., i}
as a submodular function f(-) on subsets of
{1, 2, ..., d} if we let f(S) = a[i\, b, ..., i4], where
forl<k<d i =1ifk&Sandi,=2ifk € S.
(See Lovasz 1983 for an overview of the theory of
sub- and supermodular functions.)

One very important property of two-dimensional
Monge and inverse-Monge arrays is that we can find
maximal or minimal entries in such arrays quite effi-
ciently. In particular, we can find a maximum (or
minimum) entry in each row (or column) of an n X n
Monge (or inverse-Monge) array 4 in O(n) time,
provided any particular entry of 4 can be looked up
(or computed) in constant time. This result is due to
Aggarwal et al., who considered a slight variant of this
array-searching problem in the context of several
problems from computational geometry and VLSI
river routing. We call this array-searching problem an
off-line problem, because all of the entries of 4 are
available all the time.

In developing a linear time algorithm for the con-
cave least-weight subsequence problem, Wilber (1988)
extended the algorithm of Aggarwal et al. to a dynamic
programming setting. Specifically, he gave an algo-
rithm for the following on-l/ine variant of the Monge-
array, column-minima problem. Let W = {w[i, j]}
denote an n X (n + 1) Monge array, where any entry
of W can be computed in constant time. Furthermore,
let A = {a[i, j]} denote the n X (n + 1) array defined
by

o[BG+ Wi ] ifi<,
ali, J1 = {+oo ifi>]

where E(1)=0andfor 1 <j<n+1,

E(j) = min a[, j].
i<j

Using the Mongité of 4, which follows from its defi-
nition, Wilber showed that the column minima of A4
(and, hence, E(2), ..., E(n + 1)) can be computed in



O(n) time. This is called an on-line problem because
certain inputs to the problem (i.e., entries of A) are
available only after certain outputs of the problem
(i.e., column minima of 4) have been calculated.

In a subsequent paper dealing with the modified
string-editing problem, Eppstein generalized Wilber’s
result. He showed that the column minima of 4 can
be computed in O(n) time even if we relax the assump-
tion that E(j) is the jth column minimum of 4 and
assume only that it can be computed in constant time
once both E(j — 1) and the jth column minimum
of A are known. Note that this last assumption im-
plies Eppstein’s algorithm must first compute the
second column minimum of A4, then E(2), then
the third column minimum of 4, then FE(3), and
so on. This property is significant because it allows
the computation of E(2), ..., E(n + 1) to be inter-
leaved with the computation of some other sequence
FQ), ..., F(n + 1) (corresponding to the column
minima of another Monge array) such that E(j)
depends on F(j — 1) and F(j) depends on E(j) (see
subsection 4.1.1 for more details).

Finally, though Eppstein’s algorithm is sufficient for
the purposes of this paper, we note that Klawe (1989),
Galil and Park (1990), and Larmore and Schieber
(1991) independently extended Eppstein’s result a step
further. They showed that the array 4 need not have
the form a[i, j] = E(i) + w[i, j] for i < J; so long as
a[i, j] can be computed in constant time once the first
through ith column minima of 4 are known, the
column minima of 4 can still be computed in O(n)
time.

To obtain our improved algorithms for the various
economic lot size problems discussed in Sections 3-5,
we use the off-line algorithm of Aggarwal et al. and
the on-line algorithm of Eppstein. We also use a
simple O(n lg n)-time divide-and-conquer algorithm
for the on-line array-searching problem when 1 does
not satisfy the Monge condition, but some permuta-
tion of its rows and/or columns makes suitably chosen
subarrays of W satisfy the Monge condition (see
Lemma 2 below).

An important technical contribution of this paper
is our identification of the Monge arrays that arise in
the context of various economic lot size problems.
The following two lemmas characterize the two most
important (at least for the purposes of this paper)
origins of these arrays. The proofs of these lemmas
are easy and are therefore omitted.

Lemma 1. Let A = {a[i,]]} denote an m X n Monge
array, let B = {b[il} denote an m-vector, and let
C = {dj1} denote an n-vector. Furthermore, let
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A'={a’'[i, j]} denote the m X n array where a'[i, j] =
ali, j1 + b[i] + c[j]. A" is Monge.

Lemma 2. Let f(-) denote a concave function, let
B = {b[i]} denote an m-vector such that b[1] < b[2] <
... < b[m), and let C = {c[j1} denote an n-vector such
that ¢[1] < c[2] < ... < c[n]. Furthermore, let
Arpe = {apscli, j1} denote the m X n array, where
aiscli, J1 = f(bli] + cj)), and for any vector X =
{x[i]}, let =X denote the vector obtained by negating
all the entries of X. Then Aspcy Ar—p—cy A—r—pc, and
A_yp_c are Monge, and A;_pc, Aip—c, A—pc and
A_;_p_c are inverse Monge.

As an example of why these rather simple observa-
tions are useful, consider the following corollary to
Lemmas | and 2.

Corollary 1.  Let B = {b[i]} and D = {d[i]} denote
arbitrary m-vectors, and let C = {c[j]} and E = {e[j]}
denote  arbitrary  n-vectors.  Furthermore, let
A = {a[i, j1} denote the m X n array, where ali, j] =
blile[j] + dli] + elj]. If b[1] < b[2] < ... < b[m] and
1= c[2]1=...=n], then A is Monge.

Proof. Let A’ = {a’[i, j]} denote the m X n array
where a’[i, j] = b[i]c[/], and consider the concave
function f(x) = —2°, the m-vector B’ = {b'[i]} where
b’[i] = lg b[i], and the n-vector C’ = {c’[/]} where
¢'[j] = —lg(c[j]. Clearly, a’[i, j] = =f(b"[i] = ¢'[j]),
and the entries of B’ and C’ are both in increasing
order; thus, by Lemma 2, 4’ is Monge. Furthermore,
since a[i, j]1 = a’[i, j] + d[i] + €[j], 4 is also Monge
by Lemma 1.

Note that even if the entries of B and C in the above
corollary are not sorted, we can still make the array 4
Monge by permuting its rows and columns. Specifi-
cally, if we find permutations 8 and v such that
bIB(D] < bIBQ2)] < ... < b[B(m)] and c[y(1)] =
dy(2)] = ... = cy(n)], then the array 4” = {a"[i, j]}
where,

bIB()]cly ()] + dB(D] + e[v())]
alB(), ()]

is Monge. We make use of this observation repeatedly.

a’li, j] =

1l

3. THE BASIC PROBLEM

This section investigates the time complexity of the
basic economic lot size problem under several differ-
ent assumptions about the production and inventory
cost functions. In subsection 3.1, we consider nearly
linear production costs and linear inventory costs,
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while in subsection 3.2, we discuss other concave
production and inventory cost functions.

