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Online Maintenance of k-Medians and
k-Covers on a Line1

Rudolf Fleischer,2 Mordecai J. Golin,3 and Yan Zhang3

Abstract. The standard dynamic programming solution to finding k-medians on a line with n nodes requires
O(kn2) time. Dynamic programming speed-up techniques, e.g., use of the quadrangle inequality or properties
of totally monotone matrices, can reduce this to O(kn) time. However, these speed-up techniques are inherently
static and cannot be used in an online setting, i.e., if we want to increase the size of the problem by one new
point. Then, in the worst case, we could do no better than recalculating the solution to the entire problem from
scratch in O(kn) time. The major result of this paper is to show that we can maintain the dynamic programming
speed up in an online setting where points are added from left to right on a line. Computing the new k-medians
after adding a new point takes only O(k) amortized time and O(k log n) worst-case time (simultaneously).
Using similar techniques, we can also solve the online k-coverage with uniform coverage on a line problem
with the same time bounds.
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1. Introduction. In the k-median problem we are given a graph G = (V, E)with non-
negative edge costs. We want to choose k nodes (the medians) from V so as to minimize
the sum of the distances between each node and its closest median. As motivation, the
nodes can be thought of as customers, the medians as service centers, and the distance
between a customer and a service center as the cost of servicing the customer from that
center. In this view, the k-median problem is about choosing a set of k service centers
that minimizes the total cost of servicing all customers.

The k-median problem is often extended so that each customer (node) has a weight,
corresponding to the amount of service requested. The distance between a customer and
its closest service center (median) then becomes the cost of providing one unit of service,
i.e., the cost of servicing a customer will then be the weight of the customer node times
its distance from the closest service center. Another extension of the problem is to assign
a start-up cost to each node representing the cost of building a service center at that node.
The total cost we wish to minimize is then the sum of the start-up costs of the chosen
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The k-Median on a Line Problem (kML)

Let k ≥ 0. Let x1 < x2 < · · · < xn be points on the real line. With each point xj

there are associated a weight wj ≥ 0 and a start-up cost cj ≥ 0. A k-placement is a
subset S ⊆ Vm = {x1, . . . , xm} of size |S| at most k. We define the distance of point
xj to S by

dj (S) = min
y∈S
|xj − y|.

The cost of S is (i) the cost of creating the service centers in S plus (ii) the cost of
servicing all of the requests from S:

cost(S) =
∑
xi∈S

ci +
n∑

j=1

wj dj (S).

The k-median on a line problem (kML) is to find a k-placement S minimizing cost(S).
In online kML, the points are given to us in the order x1, x2, . . ., and we have to compute
optimal solutions for the known points at any time.

Fig. 1. The k-median on a line problem.

medians plus the cost of servicing each of the customer requests. This is known as the
facility location problem.

Lin and Vitter [7] proved that, in general, even finding an approximate solution to
the k-median problem is NP-hard. They were able to show, though, that it is possible in
polynomial time to achieve a cost within O(1 + ε) of optimal if one is allowed to use
(1+ 1/ε)(ln n + 1)k medians. The problem remains hard if restricted to metric spaces.
Guha and Khuller [5] proved that this problem is still MAX-SNP hard. Charikar et al.
[4] showed that constant-factor approximations can be computed for any metric space.
In the specific case of points in Euclidean space, Arora et al. [2] developed a PTAS.

There are some special graph topologies for which fast polynomial-time algorithms
exist, though. In particular, this is true for trees [8], [9] and lines [6]. In this paper we
concentrate on the line case, in which all of the nodes lie on the real line and the distance
between any two nodes is the Euclidean distance. See Figure 1 for the exact definition
of the k-median on a line problem (kML) and Figure 2 for an illustration.

There is a straightforward O(kn2) dynamic programming (DP) algorithm for solving
kML. It fills in 	(kn) entries in a DP table4 where calculating each entry requires mini-
mizing over O(n) values, so the entire algorithm needs O(kn2) time. Hassin and Tamir
[6] showed that this DP formulation possesses a quadrangle or concavity property. Thus,
the time to calculate the table entries can be reduced by an order of magnitude to O(kn)
using known DP speed-up techniques, such as those found in [10]. This speed up can be
viewed as providing a way to calculate each DP table entry in O(1) time.

In this paper we study online kML, where new points are always added to the right
of old points. As will soon be seen, adding such points retains all of old entries in the

4 We do not give the details here because the DP formulation is very similar to the one shown in Lemma 1.
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Fig. 2. k-Median on a line example. The data are taken from the example in Section 2.6. Each node is drawn
at its x-coordinate with a vertical bar and a circle. The length of the vertical bar illustrates the start-up cost,
and the area of the circle corresponds to the weight. The optimal locations of resources are indicated by si

(1 ≤ i ≤ k). The six figures show the optimal locations when the number of nodes is four or five and the
number of resources k ranges from one to three, respectively.

DP table and only adds O(k) new entries to the table. Since static kML can be solved in
O(kn) time, or O(1) (amortized) time per entry, we would hope to be able to calculate
the O(k) new entries in O(k) total time, maintaining the DP speed up.

