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Abstract. The Travelling Salesman Problem (TSP) is a classical NP-
hard optimisation problem. There exist, however, special cases of the
TSP that can be solved in polynomial time. Many of the well-known
TSP special cases have been characterized by imposing special four-point
conditions on the underlying distance matrix. Probably the most famous
of these special cases is the TSP on a Monge matrix, which is known to
be polynomially solvable (as are some other generally NP-hard problems
restricted to this class of matrices). By relaxing the four-point conditions
corresponding to Monge matrices in different ways, one can define other
interesting special cases of the TSP, some of which turn out to be poly-
nomially solvable, and some NP-hard. However, the complexity status of
one such relaxation, which we call one-sided Monge TSP (also known as
the TSP on a relaxed Supnick matrix), has remained unresolved. In this
note, we show that this version of the TSP problem is NP-hard. This
completes the full classification of all possible four-point conditions for
symmetric TSP.

1 Introduction

The travelling salesman problem (TSP) is a well-known problem of combinatorial
optimisation. In the symmetric TSP, given a symmetric n × n distance matrix
C = (cij), one looks for a cyclic permutation τ of the set {1, 2, . . . , n} that
minimises the function c(τ) =

∑n
i=1 ci,τ(i). The value c(τ) is called the length of

the permutation τ . We will in the following refer to the items in τ as points.
The TSP is an NP-hard problem [10]. There exist, however, special cases

of the TSP that can be solved in polynomial time. For a survey of efficiently
solvable cases of the TSP, see [3, 11, 14]. Many of the well-known TSP special
cases result from imposing special conditions on the underlying distance matrix.
Probably the most famous of these special cases is the TSP on a Monge matrix.
For a number of well-known NP-hard problems, including TSP, restriction to
Monge matrices reduces the complexity to polynomial (see survey [5]).

We give below two equivalent definitions of a Monge matrix. In what follows,
we will always assume that the matrices under considerations are symmetric.

Definition 1. An n × n matrix C = (cij) is a Monge matrix, if it satisfies the
Monge conditions:

cij + ci′j′ ≤ cij′ + ci′j 1 ≤ i < i′ ≤ n 1 ≤ j < j′ ≤ n (1)
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Definition 2. An n × n matrix C = (cij) is a Monge matrix, if

cij + ci+1,j+1 ≤ ci,j+1 + ci+1,j 1 ≤ i ≤ n − 1 1 ≤ j ≤ n − 1

It can be easily seen that the above two definitions define the same set of matri-
ces. The difference arises when we begin to generalize the problem by relaxing
the conditions imposed on the matrix. For example, the diagonal entries are
not involved in the calculation of the TSP objective function, so one can define
cii (i = 1, . . . , n) arbitrarily without affecting the solution of the TSP. If we
relax Definition 1 by excluding the inequalities containing the diagonal entries,
then the structural properties of the matrix remain essentially unchanged. In
fact, given a matrix (cij) with indeterminate diagonal elements, which satisfies
inequalities (1) for i �= j, i �= j′, i′ �= j, i′ �= j′, it is always possible to de-
fine diagonal elements cii so that the resulting matrix is a Monge matrix (see
Proposition 2.13 in [3]). This relaxation of symmetric Monge matrices is known
as Supnick matrices. Alternatively, Supnick matrices are defined as matrices sat-
isfying conditions

cij + cj+1,l ≤ ci,j+1 + cjl ≤ cil + cj,j+1 1 ≤ i < j < j + 1 < l ≤ n

Supnick [21] has shown that an optimal TSP tour on such matrices is given by
σSmin = 〈1, 3, 5, 7, 9, . . . , 8, 6, 4, 2, 1〉.

The well-known classes of Demidenko [9] and Van der Veen [23] matrices, as
well as a class of matrices investigated in [4], can also be viewed as relaxations
of Definition 1. A symmetric n × n matrix C = (cij) is a Demidenko matrix, if

cij + ci′j′ ≤ cij′ + ci′j 1 ≤ j < i < i′ < j′ ≤ n

and a Van der Veen matrix, if

cij + ci′j′ ≤ cij′ + ci′j 1 ≤ i < j < i′ < j′ ≤ n

The TSP on these classes of matrices is polynomially solvable: an optimal tour
can be found among the so-called pyramidal tours in O(n2) time (see e.g. [3]).

Now, instead of Definition 1, we consider Definition 2, and relax it by ex-
cluding inequalities involving the diagonal elements.

