
���

Optimal alignments in linear space

Eugene W. Myers† and Webb Miller*
���

Abstract

Space, not time, is often the limiting factor when computing optimal sequence alignments, and a
number of recent papers in the biology literature have proposed space-saving strategies. How-
ever, a 1975 computer science paper by Hirschberg presented a method that is superior to the
newer proposals, both in theory and in practice. The goal of this note is to give Hirschberg’s
idea the visibility it deserves by developing a linear-space version of Gotoh’s algorithm, which
accommodates affine gap penalties. A portable C-software package implementing this algorithm
is available on the BIONET free of charge.

Introduction

Consider the problem: Given sequences A = a 1 a 2
. . . a M and B = b 1 b 2

. . . b N , find a set of
‘‘evolutionary operations’’ that converts A to B and minimizes the sum of the operations’ costs.
The allowed operations are (1) replace one symbol by another, (2) delete k consecutive symbols,
or (3) insert k consecutive symbols. In addition, the problem statement requires that every sym-
bol of A must be either replaced or deleted. Replacement costs are specified by a table, w, where
w(a , b) gives the cost of replacing a by b. Note that a symbol of A is effectively left unedited if
it is replaced by itself at no cost, i.e., w(a , a) = 0. Two non-negative constants, g and h, specify
an affine function, gap(k) = g + hk, for the cost of a k-symbol indel (insertion or deletion).
Informally, opening up a gap costs g and each symbol in the gap costs h.

The problem is often formulated as maximizing the similarity score of an alignment, rather
than minimizing the difference score of a conversion. A bonus σ(a , b) is added for every
aligned pair (a , b) and a ‘‘gap penalty’’ q + rk is subtracted for every k-symbol gap. This for-
mulation is converted to a difference problem by the transformations

w(a , b) = σ max − σ(a , b) for all pairs (a , b)
g = q
h = r + 1⁄2σ max

where σ max = max (a , b) σ(a , b) (Smith, et al., 1981). Thus, to produce an alignment that max-
imizes the similarity score, first apply these transformations and then run the program described
in this paper with the resulting w, g, and h. If the minimum conversion score is C, then the
corresponding maximum alignment score is 1⁄2(M + N) σ max − C.

Gotoh (1982) gave an algorithm that solves such problems in O(MN) time. If only the
minimum cost is desired, then it is easy to implement the algorithm in O(N) space, where N can
be taken as the shorter sequence length. If one also desires a set of operations attaining the
�����������������������������������

†Department of Computer Science, University of Arizona, Tucson, AZ 85721. The work of this author was supported in part by
NSF Grant DCR-8511455.
*Department of Computer Science, The Pennsylvania State University, University Park, PA 16802

- 1 -

minimum cost, then straightforward implementations need O(MN) space. In practice, this space
requirement often limits the method’s applicability, and several papers (Taylor, 1984; Watanabe,
et al., 1985; Altschul and Erickson, 1986; Gotoh, 1986; Gotoh, 1987) have presented strategies
that reduce space consumption by constant factors. These papers fail to note that Hirschberg
(1975) showed how to produce an optimal conversion or alignment in O(N) space. When only a
single optimal alignment of A and B is desired, Hirschberg’s approach is superior to the others.
For example, in one megabyte of memory, our program based on Hirschberg’s method can align
two sequences of length 62,500. Altschul and Erickson (1986) propose keeping 7 bits for each
of MN entries, so the limit for their method is 7N 2 ≤ 8×106 , or N < 1070. Moreover, any pro-
gram that packs and unpacks bits or uses disk storage is doomed to be slow and, probably, non-
portable.

O(MN)-space methods permit the construction of all optimal alignments. However, the
number of alignments that attain the minimum cost is often astronomical, in part because a brute
force enumeration lists many arrangements whose differences are insignificant to the user.
Moreover, when one is searching for a particular ‘‘biologically meaningful’’ arrangement, it
may be necessary to consider slightly sub-optimal alignments (Waterman, 1983; Waterman and
Byers, 1985). One alternative to explicitly constructing all optimal alignments is to modify our
linear-space program to produce ‘‘left-most’’ and ‘‘right-most’’ optimal alignments that del-
ineate the range of possibilities. In any case, it is important to understand that a single optimal
alignment can be found in far less space than is needed to record ‘‘traceback’’ information for
finding all optimal alignments.

