Finding a Minimum-Weight k-Link Path in Graphs I. %U)
with the Concave Monge Property a... :

Aggarwal, A.; Schieber, B.; Tokuyama, T.)
NIEDERSACHSISCHE STAATS- UND
pp 263 _ 280 UNIVERSITATSBIBLIOTHEK GOTTINGEN

Terms and Conditions

The Gottingen State and University Library provides access to digitized documents strictly for noncommercial
educational, research and private purposes and makes no warranty with regard to their use for other purposes.
Some of our collections are protected by copyright. Publication and/or broadcast in any form (including
electronic) requires prior written permission from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's
online system to access or download a digitized document you accept there Terms and Conditions.
Reproductions of material on the web site may not be made for or donated to other repositories, nor may be
further reproduced without written permission from the Goettingen State- and University Library

For reproduction requests and permissions, please contact us. If citing materias, please give
proper attribution of the source.

Contact:

Niedersichsische Staats- und Universitétshibliothek
Digitalisierungszentrum

37070 Goettingen

Germany

Email: gdz@www.sub.uni-goettingen.de

Purchase a CD-ROM

The Goettingen State and University Library offers CD-ROMs containing whole volumes / monographs in PDF
for Adobe Acrobat. The PDF-version contains the table of contents as bookmarks, which allows easy navigation
in the document. For availability and pricing, please contact:

Niedersaechisische Staats- und Universitaetsbibliothek Goettingen - Digitalisierungszentrum

37070 Goettingen, Germany, Email: gdz@www.sub.uni-goettingen.de

Discrete Comput Geom 12:263-280 (1994) Discrete & Computationa]

eometry

© 1994 Springer-Verlag New York Inc.

Finding a Minimum-Weight k-Link Path in Graphs with the
Concave Monge Property and Applications

A. Aggarwal,! B. Schieber,! and T. Tokuyama!-

! Research Division, IBM, T. J. Watson Research Center,
P.O. Box 218, Yorktown Heights, NY 10598, USA
aggarwa@watson.ibm.com

sbar@watson.ibm.com

2 Research Division, IBM, Tokyo Research Laboratory,
1623-14 Shimo-tsuruma, Yamato, Kanagawa 242, Japan
ttoku@trl.vnet.ibm.com

Abstract. Let G be a weighted, complete, directed acyclic graph (DAG) whose edge
weights obey the concave Monge condition. We give an efficient algorithm for finding
the minimum-weight k-link path between a given pair of vertices for any given k.
The time complexity of our algorithm is O(n\/k log n + nlog n). Our algorithm uses
some properties of DAGs with the concave Monge property together with the
parametric search technique. We apply our algorithm to get efficient solutions for
the following problems, improving on previous results: (1) Finding the largest
k-gon contained in a given convex polygon. (2) Finding the smallest k-gon that is
the intersection of k half-planes out of n half-planes defining a convex n-gon.
(3) Computing maximum k-cliques of an interval graph. (4) Computing length-
limited Huffman codes. (5) Computing optimal discrete quantization.

1. Introduction

Let G = (V, E) be a weighted, complete, directed acyclic graph (DAG) with the
vertex set V = {v,,v,,...,0,}. (For convenience, we sometimes represent v; by i.)
For 1 <i <j < n, let w(i, j) denote the weight associated with the edge (i, j). (See
Fig. 1)

An edge in a path in G is called a link of the path. We call a path in G a k-link
path if the path contains exactly k links. For any two vertices, i and j, we call a
path from i to j a minimum k-link path if it contains exactly k links and among
all such paths it has the minimum-weight. A weighted DAG, G, satisfies the

264 A. Aggarwal, B. Schieber, and T. Tokuyama

Fig. 1. Complete DAG.

concave Monge property if the inequality w(i,j) + w(i + 1,j + 1) < w(i,j + 1) +
w(i+ 1,j)holdsforall1 <i+ 1 <j<n.

In this paper we are interested in computing the minimum k-link path from 1
to n in concave Monge DAGs, ie., weighted DAGs whose weights satisfy the
concave Monge property.

Using the results of Aggarwal et al. [1] and Aggarwal and Park [2], it is easy
to show that the minimum k-link path can be computed in O(nk) time for a concave
Monge DAG. The main result of this paper is an O(n./k log n + nlog n)-time
algorithm for computing the minimum k-link path. Note that this algorithm is
superior to the O(nk)-time algorithm when k = Q(log n).

We solve the problem using Megiddo’s parametric search technique [17],
[9]—a powerful technique for designing algorithms, especially in computational
geometry [8]. The original parametric search runs a (sequential version of
a) generic parallel p-processor algorithm (called the guide algorithm) without
knowing the key parameter 7, and calls a decision algorithm logp times at
each stage in order to compute the comparisons that involve the unknown
parameter.

For our problem, a naive application of the parametric search would not suffice
since the known parallel algorithms for it are not efficient enough. Therefore, we
design a new guide algorithm in a relaxed model. This guide algorithm has
sequential steps and parallel steps, and the property that all the comparisons that
involve the unknown parameter are done in the parallel steps. It is not difficult
to see that this guide algorithm can be used for the parametric search. Let tg be
the number of sequential steps, let ¢, be the number of parallel steps, and let p be
the number of processors in the guide algorithm. Applying parametric search, the
resulting algorithm has a time complexity of O(ts + tp - p + tp - tp log p), where ¢ty
is the time complexity of the decision algorithm.

It is known that parametric search can sometimes be sped up by refining
the parallel guide algorithm [9], [10]; in fact, Frederickson [10] pointed out
that the essential requirement for parametric search is to have a “nice” partial
order of computation. Our approach is similar in philosophy, although we
construct a new guide algorithm instead of refining an existing parallel algorithm.
Finally, we note that although it is almost trivial that a guide algorithm
in which only the comparisons that involve the unknown parameter are done
in parallel is sufficient for parametric search, this paper, to the best of our
knowledge, presents the first attempt to use this fact to obtain a more efficient
parametric search.

