
Math. Meth. Oper. Res. (2006) 63: 543–551
DOI 10.1007/s00186-005-0053-1

ORIGINAL ARTI CLE

Martin Gavalec · Ján Plavka

Computing an eigenvector of a Monge matrix
in max-plus algebra

Received: 15 October 2003 / Accepted: 15 January 2005 / Published online: 29 April 2006
© Springer-Verlag 2006

Abstract The problem of finding one eigenvector of a given Monge matrix A in a
max-plus algebra is considered. For a general matrix, the problem can be solved in
O(n3) time by computing one column of the corresponding metric matrix �(Aλ),
where λ is the eigenvalue of A. An algorithm is presented, which computes an
eigenvector of a Monge matrix in O(n2) time.
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1 Introduction

The problem of computing one eigenvector of a given Monge matrix A in a max-
plus algebra is considered in this note. The problem is equivalent to computing
the maximal weights of paths from all vertices to a fixed vertex j in the associated
digraph DA, and, in the general case, it can be solved in O(n3) time by computing
the j -th column of the metric matrix �(Aλ), Cuninghame-Green (1979). We pres-
ent a faster algorithm for Monge matrices, using techniques known in the area of
efficiently solvable cases of the TSP and other problems.
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An analogous problem of finding the minimal weights of all paths ending in
the last vertex n in a Monge digraph, can be solved in O(n2) time by a standard
dynamic algorithm based on an O(n) algorithm proposed by Wilber (1988). How-
ever, this result does not help to compute an eigenvector of a Monge matrix, where
maximal weights are needed. In general, the maximal-weight paths problems in
Monge graphs are more difficult than the minimal-weight ones (see the survey
article of Burkard, Klinz and Rudolf (1996)).

We show in this paper how the computation of one eigenvector of a Monge
matrix can be done in O(n2) time. The main idea of our approach lies in reducing
the considered paths between two nodes in DA to paths of a special form, so called
spirals.

2 Notions and notation

By a max-plus algebra we understand the algebraic structure (G, ⊕, ⊗) = (R�,
max, +) , where G = R� is the set of all real numbers R extended by an infinite
element −∞, and ⊕, ⊗ are the binary operations on R: ⊕ = max and ⊗ = +. The
infinite element is neutral with respect to the maximum operation and absorbing
with respect to addition.

All the results presented in this paper for the max-plus algebra (R�, max, +)
are valid also for the more general notion of max-plus algebra, in which (G, ⊕, ⊗)
is derived in a similar way from an arbitrary divisible commutative linearly ordered
group in additive notation. In the case of general G, the neutral element e ∈ G of
the additive group must be used instead of 0 ∈ R.

For any natural n > 0, we denote N = { 1, 2, . . . , n }. Further, we denote by Gn

the set of all n × n matrices over G. The matrix operations over the max-algebra
G are defined with respect to ⊕, ⊗, formally in the same manner as the matrix
operations over any field. The operation ⊗ for matrices denotes the formal matrix
product with operations ⊕ = max and ⊗ = + replacing the usual operations +, ·,
while the operation ⊕ for matrices is performed componentwise. The problem of
finding a vector x ∈ Gn and a value λ ∈ G satisfying

A ⊗ x = λ ⊗ x

is called an extremal eigenproblem corresponding to the matrix A, the value λ is
called (extremal) eigenvalue, and x is called (extremal) eigenvector of A. The word
“extremal" is usually omitted. A survey of the results concerning various types of
eigenproblems can be found in Zimmermann (1981).