Hirschberg’s original presentation treats a simpler alignment problem, known as the longest
common subsequence problem, where w(a , b) = 1 if a ≠ b, w(a , a) = 0, and gap(k) = k, How-
ever, the approach is quite general. To the best of our knowledge, any sequence comparison
algorithm whose ‘‘cost-only’’ version runs in O(N) space can be adapted to produce an optimal
alignment in O(N) space. For example, Myers (1986) accomplished this for a ‘‘greedy’’ align-
ment algorithm that is quite different from the traditional dynamic programming approach.
Miller and Myers (1988) applied Hirschberg’s technique to a concave gap penalty algorithm that
subsumes Gotoh’s algorithm as a special case.

In this note we apply Hirschberg’s technique to Gotoh’s algorithm. Limiting consideration to
a relatively simple method yields a simple and novel development that we hope will bring
Hirschberg’s idea to a wider audience. Moreover, for affine indel costs, the more general
concave-weights software (Miller and Myers, 1988) runs 3.0 times slower and uses 3.5 times
more space than the program described in this paper.

System and Methods

C software implementing the algorithm was written and tested on a Vax 11/780 running 4.3 BSD
Unix. The program is portable: setting an appropriate compilation constant adapts the software
to a machine with a different memory capacity. The only requirement is an ANSI-standard C
compiler and accompanying standard I/O library.

- 2 -

The Algorithm

1. Computing the Cost in Linear Space

Let A i denote the i-symbol prefix a 1 a 2
. . . a i of A and let B j denote b 1 b 2

. . . b j . Define

C(i , j) = minimum cost of a conversion of A i to B j
D(i , j) = minimum cost of a conversion of A i to B j that deletes a i
I(i , j) = minimum cost of a conversion of A i to B j that inserts b j

Note that D(i , j) is properly defined only when i > 0, and I(i , j) only for j > 0. Gotoh (1972)
showed how to compute the C, D, and I matrices in O(MN) time. Below we present Gotoh’s
method, where we have treated the boundary conditions carefully by defining D(0, j) and
I(i , 0) appropriately.

The values C(i , j) satisfy the recurrence relations:

C(i , j) =

���
� ��

� 0

gap(i)

gap(j)

min{D(i , j) , I(i , j) , C(i − 1, j − 1) + w(a i , b j) }

if i = 0 and j = 0

if i > 0 and j = 0 [*]

if i = 0 and j > 0

if i > 0 and j > 0

For i , j > 0, an optimal conversion of A i to B j ends with either (1) a delete, (2) an insert, or (3)
the replacement of a i by b j . Thus, the first line above follows readily. For j > 0, an optimal
conversion of A 0 (the empty sequence) to B j must insert all j symbols, so C(0, j) = gap(j) and
the second line follows. The remaining two lines follow similarly. In the recurrence, and in Fig-
ures 1A and 1B, certain lines are starred because they are subsequently modified.

As noted earlier, we are free to pick a definition of D(0, j). It is convenient to set D(0, j) =
C(0, j) + g for j > 0. Moreover, we need not compute D(i , 0) for i ≥ 0, since other quantities
do not depend on these values. Then

D(i , j) =

�� � C(0, j) + g

min{D(i − 1, j) , C(i − 1, j) + g} + h

if i = 0 and j > 0

if i > 0 and j > 0

If i > 1, then extending an optimal conversion of A i − 1 to B j so that it deletes a i adds g + h to
its cost, or h if it ends by deleting a i − 1 . This reasoning confirms the first line for i > 1. For the
case where i = 1, an optimal conversion of A 1 to B j ending with a delete must convert A 0 to B j
and then delete a 1 . Thus, D(1, j) = C(0, j) + gap(1), which is exactly the assignment implied
by the recurrence because D(0, j) = C(0, j) + g.

