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We show that the molecular graghof a benzenoid hydrocarbon admits an isometric embedding into the
Cartesian product of three tre€s T, andT; defined by three directions of the host hexagonal grid. Namely,
to every vertexv of G one can associate an ordered triplat ¢», v3) with v; being a vertex off; (i = 1,

2, 3), such that the graph-theoretic distance between two vertjce®f G equals the sum of respective
tree-distances betweenandu;. This labeling of the vertices d& can be obtained i®(n) time. As an
application of this result we present an optin@(n) time algorithm for computing the diameter of the
graphG of a benzenoid system with vertices.

1. INTRODUCTION The Cartesian product H= H; x ... x Hpy of connected
graphsH;,..,Hn is defined upon the Cartesian product of

In chemical graph theory there is a large number of indices ;
based on distancEs (just recall the classical Wiener index :hee vertex sets of the corresponding graphs (cddetors,

or the notion of the diameter and center of chemical graphs). "
Our note presents an optima@(n) algorithm for computing

the diameter of a benzenoid system. This is a byproduct of

a special labeling of benzenoid systems which reflects the Two verticesu = (uy,...U) andv = (vy,...um) are adjacent
vertex-distances. Most likely, our approach supplied by the in H if and only if the vectorsu and v coincide except at

V(H) ={u=(uj,...u) : u eV(H),i=1,.m

corresponding algorithmical techniques and data structuresone positioni, in which we have two vertices; and
can be used as a convenient structure-based method tadjacent inH,. The distance between two vertices=

canonically label the vertices (that is, atoms) of benzenoid
systems; for this field see the papers of S. B. €k.The
recent paper by Kla\ar, Gutman, and Moh&r was the

starting point for this research, and the results presented

below refine in some sense that established in ref 11.

A benzenoid systefaliashexagonal system) (S a finite
connected plane graph in which every interior face (region)
is a regular hexagon of side length 1. The vertex se® of
is denoted by(G). In a graphG thelengthof a path from
a vertexv to a vertexu is the number of edges in the path.
Thedistance d(u, v) from u to v is the length of a shortest
path connectingi andv. The eccentricity €v) of a vertex
v is the maximum distance fromto any vertex inG. The
diameter @G) is the maximum eccentricity, i.e., the largest
distance between two vertices & Finally, let B be the
circuit which is defined by the exterior face Gf Although
the results of this note are valid for all benzenoid systems,
in order to use an intuitive geometric terminology we will
assume tha® is bounded by a simple circui.

Given two connected graphs and H, we say thatG
admits anisometric embeddindalias distance-preserving
embedding) intdH if there exists a mapping

o: V(G)— VH)
such that
dy(a(u), a(v)) = dg(u, v)

for all verticesu, v € V(G).
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(X1,.--Xm) @andy = (y,...ym) of H is given by

d,(x,y) = ZdHi(Xi- Yi)

For example, if each factoH; coincides withK, (the
connected two-vertex graph witHK;) = {0, 1}), thenH is

just them-cube (binary Hamming graph according to ref 11)
equipped with thedamming distancéor which the distance
between two binarymtuples is equal to the number of
coordinate positions in which they differ. The result of ref
11 asserts that any benzenoid system admits an isometric
embedding into a cube. The dimension of this cube can be
arbitrarily large (actually, it is equal to half the length of the
bounding circuitB). Therefore, even for relatively simple
benzenoids the labels of vertices can be already quite large;
see Figure 2 of ref 11.

Instead of isometric embeddings of benzenoids into binary
Hamming graphs we propose such embeddings into the
Cartesian product of trees. The main advantage is that
independently of the size or of the form of the benzer@jd
there exists an isometric embedding®fnto the Cartesian
product of only three tree$;, T,, and T;. Each of these
factors is uniquely determined by parallel cuts of a given
direction of G and can be constructed in a total time linear
in the numbern of vertices of G. Hence, we obtain a
canonical labeling of the vertices & where all labels have
length 3. With this compact labeling & (we need only
O(n) space) one can work much as with points in the three-
dimensional space. Indeed, using an algorithm of Harel and
Tarjart? after a linear time preprocessing the distance
between any two given vertices of a tree can be computed
in constant timeO(1) (i.e., using a fixed number of
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Figure 1. An embedding of coronene in the product of three paths.

operations). Since we have only three tree-factors, the
distance between any two given vertices of a benzenoid
systemG can be computed i0(1), too. To continue the
comparison, the Euclidean distance between poinks iis
computed inO(1) time using a formula, while the distance

between vertices of a benzenoid system can be computed

within the same time bounds but using a special algorithm.
Another special algorithmic technique, namely that of matrix-
searching due to Aggarwal, Klawe, Moran, Shor, and
Wilber '3 can be employed to compute the diamel@s) of

G in O(n) operations. In fact, the diameter & can be
computed in time proportional to the length of the cirdaiit
The algorithm can be as fast as\®) for more-or-less
compact benzenoids (when the lengthBofs proportional

to Vn).

