
Journal of Combinatorial Optimization 2, 333–350 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

The Travelling Salesman Problem on Permuted
Monge Matrices

RAINER E. BURKARD, VLADIMIR G. DEĬNEKO∗ AND GERHARD J. WOEGINGER
TU Graz, Institut für Mathematik B, Steyrergasse 30, A-8010 Graz, Austria

Received March 19, 1997; Revised October 29,1997

Abstract. We consider traveling salesman problems (TSPs) with a permuted Monge matrix as cost matrix where
the associated patching graph has a specially simple structure: a multistar, a multitree or a planar graph. In the
case of multistars, we give a complete, concise and simplified presentation of Gaikov’s theory. These results are
then used for designing anO(m3+mn) algorithm in the case of multitrees, wheren is the number of cities and
m is the number of subtours in an optimal assignment. Moreover we show that for planar patching graphs, the
problem of finding an optimal subtour patching remains NP-complete.

Keywords: travelling salesman problem, subtour patching, combinatorial optimization, computational com-
plexity

1. Introduction

A classical problem in combinatorial optimization is thetravelling salesman problem (TSP):
givenn cities and the distancesci j between them, find a shortest tourφ through all cities.
More formally, the TSP can be stated as minimizing the function

F(φ) :=
n∑

i=1

ciφ(i)

whereφ is a cyclic permutation of the set{1, 2, . . . ,n}. We will refer toF(φ) ascostof the
permutationφ. For further results on travelling salesman problems see the excellent book
of Lawler et al. (1985).

Since the TSP is NP-hard, many efforts have been made in investigating special cases
which allow a polynomial solution procedure. In most cases such special cases rely on
special structures of the underlying distance matrix. In our case we consider permuted
Monge matrices as distance matrices. An(n× n)matrixC= (ci j) is called aMonge-matrix
or distribution matrix, if

cik + cjl ≤ cil + cjk for all 1≤ i < j ≤ n, 1≤ k< l ≤ n (1)

∗University of Warwick, Warwick Business School, Coventry CV4 7AL, United Kingdom.

334 BURKARD, DEĬNEKO AND WOEGINGER

The matrixC= (ci j) is called apermuted Monge-matrixor permuted distribution matrix,
if there is a permutationρ of the rows and a permutationσ of the columns ofC such that

Cρσ = (cρ(i),σ (j)) is a Monge matrix.

Since the numbering of the cities does not play any role we can assume in the following
thatρ is the identical permutationε.

Permuted Monge matrices arise in the following context, see e.g., Burdyuk and Trofimov
(1976): Let f :R2→R be a function with constant second differences, i.e.,

f (x +1x, y+1y)+ f (x, y)− f (x +1x, y)− f (x, y+1y)

has constant sign for all1x,1y > 0. Moreover, letu= (u1, . . . ,un) and(v1, . . . , vn) be
two real vectors withn components. Then the matrixC= (ci j) defined byci j = f (ui , v j)

is a permuted Monge matrix. In particular, everyproduct matrix(ui v j) is of this form.
Given an arbitrary matrixC= (ci j), it can be tested inO(n2) time whetherC is a permuted
Monge matrix or not. Deineko and Filonenko (1979) designed anO(n2) algorithm for
finding the permutationsρ andσ which makeC Monge, if this is possible. For further
results on Monge matrices and related topics see the recent survey of Burkard et al. (1996).

The TSP with a Monge matrix as a cost matrix can easily be solved via dynamic pro-
gramming or via a greedy algorithm. In this case there exists an optimal tour which is
pyramidal. Let us number the cities by 1, 2, . . . ,n. A tour is calledpyramidal, if starting in
city 1 the cities are first visited according to increasing numbers until cityn is reached, and
then they are visited according to decreasing numbers. For example, the tour〈1, 2, 5, 7, 6,
4, 3〉 is pyramidal. Optimal pyramidal tours can be determined inO(n2) steps, see e.g., the
survey article of Gilmore et al. (1985). On the other hand, Sarvanov (1980) showed that
the TSP with product matrices as cost matrices is NP-hard. Since every product matrix is
a permuted Monge matrix, Sarvanov’s result implies that the TSP with permuted Monge
matrices as cost matrices is NP-hard in general. Gilmore and Gomory (1964), however,
exhibited an important special case of permuted Monge matrices which still allows a poly-
nomial solution routine. They developed a strategy, calledsubtour patchingwhich was
later generalized by Burdyuk and Trofimov (1976).

In Section 2 we sketch the theory of subtour patching and introduce the so-calledpatching
graph. The main problem will be to determine a certain spanning tree of the patching graph
that has minimum weight with respect to a nonstandard weight function. This spanning tree
yields an optimal solution for the underlying TSP. Section 3 gives a complete and concise
description and solution of a closely related covering problem. We simplify and streamline
Gaikov’s (1980) original analysis which is rather involved and only available in Russian.
In Section 4, we consider the case where the patching graph is amultistar. In Section 5, we
treat the case that the patching graph is amultitreeand design a new fast algorithm which
runs by a factor ofO(n3) faster than Gaikov’s original algorithm. We mentioned above that
the TSP is NP-hard for product matrices which implies NP-completeness of the problem
with arbitrary patching graphs. In Section 6 it is shown that the problem is even NP-hard,
if the patching graph is planar. The paper is closed with a discussion in Section 7.

TRAVELLING SALESMAN PROBLEM 335

2. The theory of subtour patching

2.1. Permutations

Let us first introduce some notations concerning permutations. A permutationφ is a one-
to-one mapping of{1, 2, . . . ,n} onto itself. Let i1, i2, . . . , i r be pairwise distinct ele-
ments of{1, 2, . . . ,n}. If φ(i k)= i k+1 for k= 1, 2, . . . , r − 1, j 6= k, andφ(i r)= i1, then
〈i1, i2, . . . , i r 〉 is called afactor or subtourof the permutationφ. A permutation is called
cyclic or a tour, if it has only one factor. A factor of the form〈i 〉 is called trivial . A
permutation which has only one nontrivial factor of the form〈 j, k〉 is called atransposition.
We will denote such transpositions by (j, k). A transposition is calledadjacent, if it is of
the form (j, j + 1).

If both φ andψ are permutations on{1, 2, . . . ,n}, then their composition (often writ-
ten as product) is denoted byφ ◦ ψ and defined byφ ◦ ψ(i)=φ(ψ(i)) for 1 ≤ i ≤ n.
φ ◦ ψ is again a permutation. Recall that the product of two transpositions is a non-
commutative operation, if they have a common index. Otherwise it is commutative. The
following proposition can be viewed as an illustration of this observation, see e.g., Gilmore
et al. (1985).