I is handled like D. Thus, if we define I(i , 0) = C(i , 0) + g for i > 0 and ignore I(0, j) for j
≥ 0, then

I(i , j) =

�� � C(i , 0) + g

min{I(i , j − 1) , C(i , j − 1) + g} + h

if i > 0 and j = 0

if i > 0 and j > 0

The recurrence relations for C, D, and I lead to the algorithm of Figure 1A, which uses a variable
t that runs through the sequence of values gap(1), gap(2),

- 3 -

arrays C[0..M, 0..N] , D[0..M, 0..N] , I[0..M, 0..N]

scalar t

C(0, 0) ← 0
t ← g

for j ← 1 to N do
{ C(0, j) ← t ← t + h

D(0, j) ← t + g

}
[*] t ← g

for i ← 1 to M do
{

C(i , 0) ← t ← t + h

I(i , 0) ← t + g

for j ← 1 to N do
{ I(i , j) ← min {I(i , j − 1) , C(i , j − 1) + g} + h

D(i , j) ← min {D(i − 1, j) , C(i − 1, j) + g} + h

C(i , j) ← min {D(i , j) , I(i , j) , C(i − 1, j − 1) + w(a i , b j)}
}

}
write "cost is" C(M, N)

Figure 1A: Gotoh’s algorithm

vectors CC[0..N] , DD[0..N]

scalars e, c, s , t

CC(0) ← 0
t ← g

for j ← 1 to N do
{ CC(j) ← t ← t + h

DD(j) ← t + g

}
[*] t ← g

for i ← 1 to M do
{ s ← CC(0)

CC(0) ← c ← t ← t + h

e ← t + g

for j ← 1 to N do
{ e ← min {e, c + g} + h

DD(j) ← min {DD(j) , CC(j) + g} + h

c ← min {DD(j) , e, s + w(a i , b j)}
s ← CC(j)

CC(j) ← c

}
}

write "cost is" CC(N)

Figure 1B: O(N) space cost-only version

Values in the i th rows of C and D depend only on values in rows i and i − 1, while values in
the i th row of I depend only on values in row i. This means that a handful of row-sized vectors
are adequate to compute successive rows. In fact, with a little care, two vectors suffice: if CC
and DD contain the i − 1st rows of C and D, then the i th rows may be computed by overwriting
values for the i − 1st rows in a left-to-right sweep with the aid of three scalars, e , c, and s.
Specifically, if i , j > 0, then immediatedly before C(i , j), D(i , j), and I(i , j) are assigned to
CC(j), DD(j), and e, respectively, we have:

CC(k) =

�
���

C(i − 1, k)

C(i , k)

if k ≥ j

if k < j

DD(k) =

�
���

D(i − 1, k)

D(i , k)

if k ≥ j

if k < j

e = I(i , j − 1)
c = C(i , j − 1)
s = C(i − 1, j − 1)

With this loop-invariant condition in mind, the O(N) space cost-only variation of Figure 1B is
readily understood.

Example 1. Let w(a , b) = 1 if a ≠ b, w(a , a) = 0, and gap(k) = 2 + 0.5k. The unique
optimal conversion of agtac to aag deletes gt and replaces c by g, for a total cost of 4. When

- 4 -

applied to these two sequences, the algorithm of Figure 1A computes the values in Table 1.
Entries denoted ‘∗’ are undefined.

2.5 0.0 2.5 3.0

3.0 2.5 1.0 2.5

3.5 3.0 3.5 2.0

4.0 3.5 3.0 4.5

4.5 4.0 4.5 4.0

CC

s

c

 * 4.5 5.0 5.5

 * 5.0 5.5 6.0

 * 2.5 5.0 5.5

0.0 2.5 3.0 3.5

 * 3.0 3.5 5.0

I-matrix;

 * 3.5 4.0 4.5

 * 4.0 4.5 5.0

DD

 * * * *

4.5 5.0 2.5 3.0

5.0 5.5 5.0 3.5

5.5 6.0 5.5 6.0

6.0 6.5 6.0 5.5

6.5 7.0 6.5 7.0e

C-matrix: D-matrix

Table 1: Arrays C, D, and I computed by Fig. 1A for sequences agtac and aag.