The difficulty here is that Hassin and Tamir’s approach cannot be made online because
most DP speed-up techniques such as those in [10] are inherently static. The best that can
be done using their approach is to totally recompute the DP matrix entries from scratch
at each step using O(kn) time per step.5

Later, Auletta et al. [3] studied kML in the special case of unit lengths, i.e., xi+1 = xi+1
for all i , and no start-up costs, i.e., ci = 0 for all i . Being unaware of Hassin and Tamir’s
results they developed a new technique for solving the problem which enabled them to
add a new point in amortized O(k) time, leading to an O(kn)-time algorithm for the
static problem.

The major contribution of this paper is to bootstrap off of Auletta et al.’s result to
solve online kML when (i) the points can have arbitrary distances between them and
(ii) start-up costs are allowed. In Section 2 we prove the following theorem.

5 Although not stated in [6] it is also possible to reformulate their DP formulation in terms of finding row-
minima in k n × n totally monotone matrices and then use the SMAWK algorithm [1]—which finds the
row-minima of an n × n totally monotone matrix in O(n) time—to find an O(kn) solution. This was done
explicitly in [11] for a similar problem. Unfortunately, the SMAWK algorithm is also inherently static, so this
approach also cannot be extended to solve the online problem.
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The k-Coverage on a Line Problem (kCL)

In addition to the requirements of kML, each node xj is also given a coverage radius
rj . It is covered by a k-placement S if dj (S) ≤ rj . In that case, the service cost for xj

is zero. Otherwise, the service cost is wj . The cost of S is then

cost(S) =
∑
xi∈S

ci +
n∑

j=1

wj Ij (S),

where

Ij (S) =
{

0 if dj (S) ≤ rj ,

1 if dj (S) > rj .

The k-coverage on a line problem (kCL) is to find a k-placement S minimizing
cost(S). Online kCL is defined similarly to online kML.

Fig. 3. The k-coverage on a line problem.

THEOREM 1. We can solve the online k-median on a line problem in O(k) amortized
and O(k log n) worst-case time per update. These time bounds hold simultaneously.

A variant of kML is the k-coverage problem (kCL) where the cost of servicing customer
xj is zero if it is closer than rj to a service center, or wj otherwise. See Figure 3 for the
exact definition of kCL and Figure 4 for an illustration.

Hassin and Tamir [6] showed how to solve static kCL in O(n2) time (independent of
k), again using the quadrangle inequality/concavity property. In Section 3 we restrict
ourselves to the special case of uniform coverage, i.e., there is some r > 0 such that
rj = r for all j . In this situation we can use a similar (albeit much simpler) approach as
in Section 2 to maintain optimal partial solutions S as points are added to the right of
the line. In Section 3 we prove the following theorem.

THEOREM 2. We can solve the online k-coverage on a line problem with uniform cov-
erage in O(k) amortized and O(k log n) worst-case time per update. These time bounds
hold simultaneously.

2. The k-Median Problem

2.1. Notations and Preliminary Facts. In the online k-median problem we start with
an empty line and, at each step, append a new node to the right of all of the previous
nodes. So, at step m we will have m points:

x1 < x2 < · · · < xm

and when adding the (m + 1)st point we have xm < xm+1. Each node xj will have a
weight wj , and a start-up cost cj associated with it. At step m, the task is to pick a set S
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Fig. 4. k-Coverage on a line example. The data are taken from the example in Section 3.1. Each node is drawn
at its x-coordinate with a vertical bar and a circle. The length of the vertical bar illustrates the start-up cost,
and the area of the circle corresponds to the weight. The optimal locations of resources are indicated by si

(1 ≤ i ≤ k). The six figures show the optimal locations when the number of nodes is five or six and the
number of resources k ranges from one to three, respectively.

of at most k nodes from x1, x2, . . . , xm that minimizes

cost(S) =
∑
xi∈S

ci +
m∑

j=1

wj dj (S).(1)

Our algorithm actually keeps track of 2k median placements for every step. The first
k placements will be optimal placements for exactly i resources, for 1 ≤ i ≤ k. More
specifically, let

OPTi (m) = min
S⊆Vm , |S|=i

(∑
xi∈S

ci +
m∑

j=1

wj dj (S)

)
.

We will see later how to compute efficiently all the OPTi (m) values during step m. Once
the OPTi (m) values are calculated, they will be kept for the rest of the algorithm.

The remaining k placements are called pseudo-optimal placements. These are optimal
placements under the constraint that xm must be one of the chosen resources. That is,
for i = 1, . . . , k,

POPTi (m) = min
S⊆Vm , |S|=i

xm∈S

(∑
xi∈S

ci +
m∑

j=1

wj dj (S)

)
.
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In particular, note that if i = 1, then S = {xm} and

POPT1(m) = cm +
m−1∑
j=1

wj (xm − xj ).(2)

As with OPTi (m), all of these values are computed in step m and, once computed, will
be kept for the rest of the algorithm. Optimal and pseudo-optimal placements are related
by the following straightforward equations.

LEMMA 1.

OPTi (m) = min
1≤ j≤m

(
POPTi ( j)+

m∑
l= j+1

wl · d( j, l)

)
,(3)

POPTi (m) = min
1≤ j≤m−1

(
OPTi−1( j)+

m−1∑
l= j+1

wl · d(l,m)

)
+ cm,(4)

where d( j, l) = xl − xj is the distance between xj and xl .