Definition 3. An n × n matrix C = (cij) is a relaxed Supnick matrix, if

cij + ci+1,j+1 ≤ ci,j+1 + ci+1,j 1 ≤ i < j − 1 ≤ n − 2

In contrast with the Supnick relaxation of Definition 1, the relaxation from
Definition 2 to Definition 3 may have a very significant effect on the matrix
structure. While the Supnick conditions constrain all pairs of matrix elements
excluding the main diagonal, the relaxed Supnick conditions only constrain pairs
of matrix elements that are on the same side of the main diagonal (i.e. are either
both above, or, by symmetry, both below the main diagonal). In calling such
matrices “relaxed Supnick”, we follow the terminology of [6]; otherwise, they
could naturally be called one-sided Monge matrices.
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Table 1. Classification of four-point conditions (adapted from [6])

A ≤ B A ≥ B A ≤ C A ≥ C B ≤ C B ≥ C

A ≤ B O(n2)
[9]

O(1)
[11, 24]

O(n2)
[9, 23]

O(1)
[15]

O(1)
[21]

O(1)
[15]

A ≥ B NP-hard
[8]

O(1)
[6]

NP-hard
[8, 22]

O(n)
[15, 19, 20]

O(n)
[21]

A ≤ C O(n2)
[23]

O(1)
[11, 24]

O(1)
[6]

O(1)
[6]

A ≥ C NP-hard
[22]

O(1)
[6]

O(1)
[6]

B ≤ C NP-hard
(new)

O(n2)
[16, 6]

B ≥ C O(n4)
[6]

Given a relaxed Supnick matrix with indeterminate diagonal elements, it is
not always possible to define the diagonal elements so that the resulting matrix
is a Monge matrix, as the following example shows:

⎛

⎜
⎜
⎜
⎜
⎝

× 1 0 1 5
1 × 0 0 3
0 0 × 1 1
1 0 1 × 0
5 3 1 0 ×

⎞

⎟
⎟
⎟
⎟
⎠

Computational complexity of the TSP on the described matrix classes, and
other classes of similar type, can be studied systematically by considering four-
point conditions. Let i, j, k, l be four points with 1 ≤ i < j < k < l ≤ n.
A symmetric distance matrix for these points contains six entries above the
main diagonal, which correspond to the six edges connecting these points. It is
possible to form three pairs of non-incident edges: {(i, j), (k, l)}, {(i, k), (j, l)},
{(i, l), (j, k)}. We denote the combined lengths of these pairs by A, B, C, respec-
tively:

A = cij + ckl B = cik + cjl C = cil + cjk

A four-point condition is an inequality relation among the values A, B, C,
which has to be satisfied for all possible choices of indices i, j, k, l with 1 ≤ i <
j < k < l ≤ n. Using this notation, Supnick matrices are defined as matrices
satisfying conditions A ≤ B, B ≤ C, Demidenko matrices as matrices satisfying
condition A ≤ B, Van der Veen matrices as matrices satisfying conditions A ≤ C,
and relaxed Supnick matrices as matrices satisfying condition B ≤ C. Nearly
all possible four-point conditions and their pairwise combinations have been
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classified in [6] (see Table 1) according to the polynomial solvability or NP-
hardness of the arising TSP. The only gap that has remained in this classification
is the TSP on relaxed Supnick matrices. In the following section we show that
this problem is NP-hard, thus making a final point in the classification of four-
point conditions for symmetric TSP.

2 The TSP on Relaxed Supnick Matrices

As before, we assume that all the considered matrices are symmetric.

Theorem 1. The TSP on a relaxed Supnick matrix is NP-hard.

Proof. The proof is by reduction from the Hamiltonian cycle problem in grid
graphs [13]. We follow the definitions from [13]. Let G∞ be the infinite graph,
whose vertex set consists of all the integer points in the plane, and in which two
vertices are connected, if and only if the Euclidean distance between them is
equal to one. A grid graph is a finite node-induced subgraph of G∞. It is shown
in [13] that the Hamiltonian cycle problem in a grid graph is NP-hard.

Given a grid graph on n nodes, we will construct an n × n relaxed Supnick
matrix with non-negative entries, such that there exists a Hamiltonian cycle in
the graph, if and only if the optimal TSP tour on the corresponding relaxed
Supnick matrix has zero length.

Consider an arbitrary grid graph G on n nodes. We may assume that G is
connected (otherwise, it is guaranteed not to contain a Hamiltonian cycle). First,
we embed G in a square grid of size m×m, where m is sufficiently large. Due to
the connectivity of G, we may assume m ≤ n. We then extend the square grid
to a parallelogram grid, and number the nodes as shown in Figure 1. The upper-
left point in the square grid will be numbered m, the two neighbouring points
2m − 1 and 2m, etc. Let N = m2 + m(m − 1) be the number of points in the
parallelogram grid. We then construct an N × N relaxed Supnick matrix C(N)

as follows. For two neighbouring nodes i, j, i < j, in the parallelogram grid, we
define c

(N)
ij = 0, if both i and j belong to G. Notice that the numbering of points

in the parallelogram grid is chosen so that all these entries are placed on two

1

2

m−1

m

m+1

m+2

i i+m

i+m−1

Fig. 1. Embedding a square grid in a parallelogram
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adjacent diagonals: j − i ∈ {m−1, m}. For all the remaining entries in these two
diagonals, we define c

(N)
ij = 1. Further, we define c

(N)
1j = 1 for j = 1, . . . , m − 1,

and c
(N)
iN = 1 for i = N − m + 2, . . . , N .