Proposition 2.1. The set of all permutations that can be obtained by multiplying adjacent
transpositions(1, 2), (2, 3), . . . , (n− 1, n) is exactly the set of all pyramidal tours.

2.2. Graphs

Now let us turn to graphs. In undirected graphs, edges between two verticesv1, v2 ∈ V are
denoted by [v1, v2]. In directed graphs, arcs that go from vertexv1 to vertexv2 are denoted
by (v1, v2). (From the context there will be no confusion with transpositions which are also
written as pairs).

In an undirected graphG= (V, E), with vertex setV and edge setE an alternating
sequencev0, e1, v1, e2, . . . ,ep, vp of verticesvi ∈V and edgesei ∈ E is called apath if
ei = [vi−1, vi] ∈ E for 1≤ i ≤ p. If additionallyvi 6= v j holds wheneveri 6= j , the sequence
is asimple path. G is called amultigraph, if several edges may connect the same pair of
vertices. If we replace all those edges by just a single one, we get theunderlying simple
graph. A multigraphG= (V, E) is called amultipath(multistar, multitree, respectively)
if the underlying simple graph is a path (star, tree, respectively). An undirected multigraph
G= (V, E) with edge setE={e1, e2, . . . ,em} is aEulerianmultigraph if we can number
the edges such that the edge sequencee1, e2, . . . ,em forms a path.

2.3. The patching graph

Let a permuted Monge matrixC= (ci j) be the distance matrix of a TSP and letσ be
a permutation such that(ciσ(j)) is a Monge matrix. Then the corresponding assignment
problem with cost matrixC has the permutationσ as optimal solution. If the permutation

336 BURKARD, DEĬNEKO AND WOEGINGER

Figure 1. GraphGσ for σ =〈1 3〉〈2 4 5〉〈6 8 10〉〈7〉〈9〉.

σ has only one factor, it is a tour and therefore also an optimal solution for the TSP. So we
assume for the following thatσ consists ofr ≥ 2 subtoursσk, i.e. σ = σ1 ◦ σ2 ◦ · · · ◦ σr .

Now thepatching graph Gσ = (V, E) is constructed in the following way. Every vertex
v ∈ V corresponds to a subtour of the permutationσ . Every edge inE corresponds to an
adjacenttransposition(i, i +1), namely, if indexi occurs in the subtourσ j (corresponding
to vertexσ j) and index(i + 1) occurs in the subtourσk (corresponding to vertexσk), then
the two verticesσ j andσk are connected by the edge corresponding to(i, i + 1). This
construction yields a connected Eulerian multigraph with at most(n− 1) edges.

For instance, letσ = σ1 ◦ σ2 ◦ σ3 ◦ σ4 ◦ σ5=〈1 3〉〈2 4 5〉〈6 8 10〉〈7〉〈9〉 . For this permu-
tationσ the graphGσ in figure 1 is a multitree with five vertices and eight edges. We denote
an edge corresponding to the adjacent transposition(i, i + 1) by i .

2.4. Subtour patching

A basis for subtour patching is the following result.

Proposition 2.2 (Gilmore and Gomory, 1964). Let T={(i1, i1+1), . . . , (i r−1, i r−1+1)}
be the edge set of a spanning tree in the graph Gσ . Then the permutationσ ◦ (i1, i1+ 1) ◦
· · · ◦ (i r−1, i r−1+ 1) is a cyclic permutation.

The composition ofσ with adjacent transpositions corresponds to patching subtours
which results in a tour. Let us explain this by the example given above. Choose the
transpositions (1, 2), (5, 6), (6, 7) and (8, 9) as edges of the spanning treeT in Gσ . Due
to the discussion prior to Proposition 2.1 there are in our case two possibilities to patch
subtours inσ by using transpositions ofT , thus yielding two different cyclic permutations.
These are:

σ1 = σ ◦ (1, 2) ◦ (5, 6) ◦ (6, 7) ◦ (8, 9) = 〈1, 4, 5, 8, 9, 10, 6, 7, 2, 3〉

TRAVELLING SALESMAN PROBLEM 337

and

σ2 = σ ◦ (1, 2) ◦ (6, 7) ◦ (5, 6) ◦ (8, 9) = 〈1, 4, 5, 7, 8, 9, 10, 6, 2, 3〉.

Proposition 2.3 (Burdyuk and Trofimov (1976); Gilmore et al. (1985)). Let(ciσ(j)) be
a Monge matrix. For any cyclic permutationφ there exist a spanning tree T={(i1, i1+1),
. . . , (i r−1, i r−1 + 1)} in the graph Gσ and a sequenceτ for multiplying the transpositions
of T such that the permutationσT = σ ◦ (i τ(1), i τ(1) + 1) ◦ · · · ◦ (i τ(r−1), i τ(r−1) + 1) is a
cyclic permutation with F(σT) ≤ F(φ).

It follows from Proposition 2.3 that an optimal tour can be constructed by using a special
spanning treeT∗ of the graphGσ . Unfortunately, the problem of finding a suited (“optimal”)
spanning tree inGσ is NP-hard in general (Sarvanov, 1980). However, the problem can
be solved in polynomial time if the graphGσ has a special structure: For the case when
Gσ is a multipath, algorithms with complexityO(n3) for finding an optimal tree were
proposed by Sarvanov (1980) and Deineko (1979). Recently anO(n) algorithm for this
case was developed by Burkard and Deineko (1995). Gaikov (1980) improved the results
of Sarvanov on multipaths and considered alsomultistarsandmultitrees. In particular, he
addressed the problem which spanning tree has to be chosen and in which sequence the
adjacent transpositions are to be composed in order to get an optimal tour.

2.5. The minimum spanning tree problem with branches

According to the remarks prior to Proposition 2.1 the form of a permutationσT depends on
the sequenceτ which is used for multiplying the transpositions of the treeT . The natural
question arises to find a permutationτ that minimizes the differenceF(σT)− F(σ). This
can be done in the following way.

Let us divide the set of edges (transpositions) of the treeT into t (1≤ t ≤ r − 1) dense,
pairwise disjoint subsets:

I (i1, j1) := {(i1, i1+ 1), (i1+ 1, i1+ 2), . . . , (j1, j1+ 1)},
I (i2, j2) := {(i2, i2+ 1), (i2+ 1, i2+ 2), . . . , (j2, j2+ 1)},

. . .

I (i t , jt) := {(i t , i t + 1), (i t + 1, i t + 2), . . . , (jt , jt + 1)},
such that

T = I (i1, j1) ∪ I (i2, j2) ∪ · · · ∪ I (i t , jt) and jk + 1< i k+1 for k = 1, 2, . . . , t − 1.

In the example above the edge set of the treeT is divided into three subsets with

I (1, 1) = {(1, 2)}, I (5, 6) = {(5, 6), (6, 7)}, I (8, 8) = {(8, 9)}.

