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Given two sequences X and Y , the classical dynamic programming solution to the local alignment problem
searches for two subsequences I ⊆ X and J ⊆ Y with maximum similarity score under a given scoring

scheme. In several applications, variants of this problem arise with different objectives and with length con-
straints on the subsequences I and J . This constraint can be explicit, such as requiring �I � + �J � ≥ t, or �J � ≤ T ,
or may be implicit such as in cyclic sequence comparison, or as in the maximization of length-normalized scores,
and driven by practical considerations. We present a survey of approximation algorithms for various alignment
problems with constraints, and several new approximation algorithms. These approximations are in two dis-
tinct senses: In one the constraints are satisfied but the score computed is within a prescribed tolerance of the
optimum instead of the exact optimum. In another, the alignment returned is assured to have at least the opti-
mum score with respect to the given constraints, but the length constraints are satisfied to within a prescribed
tolerance from the required values. The algorithms proposed involve applications of techniques from fractional
programming and dynamic programming.
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1. Introduction
Detecting local similarities in two given strings has
become an increasingly important computational
problem, particularly due to its applications in bio-
logical sequence analysis.
The objective of locating similar fragments in a

given pair of strings can be formulated in several
ways. The formulations lead to new optimization
problems, some of which invoke a length constraint
on the fragments. In most cases, there are simple
dynamic programming formulations for the exact ver-
sion of a given alignment problem with length con-
straints. However, the resulting algorithms require
cubic time that is unacceptably high for practical
purposes because the sequence lengths can be on
the order of millions. Approaches based on classical
algorithms (e.g., Karp’s minimum mean-weight cycle
algorithm) on general graphs suffer from the same
anomalies because they do not readily specialize to
highly structured but large graphs used for sequence
analysis, and they do not yield algorithms more effi-
cient than naive dynamic programming algorithms.

To cope with high complexity, approximations are
considered in both definitions of similarity, and result-
ing computations.
In this paper we survey constrained alignment

problems as summarized in Tables 1 and 2, and
present new approximation algorithms for these prob-
lems, for which we summarize the results in Table 3.
Given two strings X and Y the local alignment (LA)

problem seeks substrings I ⊆ X, and J ⊆ Y with the
highest similarity score s�I	 J 
, where ⊆ indicates
the substring relation. We assume that the length of
the sequences are n= �X�, m= �Y �, and n≥m. For any
optimization problem �, we denote by �∗ its opti-
mum value, and sometimes drop the parameters from
the notation when they are obvious from context.
An optimization problem � is called feasible if it has
a solution with the given parameters.
A classical algorithm for LA is the well-known

Smith-Waterman algorithm that uses dynamic pro-
gramming. The algorithm essentially discards poorly
conserved initial and terminal fragments. Because it
is not designed to exclude nonsimilar, internal
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Table 1 Local Alignment Problems LA (Waterman 1995, §2), and ANLA (Arslan et al. 2001, §4)

Alignment Score
problem Objective Algorithm Time Space returned

LA Maximize s�I� J� Smith-Waterman O�nm� O�m� LA∗

ANLA Maximize s�I� J�/��I� + �J� + L� Dinkelbach O�nm� (experimental) O�m� ANLA∗

for parameter L≥ 0 RationalANLA O�nm logn� O�m� ANLA∗

fragments, an alignment returned may contain a
mosaic of well-conserved fragments artificially con-
nected by poorly conserved or even unrelated frag-
ments, as shown in Figure 1. If a region of negative
score −X is sandwiched between two regions scor-
ing more than X, then the Smith-Waterman algorithm
will join the three regions into a single alignment that
may not be biologically adequate.
It is well known that this may cause two forms of

anomalies:
• Mosaic effect in an alignment is observed when a

very poor region is sandwiched between two regions
with high similarity scores.
• Shadow effect is observed when a biologically

important short alignment is not detected because it
overlaps with a significantly longer, yet biologically
inadequate, alignment with higher overall score.
These anomalies may lead to uncertainties in com-

parison of long genomic sequences and comparative
gene prediction, and locating coding regions in genes.
As a result, applications of the Smith-Waterman
algorithm to comparison of related genomes (partic-
ularly with short introns as C.elegans and C.briggsae)
may lead to problems (Zhang et al. 1999).
Attempts to fix the problem of mosaic effect under-

taken by Goad and Kanehisa (1982) (who introduced
alignment with minimal mismatch density) and
Sellers (1984) did not lead to successful algorithms
and were later abandoned. The mosaic effect was
first analyzed by Webb Miller and led to some stud-
ies trying to fix this problem at the post-processing
stage (Huang et al. 1994, Zhang et al. 1999). Zhang
et al. (1999) proposed to decompose a local align-
ment into subalignments that avoid the mosaic effect.
Postprocessing is also used in determining the length-
constrained heaviest segments (Lin et al. 2002). How-
ever, the postprocessing approach cannot detect the
alignments missed by the Smith-Waterman algorithm.
As a result, highly similar fragments may be ignored

Table 2 The LRLA (Arslan and Eğecioğlu 2002, §5) and the CLA (Arslan and Eğecioğlu 2002, §5.1) Problems

Alignment
problem Objective Algorithm Time Space Score returned

HALF O�nm� O�m� ≥ 1
2LRLA

∗

LRLA Maximize s�I� J� such that �J� ≤ T APX-LRLA O�nmT /� O�mT /� ≥ LRLA∗ − 2

CLA LRLA with parameters X , Y Y , and T = �Y � The same LRLA algorithms, complexity, and results

if they are not parts of larger alignments that domi-
nate other local similarities.
Another approach to fixing the problems with the

Smith-Waterman algorithm is based on the notion
of an X-drop, a region within an alignment that
scores below X. Alignments that contain no X-drops
are called X-alignments. Although X-alignments are
expensive to compute in practice, Altschul et al. (1997)
and Zhang et al. (1998) used some heuristics for
searching databases with this approach.
In both the problems of mosaic and shadow effects,

the main issue is the ability of the underlying simi-
larity measure to take into account the lengths of the
strings matched. For example, if only the scores are
considered, a local alignment with score 1,000 and
length 10,000 (long alignment) is chosen over a local
alignment with score 998 and length 1,000 (short align-
ment), although the latter is probably more important
biologically. Moreover, if the corresponding alignment
paths overlap, the more biologically important short
alignment will not be detected even by suboptimal
sequence alignment algorithm (the shadow effect).
To reflect the length of the local alignment in scor-

ing, score s�I	 J 
 of local alignment involving sub-
strings I and J may be adjusted by dividing s�I	 J 

by the total length of the aligned regions (alignment
length), �I �+�J �. Arslan et al. (2001) introduced the nor-
malized local alignment problem, which aims to find sub-
strings I and J that maximize s�I	 J 
/��I � + �J �
 among
all substrings I and J with �I � + �J � ≥ t, where t is a
threshold for the minimal overall length of I and J .
The length constraint is necessary because length
normalization favors short alignments but the align-
ments should be sufficiently long to be biologically
meaningful.
Arslan et al. (2001) also proposed the adjusted nor-

malized local alignment (ANLA) problem, which is a
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Table 3 New Local Alignment Problems LAt (§6), Qt (§7), and New Improved Approximation Algorithms (§8) for NLA t (Arslan et al. 2001, §3)

Alignment Returned alignment
problem Objective Algorithm Time Space satisfies

LAt Maximize s�I� J� such APX-LAt O�rnm� O�rm� score≥ LAt∗,
that �I� + �J� ≥ t length ≥ �1− 1/r �t

Qt Find �I� J� such that s�I�J�

�I�+�J� > �, APX-LAt O�rnm� O�rm� normal-score > �,
and �I� + �J� ≥ t , length ≥ �1− 1/r �t
for parameter � > 0

NLAt Maximize s�I�J�

�I�+�J� Dinkelbach O�rnm� O�rm� normal-score ≥ NLAt∗,
such that �I� + �J� ≥ t (experimental) length ≥ �1− 1/r �t

RationalNLAt O�rnm logn� O�rm� normal-score ≥ NLAt∗,
length ≥ �1− 1/r �t

variant of the normalized local alignment problem
(NLA). The objective of the problem is the same as
that of the NLA problem, which is to obtain suffi-
ciently long alignments withmaximum length normal-
ized score. In the ANLA problem the objective func-
tion is modified: The length constraint is dropped
and the lengths of the optimal alignments are con-
trolled by an artificial parameter included in the
objective function. This modification allows for fast
algorithms based on fractional programming, and
Megiddo’s search technique. There are two algorithms
for the ANLA problem (Arslan et al. 2001). The
first algorithm is a Dinkelbach algorithm. Experi-
mental results suggest that this algorithm is only
three to five times slower on average than the stan-
dard Smith-Waterman algorithm. The other algorithm,
Algorithm Rational ANLA, is based on binary search.
This algorithm runs in O�nm logn
 time. We summa-
rize these results in Table 1. Local alignment prob-
lems LA (Waterman 1995, §2), and ANLA (Arslan et al.
2001, §4) have exact solutions. The Smith-Waterman
algorithm uses dynamic programming (2). The Dinkel-
bach algorithm (Figure 4) for ANLA uses a fractional-
programming technique. Algorithm RationalANLA
(Figure 5) is based on Megiddo’s search technique.
Both ANLA algorithms iteratively solve LA problems.
Another attempt to eliminate problems associated

with local alignment introduced the length restricted
local alignment (LRLA) problem (Arslan and Eğecioğlu
2002), which searches for substrings I and J that max-
imize the score s�I	 J 
 among all substrings I and J
with �J � ≤ T , where T is a given upper limit on the
length of J . Indirectly, an optimal alignment is forced
to have a high normalized score. The limit is placed
only on the substring J of Y . The underlying scoring