Finding a Minimum-Weight k-Link Path in Graphs 265

H
H H
: :
: H
H :
H :
H H
: :
H :
2 H
_—__/.

Fig. 2. Max-area inscribed polygon.

1.1. Applications

The minimum k-link path in a concave Monge DAG has several applications.
Given below are five such applications to geometric path finding (Applications I
and II), interval graphs (Application III), data optimization (Application IV), and
data compression (Application V):

Application I. Computing the maximum area k-gon and the maximum perimeter
k-gon that are contained in a given convex n-gon. (See Fig. 2.) For this problem
Boyce et al. [6] provided an O(nk log n)-time algorithm that was later improved
by Aggarwal et al. [1] to O(nk + nlog n) time. By incorporating the main result
of this paper, this problem can now be solved by an algorithm that takes

O(n/k log n + nlog n) time.

Application II. Computing the minimum area k-gon that is the intersection
of k half-planes out of n half-planes defining a given convex n-gon. In other
words, computing the minimum area circumscribing polygon touching edge-to-
edge. (See Fig. 3.) This problem can also be solved in O(n./klogn + nlogn)
time.

Application III. Let H be an interval graph generated by m weighted intervals
on n terminals. Given k, find k cliques of H so that the sum of the weights of
intervals in the union of the cliques is maximized. (See Fig. 4) We give an
O(m + n(\/k log n + log n) log log n)-time algorithm, thereby, improving a pre-
vious result of [4].

Application IV. Given a weighted alphabet of size n, we want to find an optimal
prefix-free binary code for the alphabet with the restriction that no code string be
longer than length k. Larmore and Hirschberg [14] gave an O(nk)-time algorithm

266 A. Aggarwal, B. Schieber, and T. Tokuyama

Fig. 3. Min-area inscribed polygon with edge-to-edge contact.

for this problem. Using the reduction of this problem to the min-weight k-link
path problem [15], we solve it in O(n./k log n + nlog n) time.

Application V. Let f: {x;, x,,..., x,} = & be a real-valued function, where % is
the set of the real numbers and x; < x, <--- < x, are real numbers. Fix k
and consider a sorted set of real numbers Z = {z,,z,,...,2,} and a mapping
v:{1,2,...,n} > {1,2,..., k}. The pair (Z, y) is called a quantization, and the sum
Yooy fx)x; — Zy@w)* the error of the quantization. Optimal quantization is the
one which minimizes the error. It is easy to see that y ~!(j) becomes an interval
for each j =1, 2, ..., k. Quantization can be regarded as a data compression of n
data items into k items, as illustrated in Fig. 5. Wu [19] showed that computing
optimal quantization can be reduced to finding a minimum-weight k-link path.

Hence it can be solved in O(n./k log n + n log n) time by applying our algorithm.

The remainder of the paper is organized as follows. Section 2 shows how
parametric search can be applied to our problem; as a by-product we show how
a simple binary-search of the unknown parameter yields an O(nlog U)-time

Fig. 4. k maximum weight cliques of an interval graph (k = 2).

Finding a Minimum-Weight k-Link Path in Graphs 267

00 0 O
N ~—

~——
~ -1 -1 -1
V(1) V(2) ¥ (3) V{(4)
z1 ZZ z3 24

Fig. 5. Quantization (k = 4).

algorithm, in case all the edge weights are integral and U is the maximum absolute
value of the weights. Section 3 describes our efficient guide algorithm and analyzes
the complexity of the resulting parametric search. Section 4 briefly describes the
applications, and Section 5 concludes with a few open problems.

2. The Parametric Search

We show how parametric search can be applied to our problem. Let G be our
weighted DAG. For a real number 1, define G(t) to be the weighted DAG with
the same sets of edges and vertices as G, in which each edge e € E has the weight
w(e) + 1 (where w(e) is the weight of e in G). Note that if G has the concave Monge
property, then G(t) also has this property. Define a diameter path in G to be a
path from 1 to n.

The following three lemmas are the basis of the parametric search.

Lemma 1. If, for some 1, the minimum-weight diameter path in G(z) has k links,
then this path is the minimum k-link diameter path in G.

Lemma 2. For any 1 <k < n— 1, a real number t exists such that a minimum-
weight diameter path of G(t) has k links.

Lemma 3. If a minimum-weight diameter path in G(t) has k links, then, for every
¢ < 1, any minimum-weight diameter path in G(&) has at least k links.

Both Lemmas 1 and 3 hold for any DAG and do no depend on the fact the
G has the concave Monge property. Lemma 1 is obvious.

Proof of Lemma 3. Let P and Q be minimum-weight paths in G(r) and
G(&), respectively. Suppose that P has k links, and Q has [links. Let W/(P)

268 A. Aggarwal, B. Schieber, and T. Tokuyama

denote the weight of P in G(t). Then W/(Q) — W(P) > 0 and W,(Q) — W,(P) < 0.
Thus,

I(r — &) = W(Q) — WAQ) = W(P) — W(P) = k(x — ¢).
Since © — ¢ > 0, we have that [> k. O
We now prove Lemma 2.

Definition 1. An edge (iy, j,) covers another edge (i,,j,) if i; <i, <j, <j, and
(1 J1) # (2, J2)-

Let P, and P, be paths in G. Suppose that a link (i;, j,) of P, and a link (i, j,)
of P, exist such that (i, j,) covers (i,,j,). We define a path-swap operation with
respect to this pair of edges. This operation creates two new paths Q, and Q,.
Path Q, is given by connecting the prefix of P, ending at i, with the suffix of P,
starting at j, by edge (i, j,). Path Q, is given by connecting the prefix of P, ending
at i, with the suffix of P, starting at j, by edge (i,,j,).

