Optimal Computer Search Trees and Variable-Length Alphabetical Codes

T. C. Hu; A. C. Tucker

SIAM Journal on Applied Mathematics, Vol. 21, No. 4 (Dec., 1971), 514-532.

Stable URL:
http://links jstor.org/sici?sici=0036-1399%28197112%2921%3 A4%3C514%3 A0OCSTAV%3E2.0.CO%3B2-R

SIAM Journal on Applied Mathematics is currently published by Society for Industrial and Applied Mathematics.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/siam.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Tue Apr 26 20:36:14 2005

SIAM J. ApPL. MATH.
Vol. 21, No. 4, December 1971

OPTIMAL COMPUTER SEARCH TREES
AND VARIABLE-LENGTH ALPHABETICAL CODES*

T. C. HU anp A. C. TUCKERY

Abstract. An algorithm is given for constructing an alphabetic binary tree of minimum weighted
path length (for short, an optimal alphabetic tree). The algorithm needs 4n* + 2n operations and 4n
storage locations, where n is the number of terminal nodes in the tree. A given binary tree corresponds
to a computer search procedure, where the given files or letters (represented by terminal nodes) are
partitioned into two parts successively until a particular file or letter is finally identified. If the files
or letters are listed alphabetically, such as a dictionary, then the binary tree must have, from left to
right, the terminal nodes consecutively. Since different letters have different frequencies (weights) of
occurring, an alphabetic tree of minimum weighted path length corresponds to a computer search
tree with minimum-mean search time. A binary tree also represents a (variable-length) binary code.
In an alphabetic binary code, the numerical binary order of the code words corresponds to the alpha-
betical order of the encoded letters. An optimal alphabetic tree corresponds to an optimal alphabetic
binary code.

1. Introduction. One problem of many applications is to construct an optimal
binary tree, that is, a binary tree of minimum weighted path length (see Knuth
[3, pp. 399-415]). An elegant algorithm for finding such a tree has been given by
D. A. Huffman [2]. In this paper we examine a variation of this problem in which
an order restriction on the terminal nodes is added. A computer search procedure
to identify an unknown letter is of the form : is the letter before m; if so, is it before f;
etc. Such a search procedure corresponds to an alphabetic binary tree, where the
terminal nodes of the tree ordered from left to right correspond to the letters in
alphabetic order. Since different letters have different frequencies (weights) of
occurring, an optimal alphabetic tree corresponds to a computer search tree with
minimum-mean-search time. A binary tree also represents a (variable-length)
binary code. In an alphabetic binary code, the numerical binary order of the code
words corresponds to the alphabetical order of the encoded letters. An optimal
alphabetic tree corresponds to an optimal alphabetic binary code. In 1959,
Gilbert and Moore [1] gave an algorithm for constructing an optimal alphabetic
tree. The number of operations in the algorithm is proportional to (n® — n)/6,
where n is the number of terminal nodes in the tree. Recently, Knuth [4] solved
the alphabetic tree problem using O(n?) operations and 3n? storage locations.
In the present paper, we give a different and faster algorithm also using O(n?)
operations but only 4n storage locations. The present algorithm also solves a
more general order-preserving problem.

* Received by the editors September 8, 1970, and in revised form May 3, 1971.

+ Mathematics Research Center, University of Wisconsin, Madison, Wisconsin 53706. This
research was supported in part by the United States Army under Contract DA-31-124-ARO-D-462,
and in part by the National Science Foundation under Grant GJ-28339.

514

OPTIMAL COMPUTER SEARCH TREES 515

The following notation is used :

the path length of the node j.

n the number of terminal nodes.

S: the initial sequence of terminal nodes.

S*: the initial sequence of terminal and internal nodes.

C(S): the class of T-C level-by-level trees built on an initial sequence S.
T: a tree in general (a forest or a tree in the class C(S) from § 4 on).
|T|: the weighted path length or the cost of the tree T.

T the tree built by the T-C algorithm.

T'(m): the forest built by the T-C algorithm in m additions.

Ty: the normalized tree of a tree-in C(S).

V;: the terminal node j.

v; the internal node j, or a generic node ;.

the weight of the node j.

2. Definitions. In this section, we give definitions of terms used in this paper.
Unless stated explicitly to the contrary, all definitions and notations are the same
as those used in the book by Knuth [3, vol. 1, pp. 362-405].

We consider a binary tree (called an extended binary tree by Knuth) as a
node (called the root) with its two disjoint binary trees called the left and right
subtrees of the root. For our purpose, we consider a binary tree with n terminal
nodes (a terminal node has no sons, while the other nodes, called internal nodes,
each have two other nodes as their sons). It is well known that the number of
internal nodes is always one less than the number of terminal nodes. The internal
nodes will be denoted by v;, i = 1,---,n — 1, and are represented by circles in
Fig. 1. The terminal nodes will be denoted by Vi,j =1, ---,n,and are represented
by squares in the figure. In this paper, when no distinction between terminal
nodes and internal nodes is necessary, we shall use the word “node” to mean
either a terminal node or an internal node and denote it by a lower-case v.

root

root

<
<
S
=<
=
<

FiG. 1

516 T. C. HU AND A. C. TUCKER

There is a unique path from the root to every node (internal or terminal),
and the path length of a node is the length (number of arcs) of the path from the
root to that node. For example, in Fig. 1(a) the path length of every terminal node
is 2, and in Fig. 1(b) the path length of V; is 3. We shall denote the path length of
V; by I;. The path length of a tree is the sum of all path lengths of all the terminal
nodes. In Fig. 1(a), the pathlength of the treeisly + I, + 3 + I, =2 +2 4+ 2+ 2
= 8, and in Fig. 1(b), the path length of the treeis [, + I, + 3+, =3 +2 + 3
+1=9. In many problems, every terminal node V; has associated with it a
positive weight w;. The weighted path length of a tree, denoted by |T|, is defined
to be Y wjl;. For example, in Fig. 1(b), if w, = 1, w, =3, wy =5 and w, = 4,
then the weighted path length of the treeis1 x 3 + 3 x 2+ 5x 3 +4 x 1 =28
Assume that we are given n terminal nodes V}, j = 1, ---, n, with weights w;,
j=1,---,n Our problem is to construct a binary tree having these terminal
nodes such that the weighted path length) w;l; is minimum. Furthermore, the
binary tree constructed must be alphabetic, that is, the terminalnodes V;, V5, - -+ , ¥,
must be in left-to-right order. For example, the binary tree in Fig. 1(a) satisfies
the order restriction, while the binary tree in Fig. 1(b) does not since the terminal
nodes left to right are Vy, V3, V,, V,.

