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Abstract. We consider traveling salesman problems (TSPs) with a permuted Monge matrix as cost matrix where
the associated patching graph has a specially simple structure: a multistar, a multitree or a planar graph. In th
case of multistars, we give a complete, concise and simplified presentation of Gaikov's theory. These results ari
then used for designing a@(m? + mn) algorithm in the case of multitrees, whards the number of cities and

m is the number of subtours in an optimal assignment. Moreover we show that for planar patching graphs, the
problem of finding an optimal subtour patching remains NP-complete.
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1. Introduction

A classical problem in combinatorial optimization is thevelling salesman problem (TSP)
givenn cities and the distances between them, find a shortest tamthrough all cities.
More formally, the TSP can be stated as minimizing the function

F(¢) = Zci¢(i)
i=1

whereg is a cyclic permutation of the s€t, 2, ..., n}. We will refer toF (¢) ascostof the
permutatiory. For further results on travelling salesman problems see the excellent book
of Lawler et al. (1985).

Since the TSP is NP-hard, many efforts have been made in investigating special case
which allow a polynomial solution procedure. In most cases such special cases rely or
special structures of the underlying distance matrix. In our case we consider permutec
Monge matrices as distance matrices. (Arx n) matrixC = (¢;;) is called aMonge-matrix
or distribution matrix if

Ck+Cj <Gi+cjy foralll<i<j<nl<k<l<n Q)
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The matrixC = (¢;j) is called apermuted Monge-matrigr permuted distribution matrix
if there is a permutatiop of the rows and a permutatienof the columns ofC such that

Coo = (Coi),0(jy) IS @ Monge matrix

Since the numbering of the cities does not play any role we can assume in the followin
thatp is the identical permutation

Permuted Monge matrices arise in the following context, see e.g., Burdyuk and Trofimo
(1976): Letf :R? — R be a function with constant second differences, i.e.,

fX+AX, y+Ay) + f(X,y) — T(Xx+ AX,y) — f(X,y+ Ay)

has constant sign for alkx, Ay > 0. Moreover, leu=(uy, ..., uy) and(vy, ..., vy) be

two real vectors wittn components. Then the mati®&= (c;j) defined byc; = f (u;, vj)

is a permuted Monge matrix. In particular, evempduct matrix(u;v;) is of this form.
Given an arbitrary matri = (¢;;), it can be tested iD(n?) time whetheC is a permuted
Monge matrix or not. Deineko and Filonenko (1979) designedan?) algorithm for
finding the permutationg ando which makeC Monge, if this is possible. For further
results on Monge matrices and related topics see the recent survey of Burkard et al. (199¢

The TSP with a Monge matrix as a cost matrix can easily be solved via dynamic pro-
gramming or via a greedy algorithm. In this case there exists an optimal tour which is
pyramidal Letus number the citiesby 2, ..., n. Atouris calledoyramidal if starting in
city 1 the cities are first visited according to increasing numbers untihdgyeached, and
then they are visited according to decreasing numbers. For example, th& taub, 7, 6,

4, 3 is pyramidal. Optimal pyramidal tours can be determine®(n?) steps, see e.g., the
survey article of Gilmore et al. (1985). On the other hand, Sarvanov (1980) showed tha
the TSP with product matrices as cost matrices is NP-hard. Since every product matrix |
a permuted Monge matrix, Sarvanov’s result implies that the TSP with permuted Monge
matrices as cost matrices is NP-hard in general. Gilmore and Gomory (1964), howeve
exhibited an important special case of permuted Monge matrices which still allows a poly
nomial solution routine. They developed a strategy, cadlgotour patchingvhich was

later generalized by Burdyuk and Trofimov (1976).

In Section 2 we sketch the theory of subtour patching and introduce the sofatibhihg
graph The main problem will be to determine a certain spanning tree of the patching graplt
that has minimum weight with respect to a nonstandard weight function. This spanning tre
yields an optimal solution for the underlying TSP. Section 3 gives a complete and concisi
description and solution of a closely related covering problem. We simplify and streamline
Gaikov's (1980) original analysis which is rather involved and only available in Russian.
In Section 4, we consider the case where the patching graphudtistar. In Section 5, we
treat the case that the patching graph mwtitreeand design a new fast algorithm which
runs by a factor oD (n®) faster than Gaikov’s original algorithm. We mentioned above that
the TSP is NP-hard for product matrices which implies NP-completeness of the problen
with arbitrary patching graphs. In Section 6 it is shown that the problem is even NP-hard,
if the patching graph is planar. The paper is closed with a discussion in Section 7.
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2. The theory of subtour patching
2.1. Permutations

Let us first introduce some notations concerning permutations. A permuiata one-

to-one mapping of 1, 2, ..., n} onto itself. Letiy,i,,...,i; be pairwise distinct ele-
ments of(1,2,...,n}. If ¢(ix) =g fork=1,2,....r — 1, j #Kk, and¢(i;) =iy, then
(i1,i2,...,1r) is called afactor or subtourof the permutatiorp. A permutation is called

cyclic or atour, if it has only one factor. A factor of the forrti) is calledtrivial. A
permutation which has only one nontrivial factor of the farjmk) is called aransposition
We will denote such transpositions by, k). A transposition is calleddjacent if it is of
the form (, j + ).

If both ¢ andvy are permutations oft, 2, ..., n}, then their composition (often writ-
ten as product) is denoted lyo ¢ and defined by o ¥ (i)=¢ (¥ (i)) forl <i < n.
¢ o ¢ is again a permutation. Recall that the product of two transpositions is a non-
commutative operation, if they have a common index. Otherwise it is commutative. The
following proposition can be viewed as an illustration of this observation, see e.g., Gilmore
etal. (1985).

