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Technical Notes

Reducing Space Requirements for Shortest Path
Problems

J. IAN MUNRO and RAUL J. RAMIREZ

University of Waterloo, Waterloo, Ontario, Canada
(Received March 1980; accepted November 1981)

The problem of determining the shortest path through a level network using
as little space as possible is considered. Let k denote the number of levels
and assume each level contains m nodes. A space efficient technique is
presented by which the shortest route from a source to a sink may be found
in a complete level graph using 8(m + k) storage locations and a factor of only
#(log k) more basic operations than space inefficient methods. If an edge from
node p of level i to node q of level i + 1 exists only if p = q, then the space
saving technique may also be employed. In this case the run time of the
algorithm is at most twice that of conventional approaches.

ANY PROBLEMS solved by dynamic programming techniques
can be (and often are) formulated in terms of finding the shortest
path in an acyclic k-partite network. Although such problems are easily
solved in what amounts to little more than a carefully ordered scan of the
graph (Bellman [1957], Dantzig [1960], Floyd [1962], Minty [1957]), the
process often proves costly because of space requirements. The graph
itself may have to be stored. Even if this difficulty can be overcome, the
fact that the entire path (not just its length) is to be determined appears
to add storage requirements of the order of the number of nodes in the
graph.
Consider networks, such as those of Figure 1, a and b, which consist of
a source s, a sink ¢, and % groups (or levels) of m nodes each. Weighted
edges may be presented from s to the nodes of level 1, from nodes of level
i to those of level ¢ + 1, and from those of level % to the sink, £. Following
Paul et al. (1976) we refer to such graphs as level graphs or level
networks. They can be useful in modeling the possible changes in state
of a system with time, by letting the levels denote time and nodes within
a level the possible states at that time. Particularly interesting cases of
level graphs are those which are complete, in that every node at level i is
connected to every node at level i + 1 (Figure la), and those which are
dropping in that there is an edge from node p of level i to node g of level
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i + 1if and only if p > ¢ (Figure 1b). Our interest is in finding the shortest
path through complete level graphs and dropping level graphs. Edge
weights are taken to be arbitrary, but it will be assumed that they are
either computable or for some other reason the space necessary to store
the graph itself can be ignored.
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a - A Complete Level Graph
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b - A Dropping Level Graph
Figure 1. Level graphs.

Any of the straightforward algorithms (Dantzig, Floyd, Minty) finding
shortest paths requires inspection of each edge once, and so 8(m?k) basic
operations for either complete or dropping level graphs. We use 4(f) to
denote an expression bounded above and below by constants times f.
Such a run time is clearly near optimal since any algorithm must look at
the entire graph. What is disturbing is that these methods will use 8(mk)
units of storage, even when the graph itself need not be stored. The
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storage costs of conventional methods are due to the fact that, as the
shortest paths from s to nodes at a new level are discovered, either the
entire paths are explicitly retained or the penultimate node on the
shortest path from s to each node which has been inspected must be
retained. This is, of course, done so that the path from s to ¢ is either
explicitly stored or is easily reconstructed when the method reaches node
t. The storage costs are essentially the same in either case, and at least
f8(mk) no matter how carefully the algorithms are coded. Since many
computing facilities base charges on the product of the time and space
used, this can have a major impact on the cost of the computation.

The following divide and conquer approach is similar in flavor to the
methods of Paul et al. and requires only 8(m + k) storage with the
relatively minor penalty of a factor of log % in run time for complete level
graphs and a factor of 2 (or less) for dropping level graphs. Using
the time-space product as a measure of cost, this leads to a saving of a
factor of at least #(mk/((m + k)log k)) for complete level graphs and
0(mk/(m + k)) for the dropping case.