It is well known that a binary tree corresponds to a binary code and an
alphabetic tree corresponds to an alphabetical code (see Gilbert and Moore
(1]).

We say a node is at level i if the path length of the node is i (level is just another
way of saying the path length). Thus the root is at level zero, and is considered to
be the highest level.

We say that a node v; dominates a node v; at a lower level if there is a path
descending from v; to v;. Thus the root dominates every other node.

Given a binary tree T with n terminal nodes, we can write down the path
lengths of the n terminal nodes from the left to the right as a sequence of n positive
integers. On the other hand, if we are given an arbitrary sequence of n positive
integers, there may not exist a binary tree T whose n terminal nodes have these
positive integers as their path lengths from the left to right. For example, it is
impossible to have a binary tree of three terminal nodes with path lengths corre-
sponding to 2, 1, 2. But it is possible to have a binary tree with three terminal nodes
with path lengths corresponding to 1, 2,2, or 2, 2, 1.

Thus, we define a sequence of n positive integers to be a feasible sequence
if there exists a binary tree with n ordered terminal nodes with path lengths
corresponding to these n positive integers from left to right.

LEMMA 2.1. A finite sequence of positive integers is a feasible sequence if and
only if the following three conditions are satisfied :

(i) Ifthe largest integer in the sequence is q, then there must be an even number
of q’s and such q’s always occur in consecutive sets of even length.

(ii) If we form a reduced sequence from the original sequence by successively
replacing (from left to right) every two consecutive q’s by one occurrence of the
integer q — 1, then the reduced sequence again satisfies (i).

(iii) If the process of (ii) is repeated by considering the reduced sequence as
the original sequence, (i) is still satisfied until finally a reduced sequence of 1,1 is
formed.

OPTIMAL COMPUTER SEARCH TREES 517

Proof. Because all the nodes at the level ¢ must be the sons of nodes at the
level g — 1, this implies that the nodes at the level ¢ must occur in pairs. So (i) is
clearly necessary. If we erase all the nodes at the level g, then we have a binary
tree with the lowest level ¢ — 1. The fathers of the nodes in the level g now become
terminal nodes themselves. And the necessary condition (i) becomes the condition
(i1). The necessity of (iii) is obvious.

If conditions (i), (ii) and (iii) are satisfied, then we can build the binary tree
from the bottom up (i.e., from the lowest level) and finally obtain the root which
is the father of two nodes at the level 1.

LEMMA 2.2. The total number of internal nodes in a binary tree is one less than
the total number of terminal nodes.

Proof. (See Knuth [3, p. 399].)

Let us consider an alternate way of calculating the weighted path length of
atree. First we write the weight of every terminal node inside the square node which
represents it. Then we write the sum of the two weights of the sons inside the
circular node which is the father. Whenever two nodes have weights written
inside their nodes, the weight associated with the father is the sum of the two
weights. In this way, every circular node gets a weight also. We claim that the
sum of all weights of the n — 1 circular nodes is the weighted path length > w/l;
of the binary tree. This claim is certainly true for a binary tree with two terminal
nodes. And if the claim is true for both the left and right subtrees of a binary tree,
then it is also true for the whole binary tree. We state this as a lemma. (See Knuth
(3, p. 405].)

LEMMA 2.3. The sum of n — 1 weights in the n — 1 circular nodes is the
weighted path length of the binary tree.

Instead of using the long term “‘weighted path length of a tree”” we shall use
cost of a tree from now on. A minimum-cost tree is called optimal.

Given n terminal nodes, a circular node corresponds to an addition of two
other nodes. A binary tree corresponds to a way of bracketing the weights. For
example, the binary tree in Fig. 1(a) can be represented by the nonassociative
addition ((w, + w,) + (w3 + wy)), and the binary tree in Fig. 1(b) can be repre-
sented by (w; + w3) + w,) + wy).

Thus by Lemma 2.2, we can construct a binary tree with n — 1 nonassociative
additions and, at the same time, calculate its costs by Lemma 2.3.

3. Huffman’s tree. In this section, we consider some results related to the
construction of Huffman’s tree where no restriction is imposed on the ordering of
the terminal nodes. Huffman’s algorithm is as follows: First find the two nodes
with smallest weights, say w; and w, ; then these two nodes are combined (they
have a common father); next replace the subtree formed by the two nodes and
their father by a new terminal node having weight w, + w,; and repeat the same
procedure on the reduced problem of n — 1 terminal nodes with weights w;, + w,,
ws, - -+, w,. From now on the process of letting two nodes have a common father
will be referred to as combining the two nodes or adding the two nodes.

Huffman’s algorithm constructs an optimal tree from a given set of n weights.
The cost of the tree can be expressed as the total of n — 1 sums (Lemma 2.3)
and the algorithm is a way of performing n — 1 sums sequentially. Suppose that

518 T. C. HU AND A. C. TUCKER

we stop Huffman’s algorithm after m additions (1 < m < n — 1). We shall prove
that the sum of the m weights in the m circular nodes constructed so far is also a
minimum compared with all other ways of performing m additions among the
given w;. In other words, Huffman’s algorithm gives an optimal forest. (A forest
is a set of trees.)

LeMMA 3.1. Huffman’s algorithm gives an optimal m-sum forest.