Proposition 2.1. The set of all permutations that can be obtained by multiplying adjacent
transpositiong1, 2), (2, 3), ..., (n — 1, n) is exactly the set of all pyramidal tours.

2.2. Graphs

Now let us turn to graphs. In undirected graphs, edges between two vesticgss V are
denoted by, vo]. In directed graphs, arcs that go from verigxo vertexv, are denoted
by (v1, v2). (From the context there will be no confusion with transpositions which are also
written as pairs).

In an undirected grapks = (V, E), with vertex setV and edge seE an alternating
sequence, €1, v1, &, ..., €, vp Of verticesy; e V and edges < E is called apath if
e =[vi_1, vi] € Eforl <i < p. Ifadditionallyv; # v; holds whenever# |, the sequence
is asimple path G is called amultigraph if several edges may connect the same pair of
vertices. If we replace all those edges by just a single one, we gentierlying simple
graph A multigraphG = (V, E) is called amultipath (multistar, multitreg respectively)
if the underlying simple graph is a path (star, tree, respectively). An undirected multigraph
G =(V, E) with edge seE ={ey, &, ..., ey} is aEulerianmultigraph if we can number
the edges such that the edge sequence,, .. ., e, forms a path.

2.3. The patching graph

Let a permuted Monge matri€ = (cj) be the distance matrix of a TSP and tetbe
a permutation such thdti,j,) is a Monge matrix. Then the corresponding assignment
problem with cost matrixC has the permutation as optimal solution. If the permutation
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1=(1,2)
1 2=(2,3) /0_'2\ 5=(5, 6)
3=(3,4)

Figure L GraphG, foro =(13)(24 5(6 8 10(7)(9).

o has only one factor, it is a tour and therefore also an optimal solution for the TSP. So w
assume for the following that consists of > 2 subtoursy, i.e.0c =010020---00;.

Now thepatching graph G = (V, E) is constructed in the following way. Every vertex
v € V corresponds to a subtour of the permutatiorEvery edge irE corresponds to an
adjacentranspositior(i, i + 1), namely, ifindex occurs in the subtour; (corresponding
to vertexo;) and index(i 4+ 1) occurs in the subtour, (corresponding to vertex), then
the two verticesr; andoy are connected by the edge correspondingi 1o + 1). This
construction yields a connected Eulerian multigraph with at ost 1) edges.

For instance, letr =01 002003004005=(13)(245(6 8 10(7)(9) . For this permu-
tationo the graph,, infigure 1 is a multitree with five vertices and eight edges. We denote
an edge corresponding to the adjacent transposgitiont 1) by i.

2.4. Subtour patching
A basis for subtour patching is the following result.

Proposition 2.2 (Gilmoreand Gomory, 1964). Let T={(i1,i1+21),..., (ir_1, i1+ 1)}
be the edge set of a spanning tree in the graph Ghen the permutation o (i1,i1+1) o
-+ 0 (iy—1,ir—1+ 1) is a cyclic permutation.

The composition ot with adjacent transpositions corresponds to patching subtours
which results in a tour. Let us explain this by the example given above. Choose the
transpositions (1, 2), (5, 6), (6, 7) and (8, 9) as edges of the spanning ire6,. Due
to the discussion prior to Proposition 2.1 there are in our case two possibilities to patcl
subtours ins by using transpositions df, thus yielding two different cyclic permutations.
These are:

o1=00(L2)0(56)0(6,7)0(89 =(L45289, 106,72 3)
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and
00=00(1,20(6,70(5,6)0(8,9 =(1,4,5,7,8,9, 10,6, 2, 3).

Proposition 2.3 (Burdyuk and Trofimov (1976); Gilmore et al. (1985)). Let(cis(j)) be
a Monge matrix. For any cyclic permutati@nthere exist a spanning tree= {(i1,i; + 1),
..., (r_1,ir_1+ 1)} in the graph G and a sequence for multiplying the transpositions
of T such that the permutationr =0 o (i;qy, iz + D o0 (ir¢-1),ir¢-1 + 1) isa
cyclic permutation with Fot) < F(¢).

It follows from Proposition 2.3 that an optimal tour can be constructed by using a special
spanningtred@ * of the graphG,,. Unfortunately, the problem of finding a suited (“optimal”)
spanning tree G, is NP-hard in general (Sarvanov, 1980). However, the problem can
be solved in polynomial time if the grapB, has a special structure: For the case when
G, is amultipath algorithms with complexityO(n®) for finding an optimal tree were
proposed by Sarvanov (1980) and Deineko (1979). Recentl®@n algorithm for this
case was developed by Burkard and Deineko (1995). Gaikov (1980) improved the results
of Sarvanov on multipaths and considered afsdtistarsandmultitrees In particular, he
addressed the problem which spanning tree has to be chosen and in which sequence tl
adjacent transpositions are to be composed in order to get an optimal tour.

2.5. The minimum spanning tree problem with branches

According to the remarks prior to Proposition 2.1 the form of a permutatiashepends on
the sequence which is used for multiplying the transpositions of the tieeThe natural
guestion arises to find a permutatiothat minimizes the difference (o1) — F(o). This
can be done in the following way.