3.1. Nearly Linear Costs

In this subsection, we give results for instances of the
basic economic lot size problem with what we will call
nearly linear costs. Specifically, for 1 < i < n, we
assume

o) = 10 if x = 0,
M7 + elx if x>0,

and /;(y) = hly, where ¢?, ¢!, and h} are constants
and ¢? = 0. (The restriction on ¢? is necessary to
ensure that ¢;(x) is concave, so that the techniques of
subsection 2.1 can be applied.) In the operations
research literature, this cost structure is often described
as consisting of fixed-plus-linear production costs and
linear inventory costs.

We begin with a special case in subsection 3.1.1:
For 1 < i < n, we assume that ¢! < c¢/_, + h/. For this
special case of the basic lot size problem, we give a
linear time algorithm for computing the optimal pro-
duction schedule. Then, in subsection 3.1.2, we
remove this constraint on the coefficients of the cost
functions, at the expense of an increase in our algo-
rithm’s running time by factor of Ig ».

3.1.1. Restricted Coefficients

In this subsection, we consider a nearly linear
cost structure where the cost efficients satisfy ¢/ <
c¢l_y + h! for 1 < i < n. In other words, we assume
that the marginal cost of producing during period i is
at most the marginal cost of producing during period
i — 1 plus the marginal cost of storing inventory from
period i — 1 to period i. This particular cost structure
subsumes those considered by Manne (1958) and
Wagner and Whitin (1958). The latter paper gave an
O(n?)-time algorithm for computing an optimal pro-
duction schedule; we improve this time bound to O(n)
for our slightly more general cost structure.

Recall the dynamic programming formulation of
the basic economic lot size problem given in sub-
section 2.1: If we let E(j) denote the minimum cost
of satisfying the demands of periods 1 through j — 1
such that the inventory y; carried forward from
period j — 1 to period j is 0, then E(1) = 0 and for
2<jsn+1,

E(j) = min {E(l') + cldy) + ji hm(dm)},

Isi< m=i+]

where d;; = di + dui + ... + di;. Solving this
recurrence in the naive fashion gives the O(n?)-time
algorithm of Wagner and Whitin.

To compute E(2), ..., E(n + 1) in linear time, we
consider the n X (n + 1) array 4 = {a[i, j]} where
j=1

. E()+ 8 +cld+ Y hhd,, ifi<y,
a[l,]]= m=i+1

+00 ifi=].
(One is tempted to use instead the n X (n + 1) array
B = {b[i, j]} where

Jj—1
- EG) + c(di) + X hwdw; ifi<],
b[l’ J] = m=i+1

+o0 ifi =,

but this array may not be Monge.) Now if d,_, = 0,
then E(j) = E(j — 1). On the other hand, if d;-, > 0,
then d,,; > 0 for all m < j, which implies

E(i) + c(di) + Ji holdm)) = ali, j]

m=i+1

forall i < jand

E(j) = min ali, j].

I<isn
Combining these two observations gives the following
recurrence for E(j)when2 <j<n+ I:

O [EG-1)  ifde =0,
E(j)) = {r_n_in ali, j] if di, > 0.

At this point, we would like to apply one of the on-
line array-searching algorithms mentioned in sub-
section 2.2 to compute the column minima of 4 (and,
hence, E(2), ..., E(n + 1)). Since E(i) can be com-
puted in constant time from E(i — 1) and the ith
column minimum of A, Eppstein’s algorithm will
suffice, provided we can prove the following two
lemmas.

Lemma 3. A is Monge.

Proof. Forl <si<jsn+1,

=1
ali, 1=E()+c?+cld,+ Y hhdn,

m=i+l

=E(i)+c?+€,]'(d1.j_d1.i)

j=1

+ Z Pl j— 2 h(dy j~dym)
m=1 m=1

=[E(i)+c?—c,‘d1.f+ D hﬁndl.m]

m=1

J=1 i
m=1 m=1



Now consider the n X (n + 1) array A’ = {a’[i, j]}
where

a’li,jl= [E(i)+ cd—cld i+ Z hlndl.m:l

m=1

[gne £

forl<i<nand 1l <j<n+ I If we can show that
A’ is Monge, then 4 must also be Monge, because
every 2 X 2 subarray of A is either a 2 X 2 subarray
of A’ or its left- and bottommost entry is a +oo.

To show that 4’ satisfies the Monge condition, we
note that the first bracketed term in its definition
depends only on i, the second bracketed term depends
only on j, and the third bracketed term is the product
of

Cl! - Z hrlm

m=1
which depends only on i, and d, ;, which depends only
on j. Furthermore,

1 2
=Y hh=ci= Y hh=...=cl— X hh,
m=] m=1 m=1
(since, by assumption, ¢! < ¢, + h} for 1 < i< n)
and0=d, ,<d,,<...<d .+ (since, by assumption,
di = 0 for 1 < i < n). Thus, by Corollary 1, A’ is
Monge.

Lemma 4. Given O(n) preprocessing time, we can
compute ali, j] from E(i) in constant time, for all i
and j.

Proof. If i = j, then [, j] = +, i.e., computing the
entry is easy. If, on the other hand, i <, then

J—=1
ali, 1=E()+c+cldi+ X i,

m=i+1
Now suppose that we precompute d,,; for | < i < n;
this takes O(n) time. This preprocessing gives us any
d;; in constant time, since d;; = d,; — d, ;. Suppose
that we also precompute

j=1
2 hi
m=1

for 2 <j< n+ 1. This preprocessing again takes O(n)
time, and it allows us to precompute

J=1
2 h r]ndm.J

m=1
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for 2 <j<n+ 1 in an additional O(n) time, since

J-1 2 !
S hdm= 3 h:ndm.,_.+(z h;)@,.
m=1 m=1

m=1

Moreover, since

J=1 j=1 i
2 h,]ndm.j = z hr]ndmj - z hrlndm.i+l
m=1 m=1

m=i+1
- ( Z h:n) 611'+],_/5
m=1

these precomputations allow us to compute a[i, j]
from E(i) in constant time.

Given Lemmas 3 and 4, we can now apply
Eppstein’s on-line array-searching algorithm and
obtain the following theorem.

Theorem 2. Given an n-period instance of the basic
economic lot size problem such that

e forl<i<n,

o if x =0,
a(x) = {C? +clx if x>0,

where ¢? and ¢! are constants and ¢ = 0,

e for 1 <i<n, hi(y) = hly, where h! is a constant,
and

e forl<i<n,cl<cl,+h),

we can find an optimal production schedule in O(n)
time.

3.1.2. Arbitrary Coefficients

In this subsection, we remove the constraint that ¢} <
¢l + h! for 1 < i< nand allow the ¢! and A} to be
arbitrary constants. This cost structure is the one
considered by Zabel and by Eppen, Gould, and
Pashigian. Both papers gave O(n?)-time algorithms for
this variant of the basic economic lot size problem;
we improve this time bound to O(n 1g n).