Proof. The proof is by induction. It is clear that Huffman’s algorithm gives
an optimal 1-sum forest. Assume that Huffman’s algorithm is correct for m < m,
(mg > 1), and consider an optimal m,-sum forest on weights wy, w,, ws, -+, W,
(k > my). In this forest, there exists at least one internal node v; of maximal path
length among all internal nodes. If the two sons of v; do not have the two smallest
weights (let these be w, and w,), then we can interchange the two sons of v; with
the terminal nodes with w; and w, without increasing the cost of the forests.

Now observe that if an my-sum forest on w,, w,, ---, w, combines w, and
w,, then this forest is optimal if and only if the other m, — 1 combinations in this
forest form an optimal forest on w; + w,, ws, --- , w,. However, by induction,
Huffman’s algorithm generates an optimal (m, — 1)-sum forest.

4. Alphabetic trees and the tentative-connecting algorithm. Now we consider
alphabetic binary trees. Then, as one scans the bottom of the tree from left to
right, the terminal nodes must occur in the given order. Such a tree is called an
alphabetic tree for the given ordered set of terminal nodes. Any alphabetic tree
can be built as follows: Start with an initial sequence, V;,V,, Vs, ---, V,, having
the terminal nodes in their given order; combine some adjacent pair of nodes
V., Vi+; and form a new sequence V;,V,, -+, V._1,04i+1)> Vis2> -+, Vs, where
Ug,i+1) i an internal node (the father of V; and V,,,) and the other nodes are still
terminal ; now combine some adjacent pair in this new sequence and replace the
combined pair by their father in the sequence ; and so on. Any of the intermediate
sequences, as well as the initial sequence, is called a construction sequence. The
nodes in a construction sequence are either terminal nodes or the roots of pre-
viously constructed feasible subtrees. By Lemma 2.2, n — 1 combinations (n is the
length of the initial sequence) are needed to form an alphabetic tree; if fewer than
n — 1 combinations are made in the above construction, an alphabetic forest
results.

Ideally, for a given initial sequence of terminal nodes, we would like to
construct an optimal alphabetic tree (or forest) by simply combining the minimum-
weight adjacent pair in successive construction sequences in a manner analogous
to the Huffman algorithm in the unrestricted case (throughout this paper, each
father is assumed to have a weight equal to the sum of its sons’ weights). Figure 2
shows that this is not possible, for the tree in Fig. 2 is an optimal alphabetic tree
and yet the minimum-weight adjacent pair in the initial sequence is not combined
(the weights of the terminal nodes are given inside their squares).

We shall introduce an algorithm for constructing optimal alphabetic trees
(also forests). The algorithm has two parts. The first part constructs an optimal
tree T’ which does not satisfy the ordering restriction. Then it will be shown that
T’ can be converted into another binary tree Ty with the same cost which does
satisfy the ordering restriction. We shall first describe the algorithm for constructing

OPTIMAL COMPUTER SEARCH TREES 519

13
7 6
4 3 2 4
VI Vz V3 V4
FiG. 2

T'. In the process of building a tree from a given initial sequence, if we combine
two nonadjacent nodes in a construction sequence, let the father take the position
of its left son in the resultant construction sequence (and of course the right son
no longer appears). Two nodes in a given construction sequence are called tenative-
connecting (T-C, for short) if the sequence of nodes between the two nodes is
either empty or consists entirely of internal nodes (roots. of subtrees). In Fig. 3,
we illustrate the definition of tentative-connecting. Figure 3 shows a construction
sequence and any two nodes joined by solid lines are T-C in this sequence, while
two nodes joined by broken lines are not T-C. If ¥, and v, were combined, then
in the resultant construction sequence v, and v5 would be T-C, as would v, (or vs)
and the father of V, and v,. If V; and V), are first combined, then vg and vg
become T-C.

T-C ALGORITHM (for constructing optimal tree T’). In each successive con-
struction sequence (starting with the initial sequence), combine the pair of T-C
nodes with the minimum sum of weights (in case of a tie, combine the pair with
the leftmost node—if several pairs have the same leftmost node, pick the pair
with leftmost second node).

Figure 4 illustrates the T-C algorithm (the initial weights are in the square
nodes). The T-C algorithm starts by combining the minimum-weight adjacent
pair of terminal nodes (the rightmost terminal pair with weights 1 and 3 in Fig. 4)
to get a new (internal) node with weight 4. It proceeds to get the circular nodes

520 T. C. HU AND A. C. TUCKER

62

FiG. 4

with weights 5,9, 12, 13, 17, 25, 37, 62 (we place a father over its left son to indicate
its position in the successive construction sequences).

At this stage, the reader should familiarize himself with this algorithm and
try to build a tree T’ from some other sequences of terminal nodes. Although this
algorithm is simple to state, the proof that the T" can be converted into an optimal
alphabetic tree Ty is somewhat complicated. (In Fig. 6, we show the corresponding
T}, of Fig. 4) Most of the following theorems involve T-C level-by-level trees
(T is such a tree). First we define this type of tree. Then we present the reader with
our strategy for the rest of the paper.

A T-C tree (built on a given initial sequence) is a tree which can be built up
in successive construction sequences such that each successively combined pair
of nodes is tentative-connecting in its construction sequence when combined.
The tree T' is certainly a T-C tree.

For a given T-C tree, a T-C level-by-level construction of the T-C tree combines
all nodes on the lowest level of the T-C tree first, then all nodes on the next-to-
lowest level, and so on (all combined pairs must still be T-C when combined in

OPTIMAL COMPUTER SEARCH TREES 521

their construction sequence). For example, if the T-C tree is as shown in Fig. 4,
a T-C level-by-level construction would create the internal node with weight 5
first, then internal nodes of weights 9 and 4, then internal nodes of weights 17,
13, 20 and 12, and finally internal nodes of weights 37 and 25. It is not necessary
to create all internal nodes from the left to right at a given level, but no tentative-
connecting pair should be combined until all tentative-connecting pairs at lower
levels have been combined.

