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Abstract. In this paper we study the problem of finding placement tours for pick-and-place robots, also
known as the printed circuit board assembly problem with m positions on a board, n bins containing m
components and n locations for the bins. In the standard model where the working time of the robot is pro-
portional to the distances travelled, the general problem appears as a combination of the travelling salesman
problem and the matching problem, and for m = n we have an Euclidean, bipartite travelling salesman
problem. We give a polynomial-time algorithm which achieves an approximation guarantee of 3 + ε. An
important special instance of the problem is the case of a fixed assignment of bins to bin-locations. This
appears as a special case of a bipartite TSP satisfying the quadrangle inequality and given some fixed match-
ing arcs. We obtain a 1.8 factor approximation with the stacker crane algorithm of Frederikson, Hecht and
Kim. For the general bipartite case we also show a 2.0 factor approximation algorithm which is based on
a new insertion technique for bipartite TSPs with quadrangle inequality. Implementations and experiments
on “real-world” as well as random point configurations conclude this paper.
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1. Introduction

Pick-and-place robots are used for the automatic placement of electronic components on
printed circuit boards. The optimization problem is to minimize the placement time of
the robot. A mathematical model for the problem is the following.

1.1. The printed circuit board assembly problem PCBA(m, n)

We are given:

• m components partitioned into n sets B1, . . . , Bn, m � n, which we call bins. Let B
be the set of bins. In real world, bins are geometrical objects like boxes or strips
containing components. It will be convenient to color the components: let the com-
ponents in bin Bi have color i.
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• A finite set L of at least n points in the plane called bin-locations. For simplicity we
assume |L| = n.

• A set P of m points in the plane called positions, and a partition of P into n sets
P1, . . . , Pn with cardinalities |Pi | = |Bi| for all i = 1, . . . , n. The positions are also
colored: the positions in Pi have color i. Let Ni = |Pi | for all i = 1, . . . , n.

The i-colored positions correspond exactly to the locations on a printed circuit
board on which the i-colored components must be placed. A bin-assignment A is a
bijection A :B → L. In real world, this is a physical placement of the bins on the bin-
locations according to A. Given a bin-assignment A, a placement tour of the robot is
defined as follows: the robot travels from a starting point to some non-empty bin Bi ,
picks an i-colored component, travels to an empty i-colored position, places the picked
component on this position, travels to some non-empty bin Bj , and continues in this
fashion until all components have been placed.

Given a bin-assignment A, let PCBA(m, n,A) denote the problem of finding a
placement tour which takes minimum time t (A). The PCBA(m, n) problem is the prob-
lem of finding the minimum t (A) over all bin-assignments A. In other words, we have
to determine simultaneously a bin-assignment and a placement tour such that the total
working time is minimum.

Note that one difficulty of the PCBA(m, n) lies in the fact that a priori no good
bin-assignment is known. Furthermore, the positions in the sets Pi can be arbitrarily
scattered and do not necessarily form geometric clusters. The fact that a placement tour
must be alternating between bins and positions seems to be the main difficulty in finding
provably good approximation algorithms.

For the theoretical analysis we consider the standard model described in the litera-
ture, where the working time of the robot is assumed to be proportional to the distances
travelled in L1, L2 or L∞-norms. We will briefly call this the Lp-model.1 Then, for
certain choices of m and n, PCBA(m, n) reduces to the following combinatorial opti-
mization problems.

• PCBA(n, n) is a special bipartite TSP. PCBA(m, n) can be considered as a general-
ization of such a bipartite TSP.

• Let A be a fixed bin-assignment. A induces Ni arcs leaving bin-location A(Bi) and
matching the Ni i-colored positions, for all i = 1, . . . , n. LetM be the set of all such
arcs. For m = n, M is a matching. Every placement tour for PCBA(m, n,A) must
traverse these fixed arcs. Thus PCBA(m, n,A) is related to the stacker crane problem
(see [16]): a feasible solution for the stacker crane problem is a route visiting every
node at least once and traversing the arcs of M in the prescribed direction while

1 In this model we supress technological features such as robot arm acceleration, insertion/picking time,
etc. Furthermore, we assume that all n! bin-assignments are feasible. But even under this assumptions
the Lp-model is realistic enough for some real-world assembly robots, and it helps to understand more
complicated situations. Note that all above mentioned parameters can be modelled under appropriate cost
functions and in the practical part of the paper we will include them.
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a solution for PCBA(n, n,A) is a tour which visits every mode exactly once and
traverses the arcs of M in the prescribed direction.