The arbitrary composition of transpositions of a dense set yields just one subtour (which
depends on the sequence in which the transpositions are composed). Thus, multiplying the

338 BURKARD, DEĬNEKO AND WOEGINGER

transpositions ofT in arbitrary order yieldst subtours, where each subtour corresponds to
a setI (i k, jk)(1 ≤ k ≤ t). If a permutationφ consists oft disjoint factorsφ1, φ2, . . . , φt ,

it is well-known (see Gilmore et al. (1985), Theorem 4) that

F(σ ◦ φ)− F(σ) =
t∑

i=1

(F(σ ◦ φi)− F(σ)) (2)

So an optimal sequenceτ of multiplying the transpositions ofT can be constructed by
finding an optimal sequence for each dense setI (i, j). According to Proposition 2.1 this
can be done by using techniques for constructing optimal pyramidal tours.

Letφ∗i j be the subtour corresponding to the setI (i, j)which is constructed by multiplying
transpositions ofI (i, j) in an optimal order. Define valueswi j as

wi j := F(σ ◦ φ∗i j)− F(σ). (3)

Then it follows immediately that

F(σT)− F(σ) =
t∑

k=1

wi k jk .

For a Monge matrix, all valueswi j for i = 1, 2, . . . ,n and j = i, . . . ,n can be computed
by using Park’s (1991) algorithm inO(n2) time. Note that the valueswi j do not depend
on the patching graph. Moreover, for particular patching graphs only few such values will
actually be needed. It can be shown (see e.g., Burkard et al., 1998) that these valueswi j

have the following property

wi j ≥ wik + wk+1, j for all i ≤ k < j .

This leads to the followingminimum spanning tree problem with branches(B-MST,
for short): LetG= (V, E) be a Eulerian multigraph withE={1, 2, . . . , r } where the edge
sequence 1, . . . , r forms a Eulerian path. The edgesi, i +1, . . . , j are called abranch[i, j]
with respect to some setE′ ⊆ E, if i − 1 /∈ E′ and j + 1 /∈ E′. For E′ ⊆ E, let Br(E′)
denote the set of all branches with respect toE′.

Letw be a weight function that assigns to every edge set{i, i +1, . . . , j }, 1≤ i ≤ j ≤ r ,
a nonnegative numberwi j and letw fulfill the property

wi j ≥ wik + wk+1, j for all i ≤ k < j . (4)

Thebranch weight(or b-weight) of E′ ⊆ E is defined by

w(E′) :=
∑

[i, j]∈Br(E′)

wi j .

Thebranch weight(b-weight) of a spanning tree T= (V, ET) of G isw(ET). The problem
B-MST consists in findind a spanning tree ofG with minimum b-weight.

TRAVELLING SALESMAN PROBLEM 339

In our application every vertex ofV corresponds to a subtour ofσ , the permutation
which makesC= (ci j) Monge. Every edgei (i = 1, 2, . . . , r) corresponds to an adjacent
transposition(i, i + 1). The edgei connects the vertex corresponding to the subtour
containing cityi with the vertex which corresponds to the subtour containing cityi + 1. If
both cities lie in the same subtour, we get a loop. Thus,G is the patching graph possibly
augmented by loops. Every branch of a spanning tree ofG corresponds to a maximal dense
subset of transpositions. The weightswi j are defined by (3). Finding a spanning tree with
minimum branch weight amounts in minimizing (2) and yields an optimal solution of the
underlying TSP.

3. Gaikov’s covering problem

In this section we consider an auxiliary problem in directed multigraphs which will help
us later to solve the minimum spanning tree problem with branches. LetH = (N, A) be
a directed multigraph. Some of the arcs inA are grouped into so-calledtwin-pairs: A
twin-pair consists of two arcsai andaj whereai = (vs, vt) andaj = (vt , vs) holds for some
vs, vt ∈ N, vs 6= vt . Every arc belongs to at most one twin-pair. Arcs that are not part of
any twin pair are calledsingle arcs. For B ⊆ A, letTwin(B) denote the set of all twin-pairs
contained inB, let Sing(B) denote the set of all non-loop single arcs inB (these arcs may
have a twin-brother inA but not inB), and letLoop(B) denote the set of all loops inB.

With every arca in A, we associate a non-negative weightg(a) and with every twin-pair
(ai ,aj) ∈ Twin(A), we associate a non-negative weightg(ai ,aj). TheGaikov weight(or
g-weight) of a subsetB ⊆ A is defined by

g(B) =
∑

(ai ,aj)∈Twin(B)

g(ai ,aj)+
∑

ak∈Sing(B)

g(ak)+
∑

al∈Loop(B)

g(al).

We say that every arc(vs, vt) ∈ A covers its target-vertexvt . A setB ⊆ A is anexact cover
for the directed graphH , if every vertex inN is covered by exactly one arc inB. It is easy
to see thatH possesses an exact cover if and only if each vertex inN has in-degree at least
one.

As an illustration for these definitions consider the directed multigraphH shown in
figure 2 with the set of arcsA={a1,a2,a3,a4,a5} and the set of twin-pairsTwin(A)=
{(a1,a2), (a3,a4)}. The set{a1,a2,a5} is an exact cover, while the setsA, {a1,a3,a5} and
{a1,a2} are not.

Figure 2. An illustration to Gaikov’s covering problem.

340 BURKARD, DEĬNEKO AND WOEGINGER

Lemma 3.1. Let H= (N, A) be a directed multigraph where every vertex has in-degree
at least one, and let g be a weight function on A and Twin(A). Then an exact cover B∗ for
H with minimum Gaikov weight can be computed in O(|A|2 log |A|) time.

Proof: The idea is to formulate the problem as a weighted matching problem in a related
undirected graphHu= (Nu, Au). To this end, letSdenote a very large number (e.g., twice
the sum of all arc weights and all twin-pair weights plus one). The undirected graphHu

contains all vertices inN, one additional vertex for every loop, for every single arc and for
every twin-pair inA. Now letai be a loop(vt , vt) or a single arc(vs, vt) in A that covers
vt and letw ∈ Nu be the vertex corresponding toai : ThenAu contains the undirected edge
[vt , w]; the weight of this edge is set tog(ai)− S. Next, consider a twin pairai = (vs, vt)

andaj = (vt , vs) in A and letw ∈ Nu denote the vertex corresponding to this pair: We
introduce the edges [vs, vt] with weight g(ai ,aj)− 2S, [vt , w] with weight g(ai)− S, and
[vs, w] with weight g(aj)− S.