Let us divide the set of edges (transpositions) of theTré@o t(1 <t <r — 1) dense
pairwise disjoint subsets:

(g, jo) i= {(1,i1+D), (1 +Li1+2),....(ju, 1 + D},
(2, j2) == {(2,i2+ 1), (i2+Li2+2),...,(J2, 2+ D},
[ (¢, jo) = {(t, it + 1), (t +Lic+2), ..., (i, jt + D},
such that
T=1(1,jo)Ul(2 j2)U---Ul( joandjx+1<ir fork=1,2,...,t -1
In the example above the edge set of the rde divided into three subsets with
11D ={12}, 156 ={056),(61} 1838 ={@8 9]}

The arbitrary composition of transpositions of a dense set yields just one subtour (which
depends on the sequence in which the transpositions are composed). Thus, multiplying th
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transpositions oT in arbitrary order yields$ subtours, where each subtour corresponds to
a setl (iy, jo)(1 < k < t). If a permutationp consists ot disjoint factorspy, ¢, .. ., ¢,
it is well-known (see Gilmore et al. (1985), Theorem 4) that

t

Fo o) —F(0) =Y (F(o o) — F(0)) (2)

i=1

So an optimal sequenaeof multiplying the transpositions of can be constructed by
finding an optimal sequence for each densel ¢etj). According to Proposition 2.1 this
can be done by using techniques for constructing optimal pyramidal tours.

Letg]; be the subtour corresponding to thels@t j) which is constructed by multiplying
transpositions of (i, j) in an optimal order. Define values; as

wij '=F (o 0 ¢j) — F(0). )

Then it follows immediately that

t
F(or) — F(0) =) wyj,.
k=1

For a Monge matrix, all values;; fori=1,2,...,nandj=i,...,n can be computed

by using Park’s (1991) algorithm i®(n?) time. Note that the values;; do not depend

on the patching graph. Moreover, for particular patching graphs only few such values wil
actually be needed. It can be shown (see e.g., Burkard et al., 1998) that thesewyalues
have the following property

wij > wik +wkyr,j foralli <k < j.

This leads to the followingninimum spanning tree problem with branch@MsT,
for short): LetG = (V, E) be a Eulerian multigraph witk = {1, 2, ..., r} where the edge
sequence,l..,r forms aEulerian path. The edges+1, ..., j are called &ranch[i, j]
with respectto some s&' C E,ifi —1¢ E'andj +1¢ E’. ForE' C E, let Br(E’)
denote the set of all branches with respedEto

Letw be aweight function that assigns to every edgégiset-1, ..., j},1<i <j <r,
a nonnegative numbeys;; and letw fulfill the property

wij > wik +wkyrj foralli <k < j. 4)
Thebranch weigh{or b-weigh} of E’ C E is defined by

w(E/) = Z Wij .
[i.j]eBr(E)

Thebranch weightb-weight) of a spanning tree & (V, Et) of Gisw(E+). The problem
B-MsT consists in findind a spanning tree@®fwith minimum b-weight.
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In our application every vertex of corresponds to a subtour ef, the permutation
which make<C = (¢;;) Monge. Every edge (i =1, 2,...,r) corresponds to an adjacent
transposition(i,i + 1). The edge connects the vertex corresponding to the subtour
containing cityi with the vertex which corresponds to the subtour containingicityi. If
both cities lie in the same subtour, we get a loop. Tlss the patching graph possibly
augmented by loops. Every branch of a spanning tréeafrresponds to a maximal dense
subset of transpositions. The weights are defined by (3). Finding a spanning tree with
minimum branch weight amounts in minimizing (2) and yields an optimal solution of the
underlying TSP.

3. Gaikov’s covering problem

In this section we consider an auxiliary problem in directed multigraphs which will help
us later to solve the minimum spanning tree problem with branchesHLe{N, A) be
a directed multigraph. Some of the arcsAnare grouped into so-callemvin-pairs A
twin-pair consists of two arcag; anda; wherea; = (vs, v1) anda; = (v, vs) holds for some
vs, 1t € N, vs # v;. Every arc belongs to at most one twin-pair. Arcs that are not part of
any twin pair are calledingle arcs ForB € A, let Twin(B) denote the set of all twin-pairs
contained inB, let Sing B) denote the set of all non-loop single arcBr{these arcs may
have a twin-brother irA but not inB), and letLoop(B) denote the set of all loops iB.

With every ara in A, we associate a non-negative weiglte) and with every twin-pair
(&, a)) € Twin(A), we associate a non-negative weigli; , a;). The Gaikov weighi(or
g-weigh) of a subseB C Ais defined by

9B = > d@.ap+ Y g@+ Y 6 g@).

(a,aj)eTwin(B) aceSing B) a €Loop(B)

We say that every arws, v;) € Acovers its target-vertex. AsetB C Ais anexact cover
for the directed graph, if every vertex inN is covered by exactly one arc B. It is easy
to see thaH possesses an exact cover if and only if each vertdk has in-degree at least
one.

As an illustration for these definitions consider the directed multigrdpshown in
figure 2 with the set of arcé={a;, a,, as, a4, as} and the set of twin-pairgwin(A) =
{(a1, @), (a3, a4)}. The sef{ay, ap, as} is an exact cover, while the sefs {a;, a3, a5} and
{ai1, a»} are not.

a; a3
’U’ s
a3 ay4 3

Figure 2 Anillustration to Gaikov’s covering problem.
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Lemma 3.1. Let H=(N, A) be a directed multigraph where every vertex has in-degree
at least oneand let g be a weight function on A and Twi). Then an exact cover*Hor
H with minimum Gaikov weight can be computed if &2 log |A|) time.

Proof: The idea is to formulate the problem as a weighted matching problem in a relatec
undirected graplid“ = (NU, A"). To this end, leS denote a very large number (e.g., twice
the sum of all arc weights and all twin-pair weights plus one). The undirected d¢itdph
contains all vertices itN, one additional vertex for every loop, for every single arc and for
every twin-pair inA. Now letg; be a loop(v, v;) or a single ardvs, v;) in A that covers

ve and letw € NY be the vertex correspondingaga ThenA" contains the undirected edge
[vt, w]; the weight of this edge is set (&) — S. Next, consider a twin pa# = (vs, vt)
anda; = (v, vs) in A and letw € N denote the vertex corresponding to this pair: We
introduce the edges{, v;] with weightg(a;, a;) — 2S, [v;, w] with weightg(a;) — S, and

[vs, w] with weightg(a;) — S.