1.2. The size constrained bin-location problem

The optimization problem for the industrial robot (SIEMENS robot HS180) considered
in this paper leads to an interesting new generalization of the PCBA(m, n) problem.
While in the PCBA(m, n) problem all bin-assignments are feasible, robot HS180 allows
only a certain subset of feasible assignments, for example restricted by the geometri-
cal shape of bins and location regions. This is of complexity-theoretical significance.
We will show in section 3 that the bin-assignment problem for size-constrained bins un-
der a natural cost function is NP-hard. Let us denote by SC-PCBA(m, n) the printed
circuit board assembly problem with size constrained bins. This generalization of the
PCBA(m, n) problem will be discussed in sections 3 and 4.

1.3. Previous work

The work on the printed circuit board assembly problem has been focused on the de-
velopment of practically efficient heuristics which iteratively solve the bin-assignment
problem and the routing problem (see Drezner and Nof [9]). Ball and Magazine [3] used
a fixed bin-assignment – based on the work of Drezner and Nof – and constructed a
good tour in the Manhattan norm. Their problem appears as a Rural Postman problem, a
generalization of the Chinese postman problem. Leipälä and Nevalainen [17] introduced
a quadratic assignment problem as a model for a variant of the PCBA(m, n) problem.
For m = n their problem is the PCBA(n, n,A) problem in our notation. Foulds and
Hamacher [11] and Francis et al. [12] considered the problem in which the bin-locations
can be taken anywhere in the plane in contrast to the PCBA(m, n) problem with fixed,
discrete bin-locations. To find the best location in the region, Foulds and Hamacher used
a geometric algorithm. Based on the best bin-location they solved a TSP, and then a
matching problem.

1.4. Results and organization of this paper

In section 2 we present:

• an O(nO(1/ε))-time 3+ε factor approximation algorithm for the PCBA(m, n) problem,
for all ε > 0;

• an O(nO(1/ε))-time 2+ε factor approximation algorithm for the PCBA(n, n) problem,
for all ε > 0;

• an O(m3)-time 1.8 factor approximation algorithm for the PCBA(m, n,A) problem,
when a fixed bin-assignment A is given;

• an O(n2)-time 2.0 factor approximation algorithm for the computation of a tour with
respect to a fixed directed matching in a complete bipartite graph Kn,n where the
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edge weights satisfy a quadrangle inequality. From this result a 2 factor O(n2)-time
algorithm for the PCBA(n, n,A) problem can be derived.

To show the first approximation result we give an algorithm which first computes
a minimum weight bin-assignment, then finds a TSP tour among the bin-locations and
finally merges the assignment edges with the tour.

The factor of 2 + ε in the second result comes from a better analysis of this algo-
rithm in the special case m = n. In this case Anily and Hassin [1] and independently
Michel [18] proved a factor of 2.5, and Motwani and Rao [6], and independently Frank
et al. [14] showed the presently best worst-case approximation factor of 2. In a recent
paper Baltz and Srivastav [4] proved that the worst-case performance of all of these
algorithms cannot be better than 2.

The third result is obtained using the algorithm of Frederikson, Hecht and Kim [15]
for the stacker crane problem in a straightforward way.

The fourth result is based on a new insertion technique for the construction of a di-
rected travelling salesman tour containing a given directed matching in a bipartite graph
in which the edge weights satisfy the quadrangle inequality. Note that with the O(n3)

time algorithm of Frederikson, Hecht and Kim [15] an approximation factor of even 1.8
can be proved. Our insert algorithm gives the somewhat weaker 2-factor approximation,
but needs only O(n2) time.

In section 3 we show the NP-completeness of the size constrained bin-location
problem and discuss an interesting, polynomial-time solvable case.

Section 4 contains experimental data of two kinds.
Firstly, we have tested our approximation algorithm for the PCBA(n, n) problem

on random instances as well as on instances arising in practice. Interestingly, in all of
these experiments the approximation factor was less than 1.36 in contrast to the worst-
case factor of 2 + ε. For configurations arising from practical situations the approxima-
tion factor approached 1 as n increased.