It is easy to verify thatH possesses an exact cover with minimum Gaikov weightW if and
only if Hu contains a (not necessarily perfect) matching with minimum weightW− |V |S.
Since the number of vertices and the number of edges inHu both areO(|A|), applying
the fast weighted matching algorithm of Gabov (—) yields the claimedO(|A|2 log |A|)
algorithm (Gabov’s algorithm finds a minimum weight matching in a graph withn vertices
andm edges inO(n(m+ n logn)) time). 2

In the remaining part of this section, we describe Gaikov’s algorithm for multigraphs
whose weight function fulfills additionally the condition

g(ai)+ g(aj) ≤ g(ai ,aj) for all (ai ,aj) ∈ Twin(A). (5)

Lemma 3.2. Let H= (N, A) be a directed multigraph and let g be a weight function on
A and Twin(A), that fulfills condition(5). Then one can construct in O(|A|) time a simple
directed graph Hs= (N, As) and a weight function gs on As and Twin(As), that fulfills
condition (5) such that the following holds: The exact cover Bs with minimum Gaikov
weight for Hs and the exact cover B∗ with minimum Gaikov weight for H both have equal
weight, and B∗ can easily be computed from Bs.

Proof: The arc setAs is constructed as follows. For everyvt ∈ V , all loops(vt , vt) ∈ A
with the exception of the loop̀ with smallest weight are removed. The weightgs(`) of
this loop equalsg(`). For every two verticesvs, vt ∈V , let a1 be the cheapest arc anda2

be the second-cheapest arc fromvs to vt in A, and letb1 be the cheapest andb2 be the
second-cheapest arc going fromvt to vs. The arc setAs contains an arc(vs, vt)with weight
g(a1) and an arc(vt , vs) with weightg(b1). In casea1 andb1 are a twin-pair inA, they are
also a twin-pair inAs and the corresponding weight is defined by

gs(a1, b1) = min{g(a1, b1), g(a1)+ g(b2), g(a2)+ g(b1)}.

This completes the description ofAs andgs. It is easy to verify correctness of this construc-
tion: If the optimum coverB∗ for H covers a vertexvt by a loop or by an arc(vs, vt)where

TRAVELLING SALESMAN PROBLEM 341

(vt , vs) /∈ B∗, then it will obviously use the cheapest such arc. Otherwise,B∗ contains two
arcs(vs, vt) and(vt , vs). These are either the cheapest arcs of these types or (in case the
cheapest arcs form a twin-pair) the second cheapest ones. 2

For B ⊆ A, disregarding the orientation of its arcs and omitting multiple edges naturally
results in theunderlying undirectededge setUU(B) for B. An arc setB is calledconnected
iff UU(B) is connected. ByNB ⊆ N we denote the set of vertices that are incident toUU(B).

Observation 3.3. Let B be an exact cover for H= (N, A) and let C be a connected
component of B. Then C contains exactly one directed cycle(that possibly is a loop or
a twin-pair). If an arc (v, r) is removed from this directed cycle, the remaining arcs in
C\{(v, r)} form a directed out-tree with root r.

Next, we fix agreedy exact coverGREC⊆ A for H that contains for every vertexv ∈ N
a covering arc or covering loop with minimum weight. In general, GREC will not be the
exact cover with minimum Gaikov weight, as it may contain twin-pairs with high g-weight.

Observation 3.4. If the weights of H= (N, A) fulfill condition (5), then there exists
an exact cover B∗ with minimum Gaikov weight for H= (N, A) such thatUU(GREC) ⊆
UU(B∗).

Proof: Consider an exact coverB∗ with minimum Gaikov weight. Suppose thata1=
(vs, vt) ∈ GREC,a1 /∈ B∗ and(vt , vs) /∈ B∗. Let a3= (vu, vt) ∈ B∗ be the arc that covers
vt and leta4 denote the twin-brother ofa3 (in case it exists). By the definition of GREC,
g(a1) ≤ g(a3) and by condition (5),g(a3) + g(a4) ≤ g(a3,a4) holds. With this it is easy
to verify that(B∗\{a3})∪ {a1} has Gaikov weight at mostg(B∗). Repeating this exchange
procedure eventually yields a cover with the claimed property. 2

Observation 3.5. If the weights fulfill condition(5), then there exists a minimum weight
cover B∗ of the following form.
(i) For every connected component C ofGRECthat does not contain any twin-pair,C ⊆ B∗.

(ii) For every connected component C ofGREC that does contain a twin-pair, there exists
an arc(v, r) ∈ B∗ with r ∈ NC and a set AC ⊆ B∗\{(v, r)} such thatUU(AC)=UU(C)
and such that AC is a directed out-tree with root r.

Proof: Consider a minimum g-weight exact coverB∗ of H such thatUU(GREC) ⊆ UU(B∗)
that exists by Observation 3.4.

Proof of (i). SinceC does not contain any twin-pair,C is a minimum g-weight exact
cover forNC and|UU(C)| = |NC|. According to Observation 3.3, there exists a setAC ⊆
B∗ with UU(AC)=UU(C). Then|AC| ≥ |UU(AC)| = |UU(C)| = |NC| holds. ThereforeAC

covers exactlyNC and there are no other arcs inB∗ that coverNC. Hence, replacingB∗

by B∗\AC ∪ C yields the desired property, does not introduce any new twin-pairs and
consequently, does not increase the Gaikov weight.

Proof of (ii). As C contains a twin-pair,|UU(C)| = |NC| −1 and UU(C) is a tree.
According to Observation 3.3, there exists a setAC ⊆ B∗ with UU(AC)=UU(C) and

342 BURKARD, DEĬNEKO AND WOEGINGER

|AC| = |NC| − 1. This setAC covers all but one vertices inNC and hence, there must
exist an arc(v, r) ∈ B∗\AC that covers this remaining vertexr . Clearly, in order to cover
the vertices inNC\{r }, AC must be a directed out-tree rooted atr . 2

Based on the above observations, Gaikov designed the following algorithm for finding a
minimum g-weight exact cover under condition (5):

(Phase 1). Compute a greedy exact cover GREC for H . Let C0 be the union of all
connected components in GREC that do not contain a twin-pair, and letC1, . . . ,Ck be an
enumeration of the connected components that contain a twin-pair. For everyCi , i ≥ 1,
and for everyr ∈ NCi , let T(Ci , r) be the directed out-treeT with UU(T)=UU(Ci) that is
rooted atr and letW(Ci , r) be the overall weight of the arcs inT(Ci , r). In caseT(Ci , r)
is not a subgraph ofH , W(Ci , r) is set to+∞.

