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Abstract: In this article, we introduce some recent research trends 
within the field of adaptive/approximate dynamic programming 
(ADP), including the variations on the structure of ADP 
schemes, the development of ADP algorithms and applications 
of ADP schemes. For ADP algorithms, the point of focus is that 
iterative algorithms of ADP can be sorted into two classes: one 
class is the iterative algorithm with initial stable policy; the other 
is the one without the requirement of initial stable policy. It is 
generally believed that the latter one has less computation at the 
cost of missing the guarantee of system stability during iteration 
process. In addition, many recent papers have provided conver-
gence analysis associated with the algorithms developed. Fur-
thermore, we point out some topics for future studies. 
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Introduction
s is well known, there are many methods for designing 
stable control for nonlinear systems. However, stability 
is only a bare minimum requirement in a system 
design. Ensuring optimality guarantees the stability of 

the nonlinear system. Dynamic programming is a very useful 
tool in solving optimization and optimal control problems by 
employing the principle of optimality. In [16], the principle of 
optimality is expressed as: “An optimal policy has the property 
that whatever the initial state and initial decision are, the 
remaining decisions must constitute an optimal policy with 
regard to the state resulting from the first decision.” There are 
several spectrums about the dynamic programming. One can 
consider discrete-time systems or continuous-time systems, lin-
ear systems or nonlinear systems, time-invariant systems or 
time-varying systems, deterministic systems or stochastic sys-
tems, etc. 

We first take a look at nonlinear discrete-time (time- 
varying) dynamical (deterministic) systems. Time-varying non-
linear systems cover most of the application areas and 
discrete-time is the basic consideration for digital computation. 
Suppose that one is given a discrete-time nonlinear (time- 
varying) dynamical system 

 x 1k1 1 2 5 F 3 1x 1k 2 , u 1k 2 , k 4, k5 0, 1, c (1) 

where x [ Rn represents the state vector of the system and 
u [ Rm denotes the control action and F is the system func-
tion. Suppose that one associates with this system the perfor-
mance index (or cost) 

 J 3x 1 i 2 , i 4 5 a
`

k5i
g k2iU 3x 1k 2 , u 1k 2 , k 4 (2) 

where U is called the utility function and g is the discount 
factor with 0 , g # 1. Note that the function J is dependent 
on the initial time i and the initial state x( i  ), and it is referred to 
as the cost-to-go of state x( i  ). The objective of dynamic pro-
gramming problem is to choose a control sequence 
u(k), k5 i, i1 1, c, so that the function J (i.e., the cost) in 
(2) is minimized. According to Bellman, the optimal cost from 
time k is equal to 

 J* 1x 1k 2 2 5min
u1k2  EU 1x 1k 2 , u 1k 2 2 1g J* 1x 1k1 1 2 2 F. (3)

The optimal control u * 1k 2  at time k is the u 1k 2  which achieves 
this minimum, i.e., 

 u* 1k 2 5 arg min
u1k2  

EU 1x 1k 2 , u 1k 2 2 1gJ* 1x 1k1 1 2 2 F. (4) 

Equation (3) is the principle of optimality for discrete-time 
systems. Its importance lies in the fact that it allows one to 
optimize over only one control vector at a time by working 
backward in time. 

In nonlinear continuous-time case, the system can be 
described by 

 x
# 1 t 2 5 F  3x 1 t 2 , u 1 t 2 , t 4, t $ t0. (5) 

The cost in this case is defined as 

 J 1x 1 t 2 2 5 3`
t

U 1x 1t 2 , u 1t 2 2dt. (6) 

For continuous-time systems, Bellman’s principle of opti-
mality can be applied, too. The optimal cost J*(x0)5min
J (x0, u(t )) will satisfy the Hamilton-Jacobi-Bellman Equation 