To give an idea of how the embedding of a benzenoid

system into the Cartesian product of three trees can be

obtained in Figure 1 we present an example.

2. EMBEDDING INTO THE CARTESIAN PRODUCT OF
THREE TREES

To formulate the embedding result we need some further
terminology. LetG be a benzenoid bounded by a simple
circuit B. By E;, E;, and E; denote the edges @b of a
given direction. A straight line segmeatwith end points
p andq is called acut segmenif c is orthogonal to one of
the three edge directions, eaphlandq is the center of an
edge, and the graph obtained fr@rby removing all edges
intersected by has exactly two connected components. In
this case we say that separatesany two vertices from
different connected components. The collection of all cut
segments o6 can be partitioned into three famili€s(G),
Ci(G), and C3(G) each consisting of pairwise parallel
segments. Evidently, every edge frdrns intersected by a
cut segment o€i(G) (i = 1, 2, 3). Deleting all edges d&;
we obtain a grapl; all of whose connected components
are paths with end-vertices @& One can easily show that
every such patlP is a shortest path. Moreover, it is the
unigue shortest path between the end-vertigeand vy.
Indeed, consider another pdthhetween boundary vertices
x andy not on any one sucR from G;. Necessarily. will
contain at least one edge frdgh On the other hand, every
cut segment o€; intersectingP also intersects an edge from
L. This shows that has more edges thdn

Define a graphT, whose vertices are the connected
components of5; and two such componenB andP'" are
adjacent ifiT; if and only if there exists two adjacent vertices
u e P andv € P such that the edgeu(v) is intersected by
a cut segment fror@i(G); see Figure 2 for an example. Since
G is bounded by a Jordan cun& everyT,; is a tree (the
existence of a cycle iff; would imply thatG contains a
nonhexagonal interior face).
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Figure 2. An illustration to the definition of tree-factors.

This yields to the following canonical emdeddiagpf G
into the Cartesian produtt = T; x T, x Ts. For any vertex
v of G put

o(v) = (P.QR)

where P, Q, andR are the connected components of the
graphsG;, G, and Gs, respectively, sharing the vertex
We claim thato. provides an isometric embedding @finto

H. To prove this pick two arbitrary verticesandy of G
and suppose that

o) = (P,Q.R) afy) = (P".Q"R’)

First note that the verticesandy are separated to,(P',P")

cut segments fror,, exactlydr,(Q',Q'"") cut segments from
C; and dr,(R,R") cut segments fromCs. (Recall, for
example, thatlr,(P',P") is the number of edges in the unique
path of T, connectingP' andP'"). Therefore, to complete
the proof it is sufficient to show that the verticeandy are
separated by exactlgs(x,y) cut segments o65. Pick an
arbitrary shortest path betweerx andy. Any cut segment

¢ separatingk andy necessarily intersects at least one edge
of L. If, say,c € C; intersects two edges/( v') and (",

V") of L, then we arrive at a contradiction. Indeed, granted
two such intersecting edges, if the vertieesandu’ were
taken from the same connected component of the g&ph
thenu' andu” would be connected by more than one shortest
path.

Hence,a has the required distance-preserving property.
To label the vertices ofs one can proceed as follows. For
a given edge directionfirst we find the edges from each
E, i =1, 2, 3 (this can be done while a usual representation
of G as a doubly linked list is given). More precisely, for a
given cut segment € C; we can list all edges intersected
by c in time proportional to the number of such edges. All
this permits to construct the connected components of the
graph G;. After their labeling we can find the required
incidence relation between them (i.e., to define the Trge
Theith coordinate i(= 1, 2, 3) of a vertexv of G is the
label of the connected component Gf from which v is
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Figure 3. ncaX, y) is the nearest common ancestorxadndy.

taken. IfG containsn vertices, then all these computations
can be done in totaD(n) time. The output of this algorithm
consists of the tree§;, T,, andT; and the labels of length
three of the vertices ofs. Concluding, we obtain the
following result.

Theorem. The mapo. provides an isometric embedding
of a benzenoid system G withvartices into the graph H=
T1 x To x Ts. The factors T, T,, and Tz as well as the
corresponding labels of theertices of G can be computed
in total O(n) number of operations.

3. COMPUTING DISTANCES

Now we outline how to compute the distance between two
given verticesu andv of the benzenoid systef@, provided

G is represented by the data structure described in the

previous section. More precisely, we wish to fide(u, v)
quickly, using just a fixed number of operations (notation
O(1)). One can easily notice that during the whole construc-
tion of the tree-factordl;, T,, and T or of labels of the
vertices ofG we never used any distance information. It
was only proved that the embeddiagf G into the Cartesian
productH = T; x T, x Tzis isometric. Our theorem reduces
the problem of findingds(X, y) to three similar problems on
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verticesx andy of T?”, we have to find the nearest common
ancestomcax, y) of x andy and then to apply the formula

dT(X1 y) = dT(X1 r+ dT(y’ r— 2dT(rl ncax, y))

(for the justification see Figure 3). Therefore, to find the
distance between two vertices of a benzenBidve must
apply this method for each of three factors.