The associated digraph DA of a matrix A ∈ Gn is defined as a complete arc-
weighted digraph with the vertex set V = N , and with the arc weights w(i, j) = aij

for every (i, j) ∈ N ×N . If p is a path or a cycle in DA, of length r = |p|, then the
weight w(p) is defined as the sum of all weights of the arcs in p. If r > 0, then the
mean weight of p is defined as w(p)/r . Of all the mean weights of cycles in DA, the
maximal one is denoted by λ(A). By Cuninghame-Green in Cuninghame-Green
(1979), the maximal cycle mean λ(A) is the unique eigenvalue of A. The problem
of finding the eigenvalue λ(A) has been studied by a number of authors and several
algorithms are known for solving this problem. The algorithm described by Karp
(1978) has the worst-case performance O(n3).
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ForB ∈ Gn we denote by�(B) the matrixB⊕B2⊕· · ·⊕Bn whereBs stands for
the s-fold iterated product B ⊗B ⊗· · ·⊗B. Further, we denote Aλ = −λ(A)⊗A
(here we have a formal product of a scalar value −λ(A) and a matrix A, i.e.
[Aλ]ij = −λ(A) + aij for any (i, j) ∈ N × N ). It is shown in Cuninghame-Green
(1979) that the matrix �(Aλ) contains at least one column, the diagonal element
of which is 0 and every such a column is an eigenvector (so called: fundamental
eigenvector) of the matrix A. Moreover, every eigenvector of A can be expressed
as a linear combination of fundamental eigenvectors.

Let be �(Aλ) = (δij ). It follows from the definition of �(Aλ) that δij is the
maximal weight of a path from i to j in DAλ

. Hence, �(Aλ) can be computed
in O(n3) time, using the Floyd-Warshall algorithm Lawler (1976). In this way, a
complete set of fundamental eigenvectors can be found by at most O(n3) opera-
tions. However, if we wish to compute only one single eigenvector of A, no better
algorithm than O(n3) is known for matrices of a general type. In the special case,
when the matrix A is Monge, the above computations can be performed in a more
efficient way.

Definition 2.1 We say that a matrix A = (aij ) ∈ Gn is Monge if and only if

aij + akl ≤ ail + akj for all i < k, j < l

Similarly, we say that a matrix A = (aij ) ∈ Gn is inverse Monge if and only if

aij + akl ≥ ail + akj for all i < k, j < l

It has been shown in Gavalec and Plavka (2003) that the eigenvalue λ(A) of
a Monge matrix can be found in O(n2) time (in O(n) time for an inverse Monge
matrix). In the rest of this paper, we shall show that the computation of a single
eigenvector of a Monge matrix can also be performed in O(n2) time.

3 Spiral paths

In the following we will make use of the notions of peaks and valleys known from
the theory of special cases of the TSP to describe specially stuctured paths in the
digraph DA. We say that a node ik in a path p = (i0, i1, . . . , ir ) is a peak in p, if the
incoming arc (ik−1, ik) is increasing and the outgoing arc (ik, ik+1) is decreasing,
i.e. if ik−1 < ik and ik > ik+1. If p is not a cycle, i.e. if i0 �= ir , then for k = 0
(k = r), the first (second) condition is left out. The notion of a valley in p is defined
dually. A pyramidal tour can be characterized by the requirement that node 1 is the
only valley and node n is the only peak. Pyramidal tours are useful in well-solv-
able cases of hard combinatorial problems, such as the TSP (see the survey article
Burkard et al. (1998)). Other interesting results were found by Russian mathemati-
cians Aizenshtat and Kravchuk (1968); Aizenshtat and Maksimovich (1978, 1979)
using the key property that every node is a valley or a peak. For our purpose, we
use a similar notion of a spiral path (shortly: a spiral).

Definition 3.1 We say that an elementary path p = (i0, i1, . . . , ir ) in DA is a
spiral, if and only if
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(i) Every node in p is either a peak or a valley, and the peaks and the valleys
alternate.

(ii) The subsequence of peaks and the subsequence of valleys are dually monoto-
nous, i.e. one of them is increasing and the other one is decreasing.

We say that a spiral is convergent, if the peak subsequence in the spiral is decreas-
ing, and the valley subsequence is increasing. In the dual case, the spiral is called
divergent. The set of all convergent spirals from node i to node j is denoted by
Sc(i, j), and the set of all divergent spirals from i to j is denoted by Sd(i, j).