With arbitrary coefficients ¢} and 4/, the array 4
defined in the last subsection no longer satisfies the
Monge condition, because we no longer have

iMe

1 n
cl= Y hhy=ch= Y hh=...=ch— Y hh
m=1 m=1

m=1

However, we can circumvent this difficulty by reor-
dering the rows of A. Intuitively, we sort the n quan-
tities ry, . . ., 7, Where

i
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i.e., we find a permutation v such that r,) = r,o) =
... = Fyn. If we then use v to permute the rows of 4,
we obtain a new array that is more or less Monge.

We will now give a precise description of our
O(n lg n)-time algorithm for the basic economic lot
size problem with nearly linear costs. The algorithm
uses a divide-and-conquer approach, and it involves
solving several subproblems, each corresponding to a
range of consecutive periods. These subproblems are
slightly more general than the basic economic lot size
problem, in that solving the subproblem correspon-
ding to periods s through ¢t — 1 involves comput-
ing E(j) for s < j < t, where E(j) corresponds to an
optimal production schedule for periods 1 through
J — 1 (rather than periods s through j — 1). In partic-
ular, the schedule corresponding to £(j) may have its
last nonzero production occur in some period i < s.

To describe our algorithm in detail, we must first
introduce some new notation. For 1 < s < n and
s<j<sn+1,let

Fy(j) = min ali, j].
I<si<s

Roughly speaking, F,(j) is the cost of the minimum
cost production schedule satisfying the demands of
periods 1 through j — 1 such that the inventory y;
carried forward from period j — 1 to period j is 0 and
the schedule’s last nonzero production occurs in some
period i < s. For a subproblem that corresponds to
periods s, ..., t — 1 and for s <j < ¢, we then have

Ej-1) ifd_, =0,
min {F(j), min a[i, j]} if d-, > 0.

ssI<,

E()) =

Note that so long as E(s) and Fy(s + 1), ..., F|(t) are
known, the only entries of 4 that we need to consider
in computing E(s + 1), ..., E(¢) are those lying in
the subarray of 4 consisting of rows s through ¢ — 1
and columns s + 1 through ¢. This subarray is depicted
in Figure 5.

For 1 < s <t <n+ 1, we can now define the
subproblem corresponding to periods s through ¢ — 1
as follows. Given E(s) and Fy(s + 1),. .., Fy(t), solving
this subproblem entails

1. computing E(j) for s + | <j <1, and
2.sorting 7y, . . ., ¥,—1, where

i.e., finding a permutation v, such that

Fysa(iyrs—1 = Fysu@yrs—1 = o oo Z Foyygi—s)+s—1-

Figure 5. Given E(s) and Fy(s + 1),..., F=(t), where
l < s<t<n+ 1, we can compute

E(s + 1), .., E(t) from the entries in
rows s through ¢ and columns s + | through
t+1of A

(Our reason for including the computation of v, as
part of the subproblem will become apparent in a
moment.) Since E(1) =0 and Fi(j) = for2 <<
n + 1, solving the subproblem corresponding to
periods 1 through n+ 1 givesusasolution forthe original
n-period economic lot size problem.

To solve the subproblem corresponding to periods
s through ¢t — 1 given E(s) and F(s + 1) through
F(t), we first recursively solve the subproblem
corresponding to periods s through u# — 1, where
u = | (s + t)/2]. This recursive computation is
possible because E(s) and Fy(s + 1), ..., F((u) are
known. Solving this subproblem gives us E(s + 1)
through E(u) and the permutation v,

Next, we compute the column minima of the subar-
ray B consisting of rows s through # — 1 and columns
u + 1 through ¢ of 4 (see Figure 5). To find these
column minima, we first permute the rows of B
according to the permutation v, obtained by solving
the subproblem corresponding to periods s through
u — 1. This permutation gives the (1 — §) X (¢ — u)
array B’ = b’[i, j), where

b,[i’ Jjl1= I:E('Y.s-,u(i) +s5—=1)+ C(w)rx.u(r)ﬂ'—l

YulyHs—1

1
- C-yx.u(i)-v)-.s—ldl.'ys.u(i)+x—I + 2

m=1

hrlndl.m

Jru—1

+ |: 2 hr]ndm‘j-*u] + [r'y,\',u(i)+s—ldl,j+u]-
m=1

The column minima of B’ are the column minima

of B. Moreover, the first term in the sum that de-

fines b’[i, j] depends only on i, the second term

depends only on j, and the third term is the



prOdUCt r‘ys,u(i)+s—ldl.j+m Where

ryx.u(l)+.x‘—l = r-y,s‘.11(2)+.x‘—l =2 ... = r‘y.s.u(u—x)+2—l
and
dl.u+l < d1<u+2 <... S dl./‘

Thus, by Corollary 1, B’ is Monge. Furthermore,
using the O(n)-time preprocessing described in the
previous subsection, we can compute any entry of B’
in constant time, because E(s + 1) through E(u) are
known. Thus, we can apply the off-line array-
searching algorithm of Aggarwal et al. directly and
obtain the column minima of B in O(t — s) time.

Given the column minima of B, we can now com-
pute F,(u+ 1), ..., F(t), because for u <j <1,

F.(j) = min{F(j), min i, /1]

and min,<, a[i, j] is the minimum entry in the
(j — u)th column of B. This computation requires
only O(t — u) = O(t — s) additional time.

Once F,(u + 1) through F,(¢) are known, we recur-
sively solve the subproblem corresponding to periods
u through ¢ — 1 using E(u) and F(u + 1), ..., F(t).
This recursive computation gives E(u + 1) through
E(t) and the permutation v,,..

As the final step of our algorithm, we compute the
permutation v, from the permutations v, and v,,.
This computation can be accomplished in O(t — s)
time by merging the two sorted lists of r;’s correspon-
ding to v,, and v,,,. (We assume that for | < i < n,

i =1 h), has been precomputed, so that any #; can be
computed in constant time; this preprocessing
requires only O(n) time.)

The running time 7(s, ¢) of this algorithm for the
subproblem corresponding to periods s through ¢ — 1
is governed by the recurrence

T(s,1)
T(s,L(s+1)/2D)+ T(L(s+1)/21, 1)+ O(t—5)
= lft —-5> 1,
o(l) ift—s=1,

which has as its solution 71(s, t) = O((t — $)lg(t — s)).
Thus, 7(1, n + 1) = O(n lg n), which gives the
following theorem.

Theorem 3. Given an n-period instance of the basic
economic lot size problem such that
e forl <i<n,

oo = 10 if x = 0,
! A+ clx ifx>0,
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where ¢? and c! are constants and ¢9 = 0, and
o for 1 <i<n, hy)= hly, where h! is a constant,

we can find an optimal production schedule in
O(n lg n) time.

3.2. Other Cost Structures

In the previous subsection, we assumed nearly linear
production costs and linear inventory costs. These
assumptions allowed us to prove that certain arrays
arising in the context of the basic economic lot size
problem were Monge, and it was the Mongité of these
arrays that allowed us to give improved algorithms for
the basic problem with nearly linear costs. If we try to
generalize this approach to arbitrary concave produc-
tion and inventory cost functions (and improve upon
the O(n?)-time algorithm of Veinott 1963), however,
note that the corresponding arrays need not be Monge.
Consequently, the question of whether it is possible to
obtain a subquadratic algorithm for the basic eco-
nomic lot size problem with arbitrary concave costs
remains open (see Section 6).