2
'J* 1x 1 t 2 2
't

5min
u[U

bU 1x 1 t 2 , u 1 t 2 , t 2 1 a'J* 1x 1 t 2 2
'x 1 t 2 bT

 3 F 1x 1 t 2 , u 1 t 2 , t 2 r
 5U 1x 1 t 2 , u* 1 t 2 , t 2 1 a'J* 1x 1 t 2 2

'x 1 t 2 bT

 3 F 1x 1 t 2 , u* 1 t 2 , t 2 . (7) 

Equations (3) and (7) are called the optimality equations 
of dynamic programming which are the basis for implemen-
tation of dynamic programming. In the above, if the func-
tion F in (1) or (5) and the cost function J  in (2) or (6) are 
known, the solution of u(k ) becomes a simple optimization 
problem. If the system is modeled by linear dynamics and 
the cost function to be minimized is quadratic in the state 
and control, then the optimal control is a linear feedback of 
the states, where the gains are obtained by solving a standard 
Riccati equation [47]. On the other hand, if the system is 
modeled by nonlinear dynamics or the cost function is non-
quadratic, the optimal state feedback control will depend 
upon solutions to the Hamilton-Jacobi-Bellman (HJB) 
equation [48] which is generally a nonlinear partial differ-
ential equation or difference equation. However, it is often 
computationally untenable to run true dynamic program-
ming due to the backward numerical process required for its 
solutions, i.e., as a result of the well-known “curse of dimen-
sionality” [16], [28]. In [69], three curses are displayed in 
resource management and control problems to show the 
cost function J , which is the theoretical solution of the 
Hamilton-Jacobi- Bellman equation, is very difficult to 
obtain, except for systems satisfying some very good condi-
tions. Over the years, progress has been made to circumvent 
the “curse of dimensionality” by building a system, called 
“critic”, to approximate the cost function in dynamic pro-
gramming (cf. [10], [60], [61], [63], [70], [78], [92], [94], 
[95]). The idea is to approximate dynamic programming 
solutions by using a function approximation structure such 
as neural networks to approximate the cost function. 

The Basic Structures of ADP
In recent years, adaptive/approximate dynamic programming 
(ADP) has gained much attention from many researchers in order 
to obtain approximate solutions of the HJB equation, 
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cf. [2], [3], [5], [8], [11]–[13], [21], [22], [25], [30], [31], [34], 
[35], [40], [46], [49], [52], [54], [55], [63], [70], [76], [80], 
[83], [95], [96], [99], [100]. In 1977, Werbos [91] introduced an 
approach for ADP that was later called adaptive critic designs 
(ACDs). ACDs were proposed in [91], [94], [97] as a way for 
solving dynamic programming problems forward-in-time. In the 
literature, there are several synonyms used for “Adaptive Critic 
Designs” [10], [24], [39], [43], [54], [70], [71], [87], including 
“Approximate Dynamic Programming” [69], [82], [95], “Asymp-
totic Dynamic Programming” [75], “Adaptive Dynamic Pro-
gramming” [63], [64], “Heuristic Dynamic Programming” [46], 
[93], “Neuro-Dynamic Programming” [17], “Neural Dynamic 
Programming” [82], [101], and “Reinforcement Learning” [84]. 

Bertsekas and Tsitsiklis gave an overview of the neuro- 
dynamic programming in their book [17]. They provided the 
background, gave a detailed introduction to dynamic program-
ming, discussed the neural network architectures and methods for 
training them, and developed general convergence theorems for 
stochastic approximation methods as the foundation for analysis of 
various neuro-dynamic programming algorithms. They provided 
the core neuro-dynamic programming methodology, including 
many mathematical results and methodological insights. They sug-
gested many useful methodologies for applications to neuro-
dynamic programming, like Monte Carlo simulation, on-line and 
off-line temporal difference methods, Q-learning algorithm, opti-
mistic policy iteration methods, Bellman error methods, approxi-
mate linear programming, approximate dynamic programming 
with cost-to-go function, etc. A particularly impressive success that 
greatly motivated subsequent research, was the development of a 
backgammon playing program by Tesauro [85]. Here a neural 
network was trained to approximate the optimal cost-to-go func-
tion of the game of backgammon by using simulation, that is, by 
letting the program play against itself. Unlike chess programs, this 
program did not use lookahead of many steps, so its success can 
be attributed primarily to the use of a properly trained approxi-
mation of the optimal cost-to-go function. 

To implement the ADP algorithm, Werbos [95] proposed a 
means to get around this numerical complexity by using 
“approximate dynamic programming” formulations. His meth-
ods approximate the original problem with 
a discrete formulation. Solution to the 
ADP formulation is obtained through neu-
ral network based adaptive critic approach. 
The main idea of ADP is shown in Fig. 1. 