Lemma 4. Let Q,, Q, be paths obtained from P, and P, by a path-swap operation
with respect to (i, j,) and (i,, j,). The sum of the weights of paths Q, and Q, is at
most the sum of the weights of paths P, and P,. In particular, if P, and P, are
minimum-weight paths so are Q, and Q,.

Proof. In case i, =i, or j, =j,, clearly, W(Q,) + W(Q,) = W(P,) + W(P,).
Otherwise, i; < i, <j, <j;, and we have

W(Q,) + W(Q,) = W(P,) + W(P;) — Wiy, j1) — Wiz, jz) + Wiy, j2) + W(iz, jy)
< W(P,) + W(P,).

The inequality follows from the concave Monge property of the edge weights. (J

For a < b, let P, and P, be paths from v, to v, and from v, to v,, respectively.
Suppose that P, has k, links, P, has k, links, and k, > k,.

Lemma5. ForanyO0 < x < k, — k, there are links e, = (i,, j,) of P, and e, = (i, j,)
of P, with the following two properties.

1. Edge e, covers edge e,.
2. The prefix of p, ending at i, has x more links than the prefix of P, ending at i,

Proof. Let e = (i, j,) be the leftmost link of P, that covers some link of P,. Such
a link must exist since b > a and k, > k,. Suppose that e covers c links of P,, and
let f = (i,, j,) be the leftmost such link. Let d be the difference between the length
of the prefix of P, ending at i, and the length of the prefix of P, ending at i,. It

Finding a Minimum-Weight k-Link Path in Graphs 269

follows from our selection of e that this difference is less than or equal to zero.
Observe that for any d <0 < k < ¢ + d we can set ¢, to e and e, to one of the
links of P, covered by e and have the two properties of the lemma satisfied. In
case k, — k, < d + ¢ we are done. Otherwise, there must be another link of P,
that covers some link of P,. Let &' = (i}, j;) be the leftmost such link. Again, suppose
that ¢’ covers ¢’ links of P,, and let f' = (i}, j.) be the leftmost such link. Note that
the difference d' between the length of the prefix of P, ending at i, and the length
of the prefix of P, ending at i, is less than or equal to d + c. Hence, for any
d<d+c<k<d + ¢ wecan set ¢, to ¢’ and ¢, to one of the links of P, covered
by ¢’ and have the two properties of the lemma satisfied. If k, — k, < d’ + ¢’ we
are done. Otherwise, we continue in the same manner. O

Lemma 6. Let a, b, P,, P,, k,, and k, be as above. For any k in the range [k, k,],
there are paths Q, with k links from v, to v, and Q, with k, + k, — k links from v,
to vy, such that the sum of the weights of paths Q, and Q,, is at most the sum of the
weights of paths P, and P,. In particular, if P, and P, are minimum-weight paths
so are Q, and Q,.

Proof. Fix some k in the range [k,, k,]. By Lemma S there are links e, = (i,, j,)
in P, and e, = (i, j,) in P, such that edge e, covers edge e,, and the prefix of P,
ending at i, has k, — k more links than the prefix of P, ending at i,. Perform a
path swap with respect to ¢, and e, to obtain two paths Q, and Q, from v, to v,
and v,, respectively. Since Q, is created by connecting the prefix of P, ending at
i, with the suffix of P, starting at j,, the length of Q, is k, — (k, — k) = k. Similarly,
the length of Q, is k, + k, — k. Lemma 4 implies that the sum of the weights of
paths Q, and Q, is at most the sum of the weights of paths P, and P,.

Definition 2. Denote the weight of the minimum-weight [-link diameter path in
G by P()).

Corollary 7. For 1 <l<n—1,2P() <P(—1)+ P(l +1).

Proof of Lemma 2. The number of links of the minimum-weight diameter path
goes to 1 and n — 1 if 7 goes to oo and — oo, respectively. Fix some 1 <k <n — 1.
By Corollary 7 P(k) — Pk + 1) < P(k — 1) — P(k). We claim that for any
P(k)y — P(k + 1) < T < P(k — 1) — P(k) there is a minimum-weight diameter path
in G(r) with k links. Consider some k < [< n. Applying Lemma 3 it is easy to
verify that for all © > (P(k) — P(l))/(I — k), a minimum-weight k-link path in G(r)
is no larger than a minimum-weight [-link path. By Corollary 7

P(k) — P(l) = P(k) — Pk + 1)+ P(k + 1) = P(k + 2) + -- + P(I — 1) — P(})
< (I — kYP(k) — P(k + 1)).

We get that, for all 7 > P(k) — P(k + 1), a minimum-weight k-link path in G(z) is
no larger than a minimum-weight I-link path. Similarly, for 1 <1<k, for all

270 A. Aggarwal, B. Schieber, and T. Tokuyama

1 < P(k — 1) — P(k), a minimum-weight k-link path in G(z) is no larger than a
minimum-weight I-link path. O

In the parametric search we search for a value 7,, such that G(z,,) has a
minimum-weight diameter path with k links. Suppose that such a 7, is found.
To compute a minimum-weight k-link path of G (or, equivalently, a minimum-
weight diameter path of G(z,,) with k links) we do the following. Apply the
linear-time algorithm for finding a minimum-weight diameter paths in DAGs with
the concave Monge property, to find two minimum-weight diameter paths in
G(top): P, with the maximum number of links and P, with the minimum number
of links. It is easy to see that both known linear-time algorithms for this problem,
the one given by Wilber [18] and the one by Klawe [11]), can be used to find
these paths. Then, to find a minimum-weight diameter path with k links, we apply
Lemma 6. It is easy to see that finding the required links e, and e, in the proof
of Lemma 6 and performing the path swap can be done in time proportional to
the length of P,; that is, O(n) time.