Note that even if the array 4 = {a[i, j]} defined in
the last subsection were Monge under less restrictive
assumptions about the production and inventory cost
functions, the computation of its column minima
might still take Q(»?) time. This possibility stems from
our need to be able to compute any entry a[i, j] in
constant time, given the minimum entries in columns
1 through i of 4. In fact, there are cost structures
where this entry computation time turns out to be a
time bottleneck. Specifically, consider the cost
structure studied by Zangwill (1969) (see also
subsection 4.3 and Section 6). Zangwill assumed that
forl <i<n,

o = 10 if x = 0,
! &+ c'x ifx>0,

where ¢? and ¢' are constants, and 4;(-) is a nonde-
creasing concave function. (Note that the marginal
cost of production ¢' is the same for all time periods;
this assumption is needed to ensure that the array
A defined below is Monge.) If we consider the
n X (n+ 1) array A= {a[i, j]} where

J=1

Ei)+cl+c'dij+ Y holdy)) ifi<j,
a[lyj] = m=i+1

+o0 ifi =},
then A4 is Monge. This claim follows because
ali, l+ali+ 1,j+ 11 —ali,j+ 1] — a[i + 1, j]
= hii(di1,)) = hisil(divr 1)
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for1 <i+ 1<j<n+ 1, and the right-hand side of
this equation is nonpositive so long as /;,,(-) is a
nondecreasing function. However, it is unclear how
to compute «[i, j] in constant time, given the mini-
mum entries in columns | through i of 4, as a[i, j]
depends on Yl hy(dn;) and we do not know of
any O(n?)-time preprocessing that would allow us to
compute this sum for any i and j in constant time.

4. THE BACKLOGGING PROBLEM

This section investigates the time complexity of the
backlogging economic lot size problem under several
different assumptions about the production, inven-
tory, and backlogging cost functions. In subsection
4.1, we consider nearly linear production costs and
linear inventory and backlogging costs. In subsection
4.2, we focus on arbitrary concave production, inven-
tory, and backlogging cost functions. Finally, in sub-
section 4.3, we discuss arbitrary concave inventory
and backlogging cost functions together with nearly
linear production cost functions such that the mar-
ginal cost of production is the same for all periods.

4.1. Nearly Linear Costs

In this subsection, we give results for instances of the
backlogging economic lot size problem with nearly
linear costs. Specifically, for | < i < n, we assume

oi(x) = 0 if x =0,
! A+ clx if x>0,

hi(y) = hly, and gi(z) = glz, where the ¢?, ¢!, h} and
g} are constants and ¢? is restricted to be nonnega-
tive for 1 < i < n. This problem is similar to the basic
problem with nearly linear costs considered in subsec-
tion 3.1, except that here we are faced with a three-
dimensional Monge array rather than a two-dimen-
sional Monge array.

We begin with a special case in subsection 4.1.1:
For 1 < i < n, we assume that ¢} < ¢}y, + g} for
l<i<nandc! <cl,+ h!for 1 <i< n. For this
special case of the backlogging problem, we give an
O(n)-time algorithm for computing the optimal pro-
duction schedule. Then, in subsection 4.1.2, we
remove the constraint on the coefficients of the cost
functions and give an O(xn Ig n)-time algorithm for the
backlogging problem with nearly linear costs.

4.1.1. Restricted Coefficients

In this subsection, we consider a nearly linear cost
structure where the cost coefficients satisfy ¢/ < ¢/, +
glforl <i<nandc! <cl,+ hlforl<i<n. This
particular cost structure subsumes the cost structure

considered by Morton. Morton gave an O(n?)-time
algorithm for his problem; we improve this time
bound to O(n) for our more general cost structure.

Recall the dynamic programming formulation of
the backlogging economic lot size problem given in
subsection 2.1: If we let E(j) denote the minimum
cost of satisfying the demands of periods 1 through
j — 1 such that y; = 0 (i.e., no inventory is stored from
period j — 1 to period j, nor is any demand backlogged
from period j — 1 to period j), then E(1) = 0 and for
2<jsn+1,

E(j) = min {E(i) + cld:))

isisk<j

k=1

+ Z gm(di.m-H) + Z hm(dm,j)}a

m=i m=k+1

where dl.j = d,’ + d,‘+] +...+ dj‘_l.

To compute E(2), ..., E(n + 1) in O(n) time, we
consider the n X (n + 1) X n array 4 = {a[i, J, k]}
where
ali,j, k]

J=1

{E(i)+c2+c1.d,»_,+ Y hid,., ifisk<),
= m=k+1

+00 otherwise.

Now if d;—, = 0, then either some optimal production
schedule produces during period j — I, in which case

j-2

E(l) + ci—](di.j) + Z_ gm(di.m+l) + 2 hm(dm.j)

m=j
=ali, j,j— 1]
for i <jand

E(j) = min a[i, j,j = 1] < E(j = 1),

I<i=n

or some optimal schedule does not produce during
period j, in which case

E(j) = E(j — 1) < min a[j, j, j = 1].
I<i=sn

On the other hand, if d-, > 0, then d;; > 0 for all
i < j, which implies
k=1

B+ eddi) + Y gnldime) + 3 Il

m=i m=k+1
= d[i, J, k]
fori< k <jand

E(j) = min ali, j, k].
I<isn
I<k<n



These observations give the following recurrence for
E(j)when2<j<n+ 1

E())
min{E(j— 1), mina[i,j,j— 11} ifd1 =0,

Isisn

min afi, j, k]
Isisn
Isksn

ifd-,>0.

Now observe that the three-dimensional array 4 can
be decomposed into two two-dimensional arrays S
and 7. (Zangwill 1969 uses essentially this
same decomposition to obtain an O(n?)-time algo-
rithm for a variant of this problem.) Specifically, let
S = {s[i, []} denote the n X (n + 1) array given by the
equation

-2
sli,l]= E(@)+ )+l ,'.1+’nz=:ig3ndf.m+1 ifi</,

+00 ifi=l,

and let T'= {[k, j]} denote the n X (n + 1) array given
by

J—=1

1 . 1 ) . .
k. j] = F(k) + cidis, f m§+1 hydy, if k< j,
+00 ifk=j.
where for | <k <n,

F(k) = min s[i, k + 1].
I<isn

Since

min a[i, J, k]

Isisn
Isksn

k=1
= min {min {E(i) +c + chdin + 2 glndf.mﬂ}

Isk<) | Isisk m=i

-1
+Cl|\-dk+l.j + 2 hrlndmj}

m=k+1

Isk<y m=k+1

-1
= min {F(k) + cidjrry + 2 h,‘ndm.j}’

= min ([k, J],

Isk<n
and

min a[i, j, j — 1] = min s[i, j],
I<isn

Isisn

we have

mln{E(] - 1), min S[is J]} if di—l =0,
Isisn

E()) =
) min tk, j]

Isksn

if di_, > 0.
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Thus, to compute E(2), ..., E(n+ 1), we need merely
compute the column minima of S and 7. (For the
reader familiar with Aggarwal and Park 1989, the
three-dimensional array A is path decomposable; this
structure is what allows the plane-minima problem
for A to be decomposed into two column-minima
problems for two-dimensional arrays.)