In place of the three arrays, the algorithm of Figure 1B keeps only a vector for C, a vector for
D, and scalars for I(i , j − 1), C(i , j − 1), and C(i − 1, j − 1). At the top of the inner loop when i
= 5 and j = 2, the contents of CC and DD are the values enclosed in boxes in Table 1, while the
contents of e, c, and s are circled.

2. Delivering a Conversion in Linear Space

Hirschberg (1975) presented a recursive divide-and-conquer algorithm for delivering a long-
est common subsequence in linear space. Generalizing his specific treatment, the central idea is
to find the ‘‘midpoint’’ of an optimal conversion using a ‘‘forward’’ and a ‘‘reverse’’ application
of the linear space cost-only variation. Then an optimal conversion can be delivered by recur-
sively determining optimal conversions on both sides of this midpoint.

Suppose M > 1 and N > 0. Let i* = � M/ 2� , so row i* properly bisects the C matrix. In a for-
ward phase, the linear space cost-only algorithm is applied to the strings A i* and B, resulting in
vectors CC and DD satisfying:

CC(j) = minimum cost of a conversion of A i* to B j

DD(j) = minimum cost of a conversion of A i* to B j that ends with a delete

Let rev(A) denote the reverse of A, i.e., a M a M − 1
. . . a 1 , and let A i

T denote the suffix
a i + 1 a i + 2

. . . a M of A. (Recall that A i = a 1 a 2
. . . a i .) Define rev(B) and B j

T similarly. Note
that rev(rev(A) M − i) = A i

T . In a reverse phase, the linear space cost-only algorithm is applied to
rev(A) M − i* and rev(B), with a new pair of vectors, RR and SS, filling the roles of CC and DD.
Upon completion, RR(j) is the minimum cost of a conversion of rev(A) M − i* to rev(B) j and
SS(j) is the minimum cost of a conversion of rev(A) M − i* to rev(B) j that ends with a delete.

- 5 -

But the reverse of a conversion of rev(A) M − i to rev(B) N − j is a conversion of A i
T to B j

T . Thus,
the resulting vectors satisfy:

RR(N − j) = minimum cost of a conversion of A i*
T to B j

T

SS(N − j) = minimum cost of a conversion of A i*
T to B j

T that begins with a delete

Recall that the algorithm of Figure 1B does not compute DD(0) and SS(0), which are needed
below. This is easily rectified by observing that DD(0) = CC(0) and SS(0) = RR(0).

Given the vectors above, the midpoint of an optimal conversion can be found using the fol-
lowing observation. For any conversion of A to B, there exists a j∈[0, N] such that the conver-
sion is the concatenation of either (1) a conversion of A i* to B j and a conversion of A i*

T to B j
T or

(2) a conversion of A i* to B j ending with a delete and and a conversion of A i*
T to B j

T beginning
with a delete, in which case the deletions bracketing the concatenation point must be coalesced
into a single operation. For fixed j, the minimum cost of a type 1 conversion with midpoint
(i* , j) is CC(j) + RR(N − j), i.e., the minimum cost of a conversion of A i* to B j plus the
minimum cost of a conversion of A i*

T to B j
T . Similarly, the minimum cost of a type 2 conversion

is DD(j) + SS(N − j) − g, where g is subtracted because bracketing deletes are coalesced into a
single operation, i.e., gap(x + y) = gap(x) + gap(y) − g. Thus, the optimal cost of converting A
to B is

min j∈[0, N] {min(CC(j) + RR(N − j) , DD(j) + SS(N − j) − g) }

If the minimum is attained at j*, then (i* , j*) is an optimal midpoint for the problem. When
several values attain the minimum, the method of breaking ties determines whether the ‘‘left-
most’’ or ‘‘right-most’’ optimal alignment is selected.