Sequence 2

Sequence 1
SCORE > XSCORE > X SCORE = –X

Figure 1 The Inclusion of an Arbitrarily Poor Region in an Alignment
(Zhang et al. 1999)

scheme should limit the length of the other substring
involved in an optimal alignment automatically, and
therefore having two limits, one for �I � and another
for �J �, is redundant. That is, the bound T allows for a
control over the length of the optimal local alignment
sought.
The LRLA problem can be solved by extending the

dynamic programming formulation of the local align-
ment problem. However the resulting time complex-
ity is O�Tnm
, which may be impractical for large
values of n, m, and T , each of which may be on
the order of millions. Two approximation algorithms
for LRLA have been proposed (Arslan and Eğecioğlu
2002). The first one is Algorithm HALF, which returns
a score whose difference from the optimum is within
half of the optimum, and whose complexity is the
same as that of the local alignment problem. The
second algorithm is Algorithm APX-LRLA. It returns
a score guaranteed to be within 2� of the opti-
mum for a given � ≥ 1. The time complexity of this
algorithm is O�nmT /�
, with O�mT /�
 space. These
two approximation algorithms can also be used to
solve (approximately) the cyclic local alignment (CLA)
problem (Arslan and Eğecioğlu 2002) of maximizing
s�I	 J 
, where I is a substring of X. The CLA prob-
lem was introduced as a dual approach to the well-
known cyclic edit distance, which has applications in
two-dimensional shape recognition, and in detecting
circular permutations in proteins. These results are
summarized in Table 2. Approximation algorithms
HALF (§5), and APX-LRLA (Figure 8) for the LRLA
problem (Arslan and Eğecioğlu 2002) (§5) are based
on extending the dynamic programming formula-
tion of local alignment by using slab decomposition
of the alignment graph. The same algorithms, and
results are applicable to the CLA problem (Arslan and
Eğecioğlu 2002) (§5.1) because CLA is a special case
of LRLA (12).
In this paper we introduce new local alignment

problems with length constraints, and present approx-
imation algorithms by using the ideas in Algorithm
APX-LRLA. We also use these results to develop
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approximation algorithms for the NLAt problem.
All these approximation algorithms return alignments
whose scores are at least optimal with respect to
the length constraints, but the length of the resulting
alignments differ from the desired length only by a
prescribed fraction. These results are summarized in
Table 3. In the last column of the table, normal-score≡
normalized score. New local alignment problems
introduced in this paper are LAt (§6) and Qt (§7). New
improved approximation algorithms for the NLAt
problem (Arslan et al. 2001, §3) are presented in §8.
The approximation algorithms for LAt (Figures 11 and
14) use the slab-decomposition technique. Problem
Qt can be approximated by solving an LAt problem
(Proposition 3). The Dinkelbach algorithm for NLAt
(Figure 16) and RationalNLAt (Figure 15) are simi-
lar to the corresponding ANLA algorithms except that
they iteratively solve LAt problems.
The first problem we introduce is the local align-

ment with length threshold (LAt), in which the objective
is to find a sufficiently long local alignment with a
high score, where the length of a given alignment is
defined as the sum of the lengths of the subsequences
involved in the alignment. We present Algorithm
APX-LAt, which finds an alignment with ordinary
score ≥ LAt∗, and length ≥ �1− 1/r
t for a given r in
time O�rnm
 and space O�rm
. Although the problem
itself is not very interesting, for practical purposes an
algorithm for the problem can be used to solve the
next problem we introduce, namely the query prob-
lem Qt, and it also leads to improved approximation
algorithms for the NLAt problem.
Define Problem Qt as finding long alignments with

high normalized score. The motivation for the prob-
lem can be expressed by the following typical query:
“Do X and Y share a (sufficiently long) fragment with
more than 70% of similarity?” The problem is feasi-
ble if the answer to this query is not empty; i.e., there
exists a pair of subsequences I and J with sufficiently
large total length (i.e., �I � + �J � ≥ t for a given thresh-
old t), and sufficiently high normalized score (i.e.,
s�I	 J 
/��I � + �J �
 > � for a given �> 0). We show that,
for a feasible problem, Algorithm APX-LAt can be
used to find subsequences with normalized score >�
and total length ≥ �1−1/r
t. The approximation ratio
is controlled by a free parameter r . The algorithm
takes O�rnm
 time and O�rm
 space.
We present new approximation algorithms for

the NLAt problem using fractional programming,
and applying Algorithm APX-LAt. The resulting
algorithms are the Dinkelbach algorithm for NLAt and
Algorithm RationalNLAt. Both algorithms obtain an
alignment whose score is no smaller than NLAt∗, the
optimum score of the original NLAt problem, and
whose length is at least �1 − 1/r
t for a given r

provided that the original NLAt problem is feasi-
ble. In both resulting algorithms the space com-
plexity is O�rm
. Test results suggest that the time
complexity of the Dinkebach algorithm for NLAt is
O�rnm
. Algorithm RationalNLAt has proven time
complexity O�rnm logn
.
The outline of the paper is as follows. In §2 we

give the basic background for sequence compari-
son. Following this, we describe various alignment
problems and corresponding algorithms. SS3, 4, and
5 are respectively for normalized local alignment
NLAt, adjusted normalized local alignment ANLA,
and length-restricted local alignment LRLA. In §§6
and 7 we introduce new local alignment problems,
respectively, local alignment with length threshold
LAt problem, and the query problem Qt. In §8 we
present new improved approximation algorithms for
the NLAt problem. Finally, we make some final
remarks in §9.
An extended abstract of §§6, 7, and 8 of this paper

was presented at the 9th International String Pro-
cessing and Information Retrieval Conference (SPIRE
2002), Portugal, September 2002.

2. Framework for Pairwise
Sequence Comparison

Given two strings X = x1x2	 � � � 	 xn and Y =
y1y2	 � � � 	 ym with n ≥ m, we use the alignment graph
GX	Y to analyze alignments between all substrings of
X and Y . The alignment graph is a directed acyclic
graph having �n + 1
�m + 1
 lattice points �u	v
 as
vertices for 0 ≤ u ≤ n and 0 ≤ v ≤ m. Figure 2
shows an alignment graph for xi	 � � � 	 xk = ATTGT
and yj	 � � � 	 yl = AGGACAT . Matching diagonal arcs
are drawn as solid lines while mismatching diagonal
arcs are shown by dashed lines. Dotted lines are used

A

G TA

(k, l)

A

T

T

G

T

y1y2 A

(i – 1, j – 1)

ym

x2

xi – 1

xn

yj–1

x1

T

T G

G G

A

ε

ε Cε Aε
TT

(m, n)

A

G A C(0, 0)

Figure 2 Alignment Graph GX�Y Where xi � � � � � xk = ATTGT and yj � � � � �
yl = AGGACAT
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for horizontal and vertical arcs. An example align-
ment path is shown. Labels of the arcs on this path are
the corresponding edit operations where � denotes the
null string. An alignment path for substrings xi	 � � � 	 xk
and yj	 � � � 	 yl is a directed path from the vertex �i−
1	 j−1
 to �k	 l
 in GX	Y , where i≤ k and j ≤ l. To each
vertex there is an incoming arc from each neighbor,
if it exists. Horizontal and vertical arcs correspond
to insert and delete operations respectively. The diag-
onal arcs correspond to substitutions that are either
matching (if the corresponding symbols are the same),
or mismatching (otherwise). If we trace the arcs of an
alignment path for substrings I and J and perform
the indicated edit operations in the given order on I ,
we obtain J .
Blocks of insertions and deletions are also referred

to as gaps. The alignment in Figure 2 includes two
gaps with sizes one and three. We will use the terms
alignment and alignment path interchangeably.
The objective of sequence alignment is to quan-

tify the similarity between X and Y under a scoring
scheme. In the simple scoring scheme, the arcs of
GX	Y are assigned weights determined by nonneg-
ative reals  (mismatch penalty) and ! (indel or gap
penalty). We assume that s�xi	 yj
 is the similarity score
between the symbols xi and yj , which is normally one
for a match (xi = yj ) and − for a mismatch (xi 
= yj ).
Given two strings X and Y , the local alignment (LA)

problem seeks substrings I ⊆ X and J ⊆ Y with the
highest similarity score, where ⊆ indicates the sub-
string relation. The optimum value LA∗�X	Y 
 for this
problem is given by

LA∗�X	Y 
=max
{
s�I	 J 
 � I ⊆X	 J ⊆ Y

}
	 (1)

where s�I	 J 
 > 0 is the best alignment score between
I and J .
The following is the classical dynamic programming

formulation (Waterman 1995) to compute the maxi-
mum local alignment score �i	 j achieved by an opti-
mal local alignment ending at each vertex �i	 j
:

�i	 j = max
{
0	�i−1	 j −!	�i−1	 j−1 + s�xi	 yj
	

�i	 j−1 −!
}

(2)

for 1≤ i≤ n, 1≤ j ≤m, with the boundary conditions
�i	 j = 0 whenever i= 0 or j = 0. Then

LA∗�X	Y 
=max
i	 j

�i	 j � (3)

Note that LA∗ can be computed using the Smith-
Waterman algorithm (Smith and Waterman 1981) in
time O�nm
. The space complexity is O�m
 because
only O�m
 entries of the dynamic programming
matrix need to be stored at any given time.
The simple scoring scheme can be extended such

that the scores can vary depending on the individ-

ual symbols within the same edit operation type. This
leads to arbitrary scoring matrices. In this case there
is a dynamic programming formulation similar to (2).
Affine gap penalties is another common scoring

scheme in which the total penalty for a gap of size
k, i.e., a block of k insertions (or deletions), is " +
�k − 1
!, where " is the gap open penalty, and ! is
called the gap extension penalty. The dynamic program-
ming formulation for this case can be described as
follows (Waterman 1995): �i	 j = �i	 j =�i	 j = 0 when i
or j is 0, and define

�i	 j = max#�i	 j−1 −"	�i	 j−1 −!$	

�i	 j = max#�i−1	 j −"	�i−1	 j −!$	

�i	 j = max#0	�i−1	 j−1 + s�xi	 yj
	�i	 j 	�i	 j $� (4)

Affine gap penalties do not increase the asymptotic
complexity of the local alignment problem.
We assume that only the matches have nonnegative

scores, so on any alignment the score cannot exceed
the length.
For some of the techniques explained below it is

also useful to express alignment problems as linear
optimization problems. We define an alignment vec-
tor as the vector of edit-operation frequencies such
that the scores and the lengths of alignments can
be expressed as linear functions over alignment vec-
tors. For example, under the basic scoring scheme,
we say that �x	y	 z
 is an alignment vector if there is
an alignment path between subsequences I ⊆ X and
J ⊆ Y with x matches, y mismatches, and z indels.
In Figure 2, �3	1	4
 is an alignment vector corre-
sponding to the path shown in the figure. Let AV,
under a given scoring scheme, denote the set of align-
ment vectors. Then s�I	 J 
 can be expressed as a lin-
ear function SCORE over AV for the scoring schemes
we study, namely, the basic scoring scheme, arbitrary
scoring matrices, and affine gap penalties. For exam-
ple, when simple scoring is used,