Using arguments similar to those used in proving
Lemma 4, it is easy to verify that, after linear prepro-
cessing time, any entry s[i, k] of S can be computed
in constant time given E(f), and any entry [k, j] of T
can be computed in constant time given F(k). Fur-
thermore, both S and T are Monge, as the following
two lemmas show.

Lemma 5. S is Monge.

Proof. For 1 <i</<n,
-2
S I =EG) + Ao+ cldy+ Y, ghdime

m=i

=E(i)+ - +cl-(diy—d))

=2

i—1
+ z g;ln(dl.mﬂ —dl.i)— Z grlndi,mﬂ
m=1 m=1

i—1
= |:E(i) - Z glndi.m+1:| + |:C?—1 + Cll—-ldl./]

m=1

-2 -2
+ E gy e + [_ (C}—t + E g;)dlii]-

m=1 m=1

Now consider the n X n array S’ = {s’[i, j]}, where

s'li j1 = [E(i) -2 &n d,-.mﬂ}

m=1

Jj=1
+ ’:CJQ + ¢ dijs + Z &m dl,m+l:|
—

1

j=1
+ l:_ <le + Z grln) dl.i]
m=1

forl <i<nand 1 <j<n (The array S’ consists of
columns 2 through n + 1 of S with all the infinite
entries in these columns replaced by finite values.) If
we can show that S’ is Monge, then .S must also be
Monge, because every 2 X 2 subarray of S is either a
2 X 2 subarray of S’ or its left- and bottommost entry
isa oo,

To show that S’ is Monge, note that the first brack-
eted term in its definition depends only on i, the
second bracketed term depends only on j, and the
third bracketed term is the product of d,; which
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depends only on i, and

j-1
—(c} + 2 g£n>,
m=1

which depends only on j. Furthermore, 0 =
di> < ... < d, (since, by assumption, d;, =
1l <i<n),and

0 1 n—1

<ch+ Y gh
m=1

di
0 f

(since, by assumption, ¢/ < ¢}, + g/ for 1 <
Thus, by Corollary 1, S’ is Monge.

i < n).

Lemma 6. 7 is Monge.

Proof. The proof for this lemma is similar to that for
Lemma 3.

At this point, we would like to apply one of the on-

line array-searching algorithms mentioned in subsec-
tion 2.2. However, none of these algorithms can be
applied directly, as s[i, k] cannot be computed in
constant time from the first through ith column min-
ima of S, nor can t[k, j] be computed in constant
time from the first through kth column minima of 7.
To get around this difficulty, we use two interleaved
processes, both running Eppstein’s linear time,
on-line array-searching algorithm. (Eppstein uses a
similar approach to solve the modified string-editing
problem.) The first process computes FE(2),
E(n + 1) and the column minima of S, while the
second process computes F(1), , F(n) and the
column minima of 7. These computations occur in
2n — 1 stages, where the first process is active only
during the odd stages and the second process is active
only during the even stages. In the first stage, the first
process computes the second column minimum of S.
In the second stage, the second process computes F(1)
and the second column minimum of 7. Then for 2 <
I < n, the first process spends stage 2i — 1 computing
E(i) and the (i + 1)st column minimum of S, and the
second process spends stage 2/ computing F(i) and
the (i + 1)st column minimum of 7. Finally, in stage
2n — 1, the first process computes E(n + 1).

To bound the running time of the above procedure,
note that since the ith column minimum of 7, the ith
column minimum of S, and E(i — 1) are all known
at the beginning of stage 2i — 1, the first process can
always compute E(i) in constant time. Similarly, since
the (i + 1)st column minimum of .S is known at the
beginning of stage 2i, the second process can always
compute F(i) in constant time. Thus, both instances

of Eppstein’s on-line array-searching algorithm run in
O(n) time, which gives the following theorem.

Theorem 4. Given an n-period instance of the back-
logging economic lot size problem such that

a. forl <i<n,

_JO ifx=0,
a(x) = {c? +clx ifx>0,

where ¢ and ¢! are constants and ¢¥ = 0,

b. for 1 <i<n, h(y)= hly, where h! is a constant,
c. for1 <i<n,glz)=glz, whereg! is a constant,
d. fori<i<smc} <cl_, + hl,and

e. forl<si<nm c <cl + g,

we can find an optimal production schedule in O(n)
time.

4.1.2. Arbitrary Coefficients

In this subsection, we allow ¢}, g!, and A} to be arbi-
trary constants, i.e., we no longer assume that
¢l <cl,+ h!forl<i<nandthat ¢! <cl + g
for 1 < i < n. This cost structure was considered by
Blackburn and Kunreuther (1974) and by Lundin and
Morton (1975). Both papers gave O(n?)-time algo-
rithms for this variant of the backlogging economic
lot size problem; we improve this time bound to
O(n log n).

As in subsection 3.1.2, if we allow arbitrary coeffi-
cients ¢/, g/, and 4/, then it is easy to verify that the
arrays S and 7T defined in the previous subsection no
longer satisfy the Monge condition. However, we can
circumvent this difficulty by reordering the rows of .S
and T, just as we reordered the rows of 4 in subsection
3.1.2. Specifically, let

k
a = _<Ci + gr]n>

m=1

for 1 < k <n, and let
ri = cl] - Z hlln

m=1
forl <i<nlIfwesortq,...,qg.and ry, ..., r,,
obtalnmg permutations B and vy such that
sy Z Qs = ... Z oy ANA Ty) S P = ... =
Fyn» then the finite entries of S’ = ({s'[i, k]}

where s'[i, k] = s[i, (k)] and T’ = {¢'[k, j]} where
t'[k, j1 = t[v(k), j] satisfy the Monge condition.
Combining this observation with the divide-and-
conquer approach of subsection 3.1.2, it is straight-
forward to obtain the following theorem.



Theorem 5. Given an n-period instance of the back-
logging economic lot size problem such that

a. forl <i<n,

_Jo ifx=0,
alx) = {c? +clx ifx>0,

where ¥ and c! are constants and ¢? = 0,

b. for | <is<n, g(y) = gly, where g! is a constant,
and

c. for 1l <is<n, h(y) = hly, whereh! is a constant,

4.2. Concave Costs

In this subsection, we consider the backlogging eco-
nomic lot size problem with arbitrary concave costs,
l.e., we assume only that the cost functions c¢(-),
g{(+), and A,(-) are concave. Zangwill (1966) gave an
O(n®)-time algorithm for this problem; we reduce this
time bound to O(n?).