Secondly, for the general problem SC-PCBA(m, n) and the application to robot
HS180 we have implemented fast exchange heuristics and tested it against industrial
solutions in which a TSP tour optimization with simulated annealing and a manual bin-
assignment was used.2 We were able to improve the optimizable (respectively total)
assembly time of industrial solutions by 8% to 24% (respectively 4% to 12%). The
interesting observation here was that the major improvement achieved by our heuristical
algorithm is due to the bin-assignment and not to the TSP tour optimization.

2. Approximation algorithms

Let us start with a complexity-theoretical observation.

2 Note that we cannot apply our approximation algorithm for PCBA(m, n) to the SC-PCBA(m, n) prob-
lem, because the size constrained bin-location problem is NP-hard, while the bin-assignment problem for
PCBA(m, n) is solvable in polynomial time.
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Proposition 2.1. The PCBA(n, n) problem is NP-hard.

Proof. Given an instance of the Euclidean TSP with n points, consider an instance of
the PCBA(n, n) problem with 2n points where we simply double the given point set.
This PCBA(n, n) problem is equivalent to the TSP problem. �

2.1. The general problem PCBA(m, n)

The first algorithm, which guarantees a 3 + ε factor approximation for PCBA(m, n), has
three steps: we find a minimum weight matching between bin-locations and positions,
construct a TSP tour for the n bin-locations with Arora’s PTAS [2], and finally we merge
the matching with the tour.

Algorithm ROUTE.
Input: An instance of PCBA(m, n), ε > 0.
Output: A feasible tour T for PCBA(m, n).

1. We generate a complete bipartite graph G = (V1, V2, E) with |V1| = |V2| = n: the
vertices of V1 represent the n bin-locations, the vertices of V2 represent the n bins. Let
dik be the distance of bin-location i to position k. For an edge e = (i, j) ∈ V1 × V2

its weight is
c(e) :=

∑
k∈Pj

dik.

• Find a minimum weight perfect matching M = {(ik, jk), k = 1, . . . , n} in (G, c).

• Place the bins on the bin-locations according to the matching M.

Now we may identify bins and bin-locations and for both we will use the notation
B1, . . . , Bn.

2. Construct with Arora’s PTAS a tour Tboard for the points {B1, . . . , Bn} with
L(Tboard) � (1 + ε)Opt where Opt is the length of an optimal TSP tour for the points
{B1, . . . , Bn}. Let Tboard = (Bj1, . . . , Bjn, Bjn+1) be this tour where Bjn+1 = Bj1 .

1. For all l = 1, . . . , n do;
Place all components contained in bin Bjl on the Njl jl-colored positions by trav-
elling from Bjl to the jl-colored positions and back. Let pjl be the last visited
jl-colored position.

2. From pjl travel to the bin-location Bjl+1 .

3. Output is a tour T .

Figure 1 illustrates this algorithm.

Theorem 2.2. Let ε > 0 and let Topt be an optimal tour for PCBA(m, n). ROUTE
constructs in O(nO(1/ε)) time a tour T for PCBA(m, n) with length L(T ) such that

(i) L(T ) � (3 + ε)L(Topt) for m > n,
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Figure 1. ROUTE for m = n.

(ii) L(T ) � (2 + ε)L(Topt) for m = n.

Proof. By step 1 the bins have been placed on the bin-locations, thus in the follow-
ing we may identify bin-locations and bins. The running time of Arora’s algorithm is
O(nO(1/ε)), the minimum weight perfect matching algorithm takes O(n3) time, the edge
weights in step 1 are computed in O(nm) time, thus the total time is O(nO(1/ε)) for suffi-
ciently small ε > 0.

(i) By step 2,

L(Tboard) � (1 + ε)Opt � (1 + ε)L(Topt). (1)

Let M be the set of matching edges el = (il, jl) ∈ V1 × V2 as constructed in step 1
of the algorithm, and set L(M) = ∑n

l=1 c(el). Since M is a minimum weight perfect
matching, and the optimal tour Topt induces a perfect matching in (G, c),

L(M) � L(Topt). (2)

Remember, Tboard = (Bj1, . . . , Bjn, Bjn+1) and Bjl+1 is the bin visited after pjl . Let rl be
the edge (Bjl , pjl ), tl the tour edge (Bjl , Bjl+1) and put sl = (pjl , Bjl+1).