Itis easy to verify thaH possesses an exact cover with minimum Gaikov welgiftand
only if H" contains a (not necessarily perfect) matching with minimum waight |V |S.
Since the number of vertices and the number of edgds‘irboth areO(|A|), applying
the fast weighted matching algorithm of Gabov (—) yields the clair®@&tiA|? log|A|)
algorithm (Gabov’s algorithm finds a minimum weight matching in a graph witartices
andm edges inO(n(m + nlogn)) time). O

In the remaining part of this section, we describe Gaikov's algorithm for multigraphs
whose weight function fulfills additionally the condition

g(@) +9(aj) < g(a,a)) forall(a,a;) € Twin(A). )

Lemma 3.2. Let H= (N, A) be a directed multigraph and let g be a weight function on
A and Twin(A), that fulfills condition(5). Then one can construct in({@\|) time a simple
directed graph H = (N, A% and a weight function gon A’ and Twin(AS), that fulfills
condition (5) such that the following holdsThe exact cover Bwith minimum Gaikov
weight for H* and the exact cover Bwith minimum Gaikov weight for H both have equal
weight and Bf can easily be computed fron? B

Proof: The arc seA is constructed as follows. For everye V, all loops(vg, 1) € A
with the exception of the loop with smallest weight are removed. The weigfit¢) of
this loop equalgy(¢). For every two verticess, v; € V, let a; be the cheapest arc aag
be the second-cheapest arc frogto v; in A, and letb; be the cheapest arg be the
second-cheapest arc going frepto vs. The arc sefA’ contains an ar¢vs, v;) with weight
g(ay) and an arcvy, vs) with weightg(b;). In casea; andb; are a twin-pair inA, they are
also a twin-pair inAS and the corresponding weight is defined by

g°(as1, by) = min{g(ay, by), g(a1) + g(by), g(@) + g(ba)}.

This completes the description AF andgs. Itis easy to verify correctness of this construc-
tion: If the optimum coveB* for H covers a vertex; by a loop or by an ar¢vs, v;) where
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(v, vs) ¢ B*, then it will obviously use the cheapest such arc. OthervBdezontains two
arcs(vs, vr) and (v, vs). These are either the cheapest arcs of these types or (in case the
cheapest arcs form a twin-pair) the second cheapest ones. a

For B C A, disregarding the orientation of its arcs and omitting multiple edges naturally
results in thaunderlying undirecteédge setu(B) for B. An arc setB is calledconnected
iff uu(B) is connected. BNg € N we denote the set of vertices that are incidenti6B).

Observation 3.3. Let B be an exact cover for H (N, A) and let C be a connected
component of B. Then C contains exactly one directed ¥t possibly is a loop or
a twin-pair. If an arc (v, r) is removed from this directed cyclée remaining arcs in
C\{(v, r)} form a directed out-tree with root r.

Next, we fix agreedy exact coveéBREC C Afor H that contains for every vertaxe N
a covering arc or covering loop with minimum weight. In generagGwill not be the
exact cover with minimum Gaikov weight, as it may contain twin-pairs with high g-weight.

Observation 3.4. If the weights of H= (N, A) fulfill condition (5), then there exists
an exact cover Bwith minimum Gaikov weight for H (N, A) such thatuu(GREC) C
uu(B*).

Proof: Consider an exact coveds* with minimum Gaikov weight. Suppose that =
(vs, vt) € GREC, & ¢ B* and (v, vs) ¢ B*. Letag= (v, v;) € B* be the arc that covers
vy and letay denote the twin-brother ad; (in case it exists). By the definition ofKEC,
g(a1) < g(ag) and by condition (5)g(as) + g(as) < g(as, as) holds. With this it is easy
to verify that(B*\{ag}) U {a1} has Gaikov weight at mosgf(B*). Repeating this exchange
procedure eventually yields a cover with the claimed property. O

Observation 3.5. If the weights fulfill conditior(5), then there exists a minimum weight

cover B of the following form.

(i) Foreveryconnected component G&fecthat does not contain any twin-palt C B*.

(i) For every connected component CGHEC that does contain a twin-paithere exists
anarc(v,r) € B*withr € Nc and a set & C B*\{(v, r)} such thauu(Ac) = uu(C)
and such that A is a directed out-tree with root r.

Proof: Consideraminimum g-weight exact cotof H such thatu(GREC) C uu(B*)
that exists by Observation 3.4.

Proof of (i). SinceC does not contain any twin-pai€ is a minimum g-weight exact
cover forN¢c and|uu(C)| =|N¢|. According to Observation 3.3, there exists aAgtC
B* with UU(Ac) =Uu(C). Then|Ac| = |UU(Ac)| = |uu(C)| = |N¢| holds. ThereforeAc
covers exactlyNc and there are no other arcs Bt that coverNc. Hence, replacind*
by B*\ Ac U C yields the desired property, does not introduce any new twin-pairs and
consequently, does not increase the Gaikov weight.