PROOF. In (3) index j corresponds to the choice of location of the rightmost median.
Given that the rightmost median is at location j,POPTi ( j) is the best way of servicing all
of the nodes x1, . . . , xj and

∑m
l= j+1wl ·d( j, l) is the cost of servicing nodes xj+1, . . . , xm

(using node j).
In (4) we assume that there is a median at node m. Index j is the rightmost node that

is not serviced by node m so OPTi−1( j) is the best way of servicing nodes x1, . . . , xj

using the remaining i − 1 medians while
∑m−1

l= j+1wl · d(l,m) is the cost of servicing
nodes xj+1, . . . , xm (using node m).

Denote by MINi (m) the index j at which the “min” operation in (3) achieves its
minimum value and by PMINi (m) the index j at which the “min” operation in (4)
achieves its minimum value. When computing the OPTi (m) and POPTi (m) values the
algorithm will also compute and keep the MINi (m) and PMINi (m) indices.

The optimum cost we want to find is OPT = min1≤i≤k(OPTi (n)).6 It is not difficult
to see that, knowing all values of OPTi (m), MINi (m), POPTi (m), and PMINi (m) for
1 ≤ i ≤ k, 1 ≤ m ≤ n, we can unroll the equations in Lemma 1 in O(k) time to find the
optimal set S of at most k medians that yields OPT . So, maintaining these 4nk variables
suffices to solve the problem.

A straightforward calculation of the minimizations in Lemma 1 permits calculating
the value of POPTi (m) from those of OPTi−1( j) in O(m) time and the value of OPTi (m)
from those of POPTi ( j) in O(m) time. This permits a DP algorithm that calculates all
of the OPTi (m) and POPTi (m) values in O

(
k
∑n

m=1 m
) = O(kn2) time, solving the

problem. Section 2.6 provides a worked example of OPTi ( j) and POPTi ( j) values and
how they provide a solution.

6 Note that the optimum might not be OPTk(n). That is, the start-up costs might be so expensive that it can
sometimes be cheaper not to use all k allowed vertices. Section 2.6 provides a concrete example of this.
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As discussed in the previous section, this is very slow. The rest of this section is
devoted to improving this by an order of magnitude; developing an algorithm that, at
step m for each i , will calculate the value of POPTi (m) from those of OPTi−1(m) and
the value of OPTi (m) from those of POPTi (m) in O(1) amortized time and O(log n)
worst-case time.

2.2. The Functions Vi ( j,m, x) and V ′i ( j,m, x). As mentioned, our algorithm is ac-
tually an extension of the algorithm in [3]. In that paper the authors defined two sets of
functions which played important roles. We start by rewriting those functions using a
slightly different notation which makes it easier to generalize their use. For all 1 ≤ i ≤ k
and 1 ≤ j ≤ m define

Vi ( j,m, x) = POPTi ( j)+
m∑

l= j+1

wl · d( j, l)+ x · d( j,m).(5)

For all 1 ≤ i ≤ k and 1 ≤ j ≤ m − 1 define

V ′i ( j,m, x) = OPTi−1( j)+
m−1∑

l= j+1

wl · d(l,m)+ x ·
m−1∑

l= j+1

wl .(6)

Then Lemma 1 can be written as

OPTi (m) = min
1≤ j≤m

Vi ( j,m, 0),(7)

POPTi (m) = min
1≤ j≤m−1

V ′i ( j,m, 0)+ cm .(8)

The major first point of departure between this section and [3] is the following lemma,
which basically says that Vi ( j,m, x) and V ′i ( j,m, x) can be computed in constant time
when needed. This will permit us to design an algorithm that works efficiently online.

LEMMA 2. Suppose we are given

W (m) =
m∑

l=1

wl and M(m) =
m∑

l=1

wl · d(1, l).

Then, given the values of POPTi ( j), the function Vi ( j,m, x) can be evaluated at any x
in constant time. Similarly, given the values of OPTi−1( j), the function V ′i ( j,m, x) can
be evaluated at any x in constant time.

PROOF. We first examine Vi ( j,m, x). We already know POPTi ( j) so we only need to
compute the terms

m∑
l= j+1

wl · d( j, l)+ x · d( j,m).

It is easy to verify that

m∑
l= j+1

wl · d( j, l) = [M(m)− M( j)]− [W (m)−W ( j)] · d(1, j)
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which can be computed in constant time. For V ′i ( j,m, x), we also only need to compute

m−1∑
l= j+1

wl · d(l,m)+ x ·
m−1∑

l= j+1

wl .

However,

m−1∑
l= j+1

wl · d(l,m) = [W (m − 1)−W ( j)] · d(1,m)− [M(m − 1)− M( j)]

and
m−1∑

l= j+1

wl = W (m − 1)−W ( j)

which can both be computed in constant time.

In the next two subsections we will see how to use this lemma to calculate POPTi ( j)
and OPTi ( j) efficiently.

2.3. Computing OPTi (m). We start by explaining how to maintain the values of
OPTi (m). Our algorithm uses k similar data structures to keep track of the k sets of
OPTi (m) values, for 1 ≤ i ≤ k. Since these k structures are essentially the same we
fix i and consider how the i th data structure permits the computation of the values of
OPTi (m) as m increases.