By the above definition, every spiral path p in DA of length > 1 is either con-
vergent, or divergent. Paths of length 0 (one node) or 1 (one arc) in DA are the
only spirals, which are both convergent and divergent. The following picture shows
an example of a convergent and of a divergent spiral. The vertices 1, 2, . . . , n of
the digraph DA are identified with the diagonal elements of the matrix A and the
circles on the arcs indicate the corresponding matrix elements.
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p = (2, 7, 3, 5, 4) ∈ Sc(2, 4) p′ = (5, 3, 6, 1) ∈ Sd(5, 1)

Further, we say that a pair of arcs (ik, ik+1), (il, il+1) in a pathp = (i0, i1, . . . , ir )
is reducible, if and only if the inequalities

ik < il and ik+1 < il+1 or,

ik > il and ik+1 > il+1

hold true. Lemma 3.1 shows that the reducible pairs of arcs are closely connected
with spiral paths.

Lemma 3.1 An elementary path p in DA is a spiral if and only if p contains no
reducible pair of arcs.

Proof First, let p be a spiral and let us assume that p contains a reducible pair
of arcs (ik, ik+1), (il, il+1) fulfilling the inequalities ik < il and ik+1 < il+1 (the
reversed inequalities are handled analogously). Without any loss of generality, we
may assume that k < l, i.e. k+1 ≤ l. If k+1 = l, then ik < ik+1 = il < il+1 holds,
and the node ik+1 = il is neither peak nor valley, which contradicts to condition (i)
in Definition 3.1. For k + 1 < l, we shall consider two cases.

case 1. Nodes ik, il are of the same type. Then both nodes ik+1, il+1 also have
the same type, which is dual to the type of nodes ik, il . In other words, if ik, il are
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valleys, then nodes ik+1, il+1 are peaks, and conversely. In both alternatives, the
inequalities ik < il and ik+1 < il+1 are in contradiction to condition (ii).

case 2. Nodes ik, il are of different types. Then nodes ik+1, il+1 are of different
(dual) types. In particular, if ik is a valley and il is a peak, then ik+1 is a peak
and il+1 is a valley, and then the inequalities ik < ik+1 < il+1 < il hold true.
In the dual situation, when ik is a peak and il is a valley, we get the inequalities
ik+1 < ik < il < il+1. In both alternatives, the inequalities imply ik < il+1 and
ik+1 < il , a contradiction to (ii).

Second, let the path p contain no reducible pair of arcs. We shall show that
conditions (i), (ii) in Definition 3.1 are satisfied. If ik is a node in p which is neither
peak nor valley, then the inequalities ik−1 < ik < ik+1, or ik−1 > ik > ik+1, hold
true. Therefore, the arcs (ik−1, ik), (ik, ik+1) form a reducible pair in p, a contradic-
tion. Hence, every node in p must be either a peak, or a valley. As two consecutive
peaks (or valleys) in a path are not possible, we get condition (i).

Condition (ii) is trivially fulfilled, if |p| < 3, i.e. if p contains at most three
nodes. Let |p| ≥ 3 and let ik−1, ik, ik+1, ik+2 be four consecutive nodes in p. Let
us suppose that the inequalities ik−1 < ik+1 and ik < ik+2 hold true. Then the arcs
(ik−1, ik), (ik+1, ik+2) form a reducible pair, in contradiction to our assumption. By
an analogous argument, the inequalities ik−1 > ik+1 and ik > ik+2 cannot hold
simultaneously.

Thus, of any four consecutive nodes in p, the first and third node are ordered in
the opposite direction than the second and fourth one. As a consequence, either the
subsequence of the nodes with the odd indices is increasing and the subsequence of
the nodes with the even indices is decreasing, or conversely. Therefore, condition
(ii) holds true. 	