Proof of (ii). As C contains a twin-pair|Juu(C)|=|Nc|—1 anduu(C) is a tree.
According to Observation 3.3, there exists a et B* with uu(Ac) =uu(C) and
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|Ac|=|Nc| — 1. This setAc covers all but one vertices iNc and hence, there must
exist an arqu, r) € B*\ Ac that covers this remaining vertex Clearly, in order to cover
the vertices ilNc\{r}, Ac must be a directed out-tree rooted at m]

Based on the above observations, Gaikov designed the following algorithm for finding
minimum g-weight exact cover under condition (5):

(Phase 1). Compute a greedy exact coveeGfor H. Let Cy be the union of all
connected components inrR&C that do not contain a twin-pair, and €4, ..., C¢ be an
enumeration of the connected components that contain a twin-pair. For@uery 1,
and for every € Ng,, let T(C;, r) be the directed out-tre with uu(T) = uUu(C;) that is
rooted ar and letW(C;, r) be the overall weight of the arcs In(C;, r). In caseT (Cj, r)
is not a subgraph dff, W(C;, r) is set to+oo.

(Phase 2). Construct a new weighted directed multigiapbvith vertex setC, . . ., C,
arc setA’ and a weight functiorg’ defined as follows: For every ag= (vs, v;) in A
that fulfills v; ¢ N¢,, there is a corresponding a& in A’ going from the component
C(vs) that containgg, to the component (v;) that contains;. If C(vs) # C(vt) holds,
or if C(vs) =C(v) and the twin-brother of ara is not contained inTl (C(v), vt), the
weight g'(@) of this new arc equalg(a) + W(C(w), vy). Otherwise, ifC(vs) = C(vy)
and the twin-brothea™ of a is contained inT (C(w), vt), then arca’ receives weight
W(C(w), vt) + g(a,a”) — g(a~). Moreover, there is a loop of weight zero Xl incident
to Co.

Next, we define the twin-pairs iH’: Leta = (vs, v;) anda; = (v, vs) be a twin-pair in
H such thailC(vs) # C(v;). Then the new corresponding anafsanda} form a twin-pair
in H” with weight

g@,a) =d@) +d@)+9@,a)—g@) —g@),

i.e., taking both arca/ anda; into a cover increases the overall cost by the same amount
as takings; anda; into a cover.

(Phase 3). From the multigrapt’, construct a simple grapH” and a weight function
g’ as described in Lemma 3.2. Recursively compute an exact &verith minimum
Gaikov weight forH” with weightsg”. From B”, the corresponding exact covBi with
minimum Gaikov weight foH is constructed as follows: First, all edgegdpare putinto
B*. For a single ar@” in B” that enters a compone@t withi > 1, leta= (vs, v¢) be the
corresponding arcis. B* containsaand all arcs i (C;, v;). Twin pairs inB” are handled
similarly (the corresponding arcs i are put intoB* and the concerned components are
oriented in an appropriate way).

The correctness of this procedure essentially follows from Lemma 3.2 and from Observa
tions 3.4 and 3.5, and is easy to verify. For the time complexity, observe that computing th
connected components in (Phase 1) taBR€dN | + | A|) time by applying depth-first-search.
Computing the value®/(C;, r) can trivially be done irO(|C; |?) time per component and
yields an overall time o® (|N|?) for handling all components. The running time of (Phase 2)
is proportional tg A|. Every connected compone@t with 1 < i < k contains a twin-pair
and hence at least two vertices. This yields that the gkpthat is treated in the recursion
in (Phase 3) hak < |N|/2 vertices. Since after applying Lemma 3.2, there remain only
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O(|N/|?) arcs, the overall time complexify(|N|, | A|) for treating a graptH = (N, A) is
T(NJ, |A) < T(INI/2,INJ?/2) + O(|A]),
whichimpliesT (|N|) = O(|N|?+|A]). Summarizing, we formulate the following theorem.

Theorem 3.6 (Gaikov, 1980). Let H= (N, A) be a directed graph where every vertex
has in-degree at least onand let g be a weight function on A and T¥) that fulfills
condition(5). Then an exact cover*Bor H with minimum Gaikov weight can be computed
in O(IN|? + |A|) time.

We illustrate some aspects of Gaikov's algorithm for the covering problem by the example
presented in figure 2. Suppose that a greedy exact corec Gontains arcsy, a, and
as. Since there are no twin-pairs in it, it is an exact cover with minimum Gaikov weight.
Suppose now that&&Ec contains arcay, a; andag. That means that we look for an optimal
coverB* such that the underlying undirected graph(B*) contains the edges], v;] and
[v5, vg]. According to Phas 2 a newweighted directed multigraphl’ contains only one
vertex and five loopsy, a,, a;, a, andag. In order to compute e.g., weiglia)) it is
necessary to compute the overall weight of the arcs in the rooted tree with,aand as.
Since this tree contains a twin-brotheraaf we have

9@ = g(as, &) + g(aa).
Other weightgy are computed in a similar way:

9(a) = g(@), 9@y = 9@y = g(as, a) + 9(a),

9(as) = 9(as) + 9(@) + g(au).
The problem is solved after finding a loop with a minimal weight. The situation is a bit
more complicated if @EC contains arcsy, a; andas. For this particular case a new graph
H’ contains two vertices, one arc and three loops (see figure 3) with the new weights

g@) =9g(@) =g(a, a), g(@,) =g(@y) +9@), g@y) =0.

@ ® @O

GREC

Figure 3 lllustration to the algorithm for the covering problem.
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After removing one of the loops, or a; the algorithm has to be applied to the graph
recursively.

4. Gaikov's algorithm for multistars

In this section, we sketch Gaikov's algorithm for computing a spanning tree with minimum
branch weight omultistars The main idea is to translate the problem of computing a spa-

nning tree with minimum b-weight into an equivalent problem of computing an exact cover
with minimum g-weight in a related directed multigraph.