Let Tl be the subtour of T between bin Bjl and the positions from the set Pjl . We
have

L(T ) =
n∑
l=1

L(Tl)+ L(sl)

(triangle
inequality)

�
n∑
l=1

L(Tl)+ L(rl)+ L(tl)

=
n∑
l=1

(
L(Tl)+ L(rl)

) +
n∑
l=1

L(tl)

= 2L(M)+ L(Tboard)
(1),(2)
� (3 + ε)L(Topt).
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(ii) Let m = n. The improved factor 2 + ε results from a better estimate of the
matching M: observe that Topt induces two perfect matchings M1 and M2 between the
bin-locations and the positions. Hence

min
(
L(M1), L(M2)

)
� 1

2
L(Topt),

thus, since M is a minimum weight perfect matching between bin-locations and posi-
tions

L(M) � 1

2
L(Topt).

The rest of the proof is as in (i). �

2.2. Fixed bin-assignments

An important special case of PCBA(m, n) in applications is the problem with a fixed,
given bin-assignment A. For example, Ball and Magazine [3] analyzed such robots. Us-
ing the algorithm of Frederikson, Hecht and Kim [15] we have

Theorem 2.3. Let OPT be the length of an optimal solution for PCBA(m, n,A). Then
a feasible tour T for PCBA(m, n,A) satisfying L(T ) � 1.8OPT can be constructed in
O(m3)-time.

Proof. Let M be the directed matching from the bin-locations to the positions induced
by A as defined in the introduction.
Case 1: m = n. The stacker crane algorithm of Frederikson, Hecht and Kim [15]
constructs in O(m3) time a directed Eulerian tour R which traverses the arcs of M in
the prescribed direction and satisfies L(R) � 1.8OPT stacker crane. We can view R as a
directed walk in which every edge of R appears exactly once. We use the following
short cut technique in order to generate a feasible tour T for PCBA(m,m,A): while
walking along R connect the head vertex of an arc in M with the tail vertex of the next
arc from M in R. By the triangle inequality, L(T ) � L(R). Since the stacker crane
problem is a relaxation of PCBA(m,m,A), OPTstacker crane � OPTPCBA(m,m,A) and we
are done.
Case 2: m � n. Consider for every bin-location i, Ni identical copies placed on the bin-
location i. We connect the Ni i-colored positions with a perfect, directed matching M∗
with the new Ni bin-locations. M∗ defines a bin-assignment which we call A∗. In this
function, we have generated an equivalent instance of the PCBA(m,m,A∗) problem.
Now we apply case 1. �

2.3. An insertion method

Let us start with the following definition.
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Definition 2.4. Let G = (V ,E) be a graph with edge weights cij . We say, in (G, c) the
quadrangle inequality is valid, if for all 4-cycles C4 = (i, j, k, l, i), i, j, k, l ∈ V ,

cij � cjk + ckl + cli .

We now give an O(n2)-time insertion technique for the construction of a directed
travelling salesman tour containing a given directed matching in a bipartite graph in
which the edge weights satisfy the quadrangle inequality. The approximation guarantee
of this algorithm is a factor of 2.0. As mentioned in the introduction, one can show
also for this problem, following the pattern of the proof of theorem 2.3 and using the
quadrangle inequality, an approximation factor of 1.8.

We have included the insertion approach to demonstrate how the insertion tech-
nique can be carried over to some graphs where the quadrangle inequality is valid.

Algorithm INSERT.
Input: A complete bipartite graph G = (V1, V2, E), |V1| = |V2| = n, a non-negative
edge weight matrix c = (cij ){i,j}∈E and a directed perfect matchingM = {(a, b); a ∈ V1,
b ∈ V2}, where (a, b) denotes the arc from a to b. Suppose that the edge weights are
independent of the edge orientation, i.e., cij = cji for all {i, j} ∈ E, and that (G, c)
satisfies the quadrangle inequality.
Output: A directed travelling salesman tour T which traverses the arcs of M in the
prescribed direction.

1. Minimum spanning tree construction:
Consider the following complete graph H with edge weight matrix w: set V (H) =
M. For i, j ∈ V (H) with i = (a, b), j = (a′, b′) define wij = min(cab′, ca′b), and
let w = (wij ). Construct in (H,w) a minimum weight spanning tree TH .

2. Tour construction via insert:
Initialization: T1 := {(a1, b1), (b1, a1)} for some (a1, b1) ∈ M.
For i = 2, . . . , n do:
Suppose the tour Ti−1 containing the arcs (a1, b1), . . . , (ai−1, bi−1) ∈ M has been
constructed. We extend Ti−1 to Ti as follows.

(a) Choose an arc (ai, bi) ∈ M \ Ti−1 which is connected to Ti−1 by an edge of TH
(such an edge exists, because TH is a spanning tree on V (H) = M).