Midpoint
i*

j*

Optimal

Figure 2: Splitting the problem into subproblems

Given an optimal midpoint (i* , j*), an optimal conversion can then be delivered by (1)
recursively finding an optimal conversion of A i* to B j* , (2) recursively finding an optimal
conversion of A i*

T to B j*
T , and (3) concatenating these two partial conversions, being sure to

coalesce bracketing deletes in the type 2 case. The splitting of the comparison problem for A
and B into two smaller problems is pictured in Figure 2. The outer rectangle is the M× N C-
matrix for A and B. The singly-hatched rectangles depict the sub-problems whose solutions are

- 6 -

to be concatenated, and the doubly-hatched rectangles depict sub-sub-problems. The dashed line
indicates the eventual optimal alignment.

With type 2 midpoints, one must further constrain the first recursive call to conversions that
end with a delete, and the second to conversions that begin with a delete. For example, the
second sub-problem may have a script not beginning with a delete that is better when considered
in isolation. However, since an initial delete is not charged the gap initialization penalty g for
type 2 midpoints, a conversion beginning with a delete is actually superior when concatenated
with the conversion for the first sub-problem. Considering sub-sub-problems, it becomes
apparent that, in general, a recursive call may be required to consider only conversions that
begin with, end with, or both begin and end with a delete.

The most elegant solution for type 2 midpoints is to split the problem into three parts: (1) an
optimal conversion of A i* − 1 to B j* , where final deletes are not charged the gap initialization
penalty g, (2) deletion of a i* a i* + 1 , and (3) an optimal conversion of A i* + 1 to B j* , where initial
deletes are not charged g. For a cost-only problem where initial deletes are not charged for gap
initialization, it suffices to simply subtract g from the starred line in the recurrence for C given in
the previous sub-section. This is equivalent to setting t to 0, as opposed to g, in the starred lines
of Figures 1A and 1B. Thus, in the forward phase, CC and DD are computed with this slight
alteration if initial gaps are not to be penalized g. Because the latter half of a conversion is com-
puted in the reverse phase, it suffices to use the same alteration when computing RR and SS on
the reversed sequences in order to not penalize final gaps. To implement these conditional
alterations, the algorithm diff in Figure 3 has parameters tb and te that are used to initialize t in
the starred lines for the forward and reverse phases. The caller passes g if initial/final deletes are
to be charged for gap initialization, and 0 otherwise.

The recursion’s boundary cases, N = 0 and M ≤ 1, are handled by exhaustive examination of
all possible optimal conversions. When N = 0, the only possibility is to delete A. When M = 0,
the only possibility is to insert B. When M = 1, an optimal conversion is the least costly of (1)
inserting B and deleting A = a 1 or (2) inserting B j − 1 , replacing a 1 by b j , and inserting B j

T , for
some j∈[1, N]. Conversion (1) costs gap(1) + gap(N) if initial and final deletes are charged a
gap initialization penalty, but costs only h + gap(N) otherwise. Also, the order of the insertion
and deletion must be reversed if only initial deletes are not charged a gap penalty.

Figure 3 outlines a linear space alignment algorithm that writes an optimal conversion. To
simplify the presentation, delete operations bracketing a type 2 midpoint are not coalesced. Our
software package rectifies this deficiency by buffering the last operation to be written and
coalescing it with the next as necessary.

- 7 -

shared vectors CC[0..M] , DD[0..M] , RR[0..N] , SS[0..N]

procedure DIFF(A , B , M , N)

{ diff(A , B , M , N, g, g) }

recursive procedure diff(A , B , M , N, tb, te)

{ if N = 0 then
{ if M > 0 then write ‘‘delete A’’ }

else if M = 0 then
write ‘‘insert B’’

else if M = 1 then
write conversion of cost min{(min(tb, te) + h) + gap(N) ,

j∈[1, N]
min (gap(j − 1) + w(a 1 , b j) + gap(N − j)) }

else
{ i* ← � M/ 2�

Compute CC and DD in a forward phase, replacing [*] of Fig. 1B with ‘‘t ← tb’’.

Compute RR and SS in a reverse phase, replacing [*] of Fig. 1B with ‘‘t ← te’’.

