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We show that the molecular graphG of a benzenoid hydrocarbon admits an isometric embedding into the
Cartesian product of three treesT1, T2, andT3 defined by three directions of the host hexagonal grid. Namely,
to every vertexV of G one can associate an ordered triplet (V1, V2, V3) with Vi being a vertex ofTi (i ) 1,
2, 3), such that the graph-theoretic distance between two verticesu, V of G equals the sum of respective
tree-distances betweenui andVi. This labeling of the vertices ofG can be obtained inO(n) time. As an
application of this result we present an optimalO(n) time algorithm for computing the diameter of the
graphG of a benzenoid system withn vertices.

1. INTRODUCTION

In chemical graph theory there is a large number of indices
based on distances1-8 (just recall the classical Wiener index
or the notion of the diameter and center of chemical graphs).
Our note presents an optimalO(n) algorithm for computing
the diameter of a benzenoid system. This is a byproduct of
a special labeling of benzenoid systems which reflects the
vertex-distances. Most likely, our approach supplied by the
corresponding algorithmical techniques and data structures
can be used as a convenient structure-based method to
canonically label the vertices (that is, atoms) of benzenoid
systems; for this field see the papers of S. B. Elk.9,10 The
recent paper by Klavzˇar, Gutman, and Mohar11 was the
starting point for this research, and the results presented
below refine in some sense that established in ref 11.
A benzenoid system(aliashexagonal system) Gis a finite

connected plane graph in which every interior face (region)
is a regular hexagon of side length 1. The vertex set ofG
is denoted byV(G). In a graphG the lengthof a path from
a vertexV to a vertexu is the number of edges in the path.
Thedistance dG(u, V) from u to V is the length of a shortest
path connectingu andV. Theeccentricity e(V) of a vertex
V is the maximum distance fromV to any vertex inG. The
diameter d(G) is the maximum eccentricity, i.e., the largest
distance between two vertices ofG. Finally, let B be the
circuit which is defined by the exterior face ofG. Although
the results of this note are valid for all benzenoid systems,
in order to use an intuitive geometric terminology we will
assume thatG is bounded by a simple circuitB.
Given two connected graphsG and H, we say thatG

admits anisometric embedding(alias distance-preserving
embedding) intoH if there exists a mapping

such that

for all verticesu, V ∈ V(G).

TheCartesian product H) H1 × ... × Hm of connected
graphsH1,...,Hm is defined upon the Cartesian product of
the vertex sets of the corresponding graphs (calledfactors),
i.e.,

Two verticesu ) (u1,...,um) andV ) (V1,...,Vm) are adjacent
in H if and only if the vectorsu andV coincide except at
one positioni, in which we have two verticesui and Vi
adjacent inHi. The distance between two verticesx )
(x1,...,xm) andy ) (y1,...,ym) of H is given by

For example, if each factorHi coincides withK2 (the
connected two-vertex graph withV(K2) ) {0, 1}), thenH is
just them-cube (binary Hamming graph according to ref 11)
equipped with theHamming distancefor which the distance
between two binarym-tuples is equal to the number of
coordinate positions in which they differ. The result of ref
11 asserts that any benzenoid system admits an isometric
embedding into a cube. The dimension of this cube can be
arbitrarily large (actually, it is equal to half the length of the
bounding circuitB). Therefore, even for relatively simple
benzenoids the labels of vertices can be already quite large;
see Figure 2 of ref 11.
Instead of isometric embeddings of benzenoids into binary

Hamming graphs we propose such embeddings into the
Cartesian product of trees. The main advantage is that
independently of the size or of the form of the benzenoidG,
there exists an isometric embedding ofG into the Cartesian
product of only three treesT1, T2, andT3. Each of these
factors is uniquely determined by parallel cuts of a given
direction ofG and can be constructed in a total time linear
in the numbern of vertices ofG. Hence, we obtain a
canonical labeling of the vertices ofG, where all labels have
length 3. With this compact labeling ofG (we need only
O(n) space) one can work much as with points in the three-
dimensional space. Indeed, using an algorithm of Harel and
Tarjan12 after a linear time preprocessing the distance
between any two given vertices of a tree can be computed
in constant timeO(1) (i.e., using a fixed number of
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R : V(G) f V(H)

dH(R(u), R(V)) ) dG(u, V)