Theorem 3.2 If A = (aij ) ∈ Gn is a Monge matrix over a max-plus algebra G,
and if λ(A) = 0, then any non-diagonal element of the matrix �(A) = (δij ) can
be expressed in the form

δij = max { w(p); p ∈ Sc(i, j) ∪ Sd(i, j) } for i �= j

Proof It is shown in Cuninghame-Green (1979) that under the assumptionλ(A) = 0,
the matrix �(A) is the metric matrix of the digraph DA, i.e. any element δij with
i �= j is equal to the maximal weight of a path from i to j . By the assumption
λ(A) = 0, the weight of any cycle is non-positive. Therefore, the computation of
δij can be restricted to elementary paths, simply reducing any non-elementary path
by clipping out all of its subcycles.

If an elementary path p = (i0, i1, . . . , ir ) from i = i0 to j = ir is not a spiral,
then, by Lemma 3.1, p contains a reducible pair of arcs (ik, ik+1), (il, il+1) with
ik < il and ik+1 < il+1. If we substitute these arcs in p by (ik, il+1), (il, ik+1), then,
in view of the Monge property, the total weight of the used arcs will not decrease.
It is easy to see, that then the path p splits into a shorter subpath p′ from i to j
and a cycle c. Namely, we may assume without any loss of generality, that k < l,
i.e. k + 1 ≤ l. Then the path p can be expressed in the form of a concatenation
of subpaths and arcs as follows p = s(1)(ik, ik+1)s

(2)(il, il+1)s
(3). Some of the

subpaths s(1), s(2), s(3) may be of length zero, e.g. |s(2)| = 0, if k + 1 = l. By
the above mentioned substitution of arcs, we get a subpath p′ = s(1)(ik, il+1)s

(3)

and a cycle c = (il, ik+1)s
(2). As the cycle-weight w(c) is non-positive, we have

w(p′) ≥ w(p′) + w(c) ≥ w(p).
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Thus, in a search for the maximal weight of an elementary path from i to j ,
the non-spiral paths may be left out of consideration. By the remark following
Definition 3.1, every spiral path p of length > 1 is either convergent, or divergent,
and every path of length 0 or 1 (one-node or one-arc path) is a spiral, which is
both convergent and divergent. Therefore, it is sufficient to consider only paths
p ∈ Sc(i, j) ∪ Sd(i, j). 	


4 Computing an eigenvector

In this section we suggest an algorithm for computing one eigenvector of a given
Monge matrix A over a max-plus algebra in O(n2) time.

Theorem 4.1 There is an algorithm A which, for a given Monge matrix A ∈ Gn

over a max-plus algebra G, computes an eigenvector of A in O(n2) time.

Remark 4.1 Theorem 4.1 can also be used for any matrix which can be permuted
to a Monge form by a simultaneous permutation of rows and columns. This can be
tested by a modified algorithm of Deineko and Filonenko (1979). In the positive
case, the algorithm finds a permutation φ such that the permuted matrix Aφ is
Monge. The simultaneous permutation on rows and columns does not change the
eigenvalue λ(A) = λ(Aφ). Moreover, the inverse permutation φ−1 transforms any
eigenvector of Aφ into an eigenvector of A.

Proof As we have mentioned in section 2, it is sufficient to compute the eigen-
value λ(A), then to take the matrix Aλ = −λ(A) ⊗ A, find a diagonal element in
�(Aλ) with weight δjj = 0 (such an element always exists) and compute the j -th
column of the metric matrix �(Aλ). Any column vector x computed in this way is
an eigenvector of both Aλ and A.

For computing the j th column of the metric matrix �(Aλ), the algorithm A
uses the formula given in Theorem 3.2.

It was proved in Gavalec and Plavka (2003) that the eigenvalue λ(A) and the
matrix Aλ can be computed in O(n2) time. Moreover, it was shown that all the
diagonal elements of the metric matrix �(Aλ), which have the weight δjj = 0, are
found during the computation of λ(A).