As we have noted, the basic shortest path algorithms, when applied to
networks of the type under discussion, can be viewed as moving from s
to ¢ by finding (and retaining) the shortest path from s to each node at
level i. From this, paths to nodes at level i + 1 are determined, at which
time the paths from s to level i nodes are either forgotten or become
implicit in their extensions. The space requirement is, then, the product
of the path length (k) and the number of nodes at each level (m). If,
however, the length of the path were required, and not the path itself,
only f(m) storage would be necessary. The crux of our method is that not
only can this path length be found using #(m) space, but also that the
midpoint (or any constant number of points) on the path may also be
found without affecting the order of magnitude of the space requirement.
This is achieved by simply retaining the points at level £/2 which were
passed through on the shortest paths to nodes under consideration at
subsequent levels (i.e., levels greater than %/2).

The path finding method then proceeds recursively as follows: To find
the shortest path from s to ¢

(i) Find the length of the shortest path from s to ¢ and the midpoint,
mid, of this path. On completion the value of the length may be
discarded.

(ii) Recursively, find the shortest path from s to mid, and from mid to
t.

If it were acceptable to produce the points on the shortest path in an
arbitrary order, this method could be implemented using only §(m + log
k) space. The log k& term comes from the overhead required for the depth
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of recursion. The reasonable constraint that the path be retained in
memory alters this to (m + k). It is not difficult to argue that this is
within a constant factor of the space requirements of any algorithm for
solving the problem, no matter how long its run time may be.

This leaves the question of whether or not the run time of this
algorithm is acceptable. Since the straightforward solutions look at each
edge once, gkm? (for some positive constant g) is a reasonable estimate
of the number of basic operations used to find the length and the midpoint
of the shortest path in a complete level network. Let C(k, m) denote the
run time (number of basic operations) required by the technique outlined
above for the complete case, and D(k, m) that for a dropping level

subproblem from (k/2,P)

s to (k/2,P)
subproblem
from (k/2,P)
to t

Figure 2. A space efficient algorithm for dropping level graphs. On
determining the midpoint (2/2, P) of the shortest path from s to ¢,
recursive calls are made to solve the problem from s to (k/2, P) and
(k/2, P) to t.

network. Then, ignoring the trivial issue of the parity of %,
C(k, m) = gkm® + 2C(k/2, m) and C(1, m) = 6(m).

Hence C(k, m) < gm® (log k) + 6(m) (all logarithms are taken to base 2).

The dropping case is somewhat better behaved. Once the midpoint is
discovered, all nodes below and to the left of it can be neglected in solving
the s to midpoint subproblem, as can those above and to the right for the
other subproblem. This is illustrated in Figure 2. Letting (%2/2, p) denote
the position of the midpoint we have the recursion

D(k, m) < gkm® + D(k/2, p) + D(k/2,m — p + 1)
and D@1, m) = 0(m); D(k, 1) = O(k).
This is easily solved (see, for example, Liu [1977]) to show
D(k, m) < 2gkm® + 0(k + m).
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The run time is at most a little more than twice that of the less space
efficient method.

One could, of course, determine not just the midpoint on the initial
pass, but nodes k/r, 2k/r, ... (r — 1)k/r of the shortest route for any
fixed r. The space requirements increase by roughly a factor of r over
those of finding the length of the shortest path; however, the run time
will be roughly gm?®kr/(r — 1) in the case of a dropping graph.

The technique we have outlined has been implemented and found
useful in solving a problem of data base reorganization. As modifications
are made to a data base, the original structures used may become
inefficient or downright inappropriate. For example an originally balanced
binary tree could become unbalanced or a hash table could fill. Even
worse, the mix of requests could change, and so, a hash table which is
ideal for finding correctly specified elements could be used, with alarming
frequency, to attempt to determine the closest match to a given request.
Clearly in such an environment one must eventually pay the price of
reorganizing the data and perhaps using completely different structures.
The question is “When to do so?” This problem is modeled as a dropping
level graph (Tompa and Ramirez [1979]) and the method outlined in this
paper can be employed in its solution. We feel this example simply
illustrates the potentially wide range of applications of the method. Such
applications may occur not only in determining shortest paths through
particular types of networks, but also in other problems whose conven-
tional solutions have high storage requirements.
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