(Phase 2). Construct a new weighted directed multigraphH ′ with vertex setC0, . . . ,Ck,
arc setA′ and a weight functiong′ defined as follows: For every arca= (vs, vt) in A
that fulfills vt /∈ NC0, there is a corresponding arca′ in A′ going from the component
C(vs) that containsvs, to the componentC(vt) that containsvt . If C(vs) 6=C(vt) holds,
or if C(vs)=C(vt) and the twin-brother of arca is not contained inT(C(vt), vt), the
weight g′(a′) of this new arc equalsg(a) + W(C(vt), vt). Otherwise, ifC(vs)=C(vt)

and the twin-brothera− of a is contained inT(C(vt), vt), then arca′ receives weight
W(C(vt), vt)+ g(a,a−)− g(a−). Moreover, there is a loop of weight zero inA′ incident
to C0.

Next, we define the twin-pairs inH ′: Let ai = (vs, vt) andaj = (vt , vs) be a twin-pair in
H such thatC(vs) 6= C(vt). Then the new corresponding arcsa′i anda′j form a twin-pair
in H ′ with weight

g′(a′i ,a
′
j) = g′(a′i)+ g′(a′j)+ g(ai ,aj)− g(ai)− g(aj),

i.e., taking both arcsa′i anda′j into a cover increases the overall cost by the same amount
as takingai andaj into a cover.

(Phase 3). From the multigraphH ′, construct a simple graphH ′′ and a weight function
g′′ as described in Lemma 3.2. Recursively compute an exact coverB′′ with minimum
Gaikov weight forH ′′ with weightsg′′. From B′′, the corresponding exact coverB∗ with
minimum Gaikov weight forH is constructed as follows: First, all edges inC0 are put into
B∗. For a single arca′′ in B′′ that enters a componentCi with i ≥ 1, leta= (vs, vt) be the
corresponding arc inG. B∗ containsa and all arcs inT(Ci , vt).Twin pairs inB′′ are handled
similarly (the corresponding arcs inH are put intoB∗ and the concerned components are
oriented in an appropriate way).

The correctness of this procedure essentially follows from Lemma 3.2 and from Observa-
tions 3.4 and 3.5, and is easy to verify. For the time complexity, observe that computing the
connected components in (Phase 1) takesO(|N|+|A|) time by applying depth-first-search.
Computing the valuesW(Ci , r) can trivially be done inO(|Ci |2) time per component and
yields an overall time ofO(|N|2) for handling all components. The running time of (Phase 2)
is proportional to|A|. Every connected componentCi with 1≤ i ≤ k contains a twin-pair
and hence at least two vertices. This yields that the graphH ′′ that is treated in the recursion
in (Phase 3) hask ≤ |N|/2 vertices. Since after applying Lemma 3.2, there remain only

TRAVELLING SALESMAN PROBLEM 343

O(|N|2) arcs, the overall time complexityT(|N|, |A|) for treating a graphH = (N, A) is

T(|N|, |A|) ≤ T(|N|/2, |N|2/2)+ O(|A|),

which impliesT(|N|)=O(|N|2+|A|). Summarizing, we formulate the following theorem.

Theorem 3.6 (Gaikov, 1980). Let H= (N, A) be a directed graph where every vertex
has in-degree at least one, and let g be a weight function on A and Twin(A) that fulfills
condition(5). Then an exact cover B∗ for H with minimum Gaikov weight can be computed
in O(|N|2+ |A|) time.

We illustrate some aspects of Gaikov’s algorithm for the covering problem by the example
presented in figure 2. Suppose that a greedy exact cover GREC contains arcsa1, a4 and
a5. Since there are no twin-pairs in it, it is an exact cover with minimum Gaikov weight.
Suppose now that GRECcontains arcsa1, a2 anda3. That means that we look for an optimal
coverB? such that the underlying undirected graphUU(B?) contains the edges [v′1, v

′
2] and

[v′2, v
′
3]. According to Phase 2 a newweighted directed multigraphH ′ contains only one

vertex and five loopsa′1,a
′
2,a
′
3,a
′
4 anda′5. In order to compute e.g., weightg(a′1) it is

necessary to compute the overall weight of the arcs in the rooted tree with arcsa2 anda3.
Since this tree contains a twin-brother ofa1, we have

g(a′1) = g(a1,a2)+ g(a3).

Other weightsg are computed in a similar way:

g(a′2) = g(a′1), g(a′3) = g(a′4) = g(a3,a4)+ g(a2),

g(a′5) = g(a5)+ g(a2)+ g(a4).

The problem is solved after finding a loop with a minimal weight. The situation is a bit
more complicated if GRECcontains arcsa1, a2 anda5. For this particular case a new graph
H ′ contains two vertices, one arc and three loops (see figure 3) with the new weights

g(a′1) = g(a′2) = g(a1,a2), g(a′4) = g(a4)+ g(a2), g(a′0) = 0.

Figure 3. Illustration to the algorithm for the covering problem.

344 BURKARD, DEĬNEKO AND WOEGINGER

After removing one of the loopsa′1 or a′2 the algorithm has to be applied to the graphH ′

recursively.

4. Gaikov’s algorithm for multistars

In this section, we sketch Gaikov’s algorithm for computing a spanning tree with minimum
branch weight onmultistars. The main idea is to translate the problem of computing a spa-
nning tree with minimum b-weight into an equivalent problem of computing an exact cover
with minimum g-weight in a related directed multigraph.

Theorem 4.1. Let G= (V, E) be a Eulerian multistar with E={1, 2, . . . , r } where the
edge sequence1, . . . , r forms a Eulerian path. Letw be a weight function on the edge sets
{i, i + 1, . . . , j }, 1≤ i ≤ j ≤ r, that fulfills property(4). Then a spanning tree for G with
minimum branch weight can be computed in O(|V |2+ |E|) time.

Proof: Let v0 ∈ V denote the central vertex of the multistar (the vertex that is incident
to all edges), and letv1, . . . , vm be an enumeration of the other vertices inV . It is easy to
see that for multistars, every branch of a spanning tree contains at most two edges. We call
two consecutive edgesi = [v0, vs] andi + 1= [v0, vt] in E acritical pair, if vs 6= vt holds
(and hence, they are potential candidates for forming a branch in some spanning tree). Since
1, . . . , r forms a Eulerian path, every edge participates in at most one critical pair. Edges that
are not part of any critical pair are callednon-critical edges.

The construction of the related directed multigraphH = (V, A) is done as follows. The
vertex setN of H equals{v1, . . . , vm}. For every non-critical edgei = [v0, vt] in E, we in-
troduce a loop̀ = (vt , vt) in A that is incident to vertexvt and has weightg(`)=wi i . For
every critical pair of edgesi = [v0, vs] and i + 1= [v0, vt] in E, we introduce a twin-pair
a andb of arcs inA: a= (vt , vs) and has weightg(a)=wi i , b= (vs, vt) and has weight
g(b)=wi+1,i+1. The weightg(a, b) is set towi,i+1. (A directed graphH for the multistar
shown in figure 4 is depicted in figure 2. Weightsg are to be defined asg(ai)=wi i , for
i = 1, . . . ,5, g(a1,a2)=w12, g(a3,a4)=w34.)