Consider the sequence of terminal nodes with weights 2, 3, 1, 1, 3, 2. The tree
T’ built by the T-C algorithm is shown in Fig. 5(a), and a T-C tree is shown in
Fig. 5(b). The reader should verify that there is a T-C level-by-level construction
for the tree in Fig. 5(a) but not for the tree in Fig. 5(b). Those T-C trees for which
the T-C level-by-level construction is possible are called T-C level-by-level trees.
A T-C forest and T-C level-by-level forest are similarly defined. (The level of a
node in a forest is the level of the node in the tree to which the node belongs.
All isolated terminal nodes and roots of trees are at level zero.)

O c
QA ool

(a) FiG. 5 (b)

We shall denote an initial sequence of terminal nodes by S, and let C(S) be
the class of all T-C level-by-level forests (including trees) built on an initial sequence S.
Since an adjacent pair is, by definition, tentative-connecting, all alphabetic forests
built on S are in C(S).

Because the proof is long, we shall outline the general approach of the proof.

First we shall consider the class of T-C level-by-level forests (or trees).
This class clearly includes all alphabetic forests (or trees) since an alphabetic
forest (or tree) always has a T-C level-by-level construction. We shall show that
for every forest (or tree) in C(S), there is an alphabetic forest (or tree) of the same
cost. In § 5, we shall prove that the tree T" is in this class. This would mean that
there exists an alphabetic tree Ty of the same cost as T'. In § 6, we shall prove
that T’ is optimal in this class.

Since we shall be dealing with trees and forests in C(S) from now on, we shall
use T to denote a forest in C(S).

522 T. C. HU AND A. C. TUCKER

It will be shown that every forest T in C(S) has an associated alphabetic
forest in C(S) of the same cost. We call this associated forest the normalized form
of T, written Ty. Ty is a forest obtained from T as follows : Let level g be the lowest
level in T. There are an even number of nodes, say 2k, on this level (as on any level
below level 0, since each such node has a unique brother). Reassign the father-son
relationships between the k fathers on level ¢ — 1 and the 2k sons on level g so
that the leftmost father has as sons the two leftmost nodes on level g and so on
(from left to right). This reassignment does not change the path length of any
initial nodes (nodes in the initial sequence), i.e., the nodes on level g remain on
level g. Now repeat the reassignment on successively higher levels of T. Again at
each level, the reassignments do not change the path length of any initial nodes.
Figure 6 shows the normalized form of the tree in Fig. 4.

FI1G. 6

THEOREM 4.1. For all T in C(S), Ty is an alphabetic forest in C(S) and
|T| = |Ty| (they cost the same).

Proof. The fact that |Ty| = |T| follows from the properties of the reassign-
ments mentioned above. It is also not hard to see that all the combinations in
Ty are tentative-connecting. Consider any level k where the reassignments are
made. If there are some terminal nodes positioned between the nodes on level k
and those terminal nodes are at higher levels, then there must be an even number
(perhaps zero) of nodes at level k between any two such terminal nodes (since

OPTIMAL COMPUTER SEARCH TREES 523

T is a T-C level-by-level forest). Then in Ty, there is a consecutive T-C pairing of
all the nodes on level k positioned between two terminal nodes on higher levels.
It remains to show that Ty is alphabetic.

Let g be the lowest level of T and suppose Ty combines two (consecutive)
nodes on level g which are not adjacent in S, the initial sequence. Then between
the two nodes is a terminal node which necessarily is on a higher level of Ty (or
the given two nodes would not be consecutive on level g). But then this given
pair is not T-C on level q of Ty—a contradiction. Now assume all internal nodes
at level i or lower (0 < i < q) in Ty are roots of alphabetic subtrees. Then the
preceding argument shows that the nodes on level i are alphabetically combined
in Ty so that all internal nodes on level i — 1 are roots of alphabetic subtrees.
An inductive argument completes the proof.

For a given initial sequence S, let T'(m) denote the m-sum forest generated
by msteps of the T-C algorithm (and T" the finished tree). If T'(m) and T" are optimal
(or minimal cost) in C(S), then so are the alphabetic T'(m)y and Ty by Theorem 4.1.

It remains to prove the optimality of the T-C algorithm (which we do in § 6).
However, there is another equally pressing problem which the reader may have
noticed—namely, the construction of T'(m) by the T-C algorithm is not likely to
be level-by-level. For example, in Fig. 4 the first combination made by the T-C
algorithm is not at the lowest level. In the next section we prove that there exists
a way to build T'(m) in the manner of a T-C level-by-level construction.

5. T'(m) is a T-C level-by-level forest. In this section, we prove that T7(m)
is in C(S).

We shall use the symbol ~ to denote that two nodes are tentative-connecting
in a given construction sequence.

LEMMA 5.1. The weights associated with the internal nodes created successively
by the T-C algorithm are monotonically increasing.

Proof. We want to prove that if an internal node v; is created just before
another internal node v;, then w; < w;. In other words, if v; is the father of v, and
v. and v; is the father of v, and v,, then

(1) w, + w, S w, + w,.

If v, or v; coincides with v;, then (1) holds. Therefore, we shall assume that
there are four distinct nodes v,, v,, v, and v, involved in a construction sequence.
Renaming the four nodes from the left to right as v,, v,, v and v,, and letting
Wi2 =W, + Wy, W3 4 = W3 + W, we have

2) Wi+ wi= (W, + W) + (W, + wg) = wy , + wag.
If (1) does not hold and
(3) w; > wj,

then it follows from (2) that
4 w; > min (wy 5, w; 4).

Note that v, is one of the four nodes v,, v,, v, or v, which is tentative-connecting
to one of the three nodes to its right in creating v; or v;, hence v; ~ v,. The same

524 T. C. HU AND A. C. TUCKER

argument shows that v ~ v,. Butv, , and v3 4 in (4) can be created independently
in a construction sequence. Thus (4) implies there exists at least one T-C pair
(vy,, or vs4) with weight less than w;, contradicting the T-C algorithm. This
completes the proof.