V(H) ) {u) (u1,...,um) : ui ∈ V(Hi), i ) 1,...,m}

dH(x, y) ) ∑
i)1

m

dHi
(xi, yi)
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operations). Since we have only three tree-factors, the
distance between any two given vertices of a benzenoid
systemG can be computed inO(1), too. To continue the
comparison, the Euclidean distance between points inR3 is
computed inO(1) time using a formula, while the distance
between vertices of a benzenoid system can be computed
within the same time bounds but using a special algorithm.
Another special algorithmic technique, namely that of matrix-
searching due to Aggarwal, Klawe, Moran, Shor, and
Wilber,13 can be employed to compute the diameterd(G) of
G in O(n) operations. In fact, the diameter ofG can be
computed in time proportional to the length of the circuitB.
The algorithm can be as fast as O(xn) for more-or-less
compact benzenoids (when the length ofB is proportional
to xn).
To give an idea of how the embedding of a benzenoid

system into the Cartesian product of three trees can be
obtained in Figure 1 we present an example.

2. EMBEDDING INTO THE CARTESIAN PRODUCT OF
THREE TREES

To formulate the embedding result we need some further
terminology. LetG be a benzenoid bounded by a simple
circuit B. By E1, E2, andE3 denote the edges ofG of a
given direction. A straight line segmentc with end points
p andq is called acut segmentif c is orthogonal to one of
the three edge directions, eachp andq is the center of an
edge, and the graph obtained fromG by removing all edges
intersected byc has exactly two connected components. In
this case we say thatc separatesany two vertices from
different connected components. The collection of all cut
segments ofG can be partitioned into three familiesC1(G),
C2(G), and C3(G) each consisting of pairwise parallel
segments. Evidently, every edge fromEi is intersected by a
cut segment ofCi(G) (i ) 1, 2, 3). Deleting all edges ofEi
we obtain a graphGi all of whose connected components
are paths with end-vertices onB. One can easily show that
every such pathP is a shortest path. Moreover, it is the
unique shortest path between the end-verticesx and y.
Indeed, consider another pathL between boundary vertices
x andy not on any one suchP from Gi. NecessarilyL will
contain at least one edge fromEi. On the other hand, every
cut segment ofCi intersectingP also intersects an edge from
L. This shows thatL has more edges thanP.
Define a graphTi whose vertices are the connected

components ofGi and two such componentsP′ andP′′ are
adjacent inTi if and only if there exists two adjacent vertices
u ∈ P′ andV ∈ P′′ such that the edge (u, V) is intersected by
a cut segment fromCi(G); see Figure 2 for an example. Since
G is bounded by a Jordan curveB, everyTi is a tree (the
existence of a cycle inTi would imply thatG contains a
nonhexagonal interior face).

This yields to the following canonical emdeddingR of G
into the Cartesian productH ) T1× T2× T3. For any vertex
V of G put

whereP, Q, andR are the connected components of the
graphsG1, G2, andG3, respectively, sharing the vertexV.
We claim thatR provides an isometric embedding ofG into
H. To prove this pick two arbitrary verticesx andy of G
and suppose that

First note that the verticesx andy are separated bydT1(P′,P′′)
cut segments fromC1, exactlydT2(Q′,Q′′) cut segments from
C2 and dT3(R′,R′′) cut segments fromC3. (Recall, for
example, thatdT1(P′,P′′) is the number of edges in the unique
path ofT1 connectingP′ andP′′). Therefore, to complete
the proof it is sufficient to show that the verticesx andy are
separated by exactlydG(x,y) cut segments ofG. Pick an
arbitrary shortest pathL betweenx andy. Any cut segment
c separatingx andy necessarily intersects at least one edge
of L. If, say, c ∈ Ci intersects two edges (u′, V′) and (u′′,
V′′) of L, then we arrive at a contradiction. Indeed, granted
two such intersecting edges, if the verticesu′ andu′′ were
taken from the same connected component of the graphGi,
thenu′ andu′′ would be connected by more than one shortest
path.
Hence,R has the required distance-preserving property.