Let A = {a[i, j, k]} denote the n X (n + 1) X n array
where

ali, j, k]
k=1 Jj=1
E()+a(di)+ Y gnldime)+ X honldm))
_ m=i m=k+1
ifisk<j,
+0o0 otherwise.

Furthermore, for 1 < k < n, let 4, = {a:[i, j]} denote
the n X (n + 1) two-dimensional plane of 4 corre-
sponding to those entries whose third coordinate is k,
and let B, = {b[s, t]} denote the k X (n — k + 1)
subarray of A4, consisting of rows 1 through k and
columns k + 1 through n + 1 of 4y, so that b[s, t] =
as, t + k]. (One such plane A4, and its subarray By
are depicted in Figure 6.) Finally, for 1 < k < j <
n + 1, let F(j, k) = min,q<,ali, j, k]. The values
Fk + 1, k), Flk + 2, k), ..., F(n + 1, k) are
simply the column minima of By, and for 2 < j <
n+ 1, E() = minagt F(, k).

Our algorithm consists of # stages, each requiring
O(n) time. In the kth stage, we compute F(k + 1, k),
F(k+2,k),...,F(n+ 1, k) and then E(k + 1). For
computing E(k + 1), O(n) time clearly suffices,
because E(k + 1) depends only on F(k + 1, 1),
Fk+1,2),..., F(k + 1, k) and we have already
computed these values. Thus, all that remains to be
shown is that we can compute the column minima of
B, in O(n) time given E(1), ..., E(k). For such an
argument, we need the following two lemmas.

Lemma 7. B, is inverse-Monge for all k in the range
l<ks<n
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Figure 6. For any k in the range / < k < n, the only
finite entries in the plane A, lie in the sub-
array D, consisting of rows 1 through k and
columns k + 1 through n + 1 or A4,; more-
over, all the entries in By are finite.

Proof. Consider any entry bi[s, t] = aifs, t + k] of
By. Since s < k and ¢ + k > k, this entry is finite. In
particular,

buls, t] = E(s) + ci(dsiri)

k=1 t+k—1
+ E gM(dx.mH) + 2 hm(dm.Hk)»
m=s m=k+1

Now observe that the terms E(s) and Y42 g(dsms1)
in the above depend only on s, and the term

ki) h(dmisi) depends only on ¢ Furthermore,
¢(+) is a concave function, d; 4, = d, .« — d,, and
0=d,<dy,<...d,+. Thus, by Lemmas | and

2, By is inverse Monge.

Lemma 8. Given O(n?) preprocessing time, we can
compute any entry of By in constant time for all k in
therange | < k < n.

Proof. As we observed in the proof of the previous
lemma,

bils, 1] = E(s) + cul(dyi+s)

k=1 1+hk=—1
+ 2 gm(d.\;mﬂ) + z hm(dm.z+k)
m=s m=k—1

for all s in the range 1 < s < k and all ¢ in the range
1l <t<n-k+ 1. Now suppose that we precompute
d,, for all [ in the range 1 < i < n, which takes O(n)
time. This preprocessing gives us any d;, in constant
time, since d;; = d,; — d,;. Suppose that we also
precompute

k=1

Z gm(di.m+l)

m=i
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for all i and £ satisfying 1 < i < k < n and
J=1
Z hm(dm.j)

m=k+1

for all k and j satisfying | < k < j < n + 1. This
preprocessing takes an additional O(#n?) time, since

k—1 k=2
z» gm(dllm+l) = gk—l(di.k) + z gm(di‘m+l)
and

Jj=1 Jj=1

Z hm(dm‘/‘) = hk+l(dk+1«j) + Z hm(dm‘j)-
m=k+1 m=k+2
Moreover, these precomputations allow us to compute
bi[s, t] in constant time, since by the time we consider
By, E(s) is known for all s < k.

Lemmas 7 and 8 allow us to apply the off-line array-
searching algorithm of Aggarwal et al. to obtain the
column minima of B, from E(1), ..., E(k) in O(n)
time. Thus, we have shown that each stage of our
algorithm requires only O(n) time, which gives the
entire algorithm a running time of O(»?), including
the preprocessing time required for Lemma 8.

Theorem 6. Given an n-period instance of the back-
logging economic lot size problem such that the c,(-),
g{+), and hi(-) are concave functions, we can find an
optimal production schedule in O(n?) time.

4.3. Other Cost Structures

Zangwill (1969) considered yet another cost structure
for the backlogging economic lot size problem: He
assumed that for 1 <i<n,

o(x) = 0 if x =0,
AT+ elx ifx >0,

where ¢? and ¢' are constants and ¢ = 0, and the
hi(-) and gi(-) are nondecreasing concave functions.
(Note that the marginal cost of production c¢' is the
same for all time periods; this assumption is again
needed to ensure that the arrays defined below are
Monge.) If we consider the n X (n + 1) X n array
A = {ali, j, k]} where

ali, j, k]
k=1 j=1
E(l')+C2+Cld,"j+ z gm(di.m+l)+ Z hm(dm/)
m=i m=k+1
ifi< k<],
+ otherwise.

then A can be decomposed into two two-dimensional

Monge arrays S and T as in subsection 4.1.1. These
arrays are Monge because

Los(i, k] + s[i + 1, kK + 1] — s([i, kK + 1] —
S[l + 1, k] = gk(dj+1.k+1) - gk(d,;/ﬁ.;) forl<i+ 1<
k < n, and the right-hand side of this equation is
nonpositive so long as g(-) is a nondecreasing
function, and

2. tlk, jl1+tlk+ 1, j+ 1] —tlk, j+ 1] —tlk+ 1,]]=
hk+1(dk+1~j) - hA»+1(d/<+1.J+1) forl<k+1 <J <n+ 1,
and the right-hand side of this equation is nonpositive
so long as 4,4 ,(-) is a nondecreasing function.

However, it is unclear how to compute s[i, k] and
t[k, j]in constant time given o(»?)-time preprocessing;
thus, we are unable to improve the running time of
Zangwill’s O(n?)-time algorithm for the problem.

As a final remark, suppose that for all / and k such
that 1 < i< k < n, we knew
k—1

Z_. gm(diim-wrl),

and similarly, for all k and j such that | < k <j <
n+ 1, we knew

E hm(dm.i)-

m=k+1

In this case, it is easy to see that any entry in row i of
S and T could then be computed in constant time,
given the minimum entries in columns 1 through i of
S and T. Consequently, the column minima of S and
T could then be computed in linear additional time
using the approach of subsection 4.1.1. We will use
this observation in subsection 5.1, as it helps us to
obtain an improved algorithm for the periodic variant
of the backlogging economic lot size problem consid-
ered by Erickson, Monma and Veinott.