We define a noninitialnode in a forest to be a node not in the initial construction
sequence. If the initial construction sequence consists of terminal nodes, then
noninitial nodes are synonymous with internal nodes. In the next section, we
shall work with an initial construction sequence with both internal and terminal
nodes. Then noninitial nodes will mean those internal nodes which are not in
the initial construction sequence. The theorems and lemmas in this section are
valid for these more general forests built from a construction sequence of internal
and terminal nodes.

LEMMA 5.2. If v; and v; are two equal-weight noninitial nodes in a construction
sequence of T', and if v; was formed first (by the T-C algorithm), then v; is to the
left of v; in the construction sequence.

Proof. We can assume v; was formed immediately after v;, for if the T-C
algorithm formed other nodes v;,, v;,, - - - between v; and v;, then:

(a) by Lemma 5.1, the v, ’s are of the same weight as v; and v;, and

(b) proving the lemma true for each two successive equal-weight nodes implies
it is true for v; and v;.

Let v; be the father of v, and v, and v; be the father of v, and v, say. Rename the
four distinct nodes in the construction sequence from the left to right as vy, v,,
v; and v,. By the same argument as used in the proof of Lemma 5.1, we have

(5) Uy ~ Uy and U3 ~ V4.

Either w; + w, < w3 + w, or w; + w, > w3 + w, will contradict the T-C
algorithm. So we have

6) Wi + Wy = w3 + wy.

If v; is the node v, ,, vy 3, Or vy 4, then the theorem is proved. If v; is the node
V3.4, then it contradicts the T-C algorithm. Therefore, the only possibilities left
are

Ui = U2,3 or Ui = U2’4.

If v; = v, 3, then by assumption, w; = w, + w3 = w; + w, = w;, and from (6),
we have

7 w; = w3,

From (7) we have w, + w, = w, + w; = w;, which contradicts the fact that the
T-C algorithm picks the leftmost pair.
If v; = vy 4, then w; = w, + wy = w; + w3 = v; and from (6) we have

(8) W, = w,.

But (8) implies w;, + w, = w, + w, = w;, which again contradicts the fact that
the T-C algorithm picks the leftmost pair.

OPTIMAL COMPUTER SEARCH TREES 525

LEMMA 5.3. Suppose the two noninitial nodes v; and v; are tentative-connecting
in some construction sequence of T'(m). If w; = w; and v, is to the left of v;, or if
w; < wj, then l; 2 1 in T'(m) (I, is the level of node v, in T'(m)).

Proof. Our proof is by induction on k = l;. If k = 0, the result is trivial.
Assume the theorem is true for k < m (m = 1) and consider the case where k = m.
Observe v; is combined before (or at the same time as) v ; if w; < w;, and the same
is true if w; = w; and v; is to the left of v, since the T-C algorithm works from left
to right. If v and v; are the fathers of v; and v;, respectively, then w;. < Wjs, by
Lemma 5.1, and further if w;» = wj, then v, is to the left of v, by Lemma 5.2
(if v; is combined with v; or v;., the lemma is trivial). Now | #» =k — 1 < mimplies
li 2 1 by induction. So I; > [;.

THEOREM 5.1. T'(m) is in C(S).

Proof. We wish to show that any forest or tree built by the T-C algorithm
has a T-C level-by-level construction. Consider first the nodes in the lowest level
of T'(m). We shall do all the combinations made by the T-C algorithm on this
level in the order of the weights of the internal nodes created (in case of ties, we g0
from left to right as in the T-C algorithm). Then we shall do the same for nodes in
the next-to-lowest level. For example, in Fig. 4, we would create the internal
nodes with weights 5, 4, 9, 12, 13, 17, 20, 25, and 37 successively. Since all pairs
combined by the T-C algorithm are T-C, we now have a T-C level-by-level con-
struction of T'(m) unless the kth combined pair in the T-C algorithm is not
tentative-connecting at its level because some ith pair (for some i < k) contains
a terminal node which is at a higher level and is positioned between the kth pair.
We shall prove that such a situation cannot happen. _

We shall use S, to denote the construction sequence resulting after combining
the kth pair in the T-C algorithm. (By this notation, the initial sequence S should
be denoted by S,.) Consider the construction sequence S, and let v, be the kth
internal node created by the T-C algorithm and v; the node in S, dominating
(or perhaps equal to) the ith internal node created by the T-C algorithm. Since at
least one son of the ith internal node is assumed to be between the two sons of
U, it follows that v, and v; are T-C in S,. Since v, is created before v, in the T-C
algorithm, w; < wy, by Lemma 5.1. If w; = w;, then v, is to the left of v, by Lemma
5.2. From Lemma 5.3, we know that [, < [;, which contradicts the assumption that
the kth combination was at a lower level than the ith combination.

6. The optimality of 7'(m). We have shown in § 5 that 7" can be converted
into an alphabetic tree of the same cost. We also know that the class C(S) includes
the class of alphabetic trees. If we can prove that T’ is an optimal tree in C(S),
then we shall have proved the optimality of the T-C algorithm. Instead of proving
that T" is an optimal tree in C(S), we shall prove that the T-C algorithm generates
an optimal tree for a more general problem. Recall that C(S) is the class of T-C
level-by-level forests (trees) that can be built from an initial sequence S of terminal
nodes. Now we introduce the notion of a generalized initial sequence. A generalized
initial sequence is a sequence of internal and terminal nodes. We shall denote a
generalized initial sequence by S* and the class of T-C level-by-level forests
built on $* by C(S*). We introduce the notion of a generalized initial sequence so
that a T-C level-by-level forest can be built from any construction sequence