To label the vertices ofG one can proceed as follows. For
a given edge directioni first we find the edges from each
Ei, i ) 1, 2, 3 (this can be done while a usual representation
of G as a doubly linked list is given). More precisely, for a
given cut segmentc ∈ Ci we can list all edges intersected
by c in time proportional to the number of such edges. All
this permits to construct the connected components of the
graphGi. After their labeling we can find the required
incidence relation between them (i.e., to define the treeTi).
The ith coordinate (i ) 1, 2, 3) of a vertexV of G is the
label of the connected component ofGi from which V is

Figure 1. An embedding of coronene in the product of three paths.

Figure 2. An illustration to the definition of tree-factors.

R(V) ) (P,Q,R)

R(x) ) (P′,Q′,R′) R(y) ) (P′′,Q′′,R′′)
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taken. IfG containsn vertices, then all these computations
can be done in totalO(n) time. The output of this algorithm
consists of the treesT1, T2, andT3 and the labels of length
three of the vertices ofG. Concluding, we obtain the
following result.
Theorem. The mapR proVides an isometric embedding

of a benzenoid system G with nVertices into the graph H)
T1 × T2 × T3. The factors T1, T2, and T3 as well as the
corresponding labels of theVertices of G can be computed
in total O(n) number of operations.

3. COMPUTING DISTANCES

Now we outline how to compute the distance between two
given verticesu andV of the benzenoid systemG, provided
G is represented by the data structure described in the
previous section. More precisely, we wish to finddG(u, V)
quickly, using just a fixed number of operations (notation
O(1)). One can easily notice that during the whole construc-
tion of the tree-factorsT1, T2, andT3 or of labels of the
vertices ofG we never used any distance information. It
was only proved that the embeddingR ofG into the Cartesian
productH ) T1× T2× T3 is isometric. Our theorem reduces
the problem of findingdG(x, y) to three similar problems on
factors. A major advantage is that all three factors are trees,
because in this setting very efficient algorithms from ref 12
can be applied. Thus we have to preprocess the treesT1,
T2, andT3 according to the algorithm described in ref 12, in
particular to make them rooted by picking arbitrary vertices
as roots.
To recall the algorithmic problem solved by ref 12 we

need some preparation. LetT(|T| ) n) be arooted treewith
the vertexr as aroot. Every vertexu on a unique path
connecting a vertexV with r is called anancestorof V, while
V is adescendentof u. The unique ancestor adjacent toV is
theparentor fatherof V. Notice that the rootr is an ancestor
of every vertex inT. Geometrically, one can representT in
the plane so that the parent of any vertexV * r is aboveV.
A subtree(with root u) of T is an induced subgraph ofT
whose vertices are all descendents of vertexu of T.
The nearest common ancestor nca(x, y) of two vertices

of x andy of T is the root of the smallest subtree ofT that
contains both verticesx and y; for an illustration of this
concept see Figure 3. Harel and Tarjan12 presented an
algoritm that afterO(n) preprocessing time answers inO(1)
time per query questions of the form, “What is the nearest
common ancestor of verticesx and y?”. To apply this
algorithm for our purposes, in addition, in the preprocessing
step we must compute the distances from the rootr to all
vertices ofT (this can be done by the breadth-first search
and requires additionalO(n) preprocessing time). Now,
having a query of the form, “What is the distance between

verticesx andy of T?”, we have to find the nearest common
ancestornca(x, y) of x andy and then to apply the formula

(for the justification see Figure 3). Therefore, to find the
distance between two vertices of a benzenoidG we must
apply this method for each of three factors.