SCORE�a
= x−  y−!z for a= �x	y	 z
 ∈AV	

where x, y, and z of alignment vector a repre-
sent the number of matches, mismatches, and indels,
respectively.
The local alignment problem LA can be rewritten as

follows:

LA' maximize SCORE�a
 s.t. a ∈AV�

3. Normalized Local Alignment
Using length-normalized scores in the local alignment
is suggested (Arslan et al. 2001) to cope with the
mosaic and shadow effects. The degree of similar-
ity is noted in statistics of sequence comparison. For
example the similarity between nucleotide sequences
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of related human and mouse exons is 85% on average,
while similarity between introns is 35% on average.
The objective of the normalized local alignment

(NLAt) problem (Arslan et al. 2001) is

NLAt∗�X	Y 
 = max
{
s�I	 J 
/��I � + �J �
 � I ⊆X	

J ⊆ Y 	 �I � + �J � ≥ t
}
� (5)

The length of an alignment can appropriately be
defined as the sum of the lengths of the substrings
involved in the alignment. For an alignment vector
a ∈AV, the length of the corresponding alignment can
be expressed as a linear function LENGTH. For exam-
ple, when the simple scoring scheme is used,

LENGTH�a
= 2x+ 2y+ z for a= �x	y	 z
 ∈AV	

where x, y, and z represent the number of matches,
mismatches, and indels, respectively.
Let AVt ⊆ AV be a set of alignment vectors corre-

sponding to alignments with length ≥ t. The normal-
ized local alignment problem NLAt can be rewritten
as follows:

NLAt' maximize
SCORE�a

LENGTH�a


s.t. a ∈AVt�

Clearly, optimal alignments for LA and NLAt may
be different. When ordinary scores are used, opti-
mal long alignments may include very poor regions
(mosaic effect), and they may overshadow impor-
tant alignments with relatively lower scores. If we
use normalized scores, then the desired alignments
depend on the value of t. The need to have control
over the alignment lengths becomes apparent when
we use normalized scores. Without controlling the
desired alignment lengths, with normalized scores,
short alignments destroy the optimality of important
long alignments, which, as a result, are not detected,
causing yet another anomaly.
Figure 3 includes examples where optimal align-

ments for LA and NLAt may be different. The
alignments in the figure are only for illustrative pur-
poses; they are not alignments between real biological
sequences. Part (i) includes an example for the mosaic
effect, and parts (ii) and (iii) have examples for the
shadow effect with nonoverlapping and overlapping
alignments, respectively. Each alignment is identified
by a rectangle. The numbers in italics are the ordinary
scores of alignments. The unitalicized numbers in the
sides of the rectangles are the lengths of the substrings
involved in the alignments. The length of each align-
ment is equal to the sum of the two side lengths of
the corresponding rectangles. The normalized score of
an alignment is obtained by dividing its score by its
length, which is defined as the sum of the lengths
of the substrings involved in the alignment. The nor-
malized score of the shorter alignment(s) in the figure

(n, m)
xn

x2

x1

y1y2 ym

100

100

100

100 100 100

80

–40

80
120

(i)

(n, m)
xn

x2

x1

y1y2 ym

(ii)

80

300

100

120

100 300

(n, m)
xn

x2

x1

ym

300

(iii)

120

300
80
100

100

(0,0)

y1y2(0,0)(0,0)

Figure 3 Sample Alignments Showing Mosaic and Shadow Effects
Notes. (i) Mosaic effect, (ii) Shadow effect (nonoverlapping alignments),
(iii) Shadow effect (overlapping alignments).

is 80/200 = 0�4, while that of the longer alignment
is 120/600 = 0�2. In each part of the figure, the long
alignment has the highest ordinary score, whereas
the shorter alignments have higher normalized scores.
If we use ordinary scores as the similarity measure,
then the long alignments in Figure 3 are optimal. If we
use normalized scores, then the alignments returned
depend on the value of t. For the alignments in the
figure, t = 200 is a separating value in determining
the optimality of short and long alignments.
To solve the NLAt problem we can extend the

dynamic programming formulation for the scoring
schemes that we address in this paper by adding
another dimension. At each entry of the dynamic pro-
gramming matrix we can store optimum scores for all
possible alignment lengths up to m+n. This increases
the time and space complexity to O�n2m
 and O�nm
,
respectively. These are unacceptably high because, in
practice, the values of both n and m may be on the
order of millions.
It may seem feasible to apply well-known graph

algorithms to find long regions with a high degree
of similarity. For example, we may formulate an
objective with which we aim to minimize a length-
normalized weighted edit distance for substrings,
and include a length threshold as a lower bound
for the desired length. For solving this problem,
Karp’s O��V ��E�
-time minimum mean-weight cycle
algorithm (Cormen et al. 2001) seems a natural can-
didate. The solution requires adding extra edges to
cause cycles of a certain minimum length, determined
by the given length threshold. For an alignment graph
for a pair of strings of length n each, the number of
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vertices �V � and number of edges �E� (excluding the
additional edges) are both O�n2
. This is not more
efficient than naive dynamic programming.
There are approximation algorithms for the prob-

lem, which we will address in §8.

4. Adjusted Normalized
Local Alignment

The objective of NLA may be achieved by a refor-
mulation. In the ANLA problem, we can modify the
maximization ratio function to drop the length con-
straint, yet achieve a similar objective: obtain suffi-
ciently long alignments with a high degree of sim-
ilarity. The adjusted length normalized score of an
alignment is computed by adding some L ≥ 0 to the
denominator in the calculation of the quotient of ordi-
nary scores by the length. Thus, the ANLA problem
(Arslan et al. 2001) is a variant of a normalized local
alignment problem in which the length constraint is
dropped, and the optimization function is modified
by adding a parameter L to the denominator:

ANLA∗�X	Y 
 = max
{
s�I	 J 
/��I � + �J � +L
 � I ⊆X	

J ⊆ Y 	L≥ 0
}
� (6)

The adjusted normalized local alignment problem
ANLA can be rewritten as follows:

ANLA' Maximize
SCORE�a


LENGTH�a
+L
s.t. a ∈AV�

The objective is still to obtain sufficiently long
alignments with high length-normalized scores.
Parameter L provides some control over the resulting
alignment lengths. When L = 0, ANLA is equivalent
to NLAt with no constraint on the length, in which
case a single match is an optimal alignment. With
larger values of L, the optimal alignments are forced
to have larger ordinary alignment scores, and they
tend to become longer, and yet have smaller length-
normalized scores. In each example in Figure 3, the
shorter alignment(s) with a score of 80 and length 200
has adjusted normalized score 80/�200+ L
, and the
long alignment with a score of 120 and length 600
has adjusted normalized score 120/�600+L
. In these
cases, in ANLA setting L to a value smaller than 600
distinguishes shorter alignments as optimal; other-
wise (for L≥ 600), the longer alignments are optimal.
Although the optimal alignments for ANLA and NLAt
may be different, to approximate the goal of NLAt
we may use ANLA instead and obtain sufficiently
long alignments with high normalized scores, pro-
vided that we have chosen proper values for L such
that the lengths of the optimal alignments of ANLA
meet the length constraint in NLAt. Using L= 2	000 in
ANLA reveals many interesting alignments between

orthologous human (GenBank Acc. No. AF030876)
and mouse (GenBank Acc. No. AF121351), and in bli-4
locus in C.elegans and C.briggsae (Arslan et al. 2001).
For ANLA, faster algorithms are possible using a

fractional-programming technique. The time complex-
ity of ANLA is O�nm logn
 using one algorithm. In
another algorithm, the test results suggests that the
time complexity is O�nm
, though this has not been
proven. Compared to O�n2m
 time complexity of
NLAt, ANLA can be solved much faster.
One ANLA algorithm (Arslan et al. 2001) is a

Dinkelbach algorithm, which uses the parametric
method of fractional programming. The algorithm iter-
atively solves a so-called parametric problem LA�,
which is the following optimization problem: For a
given �,

LA∗
��X	Y 
 = max

{
s�I	 J 
−���I � + �J � +L
 � I ⊆X	

J ⊆ Y
}
� (7)

LA��X	Y 
 can also be written as

LA��
' maximize SCORE�a
−� LENGTH�a
−�L

s.t. a ∈AV�

A parametric local alignment problem can be
described in terms of the local alignment problem.

Proposition 1 (Arslan et al. 2000). For � < 1/2,
the optimum value LA∗��
 of the parametric LA problem
can be formulated in terms of the optimum value LA∗ of
an LA problem.