(b) Choose an arc (u, v) ∈ Ti−1 \M such that

caibi + cuai + cbiv − cuv

is minimum. (Note that by construction of Ti−1, we have u ∈ V2 and v ∈ V1.)

(c) Replace (u, v) by the directed 3-path P3 = {(u, ai), (ai, bi), (bi, v)}, and set
Ti := Ti−1 \ {(u, v)} ∪ P3.

3. Output T = Tn.
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For a subset A of edges from G let L(A) := ∑
e∈A ce be the weight (or length)

of A.

Theorem 2.5. INSERT constructs in O(n2)-time a directed travelling salesman tour T
in (G, c) which traverses the arcs of M in the prescribed direction such that

L(T ) � 2L(Topt).

Proof. Let Topt be the optimal travelling salesman tour in (G, c) containing M. In the
graph H , Topt induces a spanning tree B, hence

L(TH) � L(B). (3)

By definition

L(B)+ L(M) � L(Topt). (4)

Consider the construction of Ti from Ti−1 in step 2 of INSERT. In TH , (ai, bi) is con-
nected with Ti−1 by a unique edge {(ai, bi), (a, b)} for some (a, b) ∈ Ti−1 ∩ M. To
shorten notation denote by wi its weight, so

wi = min(caib, cabi ).

Let (u, v) be as in step 2 of INSERT.

Claim. L(Ti)− L(Ti−1) � 2(caibi + wi) for i = 2, . . . , n.

Proof of the claim. Since (u, v) ∈ Ti−1 \M minimizes caibi +cuai +cbiv−cuv, we have
for all arcs (x, y) ∈ Ti−1 \M (where by construction of Ti−1, x ∈ V2 and y ∈ V1 holds)

L(Ti)− L(Ti−1)= caibi + caiu + cbiv − cuv

� caibi + caix + cbiy − cxy

= 2caibi + caix + cbiy − caibi − cxy

� 2
(
caibi + min(caix, cybi )

)
.

The last inequality follows from the quadrangle inequalities

caix � cxy + cbiy + caibi and

cbiy � caibi + caix + cxy

which imply −caibi − cxy � cbiy − caix as well as −caibi − cxy � caix − cbiy . The claim
is proved, if we can show min(caix, cybi ) � wi for some (x, y) ∈ Ti−1 \M. In fact, in
the tour Ti−1 there are arcs (b, g), (h, a) ∈ Ti−1 \M (see figure 2). If wi = caib then put
(x, y) := (b, g), otherwise if wi = cabi then put (x, y) := (h, a). In the first case

min(caix, cybi ) = min(caib, cgbi ) � caib = wi.
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Figure 2.

The same argument applies for the case wi = cabi and the claim is proved. Set M1 =
M \ {(a1, b1)}. We have already observed that for each inserted arc (ai, bi) the weight
wi is well-defined and corresponds to a unique edge of the tree TH . Now

L(Tn) = L(T1)+
n∑
i=2

L(Ti)− L(Ti−1)

(claim)
� 2ca1b1 + 2

n∑
i=2

(caibi + wi)

� 2
(
L(M)+ L(TH)

)
(3)
� 2

(
L(M)+ L(B)

)
(4)
� 2L(Topt).

The running time is dominated by the time needed for the construction of the minimal
spanning tree TH which is O(n2). �

With this theorem one can easily derive:

Corollary 2.6. For the PCBA(n, n,A) problem a tour T containing M can be con-
structed in O(n2) time such that L(T ) � 2OPT.

3. Size constrained bins

The bin-location problem with size constraints is defined as follows: we are given a
rectangle S in the Euclidian plane having length s and width w, partitioned into subrec-
tangles R1, . . . , Rs of unit length and width w. S is the location region for the bins, and
the Ri are the bin-locations. We are given n bins of width w, but different lengths, say
l1, . . . , ln where l1 + · · · + ln = l and l � s. A placement of a bin Bi on a location Rj is
feasible, if the bin fits on S, i.e., j −1+ li � s and the required space, i.e., the rectangles
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Rj, . . . , Rj−1+[li ], are not occupied by any other bin. It is important that we have a cost
function Z for measuring bin-assignments. Let C = (cij ), 1 � i � n, 1 � j � s,
be a non-negative cost matrix, where cij is the cost for the assignment of bin Bi to bin-
location Rj . Let xij be the 0/1 variable which is 1 iff bin Bi is assigned to rectangle Rj
and define

Z(x) =
∑
i,j

cij xij .