Theorem 4.1. Let G=(V, E) be a Eulerian multistar with E={1, 2, ..., r} where the
edge sequenck ..., r forms a Eulerian path. Let be a weight function on the edge sets
{i,i+1,...,j},1<i <] <r,thatfulfills property(4). Then a spanning tree for G with
minimum branch weight can be computed i\Q? + |E|) time.

Proof: Letwvy € V denote the central vertex of the multistar (the vertex that is incident
to all edges), and laty, ..., vy be an enumeration of the other verticed/inlt is easy to
see that for multistars, every branch of a spanning tree contains at most two edges. We ¢
two consecutive edgés=[vo, vs] andi + 1=[vg, v;] in E acritical pair, if vs # v; holds
(and hence, they are potential candidates for forming a branch in some spanning tree). Sin
1, ...,r formsaEulerian path, every edge participates in at most one critical pair. Edges the
are not part of any critical pair are calledn-critical edges

The construction of the related directed multigrdgha= (V, A) is done as follows. The
vertex setN of H equals{vy, ..., vm}. FOr every non-critical edge=[vo, v¢] in E, we in-
troduce a loog = (v, vy) in Athat is incident to vertex; and has weighgj(¢) = w;; . For
every critical pair of edges=[vo, vs] andi + 1=[vo, v] in E, we introduce a twin-pair
a andb of arcs inA: a= (v, vs) and has weightj(a) = wjj, b= (vs, v) and has weight
g(b) = wi;1+1. The weightg(a, b) is set tow; j;1. (A directed graptH for the multistar
shown in figure 4 is depicted in figure 2. Weightsre to be defined ag(a;) = wj;, for
i=1,...,5g(as, &) = w1, 9(a3, 83) = w34.)

It is easy to see th& has a spanning tree with branch weigtitif and only if H has an
exact cover with Gaikov weight: There is a one-to-one correspondence between edges

1

3 4

Figure 4 A multistar.
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in G and arcs inH such that an edge connects some vette vg in G if and only if the
corresponding arc covers vertexin H. Applying Theorem 3.6 completes the proof

5. A fast algorithm for multitrees

This section deals with the problem of computing a spanning tree with minimum branch
weight onmultitrees G= (V, E). A fastO(|V | + |V||E|) algorithm is presented that is
based on dynamic programming and that uses the algorithm for multistars as a subprocedur

Let G=(V, E) be a Eulerian multigraph witle ={1, 2, ..., r} where the edge se-
quence 1...,r forms a Eulerian path. Letv be a weight function on the edge sets
{i,i+1,...,]},1<i=<j<r,thatfulfills property (4). Anedge set(abran@y={i,i+1,

.., ]} is called amaximal branchwith respect tdG, if there exists a spanning tree fGr
that contains all edges ihand if this property is not fulfilled by any branch that properly
containsZ. Sincel...,r formsaEulerian path, every edgehris contained in exactly one
maximal branch and thus, the maximal branches constitute a partitenlodtZ,, ..., 7y
be an enumeration of the maximal branches.

We root the multitree at an arbitrary vertex and derive the usual father-son relations.
Forv eV, let T(v) denote the maximal subtree rootedvaSince there is no danger of
confusion, we will usd (v) also to denote its set of vertices and to denote its set of edges. For
a maximal branctly, consider the smallest trdgv) that containgk. The corresponding
vertexv is called theanchorof the branctZy. It is easily seen thafy behaves as follows:

Zx decomposes into an increasing subpath that goes up to the arebinto a decreasing
subpath that goes down from The first edge in the increasing subpath and the last edge
in the decreasing subpath are called lthh@ermostedges ofZy. With this, every edge in

Zx (with the exception of the edges that are incident to the anchor) has a wrgee
neighborand every edge i (with the expection of the lowermost edges) has a unique
lower neighbor

For1<i, j <r,wedenote byi] j]* the edge set that contains all numbers from{imip}
tomaxi, j}. By wli, j]*, we denote the weight of this set.

In order to derive a fast algorithm for finding a spanning tree with minimum branch
weight, we define for every vertaxe V the following arrays and a valuer®,:

e X![ey, &] is a two-dimensional array wher is an edge that connectsto one of its
sonsu, ande; is an edge ifT (u) U {e;} that belongs to the same maximal brafigtase;
does (in other words; ande, belong to the same subpath®f). The entryXi[e, e;]
contains the minimum b-weight of all spanning trees for the verticds(in) U {v} that
contain all edges ind, e;]* but no other edges &.

e XZ[€]is a one dimensional array wheeés an edge that conneatgo one of its sons.
X?[€] contains the minimum b-weight of all spanning trees for the verticdgin U {v}
that contain the edge

e X3[ey, &] is a two dimensional array wheeg = [v, u] ande, = [v, u’] are two edges in
Ik that are both incident to and wherev is the anchor ofZy. Xﬁ[el, &] contains the
minimum b-weight of all spanning trees for the vertice$ i) U T (u’) U {v} that contain
the two edgeg; ande;.



346 BURKARD, DEINEKO AND WOEGINGER

e Zl[€]is a one dimensional array whewes V is a son ofv. Z1[u] contains the minimum
b-weight of all spanning trees for the verticesTitw)\T (u).

e Z?[€] is a one dimensional array wheeds an edge that conneatso one of its sonsi.
Z2[u] contains the minimum b-weight of all spanning trees for the verticdqin using
edges inT (v)\{e}.

e OPT, contains the minimum b-weight of all spanning treesTaqp).