Find j*∈[0, N] minimizing min(CC(j) + RR(N − j) , DD(j) + SS(N − j) − g)

if (i*, j*) is type 1 then
{ diff(A i* , B j* , i*, j*, tb, g)

diff(Ai*
T , Bj*

T , M − i*, N − j*, g, te)

}

else
{ diff(A i* − 1 , B j* , i* − 1, j*, tb, 0)

write ‘‘delete a i* a i* + 1’’

diff(Ai* + 1
T , Bj*

T , M − i* − 1, N − j*, 0, te)

}

}

}

Figure 3: Skeleton of Gotoh’s algorithm in O(N) space

Example 2. Given the costs and sequences of Example 1, the algorithm of Figure 3 first
applies diff to sequences agtac and aag, where M = 4, N = 3, and i* = 2. The computed vectors
are

CC: 3.0 2.5 1.0 2.5 DD: 3.0 2.5 5.0 5.5
RR: 3.5 4.0 3.5 2.0 SS: 3.5 4.0 3.5 6.0

There are eight possible ways to divide the problem, i.e., two types of midpoints for each
j∈[0, N]. The corresponding costs are

j = 0 j = 1 j = 2 j = 3
type 1 midpoint: 5.0 6.0 5.0 6.0
type 2 midpoint: 7.0 4.0 7.0 7.0

The optimum choice from among the eight possibilities is a type 2 midpoint at j* = 1. This
corresponds to combining (1) a minimum-cost conversion of A i* = ag to B 1 = a that ends with a
delete and (2) a minimum-cost conversion of A i*

T = tac to B j
T = ag that begins with a delete.

- 8 -

Combining the two scripts and adjusting the sum of their costs to account for the fact that only
one gap initialization penalty is required, gives the cost DD(1) + SS(2) − 2 = 4.

The problem is thus decomposed into the problems of optimally converting A 1 = a to B 1 = a,
deleting a 2 a 3 = gt, and optimally converting A3

T = ac to B1
T = ag. These two required optimal

subconversions are generated by recursive calls to diff. For the first call, M = N = 1 and the final
‘‘boundary case’’ of diff produces the script of cost gap(0) + w(a , a) + gap(0) = 0, i.e.,
replacement of a by a. The second call divides the conversion of ac to ag into a conversion of a
to a followed by a conversion of a to g, each of which is generated by a third-level call to diff
with M = N = 1.

Performance. The algorithm uses O(N + lg M) space: O(N) for the globally shared vectors
and O(lg M) for the implicit activation stack needed for no more than � lg M� +1 levels of recur-
sion. The time required is approximately twice that for the cost-only version. There exist con-
stants π and τ such that the time taken in the body of diff for an M× N problem is not more than
π(M + N) for the boundary cases and τMN for the recursive cases. It follows by induction that
the total time taken in the worst case, including recursive calls, is not more than
(2 − 1/M) τMN + π(M + N). This result can be understood informally by examining Figure
2. The body of the top-level call takes τMN time, the total time spent in the bodies of the two
sub-problems is 1⁄2τMN, the total time spent in the bodies of the four sub-sub-problems is
1⁄4τMN, and so on. Thus, the cumulative time is (1 + 1⁄2 + 1⁄4 + . . .) τMN ≤ 2τMN. A similar
induction shows that the total time taken in expectation is (2 − 2/M) τMN + π(M + N). The
small difference between expected and worst-case time explains the surprisingly uniform time
performance observed in practice. That is, for sequences of a given length, the algorithm’s run-
ning time is virtually independent of the specific characters in the sequences.

Implementation

Our software package’s dominant storage requirements are (1) 4N words for the vectors CC, DD,
RR, and SS, (2) M + N words for an optimal conversion, (3) 16 kilowords for the table, w, of
replacement costs, and (4) M + N bytes for the sequences A and B. Only the storage for the vec-
tors is part of the package, per se. The other three storage components are declared in the user
program and are largely avoidable. Operations converting A to B could be printed immediately,
as in Figure 3. We store them to provide a more flexible user interface. The 128×128 table w
need only be α × α, where α is the alphabet size. A and B could be compressed; with DNA
sequences, for example, only 2(M + N) bits are necessary.

The following table gives maximum lengths for sequences that can be aligned in a given
amount of memory. The linear-space algorithm is compared with the 7MN-bit approach of
Altschul and Erickson (1986). Values are tabulated both without and with M + N words for
storing the generated operations, and we assume that 1 word = 4 bytes = 32 bits. In practice,
figures for the linear-space algorithm are lowered slightly by the O(lg M) space for the recur-
sion stack.