Notice that so far there exist no four defined entries in the upper triangular
part of C(N) that would form an inequality from Definition 2, therefore none
of the one-sided Monge conditions are violated. We keep filling in the upper
triangular part of the matrix, respecting the Monge conditions. We define

c
(N)
ij = max

{
c
(N)
i−1,j + c

(N)
i,j+1 − c

(N)
i−1,j+1, 1

}
j − i = 1, . . . , m − 2

c
(N)
ij = max

{
c
(N)
i,j−1 + c

(N)
i+1,j − c

(N)
i+1,j−1, 1

}
j − i = m + 1, . . . , N − 1

for each element, as soon as the right-hand side of this element’s definition has
itself been defined. We always have c

(N)
ij ≥ 1 unless i, j are neighbouring nodes in

G, and the one-sided Monge condition is always preserved. The lower triangular
part of C(N) is defined by symmetry. The construction of the relaxed Supnick
matrix C(N) is now completed.

It can be easily checked that, given a relaxed Supnick matrix C, the sym-
metric matrix obtained by deleting a row and a corresponding column from C is
still relaxed Supnick. By induction, the same is true after deleting an arbitrary
subset of rows and corresponding columns. By deleting all rows and columns
from C(N), except those indexed by points in the original grid graph G, we ob-
tain an n × n relaxed Supnick matrix C(n). Clearly, there exists a Hamiltonian
cycle in graph G, if and only if the optimal TSP tour on the matrix C(n) has
zero length.

In order to prove that the above problem reduction is polynomial, it only
remains to show that the growth of individual matrix elements is appropriately
bounded. Observe that each new element created in C(N) cannot exceed the
largest existing element by more than a factor of 2. Consequently, the largest
element in C(N) has value1 at most 2N2 ≤ 2(2m2)2 = 24m4 ≤ 24n4

, and can
therefore be represented by a number of bits that is polynomial in n. Hence, even
if our computational model does not support unit-cost arithmetic on arbitrarily
long integers, arithmetic operations on matrix elements can be emulated bitwise
in polynomial time. The reduction is completed. �	

3 Relaxed Supnick Matrices and Exponential
Neighbourhoods

The research into polynomially solvable cases for intractable problems is partly
motivated by the hope to identify new approaches to constructing general-
purpose heuristics. One of the by-products of this research are exponential neigh-
bourhoods (see surveys [1, 7]), which are being intensively studied in relation to

1 Much tighter estimates are possible. However, this crude bound is sufficient for our
proof.
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local search algorithms. Among new families of exponential neighbourhoods pre-
sented in [6], there is a neighbourhood of strongly balanced permutations, which
are related to relaxed Supnick matrices. To justify the introduction of this neigh-
bourhood, the authors of [6] considered a special subclass of relaxed Supnick
matrices.

Definition 4. A relaxed Supnick matrix C = (cij) is strong, if

ctp − ctz − ckp ≤ csy − cky − csz t < k < s < p < z < y

It can be shown that the inequalities in Definition 4 are equivalent to the system
of inequalities

cij − ci,j+1 − ci+1,j ≤ cj−1,N − ci+1,N − cj−1,j i < j

and can therefore be checked in time O(n2).
As shown in [6], an optimal tour for the TSP on a strong relaxed Supnick

matrix can be found in the set of so-called strongly balanced tours. We first give
some preliminary definitions. An index i ∈ {1, . . . , n} is a peak of a permutation
τ , if i > max{τ−1(i), τ(i)}, and a valley, if i < min{τ−1(i), τ(i)}. An index
which is neither peak nor valley is called intermediate. Informally, in a strongly
balanced tour, all intermediate nodes are “evenly spread” on the slopes between
peaks and valleys. We now give a formal definition.

We will consider partially constructed tours on the sets of indices {1, 2, 3, . . . ,
m − 1, m} with m = 1, 2, . . . , n. For a fixed m, a partially constructed tour
will consist of a set of finite index sequences; indices from each sequence are
placed in the tour in consecutive positions. We refer to each of these sequences
〈i1, . . . , j1〉 as fragment [i1, j1], stressing that i1 is the initial, and j1 is the final
element in the corresponding sequence. Notice that it is not necessary for a
fragment [i1, j1] with i1 < j1 to contain, for example, i1 + 1. For a one-element
fragment we use the notation [i, i]. For example, if we start with a tour where
1 and 2 are two valleys, we can represent this initial tour by two fragments
[1, 1] and [2, 2]. Mutual placement of fragments is not fixed, i.e. they can be
permuted. The fragments can also be reversed, i.e. fragment [i, j] can be replaced
by fragment [j, i].