The entries of the arrays?, X2, X3, Z! andZZ are only defined if the concerned vertices

and edges fulfill the described relationships. The valueslofx?, X3, z1, 72 and CpT,

are computed in a bottom-up fashion, starting at the leaves and moving up towards the roc

When we are dealing with a father, the arrays of all its sons have already been computec
Next, we describe how to perform these computations. For a lgethe tree, the arrays

X1, X2, X3, ZL andZ2 are not defined, and the value®) clearly equals zero. Now let

be a non-leaf vertex with sons, ..., uq.

Computation of Xg[el, e]: Letey =[v,u]lwithu € {uy, ..., uq}, andlete;, e, € Zy. First
consider the case wheegis a lowermost edge df,. Thene, = e; must hold and; cannot
form a branch with any edge i(u). Clearly, in this cas&![e;, e;] equals ®T, + w(ey).

There remains the case whexds not a lowermost edge @k. In this case leg; =[u, U]

denote its lower neighbor i#. If e, =¢, then setx,}[el, &)= 25[93] + w(ey). Finally,

if & # ey, then set

Xilew, ] 1= Xjles, €] + Z[u'] + w[er, e2]* — w[es, e]*.

Computation of X?[€]: Let e=[v, u] with ue{uy, ..., Uq}. X?[€] equals the minimum
over all defined valuexg[e, e1] wheree; is an edge of in T (u) U {e}.

Computation of X3[e;, )]: Let e =[v, u] and & =[v, U] be two edges irZy. Then
X3[ey, €] equals the minimum over all edges in T(v) that belong to the same sub-
path ofZ, ase; and over all edges, in T (v) that belong to the same subpathipfase,

of

min XMer, &3] + XMy, &) + wes, eg]* — wlen, &3]* — wley, eq]*.

This expression checks all possibilities for the first eelgend the last edgey, of the branch

Zx in a spanning tree. The branch weight of the two brancke®{]* and [e;, e4]* has to

be replaced by the weight of their unios| e4]*.

Computation of OPT,: Construct an equivalent problem on a multistar as follows: The
multistar has vertex s¢b, uy, .. ., Ug} with central vertex. For every edge =[v, u’] with

u e {uy,...,uq}, in the multitree, there is a corresponding edgeu[] in the multistar
with weight equal toX2[€]. For every branch in G that is anchored at, lete; ande, be
the corresponding two edgesin that are incident ta. These two edges form a branch
of length two and with weighX3[ey, &] in the multistar. These are the only branches of
length greater than one in the multistar1Qis set to the weight of the minimum b-weight
spanning tree for this multistar.
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Computation of Z1[u]: After deletingT (u) the valueZ![u] is computed analogously to
the computation of €r,.

Computation of Z2[€]: If edgeeis not included in the minimum b-weight spanning tree
corresponding to ©r,, thenZ2[e] := OpPT,. Otherwise, the computation is similar to the
computation of ®@T, above: Construct a multistar with central verteand introduce for
every edge (with the exception of edgea corresponding edge in the multistar. Edges be-
longing to the same branch yield branches of length two in the multistaiZ3peltto the
weight of the minimum b-weight spanning tree for the multistar.

Clearly, the last vertex that is handled is the moaf the tree. Afterwards, the entryr@

will contain the weight of the minimum b-weight spanning tree, i.e., the solution to the
problem B-MsT. Next, we analyze the overall time-complexity of the above procedure. This
is done in two separate steps, first for the arréysX2, X3, and then for the array&?, Z2,
OPT,:

Itis convenient to analyze the computationdf, X2 and X3 via the concerned maximal
branches. For every maximal branghwith r edges, the algorithm computes an overall
number ofO(r 2) valuesX![e;, e;] and each value is computed in constant time. Moreover,
there have to be comput€r ) entriesX?[€], in O(r) time per entry. Finally, there is exactly
one entryX3[e;, &] to be computed (where is the anchor ofy) and the computation of
this value take® (r %) times. Allin all, this cost© (r 2) overall time for one maximal branch
andy_"_, r? overall time for all maximal branches, whares the number of edges in the
maximal brancly;. Sincer; < |V|— 1 (every maximal branch is a path) aEf’zl ri =|E|
(the maximal branches form a partition B, this overall time is inO(|V | |E|).

Next, we investigate the cost of computing the entries#m,0Z! andz2. This is done
by considering the concerned vertexAssume that hass sons in the rooted tree and that
v is connected to its sons by an overall numbet sfs edges. The value @, can be
computed inO(s? + t) time (cf. Theorem 4.1 in Section 4). For every incident et
is not included in the minimum b-weight spanning tree, the valfig] equals ®T, and
hence can be found in constant time. For the remaisigdpes, the valug’[€e] is computed
in O(s? + t) time. Hence, the computation @ can be done ir0(s® + ts) time. Sum-
marizing, this yieldsO(s® + ts) overall time for handling vertex andO(|V |2 + |V| |E|)
overall time for handling all vertices.

Summarizing, we formulate the following theorem.

Theorem 5.1. Let G=(V, E) be a Eulerian multigraph with E={1, 2, ..., r} such that
the edge sequende. . ., r forms a Eulerian path. Let w be a weight function on the edge
sets{i,i +1,...,j},1 <i<]j <r, that fulfills property(4). Then a spanning tree for G
with minimum branch weight can be computed i6\03 + |V | |E|) time.

6. NP-completeness for planar graphs

In this section, it is proved that the problem Bsivis NP-complete even fgianarEulerian
multigraphs. The transformation is from the following NP-complete Hamiltonian path prob-
lem (cf. Plesnik, 1979).
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Problem: Hamiltonian path in planar bipartite directed graphs with degree bound two
(HP-PBD2)

Instance: A simple planar bipartite directed grapgth = (B U W, A) and two vertices
s € B andt € W that fulfill the following properties:

(1) |B|=|W|=mandA C (B x W) U (W x B).