2.3.1. The Data Structures. Recall (5). Consider the m functions Vi ( j,m, x) for 1 ≤
j ≤ m. They are all linear functions in x so the lower envelope of these functions is a
piecewise linear function to which each Vi ( j,m, x) contributes at most one
segment.

We are only interested in OPTi (m) = min1≤ j≤m Vi ( j,m, 0) (7) which is equivalent to
evaluating this lower envelope at x = 0. In order to update the data structure efficiently,
though, we will see that we need to store the entire lower envelope for x ≥ 0. We store
the envelope by storing the changes in the envelope.

More specifically, our data structure for computing the values of OPTi (m) consists
of two arrays:

�i (m) = (δ0, δ1, . . . , δs)(9)

and

Zi (m) = (z1, . . . , zs),(10)

such that

if δh−1 < x +W (m) < δh, then Vi (zh,m, x) = min
j≤m

Vi ( j,m, x).(11)

The reasons for the shift term W (m) =∑m
l=1wl will become clear later. Since we only

keep the lower envelope for x ≥ 0, we have δ0 ≤ W (m) < δ1.
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An important observation is that the slope of Vi ( j,m, x) is d( j,m) which decreases
as j increases, so we have z1 < · · · < zs and zs = m at step m. In particular, note that
V (m,m, x), which is the rightmost part of the lower envelope, has slope 0 = d(m,m)
and is a horizontal line.

Given this data structure, computing the value of OPTi (m) becomes trivial. We simply
have MINi (m) = z1 and OPTi (m) = Vi (z1,m, 0).

2.3.2. Updating the Data Structures. After all of the setup this subsection is the heart of
the algorithm and explains why the algorithm is efficient. Assume that the data structure
given by (9)–(11) is storing the lower envelope after step m and, in step m + 1, point
xm+1 is added. We now need to recompute the lower envelope of Vi ( j,m + 1, x), for
1 ≤ j ≤ m + 1 and x ≥ 0. Note that in step m we have m functions

{Vi ( j,m, x): 1 ≤ j ≤ m}

but we now have m + 1 functions

{Vi ( j,m + 1, x): 1 ≤ j ≤ m + 1}.

If we only consider the lower envelope of the first m functions Vi ( j,m + 1, x) for
1 ≤ j ≤ m, then the following lemma guarantees that the two arrays �i (m) and Zi (m)
do not change.

LEMMA 3. Assume Vi (zh,m, x) minimizes Vi ( j,m, x) for 1 ≤ j ≤ m when δh−1 <

x +W (m) < δh . Then Vi (zh,m + 1, x) minimizes Vi ( j,m + 1, x) for 1 ≤ j ≤ m when
δh−1 < x +W (m + 1) < δh .

PROOF. It is easy to verify that for 1 ≤ j ≤ m,

Vi ( j,m + 1, x) = Vi ( j,m, x + wm+1)+ (x + wm+1) · d(m,m + 1).

Since δh−1 < x + W (m + 1) < δh iff δh−1 < (x + wm+1) + W (m) < δh , the above
formula is minimized when j = zh .

This lemma is the reason for defining (9)–(11) as we did with the shift term instead of
simply keeping the breakpoints of the lower envelope in �i (m). Note that the lemma
does not say that the lower envelope of the functions remains the same (this could not
be true since all of the functions have been changed). What the lemma does say is
that the structure of the breakpoints of the lower envelope is the same after the given
shift.

Now, we consider Vi (m + 1,m + 1, x). As discussed in the previous subsection,
Vi (m + 1,m + 1, x) is the rightmost segment of the lower envelope and is a horizontal
line. So, we only need to find the intersection point between the lower envelope of
Vi ( j,m + 1, x) for 1 ≤ j ≤ m and the horizontal line y = Vi (m + 1,m + 1, x).
Assume they intersect at the segment Vi (zmax,m + 1, x). Then Zi (m + 1) becomes
(z1, . . . , zmax,m + 1), and �i (m + 1) changes correspondingly.
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We can find this point of intersection either by using a binary search or a sequential
search. The binary search would require O(log m) worst-case comparisons between
y = Vi (m + 1,m + 1, x) and the lower envelope. The sequential search would scan the
array Zi (m) from right to left, i.e., from zs to z1, discarding segments from the lower
envelope until we find the intersection point of y = Vi (m + 1,m + 1, x) with points
on the lower envelope. The sequential search might take 	(m) time in the worst case
but only uses O(1) in the amortized case since lines thrown off the lower envelope will
never be considered again in a later step.

In both methods a comparison operation requires being able to compare the constant
Vi (m+ 1,m+ 1, x) with Vi ( j,m+ 1, x) for some j and some arbitrary value m. Recall
from Lemma 2 that we can evaluate Vi ( j,m+ 1, x) at any particular x in constant time.
Thus, the total time required to update the lower envelope is O(log m) worst case and
O(1) amortized.

To combine the two bounds we perform the sequential and binary search alternately,
i.e., we use sequential search in odd-numbered comparisons and binary search in even-
numbered comparisons. The combined search finishes when the intersection value is
first found. Thus, the running time is proportional to the one that finishes first and we
achieve both the O(1) amortized time and the O(log m) worst-case time.