Definition 5 ([6]). A tour is strongly balanced, if it can be constructed as
follows. Start with an initial tour [1, 1] and repeat the folowing step for m =
2, . . . , n − 1:

Given a partial tour on the set of indices {1, . . . , m − 1}, the tour is
represented by fragments [i1, j2], [i2, j2], . . ., [ip, jp]. Let

imin1 = min{i1, j1, i2, j2, . . . , ip, jp}
imin2 = min{i1, j1, i2, j2, . . . , ip, jp} \ {imin1}
imin3 = min{i1, j1, i2, j2, . . . , ip, jp} \ {imin1 , imin2}
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Add index m to the partial tour by choosing one of the options below:

– m is placed as a new valley; this creates a new fragment [m, m];
– m is placed as an intermediate index adjacent to imin1 ; fragment

[imin1 , s] in the partially constructed tour is replaced by the new frag-
ment [m, s];

– m is placed as a new peak merging two fragments; m is adjacent to
imin1 and to either imin2 or to imin3 . In the first case, the fragments
[imin1 , j] and [imin2 , s] are merged into [j, s]; in the second case, the
fragments [imin1 , imin2 ] and [imin3 , s] are merged into [imin2 , s].

The final node n can only be added to a partial tour consisting of one fragment.

As an example, the reader can check that the tour

〈1, 4, 10, 6, 2, 7, 12, 9, 3, 8, 11, 5, 1〉

with the intermediate nodes 4, 5, 6, 7, 8, 9 evenly spread on the slopes, is a
strongly balanced tour.

Proposition 1 ([6]). An optimal tour for the TSP with a strong reduced Sup-
nick matrix can be found in the set of strongly balanced tours.

Despite the relatively simple structure of strongly balanced tours, the problem
of finding an optimal tour in this set appears to be difficult. To avoid the dif-
ficulties, the authors of [6] have further restricted the special class of matrices,
and identified a subset of strongly balanced tours, where an optimal tour can be
found in polynomial time.

Proposition 2 ([6]). Consider strongly balanced tours for which the maximum
number of fragments in the construction of Definition 5 is bounded by a constant.
An optimal tour in this special subset of strongly balanced tours can be found in
polynomial time.

We can now explain why the problem of finding an optimal strongly balanced
tour is difficult for an unbounded number of fragments.

Theorem 2. The TSP on a strong relaxed Supnick matrix is NP-hard.

Proof. The proof is similar to the proof of Theorem 1. We define the initial
values c

(N)
ij in two adjacent diagonals: j − i ∈ {m − 1, m} exactly as before. The

only difference is in the way we define the remaining entries. To ensure that the
matrix is a strong relaxed Supnick matrix, it is sufficient to define

c
(N)
ij = max{c

(N)
j,i−1 + c

(N)
j+1,i−1 − c

(N)
j+1,i−1,

c
(N)
j,i−1 + c

(N)
i−1,i + c

(N)
j+1,N − c

(N)
i−1,N − c

(N)
j+1,i−1, 1} j < j + m < i

and

c
(N)
ip = max{c

(N)
i−1,p + c

(N)
i,i+1 − c

(N)
i−1,p+1,

c
(N)
i−1,p + c

(N)
p,p+1 + c

(N)
iN − c

(N)
pN − c

(N)
i−1,p+1, 1} i < p < i + m
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The rest of the proof is identical to the proof of Theorem 1, with the only
difference that the largest element in C(N) has now value at most 3N2 ≤ 34n4

. �	

Corollary 1. The problem of finding an optimal strongly balanced tour is NP-
hard.

The two statements above justify the introduction of a special subset of strongly
balanced tours (Proposition 2), where the optimal permutation can be found in
polynomial time.

4 Conclusion

We have shown that the TSP on a relaxed Supnick matrix, which can also be
viewed as a one-sided Monge matrix, is NP-hard. This completes the classifi-
cation of all possible four-point conditions for symmetric TSP [6]. Our results
justify imposing further restrictions on relaxed Supnick matrices in order to
identify new polynomially solvable cases of the TSP.

We hope that the constructions in this note, which reduce the TSP on a
grid graph to the TSP with a special matrix, in combination with the special
polynomially solvable case described in Proposition 2 (see [6] for further details),
may lead to identifying special types of grid graphs, where the optimal tour can
be found in polynomial time. Some polynomially solvable cases of the TSP on
grid graphs have already been identified in [2, 18].
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