3. COMPUTING THE DIAMETER

Though the data structure presented above can find some
potential applications (in particular, we hope to use it for
computing the center of a benzenoid system), it is in
particular interesting to look at the problem of computing
the diameterd(G) of a benzenoid systemG. Even more,
we want to compute the eccentricitye(V) for each boundary
vertexV ∈ B of G. This problem can be reformulated as a
maxima-finding problem in the distance matrix ofB. This
suffices to computed(G), because it is quite obvious that
the diameter ofG is realized between two vertices ofB.
(Actually, for any vertexV of G there is a vertexw ∈ B,
such thatdG(V, w) ) e(V).)
Denote byV1,...,Vm the vertices of the cycleB with the

vertices in order around the cycle, and letdij ) dG(Vi, Vj), i,
j ∈ {1,...,m}. One can easily show that

for all 1e i < j < k< l e m. Indeed, consider two shortest
paths between the verticesi andk and j and l, respectively.
Necessarily, they must intersect in a vertexx of G. By the
triangle inequalitydij e dG(Vi, x) + dG(x, Vj) anddkl e dG(Vk,
x) + dG(x, Vl). Sincedik ) dG(Vi, x) + dG(x, Vk) anddjl )
dG(Vj, x) + dG(x, Vl), we obtain the required inequality.
Further, letD denote them× mmatrix that contains the

pairwise distances between the vertices ofB: more precisely,
D(i, j) ) dij for 1 e i, j e m. Our problem is to compute a
maximum element in each rowi of D: such an element is
nothing else thane(Vi). We use the matrix-searching
technique of Aggarwal, Klawe, Moran, Shor, and Wilber,13

for computing row-wise maxima of matrices with a special
property called total monotonicity. The matrixD is totally
monotoneif

for any i < j andp < q (this is true in our case, because of
the inequality (1)). Total monotonicity implies that the
leftmost maxima obey the following useful property: as we
move down the rows, the maximum can only move right
but never left. The matrixD is defined imlicitly: an entry
is computed only when needed. The result of ref 13 can be
formulated in the following form:
The leftmost maximum in each row of a totally monotone

p × q matrix can be computed using O(p+ q) matrix
operations. If each matrix operation takes f(p, q) time, then
the row-maxima problem can be solVed in time O((p+ q)f(p,
q)).
Applying the matrix-search algorithm to the matrixD, one

can find the eccentricities of all vertices ofB in total time
O(mf(m)). If we use our data structure to compute the entries
of D, thenf(m) ) O(1), and we get anO(m) time algorithm
with a preprocessing step which requiresO(n) operations.

Figure 3. nca(x, y) is the nearest common ancestor ofx andy.

dT(x, y) ) dT(x, r) + dT(y, r) - 2dT(r, nca(x, y))

dij + dkl e dik + djl (1)

D(i, p) < D(i, q) impliesD(j, p) < D(j, q)
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This leads us to an optimalO(n) time algorithm for
computation of the diameter of a benzenoid system withn
vertices.
Actually, we can build the factorsT1, T2, andT3 employing

only the vertices of the bounding cycleB. This can be done
in only O(m) time, but the approach is based on the rather
complicated Chazelle14 algorithm for computing all vertex-
edge visible pairs of a polygon withm vertices. Applying
this algorithm separately for every direction, we will find
the cuts from each familyC1(G), C2(G), andC3(G). Even
with the factors in hands, we can answer inO(1) time only
distances queries between vertices ofB and not arbitrary
vertices ofG. However, this suffices to run the matrix-search
algorithm onD and compute the diameter ofG in onlyO(m)
time.
For the details about the matrix-search algorithm consult

ref 13. The idea to use this method for the diameter problem
first was applied by Hershberger and Suri15 in the case of
simple polygons.
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