For a bin-assignment A let us denote by Z(A) the value of Z. Let �l denote the vector
(l1, . . . , ln). The size constrained bin-location problem – SCBL(n, �l, s, Z) – is to find
a feasible bin-assignment (all bins must be assigned) with minimum value for Z. The
SCBL(n, �l, s, Z) problem is NP-hard. We give a proof suggested by Triesch [21] (see
also [20]). Closely related to SCBL(n, �l, s, Z) is the problem of scheduling jobs with
equal length. For this problem Crama and Spieksma [8] gave an NP-hardness proof using
a reduction from the 3-dimensional matching problem.

Theorem 3.1. SCBL(n, �l, s, Z) is NP-hard.

Proof. We give a reduction from the 3-partition problem. An instance of 3-PARTITION
consists of two integers m and b, a set C = {a1, . . . , a3m} ⊆ Z

+ with 1
4b < ai <

1
2b

for all i and
∑

i ai = mb. The decision problem is: “Is there a partition of C, C =
C1 ∪ · · · ∪ Cm such that

∑
aj∈Ci aj = b for all i?”

We construct an equivalent instance of SCBL(n, �l, s, Z) as follows. Set n = 3m,
li = ai for i = 1, . . . , 3m, l = mb. Thus the bin-locations are indexed from left to right
by {1, . . . , mb}. Let Ik for k = 1, . . . , m be the index sets Ik = {(k − 1)b + 1, . . . , kb}.
We say, the assignment i → j is proper, if j − 1 + li ∈ Ik. Set

cij :=
{

0 if i → j is proper,
1 otherwise.

Let xij be the 0/1 variable which is 1 if bin Bi is assigned to bin-location Rj and zero
otherwise.

Observe that the question: “Is there a feasible assignment for SCBL(n, �l, s, Z)
with Z < 1” is equivalent to the decision version of 3-PARTITION. �

If all bins have the same length, the problem reduces to an ordinary assignment
problem. Note that the same is true for a special case of the scheduling problem consid-
ered by Crama and Spieksma [8].

Proposition 3.2. If li = a for all bins Bi , then an optimal solution for SCBL(n, �l, s =
na,Z) can be found in O(n3) time.
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Proof. Let V1 denote the set of bins and let V2 be the bin-locations which are the inter-
vals P1, . . . , Pn of length a:

P1 = [0, a], P2 = [a, 2a], . . . , Pn = [(n− 1)a, na].
Let {i, Pj } ∈ V1×V2 be an edge of the complete bipartite graphG on (V1, V2) and define
its weight as the cost of assigning bin Bi to the bin-location Pj . The optimal solution of
SCBL(n, �l, s = na,Z) is a minimum weight perfect matching in G. �

From proposition 3.2 it is straightforward to derive an O(k!n3) time optimal algo-
rithm for SCBL when k bins have length t0 and n − k bins have length t1 (t0, t1 being
non-negative integers).

4. Implementation and experimental results

4.1. Experimental results for algorithm ROUTE for PCBA(n, n)

In this section we introduce relaxations for the PCBA(n, n) problem which can be
solved in polynomial time yielding lower bounds for the length of an optimal solution
of PCBA(n, n). The performance of algorithm ROUTE for the PCBA(n, n) problem is
measured with respect to these lower bounds.3 Since Arora’s PTAS has a quite high time
complexity, in the actual implementation of ROUTE we computed the TSP tour among
the bin-locations with the fast 3-opt heuristic. The tests were performed on three kinds
of random point configurations in the Euclidean plane. Apart from uniformly distributed
points (figure 3), we simulated typical PCBA settings in two non-uniform configura-
tions (figures 4 and 5). In detail, the coordinates of points in these three situations were
independently and randomly chosen from

Figure 3. Configuration 1. On uniformly distributed points, ROUTE yields tours of significantly shorter
length than guaranteed by the worst-case bound of (2 + ε)OPT. The approximation achieved is at most

1.36OPT in the worst-case and 1.12OPT in the average case, respectively.

3 For the general problem (m > n) we do not have efficiently computable and good lower bounds for the
optimum, thus a qualification of the experimental performance of ROUTE with respect to the optimal
solution is difficult. For m = n we give linear programming lower bounds [4].
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Figure 4. Configuration 2. In this more realistic situation, ROUTE produces tours of length at most
1.031OPT on average. Note that the tour lengths seem to tend towards the optimum as the number of

points increases: from 120 points on, the computed tours typically are only 1% off the optimum.