5. TWO PERIODIC PROBLEMS

In this section, we present algorithms for two periodic
variants of the backlogging economic lot size problem.
The first was proposed by Erickson, Monma and
Veinott, whereas the second was given by Graves and
Orlin. Both problems assume that the planning hori-
zon is infinite (i.e., we are planning for an infinite
number of periods) but that demands and costs vary
periodically over time with periodicity #, so that

divn = d;
Ciem(+) = ¢i(+),
ivm(+) = &(+), and
Gism(+) = hi(+),



for 1 < i < n and all positive integers r. Erickson,
Monma and Veinott consider the problem of finding
a production schedule with periodicity #» whose cost
is minimum among all such schedules, whereas
Graves and Orlin tackle the more difficult problem of
finding a semi-infinite production schedule (starting
with period 1, where the initial inventory is assumed
to be 0) with minimum average cost per period.

5.1. Erickson, Monma and Veinott’s Problem

Given an infinite planning horizon and periodic de-
mands and costs, Erickson, Monma and Veinott con-
sidered the problem of finding an infinite production
schedule with minimum average cost per period, sub-
ject to the restriction that the production schedule
must have periodicity #, i.e., we must have x;,,, = X;
and y;.,, = y; for 1 < i< n and all positive integers r.
This problem is equivalent to finding the minimum
cost, n-period production schedule for periods i
through n + i — 1, where i is allowed to vary between
1 and ». In terms of network flows, this new problem
is obtained from the backlogging economic lot size
problem by adding two edges to the graph depicted in
Figure 2, one from the nth sink to the first sink with
concave cost function A,(-) and the second from
the first sink to the wth sink with concave cost
function g,(-).

For arbitrary concave costs ¢i(-), g(-), and A(-),
Erickson, Monma and Veinott gave an O(n®)-time
algorithm for their problem, which they obtained by
solving n instances of the n-period backlogging eco-
nomic lot size problem. For the special case where

o) = 0 if x =0,
! A+ c'x ifx>0,

and the g(-) and A(-) are nondecreasing, we can
improve this bound to O(n?) time using the techniques
of subsection 4.3: We merely spend O(#?) time to
precompute

k=1

2 gm(di‘m-f-l)

m=i

for all i and k such that 1 < i<k <2nand

J-1
Z hm(de)

m=k+1

for all k and j such that 1 < k <j < 2n, and then solve

n instances of the n-period backlogging economic lot

size problem in O(n) time each.

Theorem 7. Given an instance of Erickson, Monma
and Veinott’'s economic lot size problem with
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periodicity n such that
o forl <i<n,

o ifx=0,
clx) = {c? +c'x ifx>0,

where ¢? and ¢ are constants and ¢ = 0, and
o for 1 < i < n, g(-) and h(-) are nondecreasing
concave functions,

we can find an optimal infinite production schedule
with periodicity n in O(n?) time.

5.2. Graves and Orlin’s Problem

Graves and Orlin consider another periodic variant of
the backlogging economic lot size problem. They as-
sume demands and costs are periodic, as do Erickson,
Monma and Veinott, and seek an infinite production
schedule (starting in period 1, where the initial inven-
tory is assumed to be 0) with minimum average cost
per period. Unlike Erickson, Monma and Veinott,
however, they do not restrict the production schedule
to have periodicity ». Instead, they assume that

lim G(y) = lim H(y) = oo,

100 ]
where

Gy)=g()+ &) +...+ 8y
and

H(y) = h(y) + ha(p) + ... + hi(D).

This assumption allows them to prove the following
lemma.

Lemma 9. (Graves and Orlin 1985) Let
C=c(d) + co(d) + ... + cu(dy),
and let

D=d+d+...+d,.

Furthermore, let p denote the minimum integer such
that C < G(pD) and C < H(pD). (Such a p exists by
our assumption about the unboundedness of G(-) and
H(-).) There is an optimal production schedule (i.e., a
production schedule of minimum average cost per
period) such that every interval of 2(p + 1)n consecu-
tive periods contains at least one period with nonzero
production.

This lemma and Theorem 1 (which also applies to
infinite graphs; see Graves and Olin) together imply
every production schedule must repeat after at most
2(p + 1)n?* periods, because an optimal production
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schedule starting from period i must be an optimal
production schedule starting from period i + rn, for
all integers r. Thus, there exists an optimal semi-
infinite production schedule consisting of a finite pro-
duction schedule with length at most 2(p + 1)n?
followed by an infinite periodic production sched-
ule with period at most 2(p + 1)n* In other words,
there exist integers n;, and n,, both between 1 and
2(p + 1)n? such that the optimal production schedule
for periods 1 through n, (with no initial or final
inventory and no initial or final backlogged demand)
and the optimal production schedule for periods n, +
1 through n, + n, (again with no initial or final
inventory or backlogging) together characterize the
optimal infinite production schedule.

Graves and Orlin argued that such an optimal, semi-
infinite production schedule can be computed in
O(p’n®) time. We reduce this bound to O( p*n°) using
Monge arrays.

To obtain a faster algorithm, we first compute an
optimal production schedule for periods 1 through j,
where j is allowed to vary from | to 2(p + 1)n? and
both the initial and final inventory and backlogging
are required to be 0. Such a schedule can be computed
in O(p*n*) time by applying the techniques of subsec-
tion 4.2 directly, i.e., by computing the plane minima
of an O(pn®) X O(pn?) X O(pn?) Monge array A.
However, we can reduce this bound to O( p*n®) time
if we make use of Lemma 9. Specifically, since pro-
duction in period j implies production in some period
between j — 2(p + l)n and j — 1, we need
only consider those entries a[i, j, k] of A such that
j— 2(p + Dn < i < k < j. Roughly speaking,
we can distribute these entries among O(n) Monge
arrays of size O(pn) X O(pn) X O(pn) whose plane
minima can be computed in O( p*n?) time each.

Once we have an optimal production schedule for
periods 1 through ; for all j between 1 to 2(p + 1)n?,
we can find the optimal infinite schedule as follows.
For | <j < 2(p + 1)n?, we can identify the periodic
and nonperiodic portions of the optimal production
schedule for periods 1 through j and compute each
portion’s average cost per period in O(pn) time per
value of j, i.e., O(p*n®) total time. Then, in O(pn?)
additional time, we can select the value of j giving
the best infinite production schedule, which gives
us the following theorem.

Theorem 8. Given an instance of Graves and Orlin’s
economic lot size problem with periodicity n, such that
the ci(+), gi(+, and hi(-) are concave functions and p is
defined as above, we can find an optimal semi-infinite
production schedule in O( p*n®) time.

We remark here that since p depends upon the
production, inventory, and backlogging costs and may
be exponential in #, both Graves and Orlin’s algorithm
and our algorithm run in pseudopolynomial time; in
fact, obtaining a true polynomial-time algorithm for
this problem remains open.