He proposed two basic versions which 
are heuristic  dynamic programming (HDP) 
and dual heuristic programming (DHP). 

Heuristic Dynamic Programming (HDP)
HDP is the most basic and widely applied 
structure of ADP [13], [38], [72], [79], [90], 
[93], [104], [106]. The structure of HDP is 
shown in Fig. 2. HDP is a method for esti-
mating the cost function. Estimating the cost 
function for a given policy only requires 

samples from the instantaneous utility function U, while models 
of the environment and the instantaneous reward are needed to 
find the cost function corresponding to the optimal policy. 

In HDP, the output of the critic network is Ĵ, which is the 
estimate of J in equation (2). This is done by minimizing the 
following error measure over time 

 7Eh 7  5a
k

Eh 1k 2 5 1
2ak 3   Ĵ 1k 2 2U 1k 2 2gĴ 1k1 1 2 42, (8) 

where Ĵ(k)5 Ĵ 3x(k), u(k), k, WC 4  and WC represents the 
parameters of the critic network. When Eh5 0 for all k, (8) 
implies that 

 Ĵ 1k 2 5U 1k 2 1gĴ 1k1 1 2  (9) 

and 

 Ĵ(k)5 a
`

i5k
g i2kU( i  ) which is the same as (2). 

Dual Heuristic Programming (DHP)
Dual heuristic programming is a method for estimating the 
gradient of the cost function, rather than J  itself. To do this, 
a function is needed to describe the gradient of the instanta-
neous cost function with respect to the state of the system. In 
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the DHP structure, the action network remains the same as the 
one for HDP, but for the second network, which is called the 
critic network, with the costate as its output and the state vari-
ables as its inputs. 

The critic network’s training is more complicated than that 
in HDP since we need to take into account all relevant path-
ways of backpropagation. 

This is done by minimizing the following error measure 
over time 

 7ED 7 5 a
k

ED 1k 2 5 1
2ak c 'Ĵ 1k 2'x 1k 2  2 

'U 1k 2
'x 1k 2   2 g

'Ĵ 1k1 1 2
'x 1k 2 d 2

,

 (10)

where 'Ĵ 1k 2/'x 1k 2 5 'Ĵ 3x 1k 2 , u 1k 2 , k, WC 4/'x 1k 2  and WC 
represents theparameters of the critic network. When Eh5 0 
for all k, (10) implies that 

 
'Ĵ 1k 2
'x 1k 2 5 'U 1k 2'x 1k 2 1g'J 1k1 1 2

'x 1k 2 . (11) 

Theoretical Developments
In [82], Si et al summarizes the cross-disciplinary theoretical 
developments of ADP and overviews DP and ADP; and dis-
cusses their relations to artificial intelligence, approximation 
theory, control theory, operations research, and statistics. 

In [69], Powell shows how ADP, when coupled with math-
ematical programming, can solve (approximately) deterministic 
or stochastic optimization problems that are far larger than any-
thing that could be solved using existing techniques and shows 
the improvement directions of ADP. 

The Development of Structures
In [95], Werbos further gave two other versions called “action-
dependent critics,” namely, ADHDP (also known as Q-learning 
[89]) and ADDHP. In the two ADP structures, the control is 
also the input of the critic networks. In 1997, Prokhorov and 
Wunsch [70] presented more algorithms according to ACDs. 

They discussed the design families of HDP, DHP, and global-
ized dual heuristic programming (GDHP). They suggested 
some new improvements to the original GDHP design. They 
promised to be useful for many engineering applications in the 
areas of optimization and optimal control. Based on one of 
these modifications, they present a unified approach to all 
ACDs. This leads to a generalized training procedure for ACDs. 
In [26], a realization of ADHDP was suggested: a least squares 
support vector machine (SVM) regressor has been used for 
generating the control actions, while an SVM-based tree-type 
neural network (NN) is used as the critic. The GDHP or 
ADGDHP structure minimizes the error with respect to both 
the cost and its derivatives. While it is more complex to do this 
simultaneously, the resulting behavior is expected to be superi-
or. So in [102], GDHP serves as a reconfigurable controller to 
deal with both abrupt and incipient changes in the plant 
dynamics due to faults. A novel fault tolerant control (FTC) 
supervisor is combined with GDHP for the purpose of 
improving the performance of GDHP for fault tolerant control. 
When the plant is affected by a known abrupt fault, the new 
initial conditions of GDHP are loaded from dynamic model 
bank (DMB). On the other hand, if the fault is incipient, the 
reconfigurable controller maintains performance by continu-
ously modifying itself without supervisor intervention. It is 
noted that the training of three networks used to implement 
the GDHP is in an online fashion by utilizing two distinct net-
works to implement the critic. The first critic network is 
trained at every iterations while the second one is updated with 
a copy of the first one at a given period of iterations. 