Since we only keep the lower envelope for x ≥ 0, we also need to remove from
Zi (m + 1) and �i (m + 1) the segments corresponding to negative x values. Set zmin =
max{zh : δh−1 < W (m + 1) < δh}. Then Zi (m + 1) should be (zmin, . . . , zmax,m + 1),
and �i (m + 1) should change correspondingly.

To find zmin, we also use the technique of combining sequential search and binary
search. In the sequential search we scan from left to right, i.e., from z1 to zs . The combined
search also requires O(1) amortized time and O(log m) worst-case time.

2.4. Computing POPTi (m). In the previous section we showed how to update
the values of OPTi (m) by maintaining a data structure that stores the lower enve-
lope of Vi ( j,m, x) and evaluating the lower envelope at x = 0, i.e., OPTi (m) =
min1≤ j≤m Vi ( j,m, 0). In this section we show how, in a very similar fashion, we can
update the values of POPTi (m) by maintaining a data structure that stores the lower
envelope of V ′i ( j,m, x). We can then use (8) to find

POPTi (m) = cm + min
1≤ j≤m−1

V ′i ( j,m, 0),

i.e., evaluating the lower envelope at x = 0 and adding cm .
As before we will be able to maintain the lower envelope of V ′i ( j,m, x), 1 ≤ j ≤

m − 1, in O(1) amortized time and O(log m) worst-case time. The data structure is
almost the same as the one for maintaining Vi ( j,m, x) in the previous section so we
only quickly sketch the ideas.

As before the algorithm uses k similar data structures to keep track of the k lower
envelopes; for our analysis we fix i and consider the data structures for maintaining the
lower envelope of V ′i ( j,m, x) (and thus POPTi (m)) as m increases.

2.4.1. The Data Structures. By their definitions in (6) the m−1 functions V ′i ( j,m, x),
for 1 ≤ j ≤ m − 1, are all linear functions, so their lower envelope is a piecewise linear
function to which each Vi ( j,m, x) contributes at most one segment.
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As before, in order to compute the values of POPTi (m), we only need to know the
value of the lower envelope at x = 0 but, in order to update the structure efficiently, we
need to store the entire lower envelope.

Our data structures for computing the values of POPTi (m) consist of two arrays:

�′i (m) = (δ′0, δ′1, . . . , δ′s)(12)

and

Z ′i (m) = (z′1, . . . , z′s),(13)

such that

if δ′h−1 < x + d(1,m) < δ′h, then V ′i (z
′
h,m, x) = min

j≤m−1
V ′i ( j,m, x).(14)

Since we only keep the lower envelope for x ≥ 0, we have δ′0 ≤ d(1,m) < δ′1. Since the
slopes (

∑m−1
l= j+1wl) of V ′i ( j,m, x) decrease when j increases, we have z′1 < · · · < z′s

and z′s = m − 1 at step m. In particular, note that V ′(m − 1,m, x), the rightmost part of
the lower envelope, has slope 0 and is a horizontal line.

Given such data structures, computing the value of POPTi (m) becomes trivial. We
simply have PMINi (m) = z′1 and POPTi (m) = cm + V ′i (z

′
1,m, 0).

2.4.2. Updating the Data Structures. Given the lower envelope of V ′i ( j,m, x), for
1 ≤ j ≤ m − 1 at step m we need to be able to recompute the lower envelope of
V ′i ( j,m + 1, x), for 1 ≤ j ≤ m after xm+1 is added.

As before, we first deal with the functions V ′i ( j,m + 1, x) for 1 ≤ j ≤ m − 1, and
then later add the function V ′i (m,m + 1, x).

If we only consider the functions V ′i ( j,m + 1, x) for 1 ≤ j ≤ m − 1, we have an
analogue of Lemma 3 for this case that guarantees that the two arrays�′i (m) and Z ′i (m)
do not change.

LEMMA 4. Assume V ′i (z
′
h,m, x)minimizes V ′i ( j,m, x) for 1 ≤ j ≤ m−1 when δ′h−1 <

x + d(1,m) < δ′h . Then V ′i (z
′
h,m + 1, x) minimizes V ′i ( j,m + 1, x) for 1 ≤ j ≤ m − 1

when δ′h−1 < x + d(1,m + 1) < δ′h .

PROOF. It is easy to verify that for 1 ≤ j ≤ m − 1,

V ′i ( j,m + 1, x) = V ′i ( j,m, x + d(m,m + 1))+ (x + d(m,m + 1)) · wm+1.

Since δ′h−1 < x + d(1,m + 1) < δ′h iff δ′h−1 < (x + d(m,m + 1))+ d(1,m) < δ′h , the
above formula is minimized when j = z′h .

Since V ′i (m,m+ 1, x)must be the rightmost segment of the lower envelope, we only
need to find the intersection point between the lower envelope of V ′i ( j,m + 1, x) for
1 ≤ j ≤ m−1 and the line y = V ′i (m,m+1, x). Assume they intersect at the segment of
V ′i (z

′
max,m+1, x). Then Z ′i (m+1) becomes (z′1, . . . , z′max,m), and�′i (m+1) changes

correspondingly.
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We again use both a binary and a sequential search to find z′max, alternating between
the steps of the two. The binary search requires O(log m) time in the worst case. The
sequential search scans the array Z ′i (m) from right to left and requires O(1) time amor-
tized time. The total search therefore requires O(1) amortized and O(log m) worst-case
time per step (simultaneously).