Figure 5. Configuration 3. This is a practically relevant configuration of points where our algorithm pro-
duces tours very close to the optimum. From 60 points on the optimum is exceeded by no more than 1%.
Again, the tour lengths seem to tend to the optimum as the number of points increases. For 140 points the

average deviation from the optimum is less than 0.1%.

• {1, . . . , 500}2 (both, red and blue4),

• {125, . . . , 375}2 (red) and {1, . . . , 500}2 \ {125, . . . , 375}2 (blue),

• {61, . . . , 560} × {1, . . . , 500} (red) and {1, . . . , 10} × {1, . . . , 500} (blue).

For each configuration we generated 5 times 100 instances on 20 up to 100 bicolored
points. We restricted ourselves to 50 instances on 120 and 140 points, respectively. Max-
imum and average tour lengths are listed in table 1.

The tour lengths are given as factors of OPT∗, where OPT is the maximum of the
length of an optimal B2-tree and an optimal 2-matching, both of which are lower bounds
for the length OPT of an optimal tour for PCBA(n, n): a B2-tree is a degree constrained
spanning tree, where each red vertex has at most two neighbors. Frank’s [13] refined

4 Red points are the bin-locations and blue points are the positions.
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Table 1

Number of points ROUTE-tour (maximum) ROUTE-tour (average)

Configuration 1

20 1.360 1.104
40 1.247 1.100
60 1.234 1.116
80 1.200 1.111

100 1.192 1.110
120 1.193 1.110
140 1.173 1.111

Configuration 2

20 1.109 1.031
40 1.048 1.018
60 1.032 1.015
80 1.025 1.012

100 1.035 1.012
120 1.020 1.010
140 1.022 1.010

Configuration 3

20 1.0595 1.0169
40 1.0580 1.0079
60 1.0075 1.0041
80 1.0057 1.0027

100 1.0035 1.0018
120 1.0024 1.0013
140 1.0019 1.0010

version of Edmonds’ [10] weighted matroid intersection algorithm allows to compute a
minimum weight B2-tree in time O(n7). Note that deleting an edge from a PCBA(n, n)
tour yields a B2-tree justifying the use of an optimum B2-tree as a lower bound. Sim-
ilarly, the length of a PCBA(n, n) tour is bounded from below by the minimum length
of the edges of a graph, where each vertex has degree two. Such a 2-matching can be
constructed in O(n3 log n)-time using a capacitated transportation algorithm [19].

4.2. Experimental results for the SC-PCBA(m, n) problem and Robot HS180

In this section we give a heuristic for the SC-PCBA(m, n) problem when the bin-
assignment problem is an SCBL(n, �l, s, Z) problem. Note that our approximation al-
gorithms ROUTE for the PCBA(m, n) problem cannot be used for the SC-PCBA(m, n)
problem, because the size constrained bin-location problem is NP-hard, whereas for the
PCBA(m, n) problem it is solvable in polynomial time.

The algorithm for the SC-PCBA(m, n) problem iterates the following procedure:
we start with a bin-assignment, say A, then compute a TSP cost matrix C(A) depend-
ing on A for the m positions, find a placement tour T , and then compute a better bin-
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Figure 6. SIEMENS HS180.

assignment A′ with respect to T . The last step is done as follows: for A′ we have a new
cost matrix C(A′). We say, A′ is a better bin-assignment than A with respect to T , if the
length of T computed with respect to C(A′) is smaller than the length of T computed
with respect to C(A).

We have implemented the algorithm for the robot HS180 and tested it on a set of
15 printed circuit boards against an industrial procedure in which TSP optimization with
simulated annealing and a manual bin-assignment was used.

In the following we discuss our implementation which takes the technological fea-
tures of HS180 into account. A schematic description of HS180 is shown in figure 6.
Given a bin-assignment A, the standard heuristical method for m = n is to solve an
n-city TSP for the positions P = {p1, . . . , pn}, where the component cij of the TSP
cost matrix C(A) is defined as the Tschebyscheff norm of pi − pj . This makes sense
for robot arms moving synchronously in x and y direction. The robot arm of HS180
has different acceleration in x and y direction. We will define a weighted Tschebyscheff
norm to cover this particular feature.