One way to compute 7, is by binary search. Assume that all edge weights are
integral, and let U be the maximum absolute value of the weights.

Lemma 8. The number of links of the minimum-weight diameter path of G(—3U)
is n — 1, while that of G(3U) is one.

Proof. Consider G(—3U). Let P be a diameter path with k < n — 1 links. Then
there is a link e = (v;, v;) of P such that j > i+ 1. We replace e by the pair of
edges (v;, v;+4) and (v;4,,v;) to obtain a path with k + 1 links. It is easy to see
that this path has smaller weight than P. Hence, the minimum-weight diameter
path of G(—3U) must have n — 1 links. The statement for G(3U) can be shown
similarly. O

Since the weights are integral, the differences between weights are also integral.
Recall that any P(k) — P(k + 1) < © < P(k — 1) — P(k) can be taken as 7,,.. Hence,
an integral 7., in the range [—3U, 3U] exists. We can use binary search to find
it. Initially, set 1, = —3U and 14 = 3U. Iteratively, compute the minimum-weight
path in G(L(t,, + tg)/2)). If it has k links, then we are done: 7, = | (1, + 18)/2
Else, if it has more than k links, set 7, = | (7, + 7z)/2] + 1, otherwise, set
Tr =L(ty + 1r)/2] — 1. It is easy to see that 7., is found after O(log U)
iterations.

Theorem 9. The binary-search algorithm finds the minimum k-link path in
O(n log U) time.

Proof. The algorithm computes the minimum-weight path in concave DAGs
O(log U) times, and each minimum-weight path finding is solved in O(n) time using

[11] and [12]. O

Finding a Minimum-Weight k-Link Path in Graphs 271

We have a weakly polynomial O(nlog U)-time algorithm for the minimum
k-link path problem. (Bein et al. [5] discovered the above weakly polynomial
algorithms independently.) This algorithm is faster than the known O(nk)-time
algorithm when k = Q(log U). Practically, it often suffices to obtain a solution of
an approximated system where weights are rounded so that the precision U is
bounded by a polynomial of n. The algorithm finds such an approximate solution
in O(n log n) time.

From the theoretical point of view, it is important to design an efficient strongly
polynomial algorithm. We can design a strongly polynomial algorithm based on
the above binary-search algorithm by using the parametric search paradigm [17].
Assume that there is a parallel algorithm (guide algorithm) that computes the
minimum-weight path in G(7) in ¢, time using p processors. Also assume that there
is a sequential algorithm (decision algorithm) that computes it in ¢, time. Then the
parametric search scheme [17] finds the minimum-weight k-link path of G in
O(tp - p + tp- tp log p) time.

Unfortunately, no polylogarithmic-time parallel algorithm that uses
O(n polylog(n)) processors is known for the minimum-weight path problem. The
known polylogarithmic-time algorithms require O(n?) processors; hence, they are
not suitable for our use. The best-known algorithm that uses O(n) processors

requires O(\/ﬁ log n) time [15]. Thus, we have the following:

Theorem 10. The minimum k-link path problem can be solved in O(H\/;l log? n)
time.

The above time complexity is far from satisfactory, since, for k < \/; log? n, it
is worse than the O(nk)-time algorithm given by using [1] and [2]. In the next
section we give a better algorithm by using a more sophisticated parametric-search
technique. In this algorithm we use as a guide algorithm an algorithm with

O(n./k log n) sequential steps and O(,/k/log n) parallel steps; this algorithm
performs a total of O(n./k log n) work, and the property that all the comparisons
that involve the unknown parameter are done in the parallel steps. Applying

parametric search, we get an algorithm that runs in O(n./k log n) time.

3. The Guide Algorithm

The outline of the algorithm is very simple. Like other parametric search algo-
rithms, the algorithm maintains an interval (t, tz) of the parameter containing
Top- Whenever the decision algorithm is called this interval is updated, so that
every comparison executed so far in the algorithm is independent of the choice of
7 provided that 7 € (1, tz). We explain in detail how to update the interval later.
Initially, 7, = — oo and 7z = co. We fix an integer I, which will be set appropriately
in the analysis. For convenience, we assume that both I and n/l are integers. The
algorithm has n/I stages. In the tth stage, for t =0,..., n/l — 1, we compute the

272 A. Aggarwal, B. Schieber, and T. Tokuyama

minimum-weight paths in G(z,,) with the minimum number of links and the
maximum number of links (from v,) to v;, for tl < j < (¢t + 1). If, in the course of
this computation, when we update the interval (z,, 75), we also find 7, then we
are done. Otherwise, we continue to the next stage.

At the end of stage n/l, we have the minimum-weight diameter paths in G(z,,,)
with the minimum number of links and with the maximum number of links. Then
we find the one with k links as described above.

Before we describe stage i of the algorithm we need a few definitions.

Definition 3. Let K(i) be the number of links in a minimum-weight path from v,
to v; in G(t,p) with the minimum number of links.

Definition 4. Let P be a path from v, to v;. The left endpoint of the last link of
P is called the anchor of P. If the anchor of a path P is in an interval I, we say
that the path P has its anchor in I.

We now describe how to compute the minimum-weight paths from v, to
Uyt 15+ U+ 1y iD G(T,p). Recall that this computation is done without knowing
the value of 7,,. The input to this stage is the current interval (t,, tg) of the
parameter, and weights (as linear functions of the parameter 7) of minimum-weight
paths in G(t,p,) with the minimum number of links and the maximum number of
links to v;, for 1 <j < tl. We describe only how to find minimum-weight paths
with the minimum number of links. The ones with maximum number of links are
found similarly. From now on, whenever we refer to a minimum-weight path we
refer to one with the minimum number of links.