- 9 -

Available Memory Linear Space Linear Space Altschul &
(in bytes) (ops not stored) (ops stored) Erickson

64K 4,000 2,666 270
128K 8,000 5,333 382
256K 16,000 10,666 540

1,000K 62,500 41,666 1,069

The software’s time requirement is modest. Our Vax 11/780 running 4.3 BSD Unix needs an
average of 153MN micro-seconds to align sequences of lengths M and N. Statistics that are
easier to interpret, and relatively machine-insensitive, can be determined by comparison with a
‘‘standard’’ program. We chose the following straightforward implementation of the classic
dynamic programming algorithm for the case where gap(k) = hk (Wagner and Fischer, 1974).
To facilitate comparative testing, the procedure arguments match the software interface
described below. Our linear-space software’s execution time exceeds that of the simple program
by the factor 1.84.

#define NMAX 400

float C[NMAX+1][NMAX+1];

float DIFF(A,B,M,N,W,G,H,S)

char A[], B[]; int M, N; float W[][128], G, H; int S[];

{ register int i, j;

register float c, d, e;

C[0][0] = 0.;

for (j = 1; j <= N; j++)

C[0][j] = C[0][j−1] + H;

for (i = 1; i <= M; i++)

{ C[i][0] = C[i−1][0] + H;

for (j = 1; j <= N; j++)

{ c = C[i−1][j−1] + W[A[i]][B[j]];

d = C[i−1][j] + H;

e = C[i][j−1] + H;

if (d < c) c = d;

if (e < c) c = e;

C[i][j] = c;

}

}

return C[M][N];

}

The software package consists of three C files. The file linear.h gives complete interface
information and several global definitions, linear.c contains the implementation, per se, together
with a procedure to display alignments, and sample.c provides a sample user program. Follow-
ing standard C conventions, the user program should include linear.h and should be compiled
and linked with linear.c. The remainder of this section describes the interface.

- 10 -

#define NMAX <integer>
NMAX is a compilation constant giving the maximum input sequence length. It is to be
adjusted according to available memory.

float DIFF(A, B, M, N, W, G, H, S) int M, N; char A[], B[]; float W[][128], G, H; int S[];

DIFF compares sequence A[1..M] with sequence B[1..N] and returns the minimum conver-
sion cost. Costs are determined by the parameters W, G, and H. W[128][128] is an array
giving replacement costs for each pair of ASCII characters, e.g. W[′a ′][′b ′] is the cost of
replacing ′a ′ by ′b ′. Be sure to set W[′a ′][′a ′] to zero if exact matches are to accrue no
cost. The cost of a k-symbol indel is the affine function G + Hk.

DIFF also has the side-effect of placing an encoding of an optimal conversion in an integer
array S[0..M + N − 1] supplied by the caller. The sequence of integers S[0], S[1], S[2],
. . . gives the editing operations in a left-to-right conversion where integers encode opera-
tions as follows:

0 => replace
− k => delete k symbols
+k => insert k symbols.

The script is guaranteed to have the properties:
(1) Inserts are never followed by inserts.
(2) Deletes are never followed by deletes or inserts.
(3) A replacement followed by a k-indel is always preferred to a k-indel followed by

a replacement if both have the same cost.

DIFF returns −1.0 if NMAX isn’t large enough.

int DISPLAY(A, B, M, N, S) int M, N; char A[], B[]; int S[];

DISPLAY places on the standard output a display of the alignment implied by the conversion
S computed in the call DIFF(A , B , M , N , ?, ?, ?, S). For example:

0 . : . : . : . : . :
ggcg t t t ca t accggcgagga c t agaga t cccaga t gcagcc t cga t a
! - ! ! ! ! | | | | ! ! ! ! ! ! ! ! ! ! | - - ! ! ! ! ! | ! ! | ! ! | | | | ! ! - ! ! ! ! ! ! ! ! !
g cg t t ca t aaccggcgagg t acc t agaca t t cccagagc gcc t cga t a

50 . : . : .
t aggaagaa t c agcaacga t cggca t g
! | ! | | ! ! ! ! - ! ! - ! ! ! ! ! ! ! ! - ! ! | ! - ! !
t ggacagaaa t cgagcaacga cgac t g

Discussion

This paper develops a linear-space algorithm for producing optimal sequence alignments with
affine gap costs. It is superior in theory and practice to other approaches. By avoiding the use of

- 11 -

secondary storage and bit operations, it yields fast and portable software.