6. SOME FINAL REMARKS

In this paper, we presented efficient dynamic program-
ming algorithms for several variants of the economic
lot size problem. These algorithms use properties of
Monge arrays to improve the running times of pre-
vious algorithms, typically by factors of » and n/lg n,
where n denotes the number of periods under consid-
eration. Aside from providing faster algorithms for
economic lot size problems, a major contribution of
this paper is our identification of the Monge arrays
that arise in connection with economic lot size
problems.

The algorithms given in this paper are easily
extended to many other problems related to eco-
nomic lot size models. For example, in his paper on
Leontif substitution systems, Veinott (1969) showed
that several other problems (including the product-
assortment problem, the batch-queueing problem,
the investment-consumption problem, and the
reservoir-control problem) can be transformed
into economic lot size problems (with or without
backlogging).

Another model related to the economic lot size
model that deserves special mention is the capacity-
expansion model proposed by Manne and Veinott
(1967). This model was developed by Manne (1967)
during his study of four major industries in India
between 1950 and 1965, and many researchers have
studied problems formulated in terms of this model
(see, for example, Fong and Rao 1975, Luss 1979,
1982, 1986, and Lee and Luss 1987). Manne and
Veinott gave an O(n’)-time algorithm for computing
an optimal, feasible plan in their capacity-expansion
model. Since their dynamic programming algorithm
is identical to Zangwill’s O(#n’)-time algorithm for
solving the backlogging economic lot size problem
with concave costs, the techniques of subsection 4.2
yield an O(n?)-time algorithm for their problem. In a
similar vein, several of the algorithms given in Sections
3 and 4 of this paper can be used to speed up various
algorithms given by Luss (1982).

On a different note, this paper considered only
production systems involving a single type of item
and a single stage of production. However, other
researchers (see Graves 1982 and Luss 1982, 1986, for



example) have shown that the problem of computing
an optimal plan for a multi-item and/or multistage
production system can usually be decomposed into
simpler problems using Lagrangian relaxation
methods or simple heuristics that work fairly well in
practice. Furthermore, these resulting problems can
be expressed as economic lot size problems. The only
difference between the economic lot size problems
considered in this paper and those that result when
computing optimal production schedules for such
complex production systems is that this paper assumes
demands are always nonnegative, whereas in the eco-
nomic lot size problems resulting from Lagrangian
relaxation methods or heuristics, the demands may be
negative in certain situations. In other words, some of
the demand nodes may be supply nodes; this supply
has no cost, but it must be used up by any feasible
production plan. Now when demands are negative,
the arrays that occur in Sections 3-5 are not always
Monge. Nevertheless, we show in a different paper
(Aggarwal and Park, 1992) that the basic paradigm
developed in this paper can still be applied and that
the time complexities of the resulting algorithms are
quite similar to those given in this paper.

In the Introduction, we mentioned some recent
work by Federgruen and Tzur (1990, 1991) and by
Wagelmans, van Hoesel and Kolen (1992), who have
independently obtained several of the results that we
present in this paper. We will not relate their work to
our own.

Wagelmans, van Hoesel and Kolen presented an
O(n lg n)-time algorithm for the basic economic lot
size problem with nearly linear costs. Their result
matches the time bound of our algorithm for this
problem which we described in subsection 3.1.2.
Wagelmans, van Hoesel and Kolen also gave an
O(n)-time algorithm for the special case of the basic
economic lot size problem with nearly linear costs that
we considered in subsection 3.1.1. (For this special
case, we assumed that ¢, < ¢/, + A} for 1 <i < n,
i.e., the marginal cost of producing in period i is at
most the marginal cost of producing in period i — 1
plus the marginal cost of storing inventory from period
i — 1 to period i; this cost structure subsumes those
considered by Manne (1958) and Wagner and Whitin
(1958).) This result again matches the time bound of
our algorithm for the problem.

These same two results—an O(n lg n)-time algo-
rithm for the basic economic lot size problem with
nearly linear costs and a linear time algorithm for the
special case of subsection 3.1.1—were independently
derived by Federgruen and Tzur (1991). Moreover,
Federgruen and Tzur also gave an O(n)-time algo-
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rithm for the basic economic lot size problem with
nearly linear costs when setup costs are nondecreasing,
e, dd < <...< ¢} in the notation of subsection
3.1. Furthermore, Federgruen and Tzur (1990) gave
an O(n lg n)-time algorithm for the backlogging eco-
nomic lot size problem with nearly linear costs, match-
ing the result we described in subsection 4.1.2. They
also gave a linear time algorithm for the special case
of subsection 4.1.1 (again matching our result for this
problem), as well as some additional special cases.
Both Federgruen and Tzur and Wagelmans, van
Hoesel and Kolen used essentially the same techniques
to obtain their results, and these techniques are sub-
stantially different from our own. Roughly speaking,
they are computing (in an on-line fashion) the convex
hull of » points in an appropriate two-dimensional
space, whereas we are searching in Monge arrays. Note
that neither Federgruen and Tzur nor Wagelmans,
van Hoesel and Kolen were able to obtain results for
the general backlogging economic lot size problem
with arbitrary concave costs comparable to the results
that we presented in subsection 4.2, which suggests
that our techniques are in some sense more general.
We conclude with a list of open problems:

1. In subsection 3.1.2, we gave an O(n lg n)-time
algorithm for the basic economic lot size problem
when the production and inventory costs are nearly
linear, and in subsection 4.1.2, we gave an O(n Ig n)-
time algorithm for the backlogging economic lot size
problem when the production, inventory, and back-
logging costs are nearly linear. It remains open
whether there exists a o(n 1g »n)-time algorithm for
either of these problems.

2. Veinott (1963) showed that Wagner and Whitin’s
algorithm for the basic economic lot size problem can
be used even when the production and inventory cost
functions are arbitrary concave functions and that the
resulting algorithm still takes O(»?) time. In this paper,
we were unable to improve upon this bound (see Table
I); thus, obtaining better time bounds for the basic
problem with concave costs remains a challenging
open problem. As pointed out in subsection 3.2, this
problem remains open even for concave inventory
costs and nearly linear production costs such that
¢(0) = 0 and ¢(x) =c? + ¢'x for x > 0, where
¢? = 0. (This latter cost structure may greatly simplify
the problem, since here the resulting array is Monge,
as observed in subsection 3.2.)

3. Erickson, Monma and Veinott gave an O(n®)-
time algorithm for a periodic variant of the backlog-
ging economic lot size problem. We were unable to
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obtain a faster algorithm for this problem when the
costs are arbitrary concave functions (see Table III);
thus, obtaining a subcubic algorithm for this problem
remains unresolved.

4. Graves and Orlin gave an O(p’*n’)-time algo-
rithm for another periodic variant of the backlogging
economic lot size problem, and in this paper, we
improved this bound to O(p*n®). However, as men-
tioned in subsection 5.2, the parameter p in these
running times may be exponential in n. Consequently,
obtaining a true polynomial-time algorithm for
Graves and Orlin’s problem remains open (see Graves
and Orlin 1985, for more details).
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