All the ADP structures can realize the same function that is 
to obtain the optimal control policy while the computation 
precision and running time are different from each other. Gen-
erally speaking, the computation burden of HDP is low but the 
computation precision is also low; while GDHP has better pre-
cision but the computation process will take longer time and 
the detailed comparison can be seen in [70]. 

In [30], [33] and [83], the schematic of direct heuristic 
dynamic programming is developed. Using the approach of 
[83], the model network in Fig. 1 is not needed anymore. 

Reference [101] makes significant contri-
butions to model-free adaptive critic 
designs. Several practical examples are 
included in [101] for demonstration 
which include single inverted pendulum 
and triple inverted pendulum. A rein-
forcement learning-based controller 
design for nonlinear discrete-time systems 
with input constraints is presented by [36], 
where the nonlinear tracking control is 
implemented with filtered tracking error 
using direct HDP designs. Similar works 
also see [37]. Reference [54] is also about 
model-free adaptive critic designs. Two 
approaches for the training of critic net-
work are provided in [54]: A forward-in-time 

γModel
Network

Critic
Network

x(k + 1) ∂x(k + 1)x(k)
u(k) ∂J(x(k + 1))

›

∂J(x(k))

›

∂x(k)

∂x(k)
∂U(k)

Critic
Network

Action
Network

FIGURE 3 The DHP structure.



MAY 2009 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE    43

approach and a backward-in-time approach. 
Fig. 4 shows the diagram of forward-in-
time approach. In this approach, we view 
Ĵ(k) in (8) as the output of the critic net-
work  to  be  t r a ined  and  choose 
U(k)1gĴ(k1 1) as the training target. 
Note that Ĵ(k) and Ĵ(k1 1) are obtained 
using state variables at different time instances. Fig. 5 shows 
the diagram of backward-in-time approach. In this approach, 
we view Ĵ(k1 1) in (8) as the output of the critic network to 
be trained and choose (  Ĵ(k)2U(k))/g as the training target. 
The training ap proach of [101] can be considered as a back-
ward-in-time ap proach. In Fig. 4 and Fig. 5, x(k1 1) is the 
output of the model network. 

An improvement and modification to the two network archi-
tecture, which is called the “single network adaptive critic 
(SNAC)” was presented in [65], [66]. This approach eliminates 
the action network. As a consequence, the SNAC architecture 
offers three potential advantages: a simpler architecture, lesser 
computational load (about half of the dual network algorithms), 
and no approximate error due to the fact that the action network 
is eliminated. The SNAC approach is applicable to a wide class of 
nonlinear systems where the optimal control (stationary) equa-
tion can be explicitly expressed in terms of the state and the 
costate variables. Most of the problems in aerospace, automobile, 
robotics, and other engineering disciplines can be characterized 
by the nonlinear control-affine equations that yield such a rela-
tion. SNAC-based controllers yield excellent tracking perfor-
mances in applications to microelectronic mechanical systems, 
chemical reactor, and high-speed reentry problems. Padhi et al. 
[65] have proved that for linear systems (where the mapping 
between the costate at stage k1 1 and the state at stage k is lin-
ear), the solution obtained by the algorithm based on the SNAC 
structure converges to the solution of discrete Riccati equation. 