Lemma 11. For all 1 <i <j < n, the following inequality holds: K(i) < K(j).
Proof. Straightforward from Lemma 6. O

Lemma 12. For any j > tl, the minimum-weight path in G(t,,,) from v, to v; that
is anchored in [1, t[] has either K(t]) or K(t]) + 1 links.

Proof. Let P be a minimum-weight path from v, to v; anchored in [1, ¢/], and
let v, be the anchor of P. Since x < tl, it follows from Lemma 11 that K(x) < K(¢l),
and thus the length of P is bounded from above by K(tl) + 1. Suppose that the
length of P is less than K(¢l). This implies that the length of the minimum-weight
path from v, to v, is less than K(t]) — 1. Let Q be a minimum-weight path from
v, to v, with K(tl) links, and let v; be the anchor of Q. Since the length of the
minimum-weight path from v, to v, is K(t) — 1, x <s. Thus, e = (v,, v;) covers
f = (v, v,). By executing path swap with respect to e and f, we obtain a pair of
paths P’ and Q'. Path P’ is from v, to v; and path Q' is from v, to v,. Because of
Lemma 4, Q' is a minimum-weight path. However, Q' has less than K(tl) links; a
contradiction.

For tl <j<(t + 1), define a candidate h-link path from v, to v; to be a
minimum-weight h-link path among the paths whose prefix is a minimum-weight

Finding a Minimum-Weight k-Link Path in Graphs 273

path anchored in [1, t[] in G(t,,,), and whose suffix consists of some (possibly zero)
links in [t/ + 1, (¢ + 1)[]. Note that a minimum-weight h-link path from v, to v;
in G = G(0) need not be a candidate h-link path. However, it is easy to see that
if some minimum-weight path from v, to v; in G(t,y,) has h links, then any candidate
h-link path is a minimum-weight path from v, to v; in G(t,y).

Stage i consists of four steps:

Step 1. For all ¢ <j < (¢ + 1)I, compute the minimum-weight path in G(z,y,)
from v, to v; anchored in [1, t/].
Step 2. Find an integer m satisfying

Kt + D)) — Kt < m < 2(K((t + 1))) — K(t]).

Step 3. For all t! < j < (¢ + 1)I, compute candidate h-link paths in G(z,,) from
v, to v, for all h = K(t]) + 1, ..., K(t]) + m.

Step4. For each tl <j<(t+ 1), find the minimum-weight path in G(t,,,)
among the candidate h-link paths from v, to v; found in steps 1 and 3.

It is clear that the final path computed in the step 4 is the minimum-weight
path from v, to v; in G(t,,).
We now describe each of the steps in detail.

Step 1. By Lemma 12 each of the minimum-weight paths in G(z,,) from v, to v;
anchored in [1, t[] has either K(t]) or K(t]) + 1 links. For each tl <j < (¢ + 1)], we
first find a minimum-weight path from v, to v; anchored in [1, tI] with K(t]) links.
Then we find such a path with K(t]) + 1 links. This computation is independent
of 7 since we compare between paths with the same number of links. Finally, we
compare the two paths by applying parametric search.

We show how to find the minimum-weight paths with K(t]) links. Recall that
we already computed the minimum-weight paths in G(t) from v, to all vertices in
[1, tI]. Since we are interested in minimum-weight paths anchored in [1, t[] with
K(t]) links, we may consider only the vertices v; in [1, t/], such that the minimum-
weight path from v, to v; has K(tl) — 1 links. Suppose that there are n’ such vertices.
Consider the | x n’ matrix in which the (j, i)th entry is the length of the minimum-
weight path from v, to the ith such vertex plus the weight of the edge connecting
this vertex to v;. It is not difficult to see that:

(i) This matrix has the concave Monge property.
(i) The minimum entry in row j corresponds to the minimum-weight path from
v; to v; with K(tl) links.

Hence, all the minimum-weight paths can be found in O(n) time by applying the
matrix-search algorithm of [1]. Note that the matrix need not be stored explicitly.
Instead, each entry can be computed upon demand. The minimum-weight paths
with K(¢l) + 1 links are found similarly.

Now, for each tl <j < (t + 1), we have the minimum-weight paths with K(t])
links and K(tl) + 1 links. To compare them we apply the parametric-search

274 A. Aggarwal, B. Schieber, and T. Tokuyama

paradigm. When two paths are compared, we compute the critical value ¢ of the
parameter, such that for all T > £ the path with K(tl) links is of smaller weight in
G(7), and for all T < £ the path with K(tl) + 1 links is of smaller weight in G(z). If
this critical value is not in the interval (z,, 7z), then the comparison is independent
of 1. Otherwise, we execute the sequential decision algorithm to find minimum-
weight diameter paths with the minimum number of links and the maximum
number of links in G(&). If G(¢) has a minimum-weight diameter path with k links,
we can report ¢ as 1,,, and find such a path. If the minimum-weight diameter path
with the minimum number of links has more than k links, then 7., > ¢, and we
can set 7, to &. Similarly, if the minimum-weight diameter path with the maximum
number of links has less than k links, then 7., < ¢, and we can set 7 to ¢. The
parametric-search paradigm uses a parallel algorithm to reduce the number of
calls to the decision algorithm. All the ! comparisons can be done with O(l)
processors in O(1) time if the parameter t is given. Hence, the associated para-
metric-search algorithm runs in O(n log I) time. (Recall that the decision algorithm
is the O(n) minimum-weight path algorithm.)

We postpone the description of step 2. Assume that m has already been
computed. Next, we describe steps 3 and 4.