Since we only keep the lower envelope for x ≥ 0, we also need to remove from
Z ′i (m + 1) and �′i (m + 1) the segments corresponding to negative x values. Set z′min =
max{z′h : δ′h−1 < d(1,m + 1) < δ′h}; then Zi (m + 1) should be (z′min, . . . , z′max,m),
and �′i (m + 1) should change correspondingly. Also, z′min can be found by a combined
binary/sequential search in both O(1) amortized and O(log m)worst-case time per step
(simultaneously).

2.5. The Algorithm. Given the data structures developed in the previous section the
algorithm is very straightforward. After nodes x1 < x2 < · · · < xm have been processed
in step m the algorithm maintains:

• W ( j) =∑ j
l=1wl and M( j) =∑ j

l=1wl · d(1, l), for 1 ≤ j ≤ m.
• For 1 ≤ i ≤ k , the data structures described in Sections 2.3.1 and 2.4.1 for storing

the lower envelopes minj≤m Vi ( j,m, x) and minj≤m−1 V ′i ( j,m, x).
• For 1 ≤ i ≤ k and 1 ≤ j ≤ m, all of the values OPTi ( j), POPTi ( j) and corresponding

indices MINi ( j), PMINi ( j).

After adding xm+1 with associated values wm+1 and cm+1 the algorithm updates its data
structures by:

• Calculating W (m+1) = W (m)+wm+1 and M(m+1) = M(m)+wm+1d(1,m+1)
in O(1) time.
• Updating the 2k lower envelopes as described in Sections 2.3.2 and 2.4.2 in O(log m)

worst-case and O(1) amortized time (simultaneously) per envelope.
• For 1 ≤ i ≤ k, calculating OPTi (m+1) = minj≤m+1 Vi ( j,m+1, 0) and POPTi (m+

1) = cm +minj≤m V ′i ( j,m + 1, 0) in O(1) time each.

Thus, in each step, the algorithm uses, as claimed, only a total of O(k log n)worst-case
and O(k) amortized time (simultaneously).

The algorithm above only fills in the DP table. However, given the values OPTi ( j),
POPTi ( j) and the corresponding indices MINi ( j), PMINi ( j) one can construct the
optimal set of medians in O(k) time so this fully solves the problem and finishes the
proof of Theorem 1.

2.6. A k-Median Example. We show an example for illustration. n = 9 is the total
number of nodes, and k = 3 is the maximum number of resources. The x-coordinates
of the nine nodes are 0, 5, 7, 10, 12, 13, 55, 72, 90. The start-up costs cj of the nodes are
5400, 2100, 3100, 100, 0, 9900, 8100, 7700, 13,000, and the weights wj are 14, 62, 47,
51, 35, 8, 26, 53, 14.

Tables 1–4 show the values of OPT , MIN, POPT and PMIN, respectively. From these
tables we can see that the optimal placement of three resources to cover all nine points
is to place two resources at x4 and x5 (and do not use the third resource).
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Table 1. The values of OPTi (m).

m

i 1 2 3 4 5 6 7 8 9

1 5,400 2,170 2,264 691 761 785 1,955 5,241 6,337
2 - 7,500 5,270 2,364 691 699 1,817 4,997 6,089
3 - - 10,600 5,370 2,364 2,372 3,490 6,670 7,762

Figure 5 shows the functions V2( j, 8, x) and V2( j, 9, x). If m = 8, the two ar-
rays for the lower envelope are Z2(8) = (5, 8) and �2(8) = (296, 361.5,+∞). If
m = 9, the two arrays for the lower envelope are Z2(9) = (5, 8, 9) and �2(9) =
(310, 361.5, 669.4,+∞). As we can see, the intersection point of line 5 and line 8 in
the upper part of Figure 5 shifts to the left by w9 when we add x9 in the next step (lower
half of the figure), i.e., from 65.6 to 51.5. Actually, all intersection points will shift the
same amount when a new node is added. That is why the partitioning value 361.5 does
not change in the arrays �2(8) and �2(9) (361.5 = 65.5+W (8) = 51.5+W (9)).

3. The k-Coverage Problem. In this section we describe how to solve online kCL
with uniform coverage, i.e., to maintain a k-placement S minimizing

cost(S) =
∑
xi∈S

ci +
n∑

j=1

wj Ij (S),

where

Ij (S) =
{

0 if dj (S) ≤ r,
1 if dj (S) > r

as m grows, where r is some fixed constant. As we will see, this problem has a simpler
DP solution than the k-median problem, albeit one with a similar flavor.

In what follows we say that xj is covered by a point in S if dj (S) ≤ r . For a point xj ,
let covj denote the index of the smallest of the points x1, . . . , xj covered by xj , and let
uncj be the index of the largest of the points x1, . . . , xj not covered by xj :

covj = min{i : i ≤ j and r + xi ≥ xj } and

uncj = max{i : i < j and r + xi < xj }.