Algorithms and Convergence Analysis
The exact solution of the HJB equation is generally impossible 
to obtain for nonlinear systems. To overcome the difficulty in 
solving the HJB equation, recursive methods are employed to 
obtain the solution of HJB equation indirectly. In 1983, Barto 
et al [12] developed a neural computation-based adaptive critic 
learning method. They divides the state space into boxes and 
stores learned information for each box. The algorithm works 
well but the number of boxes can be very large for a complicated 
system. In 1991, Lin and Kim [51] integrate the cerebellar model 
articulation controller technique [1] with the box-based scheme. 
Large state space is mapped into a smaller physical memory space. 
With the distributed information storage, there is no need to 
reserve memory for useless boxes; this makes the structure appli-
cable to problems of larger size. Kleinman [42] pointed out that 
the solution of the Riccati equation can be obtained by succes-
sively solving a sequence of Lyapunov equations, which is linear 
with respect to the cost function of the system, and thus, it is eas-
ier to solve than a Riccati equation, which is nonlinear with 
respect to the cost function. Saridis and Lee [77] extended this 

idea to the case of nonlinear  continuous-time systems where a 
recursive method is used to obtain the optimal control of contin-
uous system by successively solving the generalized Hamilton–
Jacobi–Bellman (GHJB) equation, and then, updating the control 
action if an admissible initial control is given. 

Although the GHJB equation is linear and easier to solve than 
HJB equation, no general solution for GHJB is demonstrated. 
Therefore, successful application of the successive approximation 
method was limited until the novel work of Beard et al. [15] 
where they used a Galerkin spectral approximation method at 
each iteration to find approximate solutions to the GHJB equa-
tions. And then Beard and Saridis [14] employed a series of poly-
nomial functions as basic functions to solve the approximate 
GHJB equation in continuous time but this method requires the 
computation of a large number of integrals and it is not obvious 
how to handle explicit constraints on the controls. In [79], the 
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All the ADP structures can realize the same function 
that is to obtain the optimal control policy while the 
computation precision and running time are different 
from each other.
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HJB equations are motivated and proven on time scales. The 
authors connected the calculus of time scales and stochastic con-
trol via ADP algorithm and further pointed out three significant 
directions for the investigation of ADP on time scales. Park [68] 
employed interpolating wavelets as the basic functions. On the 
other hand, Lewis and Abu-Khalaf presented how to formulate 
the  associated Hamilton–Jacobi–Isaac (HJI) equation using  special 
nonquadratic supply rates to obtain the nonlinear state feedback 
control in [9]. Next, the fixed-final-time-constrained optimal 
control of nonlinear systems is studied in [22], [23] based on the 
neural network solution of the GHJB equation. In order to 
enhance learning speed and final performance, Wiering and Has-
selt combined multiple different reinforcement learning algo-
rithms to design and implement four different ensemble methods 
in [98]. In [41], a new algorithm for the closed loop parallel opti-
mal control of weakly coupled nonlinear systems is developed 
using the successive Galerkin approximation. In [45], the author 
inspired researchers to develop the experience-based approach 
which selected a controller that is appropriate to the current situ-
ation from a repository of existing controller  solutions. 

Although many papers have discussed the GHJB method 
for continuous-time systems, there is very minimal work avail-
able on the GHJB method for discrete-time nonlinear systems. 
Discrete-time version of the approximate GHJB-equation-
based control is important since all the controllers are typically 
implemented by using embedded digital hardware. In [21] a 
successive approximation method using GHJB equation is pro-
posed to solve the near-optimal control problem for affine 
nonlinear discrete-time systems, which requires small perturba-
tion assumption and an initially stable policy. The theory of 
GHJB in discrete-time has also been applied to the linear dis-
crete-time case which indicates that the optimal control is 
nothing but the solution of the standard Riccati equation. 

On the other hand, in [19], Bradtke et al. implemented a 
Q-learning policy iteration method for the discrete-time linear 
quadratic optimal control problem which required an initial 
stable policy. Furthermore, Landelius [44] applied HDP, DHP, 
ADHDP and ADDHP techniques to the discrete-time linear 
quadratic optimal control problem without the initial stable 
conditions and discussed their convergence. 

Based on the work of [44], the improvement of ADP to the 
discrete-time linear quadratic zero-sum game that appearing in 
the H` optimal control problem is concerned in [2], [4]. The 
optimal strategies for discrete-time quadratic zero-sum games 
related to the H` optimal control problem are solved in forward 
time. The idea is to solve for an action dependent cost function 
Q(x, u, w) of the zero-sum game instead of solving for the state 
dependent cost function J(x) which satisfies a corresponding 
game algebraic Riccati equation (GARE). Using the Kronecker 

method, two action networks and one critic net-
work are used that are adaptively tuned in forward 
time using adaptive critic methods without the 
system model information. The convergence anal-
ysis is also given to guarantee the cost function to 
reach the saddle point of the game. 