Step 3. The key fact is that the computation executed in this substep is independent
of the parameter 7. Let 4 be the matrix of the edge weights between the vertices
Ug+1s-+-» Ve 1y- L€t X be the vector of weights of the minimum-weight paths
from v; to vy4y, ..., Ves 1y anchored in [1,¢I] in G(z), for any 7€ (1., Tg). This
vector is computed in previous stages. For tl <j < (t + 1)], let x, be the vector
whose jth entry is the weight of the minimum-weight path from v, to v; that
contains K(tl) links, if such a path exists, and infinity otherwise. Let x, be the
vector whose jth entry is the weight of the minimum-weight path from v, to v;
that contains K(tl) + 1 links, if such a path exists, and infinity otherwise. From
Lemma 11 it follows that the finite entries of x, and x, are contiguous. From
Lemma 12 it follows that the paths considered in computing vector x have either
K(tl) or K(tI) + 1 links. Thus, the vector x is the entry-wise minimum of x, and x,.
Consider the semiring defined over the reals with the operations {min, + }. For
an I x | matrix 4 and an [vector z, the product w = Az is defined as w, =
min;_ , . {4, ; + z;}. Thefollowing proposition is obvious from the definition:

Proposition 13. For a given h, all candidate h-link paths from v, to vy, ..., Vg4 1y
are obtained by computing min{A4" " Xx Ah-K -1y 3

The above operation is done independently of the key parameter z, since we
compare paths with the same number of links. Hence, for any given m, we can
find all candidate h-link paths for h = K(tl), K(t]) + 1, ..., K(¢t]) + m in 2m multi-
plications of an | x | matrix by I vectors. (Note that the computation can be done
as a sequence of matrix—vector multiplications so that no multiplication between
matrices is done.) Since the matrices in all these products have the concave Monge
property, each product can be computed in O(l) time using the matrix-search
algorithm of [1].

Finding a Minimum-Weight k-Link Path in Graphs 275

Step 4. In this step we have to compare the candidate h-link paths from v, to v;,
for K(t) <h < K((t + 1)))and tl <j < (t + 1)], and find the minimum-weight path
among them at t = 7,,. These comparisons depend on the parameter t. Here, we
apply the parametric-search paradigm. To do the computation efficiently we use
the unimodality of the weights of the candidate paths as given in the following
lemma.

Lemma 14. For 1 < h < n, and for tl < j < (t + 1)I, let W(j) be the weight of the
candidate h-link path from v, to v;. Then W,(j) < max{W,.(j), W,-,(j)}-

Proof. Let P be an (h — 1)-link candidate path and let Q be an (h + 1)-link
candidate path from v, to v;. By Lemma 5 there is a link e = (v,,v,) in P and a
link f = (v,, vy) in Q such that e covers f, and the number of links in the prefix
of P ending at v,, denoted P,, is one less than the number of links in the prefix
of Q ending at v,, denoted Q,. Note that x < a < b < y. We have three different
cases:

Case 1: a < tl. In this case both P, and Q, are anchored in [1,t[]. From the
definition of a candidate path it follows that both P, and Q, are minimum-weight
anchored paths. Since b < y, by Lemma 11, the number of links in P, must be
larger than or equal to that of Q,. Thus, this case cannot happen.

Case 2: tl < x. We execute path swap with respect to e and f to obtain a pair P’
and Q' of paths. Both P’ and Q' are candidate paths since the path swap affects
only vertices not in [1, t/]. Both P’ and Q' have h links. By Lemma 6 the sum of
their weights is no more than W,, ,(j) + W,_(j). Hence, one of them has weight
bounded by the maximum of these two weights. Thus, the lemma holds in this case.

Case 3: x < tl < a. We execute path swap with respect to e and f to obtain a pair
of paths P’ and Q. Since t/ < a, the path P’ given by connecting the prefix of Q
ending at v, with the suffix of P starting at v, is a candidate path with h links.
However, since x < tl, the path Q' given by connecting the prefix of P ending at
v, with the suffix of Q starting at v, may not be a candidate path. As in Case 2,
at least one of P’ and Q' has weight bounded by max{W,, (j), W,_,(j)}. If P’ is
such a path, then we are done. Suppose that this is not the case, and the weight
of P’ is larger than this maximum. In this case the weight of Q' must be less than
min{ W, ,(j) Wa-1(j)}, thus less than W,_,()).

Consider the prefix of Q’ ending at v, and denote it by R. By our construction
R is the prefix of P ending at v, followed by the edge (v,,v,)*If R is a
minimum-weight path from v, to v, anchored by [1, ¢[], then we are done since
in this case Q' is a candidate path. Suppose that this is not the case. Let R" be a
minimum-weight path from v, to v, anchored in [1, t/]. We claim that the number
of links of R’ is the same as the number of links of R. To see this, observe that
the number of links of the minimum-weight anchored paths from v, to v, and
from v, to v, is the same as this of R. Since a < b < y, Lemma 11 implies that
this is also the number of links of R’. Let Q" be the path obtained from Q' by

276 A. Aggarwal, B. Schieber, and T. Tokuyama

replacing R by R'. Clearly, Q" is a candidate path. Since the weight of Q" is at
most W,_,(j), and the number of links of Q" is h, the lemma in this case
follows. O

Fix some tl < j < (t + 1)l. Lemma 14 implies that the weights of the candidate
h-link paths from v, to v; have no local maxima with respect to the link number.
This implies that any local minimum must be also a global minimum. Con-
sequently, given 7., we can find the minimum-weight candidate path to v;
sequentially using binary search in O(log m) time. Kruskal [13] showed that this
search can be done in constant time using m processors. Thus, to find the minimum
for all tl <j < (t+ 1)l in constant time we need ml processors. It follows that
without the knowledge of 7,, this can be done using the parametric-search
paradigm in O(m! + n log(ml)) time. (Recall that the decision algorithm is the O(n)
minimum-weight path algorithm.)

We conclude with the description of step 2.