Table 2. The values of MINi (m).

m

i 1 2 3 4 5 6 7 8 9

1 1 2 2 4 4 4 4 4 5
2 - 2 3 4 5 5 5 5 5
3 - - 3 4 5 5 5 5 5
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Table 3. The values of POPTi (m).

m

i 1 2 3 4 5 6 7 8 9

1 5,400 2,170 3,322 691 939 11,048 18,362 22,093 32,721
2 - 7,500 5,270 2,364 691 10,626 8,885 8,927 15,649
3 - - 10,600 5,370 2,364 10,591 8,799 8,841 15,563

Note that xuncj is the point to the left of xcovj , i.e., uncj = covj − 1 if this point exists.
The points that can cover xj are exactly the points in [xcovj , xj ]. As before, let OPTi (m)
denote the minimum cost of an i-cover for the first m points x1, . . . , xm , for i = 1, . . . , k.
If all start-up costs ci are zero, we can iteratively, for m = 1, . . . , n, compute the value
of OPTi (m) as

OPTi (m) = min
{
OPTi (m − 1)+ wm,OPTi−1(unccovm )

}
,(15)

for i = 1, . . . , k. The first term in the minimum accounts for the possibility that the
new point xm is not covered in the optimal solution OPTi (m). The second term is the
minimum cost if xm is covered, because in this case we can assume that the service center
covering xm is located at covm (it cannot be cheaper to place it further to the right) and
thus covers all of the points between xunccovm

(not included) and xm . Computing covm

and uncm, the point to its left takes time O(log n) in the worst case, but only constant
amortized time over all iterations. (Once covj and uncj are known for all j ≤ m, unccovm

itself can be calculated in constant time.) Thus, the time per iteration to compute all the
values OPTi (m), 1 ≤ i ≤ k, is O(k) amortized and O(k + log n) worst case.

If the costs ci are not all zero, then (15) becomes the two-step recurrence:

OPTi (m) = min

{
wm + OPTi (m − 1) , min

covm≤ j≤m
POPTi ( j)

}
,(16)

POPTi (m) = cm + min
uncm≤ j≤m−1

OPTi−1( j).(17)

POPTi (m) is the minimum cost of covering x1, . . . , xm if xm is one of the resources.
The first term in the minimum of (16) corresponds to the possibility that xm is not
covered; the second term to the possibility that xm is covered. It ranges over all possible
covers.

Table 4. The values of PMINi (m).

m

i 1 2 3 4 5 6 7 8 9

1 - - - - - - - - -
2 - 1 2 3 4 4 6 6 6
3 - - 2 3 4 5 6 6 6
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Fig. 5. Functions V2( j, 8, x), for j = 2, . . . , 8, and V2( j, 9, x), for j = 2, . . . , 9. The lines are labeled by j .
The thick lines are the lower envelopes.
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In order to solve the problem in an online fashion we need to be able to cal-
culate the values of OPTi (m) and POPTi (m) efficiently at step m when processing
xm . We have already seen that it is possible to maintain covj and uncj for j ≤ m
in O(1) amortized and O(log m) worst-case time per step. The only hard part that
remains would be calculating mincovm≤ j≤m POPTi ( j) and minuncm≤ j≤m−1 OPTi−1( j)
efficiently for each i as m increases. We only show how to calculate the values of
mincovm≤ j≤m POPTi ( j). Calculating the values of minuncm≤ j≤m−1 OPTi−1( j) can be
done similarly. Let yj = POPTi ( j) and lm = covm . Then the problem can be re-
stated as follows: maintain min{yj : lm ≤ j ≤ m} as m increases under the constraint
that lm ≤ lm+1.

We can do this by keeping the sequential list of the right-to-left minimum (RTLM)
sequence of Ym = {yj : lm ≤ j ≤ m}. A point yj is an RTLM of sequence y1, y2, . . . , yt

if ys ≥ yj for all s ≥ j . For example, the RTLM of sequence (6, 8, 2, 5, 14, 12, 10, 15)
is (2, 5, 10, 15). Note that an RTLM sequence is monotonically increasing. Given the
RTLM of a sequence, the full sequence’s minimum value can be calculated in constant
time; it is simply the first entry in the RTLM sequence.

Along with the RTLM sequence we also need to keep the indices corresponding
to the original location of the RTLM entries in the original sequence. For example, if
(6, 8, 2, 5, 14, 12, 10, 15) is our original sequence with y1 = 6 and y8 = 15 then we will
keep the corresponding indices (3, 4, 7, 8) along with the RTLM sequence (2, 5, 10, 15).
Note that the indices sequence is also monotonically increasing. The operations that we
need to perform to maintain our data structure are to update the RTLM sequence when
(a) adding a new item ym+1 to the right of Ym and (b) deleting ylm , . . . , ylm+1−1 from the
left of Ym .

When a new item ym+1 is added to the right of a sequence its RTLM sequence is
updated by (i) discarding all of the current RTLM values not smaller than ym+1 and then
(ii) appending ym+1 to the right of the RTLM sequence.

Since the RTLM sequence is monotonically increasing this can be done either by
sequentially scanning the RTLM sequence from right to left, discarding all items not
smaller than ym+1 until an item smaller than ym+1 is found, or by using a binary search
to find the first item in the RTLM sequence smaller than ym+1 and then chopping off
everything in the RTLM sequence after it. Once an item is discarded from the RTLM
sequence it never returns, so sequentially discarding uses O(1) amortized time per update
(but can be arbitrarily bad in the worst case). The binary search method requires O(log m)
worst-case time. We can therefore alternate steps between the two methods (as described
in the k-median algorithm of the previous section) to get O(1) amortized time and
O(log m) worse-case time simultaneously.