526 T. C. HU AND A. C. TUCKER

(irrespective of how the construction sequence was obtained). If one scans the
bottom of an alphabetic tree built on S*, then the bottom nodes of the tree must
occur, from left to right, in the order of the generalized initial sequence S*. We call
the nodes of a forest T in C(S*) which are in the (generalized) initial sequence
initial nodes. Then the noninitial nodes of T are the internal nodes of T not in S*.
Theorem 4.1 is valid for generalized initial sequences, i.e., the normalized form
Ty ofa forest Tin C(S*)is also in C(S*)and | Ty| = | T|. All the lemmas and theorems
in § 5 are valid with generalized initial sequences. However, Ty need no longer be
alphabetic for every T in C(S*) when S* contains internal nodes. Take Fig. 7,
for example. A generalized initial sequence S* = @ @ is given and
a T-C level-by-level tree built on S* is shown. The path lengths of the five nodes
in the generalized initial sequence are 3, 2, 3, 2, 2 respectively. But there is no
alphabetic tree built on a generalized initial sequence of five nodes with path
lengths 3, 2, 3, 2, 2. Since we are only to prove that T’ is an optimal tree (built on
S*) in C(S*), we are not concerned whether every tree in C(S*) can be converted
into an alphabetic tree.

(o)

FI1G. 7

The optimality of T’ will ultimately follow from the same inductive argument
that was used to show the optimality of Huffman’s algorithm (Theorem 3.1)—
namely, the minimum-weight T-C pair of S* must be on the same level in any
optimal m-sum forest in C(S*); from this fact, we obtain the following result.

THEOREM 6.1. For any S*, there is an optimal m-sum forest in C(S*) which
combines the minimum-weight T-C pair in S*.

(The proof appears later in this section.)

Once we prove this theorem, we can prove the optimality of the T-C algorithm
by applying this theorem to any initial sequence S* and to the successive con-
struction sequences (this is just like the proof of the Huffman algorithm). A formal
proof appears later. The key to proving Theorem 6.1 is to show that an optimum
m-sum forest of C(S*) must have the minimum-weight T-C pair of S* at the same
level.

OPTIMAL COMPUTER SEARCH TREES 527

To prove Theorem 6.1, we need the following operation. Suppose that v,
and v, are nodes in the normalized forest Ty in C(S*) such that:

(i) for some integer k, v, is at level k and v, is at level k + 1; and

(ii) node v, and the father of v, are T-C on level k, i.e., T-C in the construction
sequence of Ty obtained after all combinations of nodes below level k in Ty, are
made.
For any such v, and v,, we define the level interchange of v, and v, to mean:
(a) moving v, and the subtree of which it is the root down one level in the forest;
moving v, and its dominated subtree up one level (put v, just to the right of its
previous father, v,,. The node v,, remains on level k with temporarily one son,
vy’s brother); (b) letting v, become a son of v, , and letting v, be a son of the previous
father of v,. (In other words, v, and v, interchange their fathers; see Fig. 8.) Then
we renormalize the resulting forest from the lowest level up through level k
(by renormalizing we mean the level-by-level reassignment of the father-son
relationship used in obtaining the normalized form of a forest).

—
/ \
Ievelkég éé} G {6)
- N7
=" !
! -

-
-
-

AN -7
‘ -
level £+1 \ d/

N -

FI1G. 8

LEMMA 6.1. Given a normalized forest Ty in C(S*), let nodes v, and v, in Ty
satisfy (i) and (ii) in the last paragraph. Further, assume that v, is an initial node,
and that if v, is a terminal node, then v,’s brother is on the same side of v, as v, is.
Then the level interchange of v, and v, produces a normalized forest in C(S¥*).
Furthermore, if w, < w, (W, £ w,), then the resulting normalized forest costs less
than (less than or equal to) Ty.

Proof. After lowering v, and raising v, and its subtree, we make v, the other
son of v,,, the previous father of v, (see Fig. 8). Now we have a forest and
renormalizing is well-defined. Since the final resulting tree, call it T, is normalized,
it remains to show that T} is indeed in C(S*). Because renormalizing involves the
combination of consecutive pairs of nodes, it is sufficient for us to show that after
lowering v, and raising v, and its subtree, there are an even number of nodes on
level j to the left of any terminal node V; on a higher level than j.

Case a. If j < k, level j is unaffected by the lowering and raising. Thus, as in
Ty, there is an even number of nodes on level j to the left of any such V; after the
lowering and raising.

Case b. Suppose j = k. Of course, in Ty, there must be an even number of
nodes on level k to the left of V;. If there is an odd number of nodes on level k
to the left of V; after the lowering and raising, then clearly ¥, must be between
v, and v, in Ty. But this would contradict the fact that v, and v,, are T-C on
level k of Ty.

528 T. C. HU AND A. C. TUCKER

Case c. Suppose j =k + 1. If V; # V,, the argument in Case b applies.
If V; = V, (e, v, is a terminal node), then suppose v, is to the left of ¥}, and hence
the brother of ¥}, by assumption, is also to the left of ¥}, (a similar argument works
if v, is on the right of V}). In T there are an even number of nodes on level k + 1
to the right of ¥, and an odd number to the left of ¥}, since ¥}’s brother is on its
left. After the lowering and raising there are still an even number of nodes on
level k + 1 to the right of ¥, (which is now on level k), and, in addition, there are
now an even number of nodes on level k + 1 to the left of V}, since v, was lowered
to level k + 1 on the left of V.

Case d. Suppose j > k + 1. In Ty there are clearly an even number of nodes
to the left of ¥, on level j. Also in Ty, v, dominates an even number (perhaps zero)
of nodes to the left of V; on level j. After raising v, and its subtree one level, each
node on level j dominated by v, is replaced by two nodes or no nodes, and hence
after the raising there are an even number of nodes to the left of ¥, on level j.

The interchange increases the path length of v, by one and decreases by
one the path lengths of nodes with total weight w,. If w, < w,, then |T}| < |T}|
(or w, < w, implies | T4| < |Ty|). This completes the proof.

The T-C algorithm uses the idea of always making the cheapest (lightest
weight) T-C combination possible. An alternative approach might start by
making some expensive (heavy) combinations in order to make possible some
very cheap combinations later. The following lemma shows that this alternative
cannot be optimal in C(S*).