It is easy to see thatG has a spanning tree with branch weightW if and only if H has an
exact cover with Gaikov weightw: There is a one-to-one correspondence between edges

Figure 4. A multistar.

TRAVELLING SALESMAN PROBLEM 345

in G and arcs inH such that an edge connects some vertexvt to v0 in G if and only if the
corresponding arc covers vertexvt in H . Applying Theorem 3.6 completes the proof.2

5. A fast algorithm for multitrees

This section deals with the problem of computing a spanning tree with minimum branch
weight onmultitrees G= (V, E). A fast O(|V |3 + |V ||E|) algorithm is presented that is
based on dynamic programming and that uses the algorithm for multistars as a subprocedure.

Let G= (V, E) be a Eulerian multigraph withE={1, 2, . . . , r } where the edge se-
quence 1, . . . , r forms a Eulerian path. Letw be a weight function on the edge sets
{i, i+1, . . . , j }, 1≤ i ≤ j ≤ r , that fulfills property (4). An edge set (a branch)I ={i, i+1,
. . . , j } is called amaximal branchwith respect toG, if there exists a spanning tree forG
that contains all edges inI and if this property is not fulfilled by any branch that properly
containsI. Since 1, . . . , r forms a Eulerian path, every edge inE is contained in exactly one
maximal branch and thus, the maximal branches constitute a partition ofE. LetI1, . . . , Ib

be an enumeration of the maximal branches.
We root the multitree at an arbitrary vertex and derive the usual father-son relations.

For v ∈V , let T(v) denote the maximal subtree rooted atv. Since there is no danger of
confusion, we will useT(v)also to denote its set of vertices and to denote its set of edges.For
a maximal branchIk, consider the smallest treeT(v) that containsIk. The corresponding
vertexv is called theanchorof the branchIk. It is easily seen thatIk behaves as follows:
Ik decomposes into an increasing subpath that goes up to the anchorv and into a decreasing
subpath that goes down fromv. The first edge in the increasing subpath and the last edge
in the decreasing subpath are called thelowermostedges ofIk. With this, every edge in
Ik (with the exception of the edges that are incident to the anchor) has a uniqueupper
neighborand every edge inIk (with the expection of the lowermost edges) has a unique
lower neighbor.

For 1≤ i, j ≤ r , we denote by [i, j]∗ the edge set that contains all numbers from min{i, j }
to max{i, j }. By w[i, j]∗, we denote the weight of this set.

In order to derive a fast algorithm for finding a spanning tree with minimum branch
weight, we define for every vertexv ∈V the following arrays and a value OPTv:

• X1
v [e1, e2] is a two-dimensional array wheree1 is an edge that connectsv to one of its

sonsu, ande2 is an edge inT(u)∪{e1} that belongs to the same maximal branchIk ase1

does (in other words,e1 ande2 belong to the same subpath ofIk). The entryX1
v [e1, e2]

contains the minimum b-weight of all spanning trees for the vertices inT(u) ∪ {v} that
contain all edges in [e1, e2]∗ but no other edges ofIk.
• X2

v [e] is a one dimensional array wheree is an edge that connectsv to one of its sonsu.
X2
v [e] contains the minimum b-weight of all spanning trees for the vertices inT(u)∪ {v}

that contain the edgee.
• X3

v [e1, e2] is a two dimensional array wheree1= [v, u] ande2= [v, u′] are two edges in
Ik that are both incident tov and wherev is the anchor ofIk. X3

v [e1, e2] contains the
minimum b-weight of all spanning trees for the vertices inT(u)∪T(u′)∪ {v} that contain
the two edgese1 ande2.

346 BURKARD, DEĬNEKO AND WOEGINGER

• Z1
v [e] is a one dimensional array whereu∈V is a son ofv. Z1

v [u] contains the minimum
b-weight of all spanning trees for the vertices inT(v)\T(u).
• Z2

v [e] is a one dimensional array wheree is an edge that connectsv to one of its sonsu.
Z2
v [u] contains the minimum b-weight of all spanning trees for the vertices inT(v) using

edges inT(v)\{e}.
• OPTv contains the minimum b-weight of all spanning trees forT(v).

The entries of the arraysX1
v , X2

v , X3
v , Z1

v andZ2
v are only defined if the concerned vertices

and edges fulfill the described relationships. The values ofX1
v , X2

v , X3
v , Z1

v , Z2
v and OPTv

are computed in a bottom-up fashion, starting at the leaves and moving up towards the root.
When we are dealing with a father, the arrays of all its sons have already been computed.

Next, we describe how to perform these computations. For a leafv in the tree, the arrays
X1
v , X2

v , X3
v , Z1

v andZ2
v are not defined, and the value OPTv clearly equals zero. Now letv

be a non-leaf vertex with sonsu1, . . . ,ud.

Computation of X1
v [e1, e2]: Let e1= [v, u] with u ∈ {u1, . . . ,ud}, and lete1, e2∈ Ik. First

consider the case wheree1 is a lowermost edge ofIk. Thene2= e1 must hold ande1 cannot
form a branch with any edge inT(u). Clearly, in this caseX1

v [e1, e2] equals OPTu+w(e1).
There remains the case wheree1 is not a lowermost edge ofIk. In this case lete3= [u, u′]
denote its lower neighbor inIk. If e2= e1, then setX1

v [e1, e2] := Z2
u[e3] + w(e1). Finally,

if e2 6= e1, then set

X1
v [e1, e2] := X1

u[e3, e2] + Z1
u[u′] + w[e1, e2]∗ − w[e3, e2]∗.

Computation of X2
v [e]: Let e= [v, u] with u∈ {u1, . . . ,ud}. X2

v [e] equals the minimum
over all defined valuesX1

v [e, e1] wheree1 is an edge ofIk in T(u) ∪ {e}.
Computation of X3

v [e1, e2]: Let e1= [v, u] and e2= [v, u′] be two edges inIk. Then
X3
v [e1, e2] equals the minimum over all edgese3 in T(v) that belong to the same sub-

path ofIk ase1 and over all edgese4 in T(v) that belong to the same subpath ofIk ase2

of

min
e3,e4

X1
v [e1, e3] + X1

v [e2, e4] + w[e3, e4]∗ − w[e1, e3]∗ − w[e2, e4]∗.