3. COMPUTING THE DIAMETER

Though the data structure presented above can find some
potential applications (in particular, we hope to use it for
computing the center of a benzenoid system), it is in
particular interesting to look at the problem of computing
the diameted(G) of a benzenoid syster®. Even more,
we want to compute the eccentricitfp) for each boundary
vertexv € B of G. This problem can be reformulated as a
maxima-finding problem in the distance matrix Bf This
suffices to computel(G), because it is quite obvious that
the diameter ofG is realized between two vertices 8f
(Actually, for any vertexv of G there is a vertexv € B,
such thatdg(v, w) = &(v).)

Denote byus,...om the vertices of the cycl® with the
vertices in order around the cycle, anddgt= dg(vi, v)), i,

j € {1,...m}. One can easily show that
dj +dg = dy +d; (1)
forall1<i<j<k<I|=<m Indeed, considertwo shortest
paths between the verticesndk andj andl, respectively.
Necessarily, they must intersect in a verteaf G. By the
triangle inequalityd; < dg(vi, X) + ds(X, ;) anddy < do(uk,
X) + ds(X, v). Sincedik = dg(vi, X) + ds(x, v) andd; =
da(;, X) + ds(X, 1), we obtain the required inequality.
Further, letD denote then x m matrix that contains the

factors. A major advantage is that all three factors are treeslpairwise distances between the verticeBomore precisely,

because in this setting very efficient algorithms from ref 12
can be applied. Thus we have to preprocess the ffges
T,, andT; according to the algorithm described in ref 12, in
particular to make them rooted by picking arbitrary vertices
as roots.

To recall the algorithmic problem solved by ref 12 we
need some preparation. LE{T| = n) be arooted treewith
the vertexr as aroot. Every vertexu on a unique path
connecting a vertex with r is called amancestorof v, while
v is adescendenf u. The unique ancestor adjacenttcs
theparentor fatherof ». Notice that the roat is an ancestor
of every vertex inT. Geometrically, one can represénin
the plane so that the parent of any veriex r is abovev.
A subtree(with root U) of T is an induced subgraph df
whose vertices are all descendents of vere{ T.

The nearest common ancestor rfgay) of two vertices
of x andy of T is the root of the smallest subtree Bithat
contains both verticeg andy; for an illustration of this
concept see Figure 3. Harel and Tatfapresented an
algoritm that aftelO(n) preprocessing time answers@{1)
time per query questions of the form, “What is the nearest
common ancestor of vertices and y?”. To apply this
algorithm for our purposes, in addition, in the preprocessing
step we must compute the distances from the rot all
vertices of T (this can be done by the breadth-first search
and requires additionaD(n) preprocessing time). Now,
having a query of the form, “What is the distance between

D(i, j) =djfor1 <i,j < m. Our problem is to compute a
maximum element in each roivof D: such an element is
nothing else thane(v;)). We use the matrix-searching
technique of Aggarwal, Klawe, Moran, Shor, and Wilb&r,
for computing row-wise maxima of matrices with a special
property called total monotonicity. The matilixis totally
monotonef

D(i, p) < D(i, q) impliesD(j, p) < D(, a)

for anyi < j andp < q (this is true in our case, because of
the inequality (1)). Total monotonicity implies that the
leftmost maxima obey the following useful property: as we
move down the rows, the maximum can only move right
but never left. The matriP is defined imlicitly: an entry

is computed only when needed. The result of ref 13 can be
formulated in the following form:

The leftmost maximum in each row of a totally monotone
p x g matrix can be computed using Ofp q) matrix
operations. If each matrix operation takes f(p, q) time, then
the row-maxima problem can be sed in time O((pt q)f(p,

a)).

Applying the matrix-search algorithm to the matixone
can find the eccentricities of all vertices Bfin total time
O(mf(m)). If we use our data structure to compute the entries
of D, thenf(m) = O(1), and we get a®(m) time algorithm
with a preprocessing step which requi@f) operations.



1172 J. Chem. Inf. Comput. Sci., Vol. 36, No. 6, 1996

This leads us to an optimaD(n) time algorithm for
computation of the diameter of a benzenoid system with
vertices.

Actually, we can build the factorE, T,, andT; employing
only the vertices of the bounding cyd® This can be done
in only O(m) time, but the approach is based on the rather
complicated Chazelté algorithm for computing all vertex-
edge visible pairs of a polygon witim vertices. Applying
this algorithm separately for every direction, we will find
the cuts from each familg,(G), Cx(G), andC3(G). Even
with the factors in hands, we can answelQ(l) time only
distances queries between verticesBo&ind not arbitrary
vertices ofG. However, this suffices to run the matrix-search
algorithm onD and compute the diameter Gfin only O(m)
time.
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