The TSP cost matrix. Let pi = (xi, yi), and pj = (xj , yj ) be two positions. The
Tschebyscheff norm of pi − pj is

‖pi − pj‖ = max
{|xi − xj |, |yi − yj |

}
.

This is an appropriate measure for the travelling time of the robot from pi to pj when the
travelling time is proportional to the distances travelled. Since the x and y accelerations
for the robot arm of HS180 are not the same, we define

‖pi − pj‖t = max
{
tx

(|xi − xj |
)
, ty

(|yi − yj |
)}
,

where tx(d) respectively ty(d) is the time needed to cover a distance d in x respectively
y direction.
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Now suppose that a bin-assignment A is given. Then the robot must travel from a
position pi to a position pj via the bin Bj (which is placed on bin-location j according
to A), and we can define travelling costs between the m positions.

We define the cost (or distance) cij between position pi and pj by

cij = ‖pi − Bj‖t + ‖pj − Bj‖t
(here we identify the point in the plane for the location j with Bj ).

With the cost matrix C(A) = (cij )1�i,j�m we may consider an m-city TSP among
the positions.

Bin-exchange heuristic. Suppose a travelling salesman tour T between the positions
with respect to a bin-assignment A is given. The length of T is computed with respect
to C(A). We define the cost αT (B) of a new bin-assignment B with respect to T as the
length of T with respect to the cost matrix C(B).

Our algorithm starts with a bin-assignment, computes a tour, improves the tour,
computes a new and better bin-assignment with respect to the last tour and starts a new
iteration. Both, tour and assignment optimization are done with exchange heuristics. For
the bin-assignment problem (SCBL) we use the following exchange heuristic. Consider
an instance of SCBL(n, �l, s, Z) with s = l (if s > l introduce s − l dummy bins of unit
length).

Algorithm BINCHANGE(k).

1. For an initial bin-assignment A and a new bin-assignment B let 1Z = Z(A) −
Z(B) be the difference of the cost function. Define a super-bin of length i as a set of
pairwise adjacent placed bins on S of total length i.

2. For i = 1, . . . , k do: exchange two super-bins of length i with maximum 1Z. �

It is clear that BINCHANGE(k) terminates after O(l2) steps. We are ready to state
the assembly algorithm.

Algorithm ASSEMBLY.
Input: An instance of the problem PCBA(m, n)where the bin-location problem is a size
constrained bin-location problem SCBA(n, �l, s, Z). Let k be an integer.
Output: A feasible placement tour.

1. Choose an initial bin-assignment and an initial tour.

2. Iterate until the assembly time cannot be improved:

(a) improve the assignment with BINCHANGE(k),

(b) improve the tour with the 3-opt exchange heuristic. �
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Table 2

Number of Running time Improvements Improvements
components (seconds) (seconds) (%)

221 374.14 15.67 4.16
132 165.40 7.85 4.68

46 79.04 3.72 4.70
163 161.94 7.69 4.74

71 88.76 4.39 4.94
89 103.76 5.3 5.10
38 52.64 2.80 5.31

110 128.06 7.1 5.54
149 141.76 7.94 5.60

69 66.54 3.74 5.62
55 74.94 4.25 5.67
49 68.34 3.92 5.73

248 240.20 20.19 8.40
19 39.10 4.88 12.48
20 20.92 2.67 12.76

Parameters and results. For the tested printed circuit boards and the HS180 the para-
meters were: 10 � n � 30, 20 � m � 250, bin lengths 1 � li � 6, and k = 6.
The average assembly time for a printed circuit board was 2 minutes. The optimizable
assembly time was improved by 8% to 24% compared with the industrial assembly time.
About 85% of the improvement has been achieved by a better bin-assignment, and only
about 15% by 3-opt. Since the constant time in our examples is 50% of the total assem-
bly time, the overall improvements are between 4% and 12% (see table 2), on average
we have an overall gain of 6%. For TSP like problems this is considerably good. In
view of the annual production of printed circuits boards the application of combinatorial
optimization was successful.

5. Conclusion

While many research activities have focused on the design of practically efficient al-
gorithms for the printed circuit board assembly problem, a satisfactory theory is still
missing. We hope that our results can motivate research efforts also in this direction.
There are two problems which we find interesting for future work:

1. Is there a polynomial time approximation scheme for PCBA(m, n)?

2. Is there a constant factor approximation algorithm for the size constrained bin-
location problem?
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