The underlying divide-and-conquer strategy, taken from a 1975 paper of Hirschberg, is quite
general. Many, perhaps all, cost-only alignment algorithms yield an alignment-delivering varia-
tion with identical asymptotic time and space complexities. When applied to certain other align-
ment algorithms, the space requirement becomes sublinear (Myers, 1986), linear (Wagner and
Fischer, 1974; Masek and Paterson, 1980), or linear in expectation (Miller and Myers, 1988).
Occasionally, the variation is not space-efficient, as with the method of Waterman, Smith, and
Beyer (1976), whose cost-only version needs O(MN) space.

In practice, employing the strategy at most doubles the time and space requirements of the
cost-only version. Indeed, with greedy methods (Fickett, 1984; Ukkonen, 1985, Section 3;
Miller and Myers, 1985; Myers, 1986), the midpoint computation is twice as efficient as a one-
pass cost-only computation, implying that the time overhead of the divide-and-conquer approach
is negligible.

Acknowledgment

Stephen Altschul, David Lipman, and the referee made suggestions that improved the presenta-
tion of this paper.

References

Altschul, S. and B. W. Erickson (1986) Optimal sequence alignments using affine gap costs,
Bull. Math. Biol., 48, 603-616.

Fickett, J. W. (1984) Fast optimal alignment, Nucleic Acids Research, 12, 175-179.
Gotoh, O. (1982) An improved algorithm for matching biological sequences, J. Molec. Biol.,

162, 705-708.
Gotoh, O. (1986) Alignment of three biological sequences with an efficient traceback procedure,

J. Theor. Biol., 121, 327-337.
Gotoh, O. (1987) Pattern matching of biological sequences with limited storage, CABIOS, 3,

17-20.
Hirschberg, D. S. (1975) A linear space algorithm for computing longest common subsequences,

Commun. Assoc. Comput. Mach., 18, 341-343.
Masek, W. J. and M. S. Paterson (1980) A faster algorithm for computing string-edit distances,

J. Comput. System Sci., 20, 18-31.
Miller, W. and E. W. Myers (1985) A file comparison program, Software — Practice and

Experience, 15, 1025-1040.
Miller, W. and E. W. Myers (1988) Sequence comparison with concave weighting functions,

Bull. Math. Biol., to appear.
Myers, E. W. (1986) An O(ND) difference algorithm and its variations, Algorithmica, 1, 251-

266.
Smith, T. F., M. S. Waterman, and W. M. Fitch (1981) Comparative biosequence metrics, J.

Molec. Evol., 18, 38-46.

- 12 -

Taylor, P. (1984) A fast homology program for aligning biological sequences, Nucleic Acids
Research 12, 447-455.

Ukkonen, E. (1985) Algorithms for approximate string matching, Information and Control, 64,
100-118.

Wagner, R. A. and M. J. Fischer (1974) The string-to-string correction problem, J. ACM, 21,
168-173.

Watanabe, K., Y. Urano, and T. Tamaoki (1985) Optimal alignments of biological sequences on
a microcomputer, CABIOS, 1, 83-87.

Waterman, M. S. (1983) Sequence alignment in the neighborhood of the optimum, Proc. Natl.
Acad. Sci. USA, 80, 3123-3124.

Waterman, M. S. and T. H. Byers (1985) A dynamic programming algorithm to find all solutions
in a neighborhood of the optimum, Math. Biosciences, 77, 179-188.

Waterman, M. S., T. F. Smith and W. A. Beyer (1976) Some biological sequence metrics,
Advances in Mathematics, 20, 367-387.

- 13 -