In the remaining part of the proof we shall write A instead of Aλ, i.e. we assume
that λ(A) = 0. It follows from the first paragraph of the proof, that this can be
done without any loss of generality. Further, we assume that an index j ∈ N with
δjj = 0 has been obtained. The algorithm A is based on a dynamic programming
approach. It consists of two parts: the algorithm Ac computes the maximal weights
of all convergent spiral paths from i to j , for all i ∈ N and the algorithm Ad does
the same for the divergent spiral paths.

The maximal weights of convergent spirals are computed in the state vari-
ables u(i), i ∈ N , with the notation u(k)(i) for the value of u(i) in the kth run
of the recursion cycle, k ∈ { 0, 1, . . . , n }. Similarly, we use state variables v(i)
and notation v(k)(i) for the maximal weights of divergent spirals. Let us denote
Mk := 〈j − k, j + k〉 ∩ N . We remark that 〈j − k, j + k〉 is the notation for the
closed interval with the lower bound j −k and the upper bound j +k. This notation
is used below as well. The recursion rules in Part I assure that the algorithm Ac
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computes, for i ∈ Mk , the values

u(k)(i) = max{ w(p); p ∈ Sc(i, j) } (1)

and, for i ∈ N − Mk , the values

u(k)(i) = max{ w(p); p ∈ Sc(i, j), the first arc in p is ending in Mk } (2)

Similarly, the recursion rules in Part II assure that the algorithm Ad computes, for
i ∈ Mk , the values

v(k)(i) = max{ w(p); p ∈ Sd(i, j) } (3)

and, for i ∈ N − Mk , the values

v(k)(i) = max{ w(p); p ∈ Sd(i, j), the first arc in p is ending in Mk } (4)

We shall prove later that the recursive algorithm described below works cor-
rectly. As a consequence, the values max

(
u(k)(i), v(k)(i)

)
, i ∈ N for any k, k ≥ n,

give the j -th column of the metric matrix �(Aλ), i.e. an eigenvector of Aλ.
Part I – algorithm Ac

1. Initialization (k = 0): u(j) := 0 and u(i) := aij for every i ∈ N, i �= j .

2. For k = 1, 2, 3, . . . , the steps 3 – 5 below are repeated until j − k ≤ 1, or
j + k ≥ n.

3. Set u+ := u(j + k + 1), u− := u(j − k − 1),

u(j + k + 1) := max
(
u+, aj+k+1,j−k−1 + u− )

u(j − k − 1) := max
(
u−, aj−k−1,j+k+1 + u+ )

4. For i = j + k + 2, j + k + 3, . . . , n, set u� := u(i),

u(i) := max
(
u�, ai,j−k−1 + u(j − k − 1)

)

u(j − k − 1) := max
(
u(j − k − 1), aj−k−1,i + u�

)

5. For i = j − k − 2, j − k − 3, . . . , 1, set u� := u(i),

u(i) := max
(
u�, ai,j+k+1 + u(j + k + 1)

)

u(j + k + 1) := max
(
u(j + k + 1), aj+k+1,i + u�

)

Part II – algorithm Ad

1. Initialization (k = 0): v(j) := 0 and v(i) := aij for every i ∈ N, i �= j .

2. For k = 1, 2, 3, . . . , the steps 3 – 8 below are repeated until j − k ≤ 1 and
j + k ≥ n.
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3. If j − k ≤ 1, then steps 4 – 5 are omitted.

4. Set v(j − k − 1) := max
(
v(j − k − 1), aj−k−1,1 + v(1)

)
.

5. For i = 2, 3, . . . , j − k − 2, set v� := v(i),

v(i) := max
(
v�, ai,j−k−1 + v(j − k − 1)

)

v(j − k − 1) := max
(
v(j − k − 1), aj−k−1,i + v�

)

6. If j + k ≥ n, then steps 7 – 8 are omitted.

7. Set v(j + k + 1) := max
(
v(j + k + 1), aj+k+1,n + v(n)

)
.