This expression checks all possibilities for the first edgee3 and the last edgee4 of the branch
Ik in a spanning tree. The branch weight of the two branches [e1, e3]∗ and [e2, e4]∗ has to
be replaced by the weight of their union [e3, e4]∗.
Computation of OPTv: Construct an equivalent problem on a multistar as follows: The
multistar has vertex set{v, u1, . . . ,ud}with central vertexv. For every edgee= [v, u′] with
u′ ∈ {u1, . . . ,ud}, in the multitree, there is a corresponding edge [v, u′] in the multistar
with weight equal toX2

v [e]. For every branchIk in G that is anchored atv, let e1 ande2 be
the corresponding two edges inIk that are incident tov. These two edges form a branch
of length two and with weightX3

v [e1, e2] in the multistar. These are the only branches of
length greater than one in the multistar. OPTv is set to the weight of the minimum b-weight
spanning tree for this multistar.

TRAVELLING SALESMAN PROBLEM 347

Computation of Z1
v [u]: After deletingT(u) the valueZ1

v [u] is computed analogously to
the computation of OPTv.
Computation of Z2

v [e]: If edgee is not included in the minimum b-weight spanning tree
corresponding to OPTv, thenZ2

v [e] :=OPTv. Otherwise, the computation is similar to the
computation of OPTv above: Construct a multistar with central vertexv and introduce for
every edge (with the exception of edgee) a corresponding edge in the multistar. Edges be-
longing to the same branch yield branches of length two in the multistar. SetZ2

v [e] to the
weight of the minimum b-weight spanning tree for the multistar.

Clearly, the last vertex that is handled is the rootr of the tree. Afterwards, the entry OPTr

will contain the weight of the minimum b-weight spanning tree, i.e., the solution to the
problem B-MST. Next, we analyze the overall time-complexity of the above procedure. This
is done in two separate steps, first for the arraysX1

v , X2
v , X3

v , and then for the arraysZ1
v , Z2

v ,
OPTv:

It is convenient to analyze the computation ofX1
v , X2

v andX3
v via the concerned maximal

branches. For every maximal branchIk with r edges, the algorithm computes an overall
number ofO(r 2) valuesX1

v [e1, e2] and each value is computed in constant time. Moreover,
there have to be computedO(r)entriesX2

v [e], in O(r) time per entry. Finally, there is exactly
one entryX3

v [e1, e2] to be computed (wherev is the anchor ofIk) and the computation of
this value takesO(r 2) times. All in all, this costsO(r 2) overall time for one maximal branch
and

∑b
i=1 r 2

i overall time for all maximal branches, whereri is the number of edges in the
maximal branchIi . Sinceri ≤ |V |−1 (every maximal branch is a path) and

∑b
i=1 ri = |E|

(the maximal branches form a partition ofE), this overall time is inO(|V | |E|).
Next, we investigate the cost of computing the entries in OPTv, Z1

v andZ2
v . This is done

by considering the concerned vertexv. Assume thatv hass sons in the rooted tree and that
v is connected to its sons by an overall number oft ≥ s edges. The value OPTv can be
computed inO(s2+ t) time (cf. Theorem 4.1 in Section 4). For every incident edgee that
is not included in the minimum b-weight spanning tree, the valueZ1

v [e] equals OPTv and
hence can be found in constant time. For the remainingsedges, the valueZ1

v [e] is computed
in O(s2 + t) time. Hence, the computation ofZ1

v can be done inO(s3 + ts) time. Sum-
marizing, this yieldsO(s3+ ts) overall time for handling vertexv andO(|V |3 + |V | |E|)
overall time for handling all vertices.

Summarizing, we formulate the following theorem.

Theorem 5.1. Let G= (V, E) be a Eulerian multigraph with E={1, 2, . . . , r } such that
the edge sequence1, . . . , r forms a Eulerian path. Let w be a weight function on the edge
sets{i, i + 1, . . . , j }, 1 ≤ i ≤ j ≤ r, that fulfills property(4). Then a spanning tree for G
with minimum branch weight can be computed in O(|V |3+ |V | |E|) time.

6. NP-completeness for planar graphs

In this section, it is proved that the problem B-MSTis NP-complete even forplanarEulerian
multigraphs. The transformation is from the following NP-complete Hamiltonian path prob-
lem (cf. Plesnik, 1979).

348 BURKARD, DEĬNEKO AND WOEGINGER

Problem: Hamiltonian path in planar bipartite directed graphs with degree bound two
(HP-PBD2)

Instance: A simple planar bipartite directed graphH = (B ∪ W, A) and two vertices
s ∈ B andt ∈W that fulfill the following properties:

(1) |B| = |W| =m andA ⊆ (B×W) ∪ (W × B).
(2) All vertices in B\{s} have outdegree two and indegree one,s has outdegree two and

indegree zero.
(3) All vertices inW\{t} have outdegree one and indegree two,t has outdegree zero and

indegree two.

Question: DoesH contain a Hamiltonian Path that goes froms to t?

Theorem 6.1. For planar multigraphs G= (V, E), problemB-MST is NP-complete.

Proof: We will construct a Eulerian multigraphG= (V, E), a weight functionw on the
edge sets and a boundK such thatG allows a spanning tree with b-weight at mostK if and
only if the instance of HP-PBD2 has a Hamiltonian path.

Indeed, letH = (B∪W, A), s∈ B andt ∈W constitute an instance of HP-PBD2. Define
ABW= A∩ (B×W) andAW B= A∩ (W× B). Two arcs f1= (b1, w1) and f2= (b2, w2)

in ABW are calledsistersif b1= b2 or w1=w2 holds. Note that every arc inABW pos-
sesses exactly two sisters. The sister-relation naturally decomposes the arc setABW into
cycles of even length which are calledsisterhoods. Such a cycle alternatingly consists of
clockwise and counter-clockwise directed arcs. For every sisterhoodS, arbitrarily choose
a startvertexand an orientation for the cycle and denote byP(S) the undirected path that
results from starting in the startvertex, running once through the cycle according to the
chosen orientation and which ends again in the startvertex. Lets denote the total number of
sisterhoods. LetP1, . . . , Ps be an enumeration of the undirected pathsP(S) coresponding
to the sisterhoods. For every arc(w, b)∈ AW B, define another undirected path that contains
only the edge [w, b]. Denote thesem− 1 paths byPs+1, . . . , Ps+m−1. Observe that the
pathsP1, . . . , Ps+m−1 exactly coverA; in other words, for every edge in one of these paths
there is a unique corresponding arc in the arc setA. Next, define undirected pathsQk

for 1 ≤ k ≤ s+ m− 2, that connect the endvertex ofPk to the startvertex ofPk+1 as
follows: EveryQk contains at least one and at most 2m− 1 edges, and it only uses edges
whose directed counterpart occurs inH . The exact combinatorial structure of theQk is ar-
bitrary and does not matter. Clearly, the concatenationP∗ = P1Q1P2 · · · Qs+m−2Ps+m−1 of
the thus defined paths forms an undirected path that visits every vertex inB ∪W at least
once.