Step 2. We find an m in the range [(K((i + 1)) — K(¢])), 2(K((i + 1)) — K(t]))] by
a variant of binary search. Lemma 14 implies that the minimum-weight path from
vy tO Uy in G(7,y) is given by the smallest h that locally minimizes the weight
of the candidate h-link path to v ;). Thus, it is easy to verify whether the path
to v+ 1y is indeed the right one. Based on this observation we “guess” m, and try
to verify our guess. Initially, we set m =3 and execute steps 3 and 4. If the
minimum-weight candidate path found by the algorithm is a local minimum, then
the path is the true minimum-weight path. Otherwise, we double m and repeat
the process. The time complexity of the whole process is dominated by the time
complexity of the last iteration.

Theorem 15. The minimum k-link diameter path of a concave Monge DAG is found

in O(n./klog n + nlog n) time and O(n./k log n) space.

Proof. We concentrate on the last iteration of step 2. The total amount of time
required for step 1 in the n/l stages is O(n?/I-log). Summing over all stages step
3 requires

0(% (K(t+ D)) — K(tD) - l> = O(kl).

i=1

Step 4 requires

0(¥ (Kt + D)) = K(t])) -1 + nlog n> = O(kl + n?/l-log n).
i

=1

We conclude that the algorithm requires O(n?/l-log n + kl). Setting

| = min{n./log n/k, n}

Finding a Minimum-Weight k-Link Path in Graphs 277

implies the claim on the time complexity. To get the claim on the space complexity
note that O(kl) space is needed to store the weights of the candidate paths. The
rest of the computation requires linear space. O

4. Applications

We briefly describe how to apply our algorithm to get efficient algorithms for the
five problems mention in Section 1.

Application I. Finding the maximum area inscribed k-gon of a convex n-
gon. Boyce et al. [6] showed that if the maximum area k-gon containing a
fixed vertex is given, then the maximum area k-gon can be found in O(n log n)
time using the interleaving property. Aggarwal et al. [1] showed that the distance
matrix involved in computing the maximum area inscribed polygon has the
convex Monge property. Since finding the maximum-weight path in convex DAGs
is equivalent to finding the minimum-weight path in concave DAGs, we can
apply our algorithm to achieve an O(n./k log n + nlog n)-time algorithm for the
problem.

Application II. Finding the minimum area k-gon defined by k half-planes out of
n half-planes defining a convex n-gon. Let ey, ..., e, be the clockwise list of the
edges of the convex n-gon,and lete,,, = e;. For 1 <i <j < n + 1, define area(i, j)
as the area of the region bounded by the right-extension of the edge e;, left-
extension of the edge e;, and the convex chain from e; to e; of the polygon
(Fig. 6). Note that area(i, j) can be infinity for some i and j. Define G to be the
weighted DAG with vertex set V = {v;, v,, ..., U4}, in which the weight of edge
(i,j) is area(i, j), for 1 <i<j<n+ 1. It is not difficult to verify that G satisfies
the concave Monge property. The minimum-weight k-link diameter path in G
corresponds to the minimum area k-gon defined by the half-plane that corresponds
to e; and k — 1 additional half-planes out of the remaining n — 1 half-planes
defining the convex n-gon. As in the previous application, if the minimum area
k-gon containing a fixed half-plane is given, then the minimum area k-gon can be
found in O(n log n) time using the interleaving property. Thus, we can apply our
algorithm to achieve the desired time bound.

Fig. 6. area(i, j).

278 A. Aggarwal, B. Schieber, and T. Tokuyama

Application III. Computing k maximum-weight cliques in an interval graph H(S),
where S is a set of m intervals whose endpoints are integers in the closed interval
[1,n]. This problem can be reduced to the problem of finding a minimum
(k + 1)-link path in a DAG with n+ 2 nodes as follows. Define a complete
weighted DAG on the vertices {0,...,n + 1}, where the weight of edge (i, j), for
i < j, is the total weight of the intervals in S contained in the (open) interval (i, j).
Consider a (k + 1)-link path iy =0, i,..., i, i,+; =n + 1. Note that the total
weight of this path is the sum of the weights of all intervals that do not contain
any of the points in {i, ..., i,}. Thus, finding such a path of minimum-weight is
equivalent to finding k points such that the total weight of the intervals containing
these points is maximized. It is easy to see that the defined DAG satisfies the
concave Monge property, and that each edge weight can be computed in O(log n)
time after O(m log n)-time preprocessing. Thus, we can obtain an

O(m log n + n./k log n log n)-time

algorithm for this problem. A more efficient algorithm that achieves

O(m + n(\/k log n + log n) log log n)
time by using a somewhat sophisticated data structure is given in [3].

Application IV. Finding a length-limited Huffman code. A length-limited Huff-
man code can be represented by a height-limited Huffman tree, defined as follows.
Consider a binary tree storing n data {z,, z,, ..., z,} at leaves. The probability p;
that the data z; is queried is known for each i. The Huffman tree is the tree with
best average query time. (See Fig. 7.) The height-limited Huffman tree is the tree
with best average query time under the condition that the height is no more than
a given parameter k. Larmore and Przytycka [15] showed that the Huffman-tree

Fig. 7. Huffman tree. (The numbers in the leaves are proportional to the query probability.)

Finding a Minimum-Weight k-Link Path in Graphs 279

problem is reduced to the Least Weight Subsequence problem in a concave Monge
array. It is not difficult to see that the length-limited problem is reduced to a
minimum k-link path in a graph whose weights are given by the matrix defined
in [15]. Thus, our algorithm can be applied to achieve the desired time bound.

Application V. Computing discrete quantization. First, we recall the definition of
a discrete quantization. Let f: {x,, x,,...,x,} = # be a real-valued function,
where Z is the set of the real numbers and x, < x, < ‘- < x, are real numbers.
Fix k, and consider a sorted set of real numbers Z = {z,, z,, ..., z,} and a mapping
v:{l,2,...,n} > {1,2,...,k}. The pair (Z,y) is called a quantization, and the
sum Y 7-y f(x)(X; — zy)* is called the error of the quantization. Optimal quanti-
zation is the one which minimizes the error.