Proof. Under the basic scoring scheme the opti-
mum value of the parametric problem, when �< 1/2,
is

LA∗
 	!��
 = �1− 2�
LA∗

 ′	!′ −�L where

 ′ =  + 2�
1− 2�

	 !′ = !+�

1− 2�
� � (8)

We can easily verify that a similar relation exists
in the case of arbitrary scoring matrices, and affine
gap penalties. Thus, computing LA∗��
 involves solv-
ing the local alignment problem LA, and performing
some simple arithmetic afterward.
We assume without loss of generality that for any

alignment the score does not exceed the number of
matches. Therefore, for any alignment, its normalized
score � ≤ 1/2. We consider � = 1/2 as a special case
because it can only happen when the alignment is
composed of only matches and L= 0.
An optimal solution to a ratio-optimization prob-

lem ANLA can be achieved via a series of optimal
solutions of the parametric problem with different
parameters LA��
. In fact, � = ANLA∗ iff LA∗��
 = 0.
That is, an alignment vector v ∈AVt has the optimum
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Algorithm Dinkelbach
Pick an arbitrary alignment, and let λ∗ be

the adjusted length-normalized
score of this alignment

Repeat
λ ← λ∗

Solve LA(λ) and let λ∗ be the adjusted
length-normalized score of
an optimal alignment

Until λ∗ = λ
Return(λ∗)

Figure 4 Dinkelbach Algorithm for ANLA

normalized score � iff v is an optimal alignment vec-
tor for the parametric problem LAt��
 with optimum
value zero. (See Arslan et al. 2001 for details; also see
Craven 1988, Sniedovich 1992 for many interesting
properties of fractional programming.) The Dinkelbach
algorithm for the ANLA problem is shown in Figure 4.
Solutions of the parametric problems through the iter-
ations yield improved (higher) values to � except
for the last iteration. When the algorithm terminates,
the final alignment is optimal with respect to both
the ordinary scores used at that iteration, and the
length-normalized scoring with the original scores.
This mimics the manual operation of changing the
scores until the result is satisfactory.
As reported by Arslan et al. (2001), experiments

suggest that the number of iterations is a small con-
stant, three to five on average. However, a theoreti-
cal bound is yet to be established. If we assume that
the sequences involved in alignments are fixed (for
example, consider the normalized global alignment),
and the simple scoring scheme is used, then the num-
ber of iterations is bounded by the size of the convex
hull of lattice points whose diameter is bounded by
the length of the strings. In this case, each parametric
problem is optimized at one of the extreme points of
the convex hull, and each extreme point is visited at
most once during the iterations. It is known that the
size of a convex hull of diameter N is O�N 2/3
 (See
Arslan and Eğecioğlu 2001). Even this rough estimate
shows that the algorithm in the worst case is bet-
ter than the straightforward dynamic programming
extension.
In practice the scores are rational, and in the case

of rational scores there is a provably better result
(Arslan et al. 2001), which is achieved by Algorithm
Rational ANLA given in Figure 5. The algorithm uses
Megiddo’s technique (Megiddo 1979) to perform a
binary search for optimum normalized score over
an interval of integers. The search is based on the
sign of the optimum value of the parametric prob-
lem. In this case, if LA∗��
 = 0, then � = ANLA∗,
and an optimal alignment vector of LA��
 is also
an optimal solution of ANLA. On the other hand,
if LA∗��
 > 0 then a larger � should be tested, and if

Algorithm RationalANLA
Let σ be the smallest gap between two

adjusted length normalized scores
Initialize [e, f ] ← [0, 1

2σ
−1]

While (e+ 1 < f) do
k ← �(e+ f)/2�
If LA∗(kσ) > 0 then e ← k else f ← k

End {while}
Return(eσ)

Figure 5 ANLA Algorithm RationalANLA for Rational Scores

LA∗��
 < 0 a smaller � should be tested (i.e., Problem
LA��
 should be solved with a different value of �).
When the scores are rational numbers the effective
search space includes O�n2
 integers because the gap
between any two distinct length normalized scores
is -�1/n2
. The algorithm solves O�logn
 parametric
problems. Therefore, the resulting time complexity is
O�nm logn
, and the space complexity is O�m
.

5. Length-Restricted Local Alignment
In the LRLA problem, the objective is to find sub-
strings I and J that maximize the score s�I	 J 
 among
all substrings I and J with �J � ≤ T , where T is a given
upper limit on the length of J . The objective is sim-
ilar to that of the normalized local alignment in that
it aims to circumvent the undesirable mosaic and the
shadow effects. Indirectly, an optimal alignment is
forced to have a high normalized score. The length of
subsequence J in an optimal alignment is controlled
by the bound T . Detecting a number of important
local alignments of different horizontal lengths may
require solving a series of LRLA problems with differ-
ent values of T .
Formally, given a limit T , the LRLA problem

(Arslan and Eğecioğlu 2002) between X and Y is
defined as follows:

LRLA∗�X	Y 	T 
 = max
{
s�I	 J 
 � I ⊆X	 J ⊆ Y 	 and

�J � ≤ T
}
� (9)

Figure 6 illustrates the length constraint schemati-
cally. In the LRLA problem, the horizontal lengths of
the resulting alignments are controlled by the upper
limit T on the length of one of the substrings, which

|J | ≤ T

I

J

X

Y

Figure 6 Candidates for I and J in the Computation of LRLA∗
�X � Y � T �
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in practice will be determined experimentally, or by
other considerations.
LRLA can be solved by extending the dynamic pro-

gramming formulation of the local alignment problem
as before. However, the resulting time complexity is
O�Tnm
, which is impractical for large values of n, m,
and T .
There are two approximation algorithms (Arslan

and Eğecioğlu 2002) for the LRLA problem. The first
is Algorithm HALF, which returns a score whose
difference from the optimum is guaranteed to be
within half of the optimum. The algorithm’s complex-
ity is the same as that of the ordinary local-alignment
problem. The second algorithm, APX-LRLA, returns a
score guaranteed to be within 2� of the optimum for
a given �≥ 1. The time complexity of this algorithm
is O�nmT /�
, with O�mT /�
 space.
In some cases we can control the approxima-

tion ratio of Algorithm APX-LRLA with the help of
Algorithm HALF. Suppose that there exists a constant
c such that for the scores of alignments of interest we
can set a lower limit cT . Then first running HALF,
and then running APX-LRLA with � = HALF∗/�2r

for any positive r we choose, we can obtain an align-
ment with score ≥ �1 − 1/r
LRLA∗ in time O�nmr

and space O�mr
. That is, the approximation ratio,
and complexity of Algorithm APX-LRLA, can be con-
trolled through the parameter r .
In Algorithm HALF, the alignment graph GX	Y is

imagined as grouped into vertical slabs of horizontal
length T each. Consider a horizontal window of size
2T at a time, and consider all such windows sepa-
rated from each other by horizontal distance T . The
algorithm computes optimal alignments for each win-
dow. The alignment with maximal score over these
alignments has a horizontal length not exceeding 2T ,
and when split into two horizontally, one of its halves
has a score within half of the optimum.
Similarly, Algorithm APX-LRLA assumes that the

columns of the graph GX	Y are grouped into vertical
slabs of �+1 columns each, starting with the leftmost
column (i.e., j = 0). Two consecutive slabs share a col-
umn that we call a boundary. The left and the right
boundaries of the slabs are defined as the leftmost and
rightmost column positions in the slab. A slab does
not contain the vertical edges among the vertices on
the left boundary. Figure 7 includes sample slabs with
respect to column j , and alignments ending at some
node �i	 j
.
Algorithm APX-LRLA is shown in Figure 8. The

algorithm extends the dynamic programming formu-
lation in (2) by considering at each node a list of
scores of optimal alignments, each starting in a differ-
ent slab. At the heart of the algorithm is a step that

j /∆ – 1 ∆ j /∆  ∆j /∆

(i, j)

. . .

. . .

. . .

∆– k

slab k slab 1 slab 0

Figure 7 Slabs with Respect to Column j and Alignments Ending at
Node �i� j� Starting at Different Slabs

considers two cases at each node �i	 j
:
• If the current node �i	 j
 is not on the first column

after a boundary, then nodes �i−1	 j
, �i−1	 j−1
, and
�i	 j − 1
 share the same slabs with node �i	 j
. In this
case, for 0 ≤ k ≤ T /�� − 1, �i	 j	 k is calculated in an
obvious way by using �i−1	 j	 k, �i−1	 j−1	 k and �i	 j−1	 k as

�i	 j	 k =max
{
0	�i−1	 j	 k −!	�i−1	 j−1	 k ⊕ s�xi	 yj
	

�i	 j−1	 k −!
}
	

where �i−1	 j−1	 k ⊕ s�xi	 yj
 = �i−1	 j−1	 k + s�xi	 yj
 if
�i−1	 j−1	 k > 0 or k= 0, and 0 otherwise. This is because
a local alignment necessarily has a positive score,
and it is either a single match, or it is an extension

Algorithm APX-LRLA(δ, µ)
1. Run a modified Smith-Waterman algorithm.

If the maximum score is achieved within
horizontal length ≤ T then return
this score and exit

2. Initialization:
set LRLA∗ = 0
set S0,j,k = 0 for all j, k, 0 ≤ j ≤ m,
and 0 ≤ k ≤ �T/∆� − 1

3. Main computations:
for i = 1 to n do {
set Si,0,k = 0 for all k, 0 ≤ k ≤ �T/∆� − 1
for j = 1 to m do {
if (j mod ∆ = 1) then
{
set Si,j,0 = max{0, s(xi, yj),Si−1,j,0 − µ}
set LRLA∗ = max{LRLA∗,Si,j,0}
for k = 1 to �T/∆� − 1 do {
set Si,j,k = max{0,Si−1,j,k − µ,

Si−1,j−1,k−1 ⊕ s(xi, yj),Si,j−1,k−1 − µ}
set LRLA∗ = max{LRLA∗,Si,j,k}

}
}
else
{
for k = 0 to �T/∆� − 1 do {
set Si,j,k = max{0,Si−1,j,k − µ,

Si−1,j−1,k ⊕ s(xi, yj),Si,j−1,k − µ}
set LRLA∗ = max{LRLA∗,Si,j,k}

}
}

}
}

4. Return LRLA∗

Figure 8 Algorithm APX-LRLA, Which Approximates LRLA∗ Within 2
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of an alignment whose score is positive. Therefore,
an alignment with no score is not extended unless
the resulting alignment is a single match in the cur-
rent slab.
• If the current node is on the first column follow-

ing a boundary (j mod �= 1), then the slabs for the
nodes involved in the computations for node �i	 j
 dif-
fer. In this case, slab k for node �i	 j
 is slab k − 1
for the nodes at column j − 1. Moreover, any align-
ment ending at �i	 j
 starting at slab 0 for �i	 j
 can
either include only one of the edges ��i− 1	 j
	 �i	 j

,
��i− 1	 j − 1
	 �i	 j

, or ��i	 j − 1
	 �i	 j

, or extend an
alignment from node �i − 1	 j
. The edges ��i − 1	 j
	
�i	 j

 and ��i	 j − 1
	 �i	 j

 both have negative
weight −!. Therefore, �i	 j	0 is set to max#0	 s�xi	 yj
,
�i−1	 j	0−!$. For slab 1≤ k≤ T /��− 1 �i	 j	 k is calcu-
lated by