8. For i = n − 1, n − 2, . . . , j + k + 2, set v� := v(i),

v(i) := max
(
v�, ai,j+k+1 + v(j + k + 1)

)

v(j + k + 1) := max
(
v(j + k + 1), aj+k+1,i + v�

)

It is easy to see that the computational complexity of both parts of the algorithm
A is O(n2).

In the rest of the proof, we show that the algorithms Ac, Ad work properly.
In other words, we shall prove that the conditions (1), (2) are preserved by the
algorithm Ac and the conditions (3), (4) are preserved by Ad .

At step 1, both algorithms do, in principle, the same. We have k = 0 and
M0 = {j}. The equation (1) is satisfied by the output of the algorithm Ac in the
first run with k = 0, because then the only elementary path (and also the only
convergent spiral) from j to j is the zero-length path consisting of a single node
j . The value of this path is equal to 0 (sum of the empty set of its arc-values). The
equation (2) is also satisfied, because for every i ∈ N − M0, i.e. for i �= j , the
only elementary path from i to j , with its first arc ending in M0, is the one-arc path
(i, j), the weight of which is equal to aij . It can be verified in a similar way that
the equations (3), (4) are fulfilled by the output values v(0)(i), i ∈ N , given by the
algorithm Ad .

At further steps, the work of algorithms in Parts I and II is formally different,
but the main idea remains the same. We shall now analyze the run of Ac in Part I
in more detail. The condition tested in step 2 indicates when the computation of
the output vector u is finished. If j − k ≤ 1, then every node i ∈ N with i ≤ j
belongs to Mk (and its value u(k)(i) is final, by the equation (1)). Therefore, for
every i ∈ N − Mk , the inequality j + k < i must hold, and in every convergent
spiral p = (i0, i1, . . . , ir ) from i = i0 to j = ir , the first arc (i0, i1) ends in a node
i1 satisfying 1 ≤ i1 ≤ j , i.e. in Mk . Thus, in view of equation (2), the value u(k)(i)
is final, and the computation stops. A similar argument is used for the condition
j + k ≥ n.

Step 3 is entered only if 1 < j − k and j + k < n. Then the nodes j + k + 1
and j − k − 1 will be prepared for being added to Mk . For this purpose, the old
values u(k)(j + k + 1), u(k)(j − k − 1) are stored in temporary variables u+, u−
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and new values u(k+1)(j − k − 1), u(k+1)(j + k + 1) are computed in step 3 and
later repeatedly updated by the recursions in steps 4 and 5. The recursions use
a temporary variable u� to store the old values u(k)(i) while computing the new
values u(k+1)(i) for i > j + k + 1 and for i < j − k − 1 and while updating
the above mentioned values for i = j + k + 1 and i = j − k − 1. The formulas
used in steps 3 – 5 easily follow from equations (1), (2) and from Definition 3.1.
Namely, before we add j + k + 1 and j − k − 1 to Mk in the process of creating
Mk+1, we have to ensure that equation (1) is satisfied for i = j + k + 1 and for
j − k − 1 (from the previous run of Ac we only know that j + k + 1 and j − k − 1
fulfill equation (2)). The value u(k)(j + k + 1) must be modified by considering
the weights w(p) for all paths p ∈ Sc(j + k + 1, j) the first arc of which is not
ending in Mk . Hence the first arc must be ending either in j − k − 1, or in some
vertex i = j − k − 2, j − k − 3, . . . , 1 (in view of Definition 3.1, further arcs of
the considered closed spiral p lie in Mk). The first case is considered in step 3 and
the second case in step 5. The value u(k)(j + k + 1) is processed analogously in
steps 3 and 4.

When the computation in steps 3 – 5 is complete, then equations (1) and (2)
hold for all i ∈ Mk+1 (i ∈ N −Mk+1). Thus, the recursion continues with the value
of k increased by 1.

We have shown that the algorithm Ac in Part I gives the desired result. The cor-
rectness proof of Ad in Part II works quite analogously with slight changes implied
by the difference between the concepts of convergent and divergent spirals. 	
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