(2) All vertices inB\{s} have outdegree two and indegree osi@as outdegree two and
indegree zero.

(3) All vertices inW\{t} have outdegree one and indegree twbas outdegree zero and
indegree two.

Question: DoesH contain a Hamiltonian Path that goes frarto t?
Theorem 6.1. For planar multigraphs G= (V, E), problemB-MsTis NP-complete.

Proof: We will construct a Eulerian multigrap® = (V, E), a weight functiorw on the
edge sets and a boukdsuch thats allows a spanning tree with b-weight at mésif and
only if the instance of HP-PBD2 has a Hamiltonian path.

Indeed, leH = (BUW, A), se B andt € W constitute an instance of HP-PBD2. Define
Asw=AN (B xW)andAyg= AN (W x B). Two arcsf, = (b, w1) and f, = (b, w»)
in Agw are calledsistersif b; =b, or w; = w; holds. Note that every arc iAgw pos-
sesses exactly two sisters. The sister-relation naturally decomposes the Agg,Sato
cycles of even length which are callsisterhoodsSuch a cycle alternatingly consists of
clockwise and counter-clockwise directed arcs. For every sisterSparbitrarily choose
a startvertexand an orientation for the cycle and denote§S) the undirected path that
results from starting in the startvertex, running once through the cycle according to the
chosen orientation and which ends again in the startvertexs destote the total number of
sisterhoods. LePy, ..., Ps be an enumeration of the undirected pa®{$) coresponding
to the sisterhoods. For every die, b) € Aw g, define another undirected path that contains
only the edge, b]. Denote thesen — 1 paths byPs,1, ..., Ps;m_1. Observe that the
pathsPy, ..., Ps.m_1 exactly coverA; in other words, for every edge in one of these paths
there is a unigue corresponding arc in the arcAetNext, define undirected pathdy
for 1 < k < s+ m — 2, that connect the endvertex Bf to the startvertex oPy,; as
follows: Every Qg contains at least one and at most 2 1 edges, and it only uses edges
whose directed counterpart occursHn The exact combinatorial structure of tg is ar-
bitrary and does not matter. Clearly, the concatena®os: P1Q1P, - - - Qs m_2Psim_1 Of
the thus defined paths forms an undirected path that visits every ver@xii/ at least
once.

Finally, we define the grap® and the weight functiomw: The vertex set o6 = (V, E)
equalsB U W. The edge seE consists of all edges iP*; these edges are numbered
according to the ordering alorig*. The weightsw;; with 1<i < j <|E| are defined by
wij =S + j — i and thus all have value at least- 1. It remains to define the weights
wii for single edges. We distinguish between so-cdiigltt andheavyedges. Every edge
belonging to anyQy is a heavy edge of weiglst+ 1. Every edge belonging to ar is
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a light edge and has weight zero or one. In evigrywith 1 <k <, the first and the last
edge (i.e., the two edges that are incident to the startvertex of the corresponding sisterhooc
receive weight one. All remaining edges receive weight zero. Clearly, the so constructec
graphG is a Eulerian multigraph. Since the patRsand Qx only contain edges that are
also present irH, the graphG is planar. It is easy to verify that the weights fulfill prop-
erty (4).

We claim thatG has a spanning tree with b-weight at mest and only if the instance
of HP-PBD2 has a Hamiltonian path.

(If). Assume,H contains a Hamiltonian Path fromstot. ThenP contains alim — 1
arcs inAy g (these are the only possibilities for leaving the verticeg\k{t}), and from
every sisterhood i\g, P either contains all arcs at the odd places or all arcs at the even
places. Consider the spanning tfgethat consists of the light edges correspondingto
Trivially, the edge set of p does not contain any branches with two or more edges. Hence,
the b-weight ofTp equals the weight of its single edges. From every sisterhBahd Tp
use exactly one of the two edges with weight one. Since theresaséerhoods, this yields
a total b-weight of for Tp.

(Only if). Assume,G possesses a spanning tieevith b-weights. Clearly, T consists
of 2m — 1 light edges and it does not contain heavy edges. From any sisterhazad
use at most half of the edges (otherwi3ewould contain a branch of size at least two
and of weight at least + 1). A straightforward counting argument yields tiatses alll
m — 1 light edges corresponding g andm light edges corresponding tagy, and
thus exactly half of the edges of every sisterhood. For no sisterBptie overall weight
of edges inSN T can be zero (otherwis@&, contains a branch of size at least two). Hence,
the overall weight of edges i8N T equals one for all sisterhoo®& Summarizing, this
yields that from every sisterhood, the trEeeither contains all edges at the odd places or
all edges at the even places. Now consider the arégéh A that corresponds td: Ag
is connected and of cardinality/®— 1. In Ar, every vertex inW\{t} has outdegree one
and every vertex ifB has outdegree one, and obviougly forms a Hamiltonian path from
stot. O

7. Discussion

In this paper we considered TSPs with permuted Monge matrices as cost matrices whos
patching graph is a multistar or a multitree. By performing a careful analysis, we sim-
plified Gaikov’s theory and considerably accelerated the solution procedure in the case o
multitrees. These considerations are not only a step towards a better understanding of tf
nature of the problem and its computational complexity, but they also offer a basis for new
heuristics: We call a set of tours arponential neighborhod it has an exponential size,

but it is possible to find an optimal solution within this set in polynomial time. The papers
Burkard and Deineko (1995) and Glover and Punnen (1995) describe some examples c
exponential neighborhoods. The multitrees of this paper also give rise to a rather powerful
exponential neighborhood, in the sense that an optimal solution can be found within a rathe
large set of tours.
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