�i	 j	 k =max
{
0	�i−1	 j	 k −!	�i−1	 j−1	 k−1 ⊕ s�xi	 yj
	

�i	 j−1	 k−1 −!
}
�

During these computations, the running maximum
score is also updated whenever a newly computed
score �i	 j	 k is larger than the current maximum, and
the final value is returned in Step 3. The alignment
position achieving this score may also be desired. This
can be done by maintaining for each optimal align-
ment its start and end positions, in addition to its
score. In this case, in addition to the running maxi-
mum score, the start and end positions of a maximal
alignment should be stored and updated.
For the approximation result about the algorithm

to hold, i.e., to prove that the algorithm approximates
LRLA∗ within 2�, we first need to assume that the
maximum positive score for any individual operation
is at most one. In the scoring schemes we address in
this paper, this can be satisfied by normalizing all the
scores by dividing them by the maximum individual
positive score, which does not affect the optimality of
the alignments. Next, to establish that the algorithm
returns an alignment whose score is within 2� of
LRLA∗, we use induction on nodes �i	 j
, and ana-
lyze the different cases for the orientation of optimal
alignments ending at each node �i	 j
. We omit these
details, and refer the reader to Arslan and Eğecioğlu
(2002).
There are variants of Algorithm APX-LRLA for the

cases of arbitrary scoring matrices, and affine gap
penalties (Arslan and Eğecioğlu 2002). Each algorithm
extends the corresponding dynamic programming
formulation for ordinary local alignment. For exam-
ple, the variant for affine gap penalties is based on the
formulation in (4). These algorithms have the same
approximation guarantee and complexity (Arslan and
Eğecioğlu 2002). Although the algorithms use differ-
ent formulations, the approximation and complexity

X

Y(0, 0)

(n, m)

(0, i)

(n, m + i)

Y

Figure 9 Definition of CED ∗
�X � Y �

results are shown similarly. For example, in the case
of affine gap penalties, at each entry of matrices �, � ,
and � , we maintain a list of scores of optimal align-
ments, each starting in a different slab.

5.1. Application to Cyclic Sequence Comparison
The cyclic edit distance (CED) (Maes 1990) between X
and Y is the minimum edit distance between X and
any cyclic shift of Y ,

CED∗�X	Y 
=min#ed�X	1k�Y 

 � 0≤ k <m$	 (10)

where ed denotes the edit distance, and 1k�Y 

is the cyclic shift of Y by k, which is defined
as follows: 10�Y 
=Y , and for 0<k<m, 1k�Y 
=
yk+1	���	ymy1	���	yk.
Cyclic edit distance appears in many applications.

Bunke and Bühler (1993) presented a method that
uses the cyclic edit distance for two-dimensional
shape recognition. Uliel et al. (1999) suggested using
it for detecting circular permutations in proteins.
Figure 9 schematically describes the problem.
There are many algorithms for this problem. The

most general algorithm was proposed by Maes (1990).
There are other algorithms that are either output-size
sensitive, or suboptimal, or that assume some restric-
tion on the weights. A list of references for these
algorithms can be found in Arslan and Eğecioğlu
(2002).
As a dual approach to the CED problem, we can

define the CLA problem (Arslan and Eğecioğlu 2002)
by expressing its objective in the form

CLA∗�X	Y 
 = max
{
s�I	 J 
 � I ⊆X	 J ⊆ 1k�Y 


for some k	0≤ k <m
}
� (11)

Note that CLA is a special case of LRLA. More
specifically,

CLA∗�X	Y 
= LRLA∗�X	YY 	 �Y �
� (12)

Maes’ (1990) algorithm uses the “noncrossing”
property of shortest paths. We note that this idea
does not generalize to the case of affine gap penalties,
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whereas the approximation and complexity results of
Algorithm APX-LRLA readily holds for the case of
affine gaps for the approximation of CLA∗ because
CLA is a special case of LRLA.

6. Long Alignments with High
Ordinary Score

For a given t, we define the local-alignment-with-length-
threshold score between X and Y as

LAt∗�X	Y 
=max
{
s�I	J 
 � I⊆X	J ⊆Y 	

and �I �+�J �≥ t
}
� (13)

Equivalently,

LAt' maximize SCORE�a
 s.t. a ∈AVt�

Although the problem itself is not very interest-
ing, an algorithm for the problem can be used to find
a long alignment with length-normalized score > �
for a given positive �, as we explain in §7. We also
show that the algorithm for the local alignment with
length threshold leads to improved approximation
algorithms for the normalized local alignment prob-
lem, as we explain in §8.
To solve LAt we can extend the dynamic program-

ming formulation in (2) by adding another dimension.
At each entry of the dynamic programming matrix
we store optimum scores for all possible lengths up
to m+n, increasing the time and space complexity to
O�n2m
 and O�nm
, respectively, which are unaccept-
ably high in practice.
We give an approximation algorithm APX-LAt that

computes a local alignment whose score is at least
LAt∗, and whose length is at least �1− 1/r
t provided
that the LAt problem is feasible, i.e., the algorithm
finds two sequences Î and Ĵ such that s�Î	 Ĵ 
 ≥
LAt∗ and �Î � + �Ĵ � ≥ �1 − 1/r
t. The algorithm runs
in time O�rnm
 using O�rm
 space. For simplicity,
we assume a basic scoring scheme. Our approxima-
tion idea is similar to that of Algorithm APX-LRLA.
Instead of a single score, we maintain at each node
�i	 j
 of GX	Y a list of alignments with the property
that for positive s, where s is the optimum score
achievable over the set of alignments with length ≥ t
and ending at �i	 j
, at least one element of the
list achieves score s and length t − �, where �
is a positive integral parameter. We show that the
dynamic programming formulation can be extended
to preserve this property through the nodes. In par-
ticular, an alignment with score ≥ LAt∗ and length ≥
t−� will be observed in one of the nodes �i	 j
 during
the computations.
We imagine the vertices of GX	Y as grouped into

�n + m
/�� diagonal slabs at distance � from each
other, as shown in Figure 10.
Because we define the length of an alignment as

the sum of the lengths of the substrings involved in

(i + j) /∆ ∆

j /∆ ∆t /∆

t /∆

∆∆(n + m) /

0

∆

∆ 2∆

2∆

2∆
∆ slab 1

(n,m)

j /∆ ∆– 1j /∆ – ∆

slab

d = i + j ≤ ∆

slab 0

(i, j)
∆

∆

∆

∆∆

Figure 10 Slabs with Respect to Diagonal d, and Alignments Ending
at Node �i� j� Starting at Different Slabs

the alignment, on a given alignment the contribution
of each diagonal arc to the alignment length is two
(each match, or mismatch, involves two symbols, one
from each sequence), while that of each horizontal,
or vertical arc is one (each indel involves one symbol
from one of the sequences). Equivalently, we say that
the length of a diagonal arc is two, and the length of
each horizontal, or vertical arc is one. The length of an
alignment a is the total length of the arcs on a. Each
slab consists of �/2�+ 1 diagonals. Two consecutive
slabs share a diagonal that we call a boundary. The
left and the right boundaries of slab b are, respectively,
the boundaries shared by the left and right neigh-
boring slabs of b. As a subgraph, a slab contains all
the edges in GX	Y incident to the vertices in the slab
except for the horizontal and vertical edges incident
to the vertices on the left boundary (which belong to
the preceding slab), and the diagonal edges incident
to the vertices on the first diagonal following the left
boundary.
Now to a given diagonal d in GX	Y , we associate

a number of slabs as follows. Let slab 0 with respect
to diagonal d be the slab that contains the diagonal d
itself. The slabs to the left of slab 0 are then ordered
consecutively as slab 1, slab 2, � � � with respect to d.
In other words, slab k with respect to diagonal d is
the subgraph of GX	Y composed of vertices placed
inclusively between diagonals d/�� and d if k = 0,
and between diagonal �d/��− k
� and �d/��− k+
1
� otherwise. Figure 10 includes sample slabs with
respect to diagonal d, and alignments ending at some
node �i	 j
 on this diagonal.
Let �i	 j	 k represent the optimum score achievable

at �i	 j
 by any alignment starting at slab k with
respect to diagonal i + j for 0 ≤ k < �t/��. For
k = �t/��, �i	 j	 k is slightly different: it is the maxi-
mum of all achievable scores by an alignment starting
in or before slab k. Also, let �i	 j	 k be the length of
an optimal alignment starting at slab k, and achiev-
ing score �i	 j	 k. A single slab can contribute at most
� to the length of any alignment. At each node �i	 j

we store �t/�� + 1 score-length pairs ��i	 j	 k	�i	 j	 k

for 0 ≤ k ≤ �t/�� corresponding to �t/�� + 1 optimal
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Algorithm APX-LAt(δ, µ)
1. Initialization:

set L̂At = 0
set (S0,j,k,L0,j,k) = (0, 0)

for all j, k, 0 ≤ j ≤ m, and 0 ≤ k ≤ �t/∆�
2. Main computations:

for i = 1 to n do

{
set (Si,0,k,Li,0,k) = (0, 0) for all k, 0 ≤ k ≤ �t/∆�
for j = 1 to m do

{
if (i+ j mod ∆ = 1) then

{
set (Si,j,0,Li,j,0) = (0, 0)
for k = 1 to �t/∆� − 1 do

2.a.1 set (Si,j,k,Li,j,k) = maxp{(0, 0), (Si−1,j,k−1,Li−1,j,k−1) + (−µ, 1),
(Si−1,j−1,k−1,Li−1,j−1,k−1) ⊕ (s(xi, yj), 2),
( Si,j−1,k−1, Li,j−1,k−1) + ( −µ, 1) }

for k = �t/∆�
2.a.2 set (Si,j,k,Li,j,k) = maxp{(0, 0), (Si−1,j,k−1,Li−1,j,k−1) + (−µ, 1),

(Si−1,j−1,k−1,Li−1,j−1,k−1) ⊕ (s(xi, yj), 2),
(Si,j−1,k−1,Li,j−1,k−1) + (−µ, 1),
(Si−1,j,k,Li−1,j,k) + (−µ, 1),
(Si−1,j−1,k,Li−1,j−1,k) ⊕ (s(xi, yj), 2),
(Si,j−1,k,Li,j−1,k) + (−µ, 1) }