Deleting items ylm , . . . , ylm+1−1 from the left of Ym is even easier. All that needs to be
done is to find the first index in the RTLM sequence which is not smaller than ylm+1 and
chop off everything to the left of this index. Again, this can be done in O(1) amortized
time per update using a sequential scan from the left or an O(log m) worst-case time
binary search. Combining the two gives O(1) amortized time and O(log m) worse-case
time simultaneously.

We have just seen that we can update the RTLM sequence of Ym to the RTLM sequence
of Ym+1 in O(1) amortized time and O(log m) worse-case time simultaneously. Once
we have done this we can calculate the OPTi (m + 1) values in O(1) time. We need to
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do this for each i , 1 ≤ i ≤ m, so the entire update operation uses O(k) amortized time
and O(k log m) worse-case time simultaneously.

As we mentioned before, the values of POPTi (m) can be calculated similarly in O(k)
amortized time and O(k log m) worse-case time per update. This finishes the proof of
Theorem 2.

3.1. A k-Coverage Example. We show an example to illustrate the k-coverage algo-
rithm. n = 9 is the total number of nodes, and k = 3 is the maximum number of
resources. The x-coordinates of the nine nodes are 2, 4, 49, 64, 74, 87, 90, 94, 99. The
set-up costs cj of the nodes are 29, 68, 59, 7, 88, 49, 89, 76, 66. The weights wj are 97,
17, 14, 76, 31, 46, 34, 1, 33, and the radius r is 20.

Tables 5–8 show the values of OPT , MIN, POPT , and PMIN, respectively. From these
tables, we can see that the optimal placement when m = 9 is to place three resources at
x1, x4, and x6.

Table 9 shows the changes of the RTLM sequence for POPT3( j) as m increases. For
example, the RTLM sequence is (85, 112) when m = 8, and it changes to (85, 102)
when x9 was added.

4. Conclusion and Open Problems. In this paper we discussed how to solve the
online k-median on a line problem in O(k) amortized time and O(k log n) worst-case
time per point addition. This algorithm maintains in the online model the DP speed-up
for the problem that was first demonstrated for the static version of the problem in [6].
The technique used is a generalization of one introduced in [3]. We also showed how a
simpler form of our approach can solve the online k-coverage on a line problem with
uniform coverage radius in the same time bounds. It is not clear how to extend our ideas
to the nonuniform coverage radius case.

A major open question is how to solve the dynamic k-median and k-coverage on a
line problem. That is, points will now be allowed to be inserted (or deleted!) anywhere
on the line and not just on the right-hand side. In this case would it be possible to
maintain the k-medians or k-covers any quicker than recalculating them from scratch each
time?

We would also like to propose a simpler extension of the problem, the two-sided
online k-median (and k-coverage) problem. In this extension, nodes can be added both
to the left and right of the existing nodes, not just to the right. While initially this might
sound like an easy extension there are reasons for believing that it will be much more
complex than the one-sided online problem studied in this paper. Essentially, the problem
studied in this paper was to fill in the O(kn)-sized DP table given by Lemma 1. Adding
new points to the right of the line added O(k) new entries to the table but did not change
any of the old entries. This dynamic program is known in advance to possess special
properties, i.e., the quadrangle inequality/concavity, that permits solving it quickly, e.g.,
[6]. What we did in this paper was to find a way to maintain this DP speed up while
calculating the O(k) new values.

Being able to add points to both sides of the line could totally change all of the	(kn)
entries in the table. A DP approach would therefore require updating all 	(kn) entries,
requiring 	(kn) time. Since we can solve the static problem in O(kn) time it therefore
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Table 5. The values of OPTi (m).

m

i 1 2 3 4 5 6 7 8 9

1 29 29 43 119 121 167 201 202 235
2 - 97 88 36 36 82 116 117 150
3 - - 156 95 95 85 85 85 85

Table 6. The values of MINi (m).

m

i 1 2 3 4 5 6 7 8 9

1 1 1 1 1 4 4 4 4 4
2 - 1 3 4 4 4 4 4 4
3 - - 3 4 4 6 6 6 6

Table 7. The values of POPTi (m).

m

i 1 2 3 4 5 6 7 8 9

1 29 68 173 121 216 253 293 280 301
2 - 97 88 36 131 168 208 195 187
3 - - 156 95 124 85 125 112 102

Table 8. The values of PMINi (m).

m

i 1 2 3 4 5 6 7 8 9

1 - - - - - - - - -
2 - 1 2 2 3 4 4 4 5
3 - - 2 3 4 4 4 4 5

Table 9. The changes of the RTLM sequences for POPT3( j) as nodes are added.∗

j 1 2 3 4 5 6 7 8 9
POPT3( j) - - 156 95 124 85 125 112 102
m covm

3 3 156
4 3 95
5 4 95 124
6 5 85
7 5 85 125
8 5 85 112
9 6 85 102

∗The shaded regions are the intervals [covm ,m], where the RTLM sequences is considered. The values of
POPT3( j) are shown if it is a right-to-left minimum in the RTLM sequence.
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appears that we could not use a DP approach for efficiently updating the two-sided online
k-median problem and would therefore have to find a totally different technique.
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