Finally, we define the graphG and the weight functionw: The vertex set ofG= (V, E)
equalsB ∪ W. The edge setE consists of all edges inP∗; these edges are numbered
according to the ordering alongP∗. The weightswi j with 1≤ i ≤ j ≤ |E| are defined by
wi j = s + j − i and thus all have value at leasts + 1. It remains to define the weights
wi i for single edges. We distinguish between so-calledlight andheavyedges. Every edge
belonging to anyQk is a heavy edge of weights+ 1. Every edge belonging to anyPk is

TRAVELLING SALESMAN PROBLEM 349

a light edge and has weight zero or one. In everyPk with 1≤ k≤ s, the first and the last
edge (i.e., the two edges that are incident to the startvertex of the corresponding sisterhood)
receive weight one. All remaining edges receive weight zero. Clearly, the so constructed
graphG is a Eulerian multigraph. Since the pathsPk andQk only contain edges that are
also present inH , the graphG is planar. It is easy to verify that the weights fulfill prop-
erty (4).

We claim thatG has a spanning tree with b-weight at mosts if and only if the instance
of HP-PBD2 has a Hamiltonian path.

(If). Assume,H contains a Hamiltonian PathP from s to t . ThenP contains allm− 1
arcs inAW B (these are the only possibilities for leaving the vertices inW\{t}), and from
every sisterhood inABW, P either contains all arcs at the odd places or all arcs at the even
places. Consider the spanning treeTP that consists of the light edges corresponding toP.
Trivially, the edge set ofTP does not contain any branches with two or more edges. Hence,
the b-weight ofTP equals the weight of its single edges. From every sisterhood,P andTP

use exactly one of the two edges with weight one. Since there ares sisterhoods, this yields
a total b-weight ofs for TP.

(Only if). Assume,G possesses a spanning treeT with b-weights. Clearly,T consists
of 2m− 1 light edges and it does not contain heavy edges. From any sisterhood,T can
use at most half of the edges (otherwise,T would contain a branch of size at least two
and of weight at leasts+ 1). A straightforward counting argument yields thatT uses all
m− 1 light edges corresponding toAW B andm light edges corresponding toABW, and
thus exactly half of the edges of every sisterhood. For no sisterhoodS, the overall weight
of edges inS∩ T can be zero (otherwise,T contains a branch of size at least two). Hence,
the overall weight of edges inS∩ T equals one for all sisterhoodsS. Summarizing, this
yields that from every sisterhood, the treeT either contains all edges at the odd places or
all edges at the even places. Now consider the arc setAT in A that corresponds toT : AT

is connected and of cardinality 2m− 1. In AT , every vertex inW\{t} has outdegree one
and every vertex inB has outdegree one, and obviouslyAT forms a Hamiltonian path from
s to t . 2

7. Discussion

In this paper we considered TSPs with permuted Monge matrices as cost matrices whose
patching graph is a multistar or a multitree. By performing a careful analysis, we sim-
plified Gaikov’s theory and considerably accelerated the solution procedure in the case of
multitrees. These considerations are not only a step towards a better understanding of the
nature of the problem and its computational complexity, but they also offer a basis for new
heuristics: We call a set of tours anexponential neighborhood, if it has an exponential size,
but it is possible to find an optimal solution within this set in polynomial time. The papers
Burkard and Deineko (1995) and Glover and Punnen (1995) describe some examples of
exponential neighborhoods. The multitrees of this paper also give rise to a rather powerful
exponential neighborhood, in the sense that an optimal solution can be found within a rather
large set of tours.

350 BURKARD, DEĬNEKO AND WOEGINGER

Acknowledgments

This research has been supported by the Spezialforschungsbereich F003 “Optimierung und
Kontrolle,” Projektbereich Diskrete Optimierung and by the START program Y43-MAT of
the Austrian Ministry of Science.

References

R.E. Burkard and V.G. Deineko, “Polynomially solvable cases of the traveling salesman problem and a new
exponential neighborhood,”Computing, vol. 54, pp. 191–211, 1995.

R.E. Burkard, V.G. Deineko, R. van Dal, J.A.A. van der Veen, and G.J. Woeginger, “Well-solvable special cases
of the TSP: A survey,”SIAM Reviews, vol. 40, pp. 496–546, 1998.

R.E. Burkard, B. Klinz, and R. Rudolf, “Perspectives of Monge properties in optimization,”Discrete Applied
Mathematics, vol. 70, pp. 95–161, 1996.

V.Ya. Burdyuk and V.N. Trofimov, “Generalizations of the results of Gilmore and Gomory on the solution of
the travelling salesman problem (in Russian),”Izv. Akad. Nauk SASS, Tech. Kibernet. vol. 3, pp. 16–22, 1976.
English translation inEngineering Cybernetics, vol. 14, pp. 12–18, 1976.

V.G. Deineko, “Applying dynamic programming to solving a speical traveling salesman problem (in Russian),”
Issledovanie operaziy i ASUKiev, vol. 16, pp. 47–50, 1979.

V.G. Deineko and V.L. Filonenko, “On the reconstruction of specially structured matrices (in Russian),”Aktualnye
Problemy EVMI Programmirovanie, Dnepropetrovsk, DGU, pp. 43–45, 1979.

H.N. Gabov, “Data structures for weighted matching and nearest common ancestors with linking,” inProceedings
of the First Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, pp. 434–443.

N.E. Gaikov, “On the minimization of a linear form on cycles (in Russian),”Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat.
Navuk, vol. 4, p. 128, 1980.

P.C. Gilmore and R.E. Gomory, “Sequencing a one state variable machine: a solvable case of the travelling
salesman problem,”Oper. Research, vol. 12, pp. 655–679, 1964.

P.C. Gilmore, E.L. Lawler, and D.B. Shmoys, “Well-solved special cases,” chapter 4 in [12], pp. 87–143.
F. Glover and A.P. Punnen, “The traveling salesman problem: New solvable cases and linkages with the develop-

ment of approximation algorithms,” Technical Report, University of Colorado, Boulder, 1995.
E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys,The Travelling Salesman Problem, Wiley,

Chichester, 1985.
J.K. Park, “A special case of then-vertex traveling salesman problem that can be solved inO(n) time,” Information

Processing Letters, vol. 40, pp. 247–254, 1991.
J. Plesnik, “The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two,”

Information Processing Letters, vol. 8, pp. 199–201, 1979.
V.I. Sarvanov, “On the complexity of minimizing a linear form on a set of cyclic permutations (in Russian),”Dokl.

Akad. Nauk SSSR, vol. 253, pp. 533–534. English translation inSoviet Math. Dokl., vol. 22, pp. 118–120, 1980.