We show how to reduce this problem to the problem of finding a minimum
k-link path in a DAG with n + 1 nodes. For an interval I, define the weighted
mean p(l) =Y oot [(X)X/D ser f(x;). Wu [19] showed that the mapping ¥ in
the optimal quantization is a nondecreasing function, and that z; = u(y ~'(j)),
for j=1,..., k. Let w(I) = Y .1 f(x,(x, — u(I))>. Then the error function coin-
cides with Y 5_; w(y~'(j)). Hence, the function ¥ represents the minimum k-link
path in a DAG with nodes {0, 1,..., n}, where the edge weight of (i, j) is w((i,]).
It is easy to see that this graph satisfies the concave Monge property, and
that the values w(I) and w(I) can be computed in constant time after pre-
computing the prefix sums of x;, f(x,), f(x)x;, and f(x;)x?. Hence, we obtain an
O(n/k log n + nlog n)-time algorithm. This improves the result of Wu [19] by

an O(,/k/log n) factor.

S. Concluding Remarks

It is still open whether it is possible to design an O(n log® n)-time algorithm (for
some constant ¢) for computing a minimum k-link path in DAGs with the concave
Monge property (in case k = Q(log? ™! n)). We are able to compute the minimum

k-link path in only O(n./k log n) time. One way to achieve such an algorithm is
by designing a better parallel algorithm that can be used as a guide algorithm in
the parametric search. Note that an n-processor polylogarithmic-time algorithm
for computing a minimum-weight path in concave Monge DAGs would yield an
O(n log® n)-time algorithm for computing a minimum k-link path in these DAGs.
It is also worth noting that such a parallel algorithm would also yield an
n-processor, polylogarithmic-time algorithm for computing a Huffman tree on n
vertices without any height restriction using the techniques of Larmore and
Przytycka [15].

Acknowledgments

The authors thank James K. Park for communicating the application to quantiza-
tion. Also, they thank anonymous referees for many valuable comments; especially,

280 A. Aggarwal, B. Schieber, and T. Tokuyama

one of the referees who pointed out a serious gap in the initial version of the
paper.

References

1. A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric Applications of a
Matrix-Searching Algorithm, Algorithmica 2 (1987), 195-208.

2. A. Aggarwal and J. Park, Notes on Searching in Multidimensional Monotone Arrays, Proc. 29th
IEEE Symp. on Foundations on Computer Science, 1988, pp. 497-512.

3. A. Aggarwal and T. Tokuyama, Consecutive Interval Query and Dynamic Programming on
Intervals, Proc. 4th Internat. Symp. on Algorithms and Computing, 1993, pp. 466-475. Lecture
Notes in Computer Science, Vol. 762. Springer-Verlag, Berlin.

4. T. Asano, Dynamic Programming on Intervals, Proc. 2nd Internat. Symp. on Algorithms, 1991,
pp. 199-207. Lecture Notes in Computer Science, Vol. 557. Springer-Verlag, Berlin.

5. W. Bein, L. Larmore, and J. Park, The d-Edge Shortest-Path Problem for a Monge Graph, Preprint,
1992.

6. J. Boyce, D. Dobkin, R. Drysdale, and L. Guibas, Finding Extremal Polygons, SIAM J. Comput.
14 (1985), 134-147.

7. K. Chan and T. Lam, Finding Least-Weight Subsequences with Fewer Processors, Proc. SIGAL
Internat. Symp. on Algorithms, 1990, pp. 318-327. Lecture Notes in Computer Science, Vol. 450.
Springer-Verlag, Berlin.

8. B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, Diameter, Width, Closest Line Pair, and
Parametric Searching, Proc. 8th ACM Symp. on Computational Geometry, 1992, pp. 120-129.

9. R. Cole, Slowing Down Sorting Networks to Obtain Faster Sorting Algorithms, J. Assoc. Comput.
Mach. 34 (1987), 200-208.

10. G. Frederickson, Optimal Algorithms for Tree Partitioning, Proc. 2nd ACM-SIAM Symp. on
Discrete Algorithms, 1991, pp. 168-177.

11. M. Klawe, A Simple Linear-Time Algorithm for Concave One-Dimensional Dynamic Pro-
gramming, Technical Report 89-16, University of British Columbia, Vancouver, 1989.

12. M. Klawe and D. Kleitman, An Almost Linear-Time Algorithm for Generalized Matrix Searching,
Technical Report RJ6275, IBM Almaden Research Center, 1988.

13. C. P. Kruskal, Searching, Merging and Sorting in Parallel Computation, /JEEE Trans. Comput.
32 (1983), 942-946.

14. L. Larmore and D. Hirschberg, Length-Limited Coding, Proc. Ist ACM-SIAM Symp. on Discrete
Algorithms, 1990, pp. 310-318.

15. L. Larmore and T. Przytycka, Parallel Construction of Trees with Optimal Weighted Path Length,
Proc. 3rd ACM Symp. on Parallel Algorithms and Architectures, 1991, pp. 71-80.

16. L. Larmore and B. Schieber, On-Line Dynamic Programming with Applications to the Prediction
of RNA Secondary Structure, J. Algorithms 12 (1991), 490-515.

17. N. Megiddo, Applying Parallel Computation Algorithms in the Design of Serial Algorithms,
J. Assoc. Comput. Mach. 30 (1983), 852-865.

18. R. Wilber, The Concave Least Weight Subsequence Problem Revisited, J. Algorithms 9 (1988),
418-425.

19. X. Wu, Optimal Quantization by Matrix Searching, J. Algorithms 12 (1991), 663-673.

Received March 23, 1993, and in revised form November 30, 1993.