LEMMA 6.2. Let d be the minimum weight of any T-C pair in the (generalized)
initial sequence S*. If Ty is a normalized optimal m-sum forest in C(S*), then, all
noninitial nodes in T have weight greater than or equal to d.

Proof. Suppose there exists the noninitial node v, in Ty with w, < d. If
there is more than one possible choice of v, let the chosen v be at as low a level
as possible. Let v, and v, be the left and right sons of v, respectively. It follows
that v, and v, must both be initial nodes, i.e., in $*. Since w, + w, < d, v, and v,
are not T-C in S*. Hence there exists in S* a terminal node V; between v, and v,.
Nodes v, and v, must be brothers on some level, call it level k, of T since they are
combined in T§. Then clearly V; is on a lower level of T§. Suppose V; is on level
k + 1. Then switch the positions of v, and ¥, in Ty. It is easy to check that the
new forest, call it TR?, is a normalized forest in C(S*) (see Fig. 9). Now V; and v,

O
wi O

level £+

F1G. 9

OPTIMAL COMPUTER SEARCH TREES 529

are consecutive at level k of T9° since there were no nodes between v, and v,.
Also we see that V; and v, are consecutive in S* (because any initial node between
V, and v, must be dominated at level k of T} by a node between v, and v,—but
there were no nodes between v, and v, in Ty). Since ¥, and v, are consecutive in
S*, w; + w, 2 d. Since d > w, = w, + w;,, we have w, + w, 2d = w, + w, or
w, > w,. This implies |TR°| < |T§l, a contradiction.

Thus ¥, must be below level k + 1 of Ty. Consequently there is a noninitial
node v, on level k + 1 of Ty which dominates ¥V, and the father of v, is seen to
be T-C with v, on level k. We now perform a level interchange of v, and v,.
The resulting tree Tx° is in C(S*) by Lemma 6.1. Also by Lemma 6.1,

w,2d>w, + wy>w,

implies | T9°| < | T3, a contradiction.

THEOREM 6.1. For any S*, there is an optimal m-sum forest in C(S*) which
combines the minimum-weight T-C pair in S*.

Proof. Let T2 be an optimal normalized m-sum forest in C(S*). Let v, and
v, be a minimum-weight T-C pair in S*. Either node may be terminal. We shall
obtain another optimal m-sum forest in C(S*) which combines v, and v, together.

Case a. Suppose v, and v, are on the same level of Ty, say level k > 0. Then
let us reassign the relationships between the fathers on level k — 1 and the sons
on level k: first combine v, and v, (they are T-C on level k, since they are T-C in
S*), then do the regular reassignment with the rest of the sons—successively
combine the two leftmost remaining nodes on level k (the father of v, and v, is
fitted in the proper position among the other fathers on level k — 1). The resulting
forest (which is seen to be in C(S*)) satisfies the conclusion of this theorem. Suppose
v, and v, are both on level 0, i.e., neither is used in Ty. Then take any noninitial
node, v, on level 0 in T} and delete it. Then the nodes dominated by v, are
moved up one level and the forest is renormalized level-by-level (as in a level
interchange). The result is an (m — 1)-sum normalized forest in C(S*) (this follows
by the same argument as in Case d in the proof of Lemma 6.1). Now combine
v, and v,. Since w, = w, + w, by Lemma 6.2, the resulting m-sum forest is at
least as cheap as Ty.

Case b. Now suppose v, is on level i and v, is on level j, where i > j (a
similar argument holds if j > i). Let v, be the node on level j dominating v,.
Since v, and v, are T-C in S*, then v, and v, must be T-C on level j of T}. Let v,
be the son of v, which dominates v,, and let v, be the son which does not (see
Fig. 10). If v, (or v,) is a noninitial node, then perform a level interchange of v,
and v, (or v;). By Lemma 6.1, the resulting forest is in C(S*) and costs less than
Ty, since by Lemma 6.2, w, (or w,) 2 w, + w, > w,. This is impossible (T is
optimal) and so v, and v, must be initial nodes (and hence v, = v,). Since w, + w,
< w, + w, by Lemma 6.2, then w, £ w,. Note that if v, is a terminal node, it
cannot be between v, and v, in S* Then v, and v, satisfy the hypotheses of
Lemma 6.1. So a level interchange of v, and v, produces a normalized forest which,
by Lemma 6.1, is in C(S*) and costs no more than Ty. The new forest has v, and
v, on the same level and is optimal. Now apply the argument in Case a to this
new forest.

THEOREM 6.2. For a given generalized initial sequence S*, T'(m) is an optimal
m-sum forest in C(S*). '

530 T. C. HU AND A. C. TUCKER

NCleRReteNcle

level s +| ° °
/
/

/
/

©

Fi1G. 10

Proof. The proof is by induction on m. If m = 1, the theorem is obvious.
Assume for any generalized sequence S* the theorem is valid for all m < m,
(1 < mp). Let S* be a (generalized) initial sequence with more than m, nodes
(with m, or fewer nodes there is nothing to prove). By Theorem 6.1, there is an
optimal my-sum forest in C(S*) which combines the minimum-weight T-C pair
v, and v, in S*. Let S% be the resulting construction sequence after combining
v, and v,. Clearly an optimal m,-sum forest of C(S*) which combines v, and v,
costs at least as much as the cost of a minimal-cost (m, — 1)-sum forest of C(S¥)
plus the cost (i.e., weight) of v, and v,. Note that T'(m,) built on S* contains the
(mo — 1)-sum forest built on S% by the T-C algorithm. Moreover, this (m, — 1)-
sum forest on S% is optimal by induction. Thus T'(m,), which is in C(S*) by the
generalized form of Theorem 5.1, is an optimal m-sum forest of C(S*).

COROLLARY 6.1. For a given initial sequence S of terminal nodes, the normalized
form of the m-sum forest (tree) generated by the T-C algorithm is an optimal
alphabetic m-sum forest (tree).