} else

{
for k = 0 to �t/∆� do

2.b set (Si,j,k,Li,j,k) = maxp{ (0, 0), (Si−1,j,k,Li−1,j,k) + (−µ, 1),
(Si−1,j−1,k,Li−1,j−1,k) ⊕ (s(xi, yj), 2),
(Si,j−1,k,Li,j−1,k) + (−µ, 1) }

}
for k = �t/∆� − 1 if Li,j,k ≥ t− ∆

then set L̂At = max{L̂At,Si,j,k}
for k = �t/∆� set L̂At = max{L̂At,Si,j,k}

}
}3.
Return L̂At

Figure 11 Algorithm APX-LAt

alignments that end �i	 j
. Figure 11 shows the steps
of our approximation algorithm APX-LAt. The pro-
cessing is done row by row starting with the top row
(i= 0) of GX	Y .
Step 1 of the algorithm performs the initialization

of the lists of the nodes in the top row (i = 0). Step 2
implements computation of scores as dictated by the
dynamic programming formulation in (2). Let maxp of
a list of score-length pairs be a pair with the maximum
score in the list. We obtain an optimal alignment with
score �i	 j	 k by extending an optimal alignment from
one of the nodes �i − 1	 j
, �i − 1	 j − 1
, or �i	 j − 1
.
We note that extending an alignment at �i	 j
 from
node �i − 1	 j − 1
 increases the length by two and
the score by s�xi	 yj
, whereas from nodes �i− 1	 j
 or
�i	 j − 1
 adds one to the length and −! to the score
of the resulting alignment. There are two cases:
Case 1. If the current node �i	 j
 is not on the first

diagonal after a boundary, then nodes �i−1	 j
, �i− 1,
j − 1
 and �i	 j − 1
 share the same slabs with node

       
          

j /∆  ∆

(i + j) /∆ ∆

j /∆

slab 0
for (i, j)

(n + j) /∆  ∆

– k ∆

(i – 1, j)

(i, j)(i, j – 1)

(i – 1, j – 1)

for (i, j)
 &

slab k

slab k – 1
for others

slab 1
for (i, j)
&

 slab 0
for others

Figure 12 Relative Numbering of the Slabs with Respect to �i� j�, �i−
1� j�, �i − 1� j − 1� and �i� j − 1� when Node �i� j� Is on the
First Diagonal Following Boundary �i + j�/�

�i	 j
. In this case ��i	 j	 k	�i	 j	 k
 is calculated by using
��i−1	 j	 k	�i−1	 j	 k
, ��i−1	 j−1	 k	�i−1	 j−1	 k
, and ��i	 j−1	 k,
�i	 j−1	 k
 as shown in Step 2.b where ��i−1	 j−1	 k,
�i−1	 j−1	 k
 ⊕ �s�xi	 yj
	2
 = ��i−1	 j−1	 k + s�xi	 yj
,
�i−1	 j−1	 k + 2
 if �i−1	 j−1	 k > 0 or k = 0, and �0	0

otherwise. This is because, by definition, every local
alignment has a positive score, and it is either a single
match, or it is an extension of an alignment whose
score is positive. Therefore we do not let an align-
ment with no score be extended unless the resulting
alignment is a single match in the current slab.
Case 2. If the current node is on the first diagonal

following a boundary (i.e., i+ j mod �= 1), then the
slabs for the nodes involved in the computations for
node �i	 j
 differ as shown in Figure 12. In this case
slab k for node �i	 j
 is slab k− 1 for nodes �i− 1	 j
,
�i − 1	 j − 1
, and �i	 j − 1
. Moreover, any alignment
ending at �i	 j
 starting at slab 0 for �i	 j
 can include
only one of the edges ��i−1	 j
	 �i	 j

 or ��i−1	 j−1
	
�i	 j

, both of which have negative weight −!. There-
fore, ��i	 j	0	�i	 j	0
 is set to �0	0
. Steps 2.a.1 and 2.a.2
show the calculation of ��i	 j	 k	�i	 j	 k
 for 0< k< �t/��
and for k= �t/��, respectively.
The running maximum score L̂At is updated when-

ever a newly computed score for an alignment with
length ≥ t − � is larger than the current maximum,
which can only happen with alignments starting in or
before slab �t/��− 1. The final value L̂At is returned
in Step 3. The alignment position achieving this score
may also be desired. This can be done by maintaining
for each optimal alignment information on its start
and end position in addition to its score and length. In
this case, in addition to the running maximum score,
the start and end positions of a maximal alignment
should be stored and updated.
We first show that �i	 j	 k calculated by the algorithm

is the optimum score achievable, and �i	 j	 k is the
length of an alignment achieving this score over the
set of all alignments ending at node �i	 j
 and start-
ing with respect to diagonal i + j : �1
 at slab k for
0 ≤ k < �t/��, �2
 in or before slab k for k = �t/��.
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j /∆  ∆

≥ t – ∆

≥ t – ∆
≥ t
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j /∆

t /∆slab
slab 0slab

+1 ∆– t /∆

–1

(i ′′, j′′)

(i′, j′) (i, j)

in or before

Figure 13 Two Possible Orientations of an Optimal Alignment of
Length ≥ t Ending at �i� j�

Notes. It starts either at some �i ′� j ′� at slab �t/�−1, or �i ′′� j ′′� in or before
slab �t/�

This claim can be proved by induction. If we assume
that the claim is true for nodes �i− 1	 j
, �i− 1	 j − 1
,
and �i	 j − 1
, and for their slabs, then we can easily
see by following Step 2 of the algorithm that the claim
holds for node �i	 j
 and its slabs.
Let optimum score LAt∗ for the alignments of

length ≥ t be achieved at node �i	 j
. Consider the cal-
culations of the algorithm at �i	 j
 at which an optimal
alignment ends. There are two possible orientations
of an optimal alignment, as shown in Figure 13:
(1) It starts at some node �i′	 j ′
 of slab k= �t/��−1.

By our previous claim, an alignment starting at slab
k with score �i	 j	 k ≥ LAt∗ is captured in Step 2. The
length of this alignment �i	 j	 k is at least t−� because
the length of the optimal alignment is ≥ t, and both
start at the same slab and end at �i	 j
.
(2) It starts at some node �i′′	 j ′′
 in or before

slab k = �t/��. Again, by the previous claim, an
alignment starting in or before slab k with score
�i	 j	 k ≥ LAt∗ is captured in Step 2. The length of
this alignment �i	 j	 k is at least t − � because slab
k is at distance ≥ t − � from �i	 j
. Therefore the
final value L̂At returned in Step 3 is ≥LAt∗ and it
is achieved by an alignment whose length is ≥t −
�. We summarize these results in the following
theorem.

Theorem 1. For a feasible LAt problem, Algorithm
APX-LAt returns an alignment �Î	 Ĵ 
 such that s�Î	 Ĵ 
≥
LAt∗ and �Î � + �Ĵ � ≥ �1 − 1/r
t for any r > 1. The
algorithm’s complexity is O�rnm
 time and O�rm
 space.

Proof. Algorithm APX-LAt is similar to the
Smith-Waterman algorithm except that at each node,
instead of a single score, �t/�� + 1 entries for score-
length pairs are stored and manipulated. There-
fore, the resulting complexity exceeds that of the
Smith-Waterman algorithm by a factor of �t/��+ 1.
That is, the time complexity of APX-LAt is O�nmt/�
.
The algorithm requires O�mt/�
 space because the
computations proceed row by row, and we need the

entries in the previous and the current row to cal-
culate the entries in the current row. When the LAt
problem is feasible, it is guaranteed that Algorithm
APX-LAt returns an alignment �Î	 Ĵ 
 such that s�Î	 Ĵ 
≥
LAt∗ > 0 and �Î � + �Ĵ � ≥ t − � for any positive �.
Therefore, setting �=max#2	 t/r�$ for a choice of r ,
1< r ≤ t, and using Algorithm APX-LAt we can
achieve the approximation and complexity results
expressed in the theorem. We also note that for
�= 2 the algorithm becomes a dynamic programming
algorithm extending the dimension by storing all pos-
sible alignment lengths. �

A variant of APX-LAt for arbitrary scoring matrices
can be obtained by simple modifications. Figure 14
shows Algorithm APX-LAt-AFFINE, which is a vari-
ation of our algorithm APX-LAt for affine gap penal-
ties. The algorithm is essentially quite similar to
Algorithm APX-LAt. It uses the same idea, that at
each entry of a dynamic programming matrix, instead
of a single score, a number of scores (and lengths)
are maintained and manipulated as dictated by the
dynamic programming formulation in (4). Algorithm
APX-LAt is based on the formulation in (2), which
only involves matrix � . The formulation (4) involves
two additional matrices � and � , in addition to the
main matrix � . Matrices � and � keep track of
optimal scores belonging to alignments ending with,
respectively, at least one or more insertions, and at
least one or more deletions. The overall optimum val-
ues are collected in matrix � . In Algorithm APX-LAt,
the dynamic programming formulation is translated
into list operations on matrices �	� , and � .
We can prove that Algorithm APX-LAt-AFFINE

returns an alignment with score ≥ LAt∗ and length
≥ �1− 1/r
t by using arguments very similar to those
in the proof of approximation results for Algorithm
APX-LAt. The claim for every node �i	 j
 about opti-
mal scores, and alignments achieving these scores, are
made separately on each of the pairs of �i	 j	 k and
Ł�
i	 j	 k, �i	 j	 k and Ł�

i	 j	 k, and �i	 j	 k and Ł�
i	 j	 k. These can

be proved by induction on all nodes �i	 j
 by assum-
ing the truth of the claims at neighboring nodes,
�i − 1	 j
	 �i	 j − 1
, and �i − 1	 j − 1
 in the induction
step. This way we can establish that for some node
�i	 j
, �i	 j	 k ≥ LAt∗ (i.e., the algorithm returns an align-
ment whose score is ≥ LAt∗), and Ł�

i	 j	 k is the length of
the alignment achieving this score. Next we can show
that the alignment returned by the algorithm has
length ≥ �1−1/r
t. This essentially involves the same
alignment-orientation analysis we did in the case
of the approximation proof for Algorithm APX-LAt.
Therefore, the same approximation and complexity
results of Theorem 1 hold in this case as well.
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Algorithm APX-LAt-AFFINE(δ, α, β)
1. Initialization:

set L̂At = 0
set (E0,j,k,LE

0,j,k) = (F0,j,k,LF
0,j,k) = (S0,j,k,LS

0,j,k) = (0, 0)
for all j, k, 0 ≤ j ≤ m, 0 ≤ k ≤ �t/∆�

2. Main computations:
for i = 1 to n do {
set (Ei,0,k,LE

i,0,k) = (Fi,0,k,LF
i,0,k) = (Si,0,k,LS

i,0,k) = (0, 0)
for all k, 0 ≤ k ≤ �t/∆�

for j = 1 to m do {
if (i+ j mod ∆ = 1) then {

set (Ei,j,0,LE
i,j,0) = (Fi,j,0,LF

i,j,0) = (Si,j,0,LS
i,j,0) = (0, 0)

for k = 1 to �t/∆� − 1 do {
set (Ei,j,k,LE

i,j,k) = max{ (Si,j−1,k−1,LS
i,j−1,k−1) + (−α, 1),

(Ei,j−1,k−1,LE
i,j−1,k−1) + (−β, 1) }

set (Fi,j,k,LF
i,j,k) = max{ (Si−1,j,k−1,LS

i−1,j,k−1) + (−α, 1),
(Fi−1,j,k−1,LF

i−1,j,k−1) + (−β, 1) }
set (Si,j,k,LS

i,j,k) = max{ (0, 0),
(Si−1,j−1,k−1,LS

i−1,j−1,k−1) ⊕ (s(xi, yj), 2),
(Ei,j,k,LE

i,j,k), (Fi,j,k,LF
i,j,k) }

}
for k = �t/∆� do {

set (Ei,j,k,LE
i,j,k) = max{ (Si,j−1,k−1,LS

i,j−1,k−1) + (−α, 1),
(Ei,j−1,k−1,LE

i,j−1,k−1) + (−β, 1),
(Si,j−1,k,LS

i−1,j,k) + (−α, 1),
(Ei,j−1,k,LE

i,j−1,k) + (−β, 1) }
set (Fi,j,k,LF

i,j,k) = max{ (Si−1,j,k−1,LS
i−1,j,k−1) + (−α, 1),

(Fi−1,j,k−1,LF
i−1,j,k−1) + (−β, 1),

(Si−1,j,k,LS
i−1,j,k) + (−α, 1),

(Fi−1,j,k,LF
i−1,j,k) + (−β, 1) }

set (Si,j,k,LS
i,j,k) = max{ (0, 0), (Si−1,j−1,k−1,LS

i−1,j−1,k−1) ⊕ (s(xi, yj), 2),
(Si−1,j−1,k,LS

i−1,j−1,k) ⊕ (s(xi, yj), 2),
(Ei,j,k,LE

i,j,k), (Fi,j,k,LF
i,j,k) }

}
}
else {

for k = 0 to �t/∆� do {
set (Ei,j,k,LE

i,j,k) = max{ (Si,j−1,k,LS
i,j−1,k) + (−α, 1),

(Ei,j−1,k,LE
i,j−1,k) + (−β, 1) }

set (Fi,j,k,LF
i,j,k) = max{ (Si−1,j,k,LS

i−1,j,k) + (−α, 1),
(Fi−1,j,k,LF

i−1,j,k) + (−β, 1) }
set (Si,j,k,LS

i,j,k) = max{ (0, 0), (Si−1,j−1,k,LS
i−1,j−1,k) ⊕ (s(xi, yj), 2),

(Ei,j,k,LE
i,j,k), (Fi,j,k,LF

i,j,k) }
}

}
for k = �t/∆� − 1 if LE

i,j,k ≥ t− ∆ then set L̂At = max{L̂At,Si,j,k}
for k = �t/∆� set L̂At = max{L̂At,Si,j,k}

}
}

3. Return LAt∗

Figure 14 Algorithm APX-LAt-AFFINE

7. Long Alignments Satisfying
Normalized Score Threshold

We consider the problem Qt of finding two subse-
quences with normalized score higher than �, and
total length at least t. More formally,

Qt' find �I	J 
 such that I⊆X	 J ⊆Y 	
s�I	J 


�I �+�J �>�

and �I �+�J �≥ t� (14)

The following simple query explains the moti-
vation for the problem: “Do two sequences share
a (sufficiently long) fragment with more than 70%
similarity?”
We present an approximation algorithm that (pro-

vided that Qt is feasible) finds two subsequences
Î ⊆X and Ĵ ⊆ Y with normalized score higher than �,
and �Î � + �Ĵ � ≥ �1− 1/r
t.
The problem is feasible for given thresholds t and

� > 0, if the answer to this query is not empty, i.e.,



Arslan and Eğecioğlu: Dynamic Programming Based Approximation Algorithms for Sequence Alignment with Constraints
INFORMS Journal on Computing 16(4), pp. 441–458, © 2004 INFORMS 455

there exists a pair of subsequences I and J with total
length �I � + �J � ≥ t, and normalized score s�I	 J 
/��I � +
�J �
 > �. We note that Qt is feasible iff NLAt∗ > �.
We present an algorithm that returns, for a feasible
problem, two subsequences Î ⊆X and Ĵ ⊆ Y with nor-
malized score higher than �, and total length �Î �+�Ĵ � ≥
�1 − 1/r
t. The approximation ratio is controlled by
the parameter r . The computations take O�rnm
 time
and O�rm
 space.
For a given �, we define the parametric-local-

alignment-with-length-threshold problem LAt��
 as:

LAt��
' maximize SCORE�a
−� LENGTH�a


s.t. a ∈AVt�

Aparametric-local-alignment-with-length-threshold
problem can be described in terms of a local-
alignment-with-length-threshold problem.

Proposition 2. For � < 1/2, the optimum value
LAt∗��
 of the parametric LAt problem can be formulated
in terms of the optimum value LAt∗ of an LAt problem.

Proof. The proof is very similar to that of Proposi-
tion 1. Under the basic scoring scheme, the optimum
value of the parametric problem, when �< 1/2, is

LAt∗ 	!��
 = �1− 2�
LAt∗ ′	!′ where

 ′ =  + 2�
1− 2�

	 !′ = !+�

1− 2�
� (15)

We can easily see that a similar relation exists in the
case of arbitrary scoring matrices and affine gap penal-
ties. Computing LAt∗��
 involves solving the local
alignment with length threshold problem LAt and per-
forming some simple arithmetic afterward. �

Under the scoring schemes we study, we assume
without loss of generality that for any alignment, its
normalized score is ≤ 1/2. We consider �= 1/2 as a
special case that can only happen when the alignment
is composed of matches only.

Proposition 3. When solving LAt��
, the underlying
algorithm for LAt returns an alignment �Î	 Ĵ 
 with nor-
malized score higher than �, and �Î � + �Ĵ � ≥ �1− 1/r
t if
Problem Qt is feasible.

Proof. Assume that Problem Qt is feasible. Then
LAt∗��
 > 0, which implies that the algorithm
that solves the corresponding LAt problem (of
Proposition 3) returns an alignment �Î	 Ĵ 
 such that
its score is positive (i.e., s�Î	 Ĵ 
− ���Î � + �Ĵ �
 > 0) and
�Î � + �Ĵ � ≥ �1 − 1/r
t by the approximation results of
Algorithm APX-LAt. �

Thus, solving Qt requires a single application of
Algorithm APX-LAt.

8. Approximation Algorithms for
Normalized Local Alignment

The approximation algorithm APX-LAt can be
applied by solving the parametric problems that arise
in computing NLAt∗.
We present algorithms to obtain an alignment that

has a normalized score no smaller than the opti-
mum score of the original normalized-local-alignment
problem with total length at least �1 − 1/r
t for a
given r , provided that the original problem is feasi-
ble (Theorem 2). The algorithms are similar to those
developed for adjusted normalized-local-alignment
problems in structure, but instead of ordinary local-
alignment problems they solve local alignment with
length threshold problems using Algorithm APX-LAt
presented in §6.
In both of the resulting algorithms, the space com-

plexity is O�rm
. The number of subproblems that
need to be solved is the same as in the adjusted
normalized-local-alignment ANLA problem defined
in §4: While one algorithm establishes that O�logn

invocations of our approximation algorithm is suffi-
cient, experiments suggest that the other algorithm
performs only three to five iterations on average,
resulting in observed O�rnm
 time complexity.
We restate the definitions of the local-alignment-

with-length-threshold LAt, normalized-local-align-
ment NLAt, and the parametric-local-alignment
LAt��
 problems as the following optimization prob-
lems defined in terms of SCORE and LENGTH func-
tions that are linear over AVt under the scoring
schemes we study:

LAt' maximize SCORE�a
 s.t. a ∈AVt�

NLAt' maximize
SCORE�a

LENGTH�a


s.t. a ∈AVt�

LAt��
' maximize SCORE�a
−� LENGTH�a


s�t� a ∈AVt�

If we apply fractional programming to the nor-
malized local alignment computation, then we can
obtain an optimal solution to NLAt via a series of
optimal solutions of the parametric problem with
different parameters LAt��
 such that � = NLAt∗ iff
LAt∗��
= 0.

Theorem 2. If NLAt∗ > 0, then an alignment with
normalized score at least NLAt∗ and total length at least
�1 − 1/r
t can be computed for any r > 1 in time
O�rnm logn
 and space O�rm
.

Proof. Algorithm RationalNLAt given in Figure 15
accomplishes this. The algorithm is based on a binary
search for optimum normalized score over an interval
of integers. This takes O�logn
 parametric problems
to solve. The algorithm is similar to the RationalANLA
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Algorithm APX-RationalNLAt
If there is an exact match of size (1 − 1

r
)t

then return(1
2) and exit

Let σ be the smallest gap between two
length-normalized scores

[e, f ] ← [0, 1
2σ

−1]
λ∗ ← 0
While (e + 1 < f) do

k ← �(e + f)/2�
APX-LAt∗(kσ) > 0 then {

e ← k
λ∗ ← the normalized score of an

optimal alignment obtained
} else f ← k

End {while}
Return(λ∗)

Figure 15 APX-RationalNLAt Algorithm for Rational Scores

algorithm in Figure 5, and the results are derived
similarly. It first determines if there is an exact match
of size �1− 1/r
t, which can easily be done by using
the Smith-Waterman algorithm. If the answer is yes,
then the algorithm returns the maximum possible
normalized score and exits. The skeleton of the rest of
the algorithm is the same as Algorithm RationalNLAt
in Figure 5, based on Megiddo’s search technique
(Megiddo 1979). The difference is that the paramet-
ric alignment problems now have a length constraint.
The algorithm computes the smallest possible gap 1
between any two distinct possible normalized scores,
which is -�1/�n+m
2
 (Arslan et al. 2001). It main-
tains an interval 4e	 f 6, on which a binary search is
done to find the largest � for which LAt∗��
 is posi-
tive where e and f are integer variables. Initially e is
set to zero, and f is set to 1/21−1 because NLAt∗ is
in 40	1/26. A parametric LAt problem with parameter
k1 is iteratively solved, where k is the median of inte-
gers in 4e	 f 6. At each iteration the interval is updated
according to the sign of the value of the parametric
problem. The effective search space is the integers in
4e	 f 6, and each iteration reduces this space by half.
The iterations end whenever there remains no integer
between e and f . By Theorem 1 and Proposition 3 in
§6, for every k1 <NLAt∗, Algorithm APX-LAt returns
an alignment with a positive score, and length at least
�1 − 1/r
t as a solution to the parametric problem.
After the search ends, �∗ ≥NLAt∗, and �∗ is achieved
by an alignment whose length is at least �1 − 1/r
t
for NLAt feasible. Note that if NLAt∗ = 0 then the
algorithm returns 0. �

The asymptotic space requirement is the same as
that of Algorithm APX-LAt, and the loop iterates
O�logn
 times. Therefore the complexity results are as
described in the theorem.
If NLAt∗ > 0 then we can also achieve the same

approximation guarantee by using a Dinkelbach
algorithm given by Arslan et al. (2001) as the tem-
plate. The details of the resulting algorithm appear
in Figure 16. At each iteration, except for the last,

Algorithm Dinkelbach
If APX-LAt∗(0) > 0 then
set λ∗ to the length-normalized score
of an optimal alignment

else exit
Repeat

λ ← λ∗

If APX-LAt∗(λ) > 0 then set λ∗ to
the length normalized score of an
optimal alignment

Until λ∗ ≤ λ
Return(λ∗)

Figure 16 Dinkelbach Algorithm for NLAt

Algorithm APX-LAt returns an alignment with a
positive score, and length at least �1− 1/r
t as a solu-
tion to the parametric problem, by Theorem 1 and
Proposition 2 in Chapter 6 because � <NLAt∗. Solu-
tions of the parametric problems through the iter-
ations yield improved (higher) values of � except
for the last iteration. The resulting algorithm per-
forms no more than three to five iterations on average
(never more than nine in the worst case) in our tests.
When the algorithm terminates, the optimal align-
ment whose length-normalized score is �∗ has total
length of at least �1− 1/r
t, and �∗ ≥NLAt∗.
We have implemented versions of Algorithm APX-

LAt-AFFINE and the Dinkelbach algorithm and tested
the Dinkelbach program on bli-4 locus in C. elegans and
C.briggsae for various values of parameters t and r .
We have observed that the program performs three to
five invocations of the APX-LAt-AFFINE implemen-
tation on average. Therefore, for a reasonable choice
of r , its time requirement is 3r to 5r times that of
a Smith-Waterman implementation, on average. In
Figure 17 we include results for optimal alignments
obtained as t runs from 1,000 to 22,000 in increments
of 1,000, and from 30,000 to 90,000 in increments
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Figure 17 Ordinary vs. Normalized Scores for 16 Different Alignments
Notes. The lengths of the alignments are shown on the x-axis while the y -
axis represents the similarity scores.
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of 10,000, and for fixed r = 5. On a Beowulf class
super-computer composed of a cluster of 42 linux-
based 400–500 MHz workstations, it took about eight
days to complete the tests. We note that if we used a
fast heuristic algorithm to solve the parametric local
alignment problems, then we would have improved
the running time by orders of magnitude, but the
approximation guarantee of the results may no longer
hold.
In our tests we have used a score of 1 for a match,

−1 for a mismatch, and −6�2 − 0�2�k − 1
 for a gap
of length k. Figure 17 includes information about 16
different alignments, each of which is obtained for a
different pair of t and r . For each alignment, we show
its length on the x-axis, and both its ordinary and nor-
malized scores on the y-axis. We have multiplied the
normalized scores by 10,000 to be able to display them
on the same scale as the ordinary scores. As expected
in general, normalized scores steadily decrease with
increasing alignment lengths. The alignments whose
lengths exceed 32,100 include regions with very poor
scores.
Test runs like this can generate important statistical

information. For instance, in this case, we can infer
from our approximation results and from the normal-
ized score 0.33 of the alignment with length 16,048
that 0.33 cannot be obtained by any alignment whose
length exceeds 16	048/�1− 1/5
≈ 20	000.
As a final remark in this section, we point out the

relation between the length-normalized local align-
ment, and a problem known as parametric sequence
alignment (Fitch and Smith 1983) (which is differ-
ent from our parametric local alignment problem)
in the literature. The fractional-programming-based
NLA algorithms iteratively and systematically change
the four parameters (i.e., match score, mismatch, gap-
open, and gap-extension penalties) until the resulting
alignment is satisfactory (i.e., optimal with respect to
ordinary scores at the last iteration, and with respect
to length-normalized scores with the original scores).
It is known that sequence alignment is sensitive to
the choice of these parameters as they change the
optimality of the alignments. Parametric sequence
alignment studies the relation between the parameter
settings and optimal alignments. The goal is to parti-
tion the parameter space into convex polygons such
that the same alignment is optimal at every point in
the same polygon. Clearly, a point in one of the poly-
gons computed yields an optimal length-normalized
alignment. The following results are summarized by
Gusfield (1997). A polygonal decomposition requires
O�nm
 time per polygon when scores are uniform
(i.e., not dependent on individual symbols). When
only two parameters are chosen to be variable, then
the polygonal decomposition can contain at most

O�nm
 polygons. When all four parameters are vari-
ables, then there is no known reasonable upper bound
on the number of polygons. When the alignment is
global and no scoring matrices are used, the num-
ber of polygons is bounded from above by O�n2/3

(Gusfield et al. 1994).

9. Conclusion
For a given pair of sequences X and Y with lengths
n≥m, we have addressed a number of problems that
are variants of the local-alignment problem, namely
NLAt, LRLA, and CLA. They all involve a length con-
straint. All of these problems have simple dynamic
programming formulations with resulting time com-
plexities that are not practical.
The adjusted normalized local-alignment ANLA

problem is suggested to approximate the NLAt prob-
lem by reformulating the objective function, and
dropping the length constraint. For the ANLA prob-
lem, the fractional-programming technique offers
alternate solutions. One solution is a Dinkelbach
algorithm, which has been experimentally verified to
be fast. The other solution is based on a binary search
and it is provably fast. The time complexity of the
fractional programming solution is open. We believe
that in this case the existing approximation algorithms
are efficient and effective.
For the LRLA problem there exist simple approxi-

mation algorithms that are obtained by extending the
original dynamic programming formulations by con-
sidering the alignment graph in groups of vertical or
diagonal slabs, and maintaining information about a
number of optimal alignments instead of a single one.
For the LAt problem we present an approxima-

tion algorithm that computes a local alignment whose
score is at least LAt∗, and whose length is at least
�1 − 1/r
t, provided that the LAt problem is feasi-
ble, The algorithm runs in time O�rnm
 using O�rm

space.
Using this algorithm, we have proposed an

algorithm that, given thresholds � > 0 and t, finds
an alignment with a normalized score higher than �
and with total length no smaller than �1 − 1/r
t,
provided that the corresponding normalized local-
alignment problem is feasible. The length of the result
can be made arbitrarily close to t by increasing r . This
is done at the expense of allocating more resources
because the time and space complexities depend on
the parameter r as O�rnm
 and O�rm
, respectively.
Based on techniques previously proposed by Arslan

et al. (2001) and using our approximation algorithm
for the LAt problem, we have further developed
ways to find an alignment with normalized score no
smaller than the maximum normalized score achiev-
able by alignments with length at least t. The align-
ment returned by the algorithm is guaranteed to have
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total length ≥ �1− 1/r
t. In our experiments, we have
observed that the time requirement of the Dinkelbach
implementation is O�rnm
, on average. This is better
than the worst-case time complexity O�n2m
 of the
naive algorithm.
We believe that our approximation algorithms have

made normalized scores a viable similarity mea-
sure in pairwise local alignment because they pro-
vide approximate control over the desired alignment
lengths. Because the computed normalized score for a
particular value of t is an upper bound for the actual
normalized scores achievable by sequences of length
at least t, these algorithms can also be used to col-
lect statistics about scores of alignments versus length
for a particular pair of input sequences. A number of
interesting problems are open for further study:
• How many iterations do the Dinkelbach ANLA

or NLAt algorithms perform in the worst case?
• Are there (provably) faster algorithms for the

NLA problems based on other techniques such as cut-
ting planes?
• Are there faster exact, or better approximation,

algorithms for LRLA, LAt, or Qt?
Our algorithms for NLA computations use sub-

routine algorithms for LA and APX-LAt, both of
which are dynamic programming based. Clearly, one
way to improve the complexity of NLA algorithms
is to develop more efficient algorithms for LA and
LAt. The ordinary local-alignment problem LA has
been studied extensively in the literature. For this
problem, there are several fast heuristic algorithms,
such as FASTA (Lipman and Pearson 1985) and
BLAST (Altschul et al. 1990, 1997; Altschul and Gish
1996). FASTA starts with locating exact short matches
(subalignments), and combines them if they are close
(in dot matrix, or the alignment graph). In this way,
it aims to find the high-scoring ungapped align-
ments, and finally, the gapped alignments, by join-
ing the ungapped alignments. BLAST starts with a
short stretch of identities and uses them as seeds (sub-
alignments) for larger alignments. These subalign-
ments are extended as long as the resulting score is
positive, hoping that they yield optimal local align-
ments. Use of these or similar algorithms in our
NLA algorithms can be empirically studied. It may
be possible to devise heuristics directly for NLA
computations, which may start with some set of sub-
alignments, and assemble them progressively.
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