Proof. 1t follows from Theorems 4.1 and 5.1 that T'(m) can be converted
into an alphabetic forest. It follows from Theorem 6.2 that T'(m) is optimal.

7. Implementation of the T-C algorithm. We define Huffman’s set to be a
maximal set of consecutive nodes in a construction sequence such that any nodes
in the set are tentative-connecting. It is easy to see that a Huffman’s set contains
atmosttwo terminal nodes. A typical Huffman’sset consists of V,, v, 1, - -+, v;-4,V,
i.e., two terminal nodes at the ends with several internal nodes between them.
A special case is that the set of internal nodes in the middle is empty. Also, one
or both of the terminal nodes may be absent. At any given stage of constructing
T'(m), for a given initial sequence we have k (1 £ k < n — 1) Huffman’s sets
which are ordered from the left to right.

An ArLcGoL program for the T-C algorithm has been written by Yohe [7].
The program needs O(n?) arithmetic operations for computing and 4n storage
locations. Here we give additional comments to improve computing. In the
beginning, there are n terminal nodes which are ordered from left to right. These n

OPTIMAL COMPUTER SEARCH TREES 531

terminal nodes can also be regarded as n — 1 Huffman’s sets ordered from left
to right. Let L, M and R be any three successive Huffman’s sets from left to right
and let W, W,,, Wy be the minimum weights of the tentative-connecting pairs
in each of the three sets L, M, and R respectively. If W, > W,, < W, then the
minimum weight tentative-connecting pair in M can be combined. (If L is the
leftmost Huffman’s set and W, < W,,, then the pair in L can be combined and
similarly if R is the rightmost set and W, > W;. This follows from Lemma 5.1
and the fact that the T-C algorithm works from left to right in case of ties. In other
words, if a tentative-connecting pair is not the pair with absolute minimum weight
among all the Huffman’s sets but is only of relative minimum weight (relative to
the sets to its left and right), then it is all right to combine that pair. This means
that we do not have to search the entire list to find the pair with absolute minimum
weight. In general, let us assume that there are m Huffman’s sets each with k;
nodes (i = 1, --- , m); then

M=

ki < 2(n — 1).

i=1

Since it takes 2k; operations to find the tentative-connecting pair with minimum
weight in the ith Huffman’s set, it takes at most 2y k; or 4(n — 1) operations to
find the pair with absolute minimum weight. Since there are n — 1 combinations
in T’, we need at most (n — 1)4(n — 2) = 4n? operations to get the tree T". After
the tree T’ is obtained it takes another 2n operations to get the path lengths of
all terminal nodes.

After the path length of every terminal node is obtained, we can get the alpha-
betic tree T* as follows. Assume the path lengths of terminal nodes are ordered
from left to right successively. We always combine the two adjacent nodes of
maximum path length, say g, and replace the two nodes by a node with path
length g — 1. This procedure is repeated until a node (the root) of length zero is
obtained.

8. Related problems. We have discussed the problem of optimal binary tree
as a coding problem. There are many other problems in operations research and
information retrieval which can also be formulated as optimum binary tree type
problems. A very common problem is to identify unknown objects by a sequence
of tests. For example, a coke machine has to identify the coin that is being put
into the machine. Let us assume that the unknown object must belong to one of
n kinds, in the case of a coin, it must be a penny, a nickel, a dime, or a quarter,
say. Furthermore, the jth object, j = 1, --- , n, has a probability w; of occurring,
and these probabilities are assumed to be known in advance. There are tests
T, i=1,---,m, available for identifying the objects. Each test has the effect of
partitioning the n objects into two complementary sets and asserting the unknown
object to be in one of the two sets. If it costs ¢; dollars to perform the ith test T;,
what is the optimum sequence of performing the tests such that the expected
cost is a minimum?

If all ¢; are the same, and all 2" tests are available (i.e., all partitionings of n
objects), then the problem becomes a problem of constructing Huffman’s code.

532 T. C. HU AND A. C. TUCKER

If all objects are different in length and the tests are to find if the length of the
unknown object is greater or less than a fixed length, so that there are n — 1
tests available, then this is the problem of alphabetical code which we have
considered in this paper.

We have mentioned two cases; in one case all the tests are available, and in
the other case, the tests are specially restricted. If we consider objects as points
in space and tests as hyperplanes, then there are many other problems besides
the two cases that need to be solved.

Some related problems are as follows. If the incidence relationships between
tests and objects are given as a zero—one matrix, are the given m tests sufficient to
identify the objects? If yes, what is the degree of redundancy of identifying the
jth object? What would be a nonredundant subset of tests which will give the
minimum expected costs? What happens if a test has the effect of partitioning
the n objects into three or more subsets? What happens if several tests can be
given simultaneously?

Acknowledgment. The authors wish to thank Dr. Mike Yohe for stimulating
discussions.

Note added in proof. Professor D. E. Knuth informed us that a better
implementation of our algorithm needs only O(n log n) operations when suitable
data structures are employed.

REFERENCES

[1] E.N. GILBERT AND E. F. MOORE, Variable-length binary encodings, Bell System Tech. J., 38 (1959),
pp. 933-968.

[2] D. A. HUFFMAN, A method for the construction of minimum-redundancy codes, Proc. IRE, 40 (1952),
pp- 1098-1101.

[3] D. E. KNUTH, The Art of Computer Programming, vol. 1, Addison-Wesley, New York, 1968.

[4] , Optimum binary search trees, Computer Science Dept. Rep. C. S. 149, Stanford University,
Stanford, Calif., 1970.

[5] E. S. SCHWARTZ, An optimum encoding with minimum longest code and total number of digits,
Information and Control, 7 (1964), pp. 3744.

[6] E.S. ScCHWARTZ AND B. KALLICK, Generating a canonical prefix encoding, Comm. ACM, 7 (1964),
pp. 166-169.

[7] M. YoHE, An Algol procedure for the Hu-Tucker minimum redundancy alphabetic coding method,
submitted to Comm. ACM.