Moreover, in [3], a greedy HDP iteration scheme is pro-
posed for solving the optimal control problem for nonlinear 
discrete-time systems with known mathematical model, which 
does not require an initially stable policy. The discrete-time 
 system can be written as 

 x 1k1 1 2 5 f 1x 1k 2 2 1 g 1x 1k 2 2u 1k 2 , (12) 

with the cost function 

 J 1x 1k 2 2 5 a
1`

i5k

1xT 1 i 2Qx 1 i 2 1 u T 1 i 2Ru 1 i 2 2 , (13) 

where Q [ Rn3n and R [ Rn3n are positive definite matri-
ces. Similar to [78], an iterative process, which is referred as 
Heuristic Dynamic Programming (HDP, cf. [95]), is pro-
posed to obtain the optimal control law. Starting from 
V0 1x 2 5 0, define 

µ  ui 1x 1k 2 2 5 2
1
2
R21gT 1x 1k 2 2 c 'Vi 1x 1k1 1 2 2

'x 1k1 1 2 d T

Vi11 1x 1k 2 2 5 xT 1k 2Qx 1k 2 1 u i
T 1k 2 1x 1k 2 2Rui 1x 1k 2 2

1Vi 1x 1k1 1 2 2 ,

 (14) 

where x(k1 1)5 f (x(k))1 g(x(k)) ui(x(k)). Al-Tamimi and 
Lewis [3] also provided a proof to show the cost function 
 converges to the optimal one satisfying discrete-time Hamil-
ton-Jacobi-Bellman (DT HJB). Zhang, Wei and Luo [104] 
applied the greedy iterative HDP algorithm to solve the opti-
mal tracking problem. In [104], a new performance index is 
introduced to obtain a better tracking results. Using a system 
transformation, the optimal tracking problem is changed into 
an optimal regulator problem and then the greedy iterative 
HDP algorithm is introduced to obtain the optimal control for 
the transformed system. In [105], Zhang and Luo proposed a 
iteration scheme without requirement of initial stable policy, 
and proved that the cost function sequence will converge to 
the optimal cost function when the number of iteration steps 
goes to infinity. And the critic and action networks can be 
tuned adaptively without the system plant information via a 
model network. On the other hand, the optimal control prob-
lem for linear  continuous-time systems without initial stable 
policy is studied in [88]. 

Murray et al. [63] proposed an iterative ADP scheme 
for continuous-time nonlinear systems with respect to 
quadratic cost function and succeeded to improve the 
autolanding control of aircraft. The iteration is required to 
begin with an initial stable policy, and after each iteration 
the cost function is  updated. So the iterative policy is also 

Equations (3) and (7) are called the optimality 
equations of dynamic programming which are the 
basis for implementation of dynamic programming.
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called “cost iteration”. The system is described by the fol-
lowing continuous-time  differential equation 

 x
#
5 F 1x 2 1 B 1x 2u,  x 1 t0 2 5 x0, (15) 

with the cost function 

 J 1x 2 5 3`
t0

U 1x 1t 2 , u 1t 2 2dt, (16) 

where U 1x, u 2 5 q 1x 2 1 u Tr 1x 2u is a nonnegative function 
and r (x) . 0. Similar to [78], an iterative process is proposed to 
obtain the control law. In this case, the optimal control can be 
simplified to 

 u * 1x 2 5 2
1
2
 r21 1x 2BT 1x 2 c dJ* 1x 2

dx
d T

. (17) 

Starting from any stable Lyapunov function J0 (or alternatively, 
starting from an arbitrary stable controller u0 ) and replacing J* 
by Ji, (17) becomes 

 ui 1x 2 5 2
1
2
 r21 1x 2BT 1x 2 c dJi 1x 2

dx
d T

, (18) 

where Ji5 et0
1`U(xi21, ui21)dt is the cost of the trajectory 

xi21(t) of plant (15) under the input u(t)5 ui21(t). Furthermore, 
Murray et al. gave the convergence analysis of the iterative ADP 
scheme and the stability proof of the system. Before that most of 
the ADP analysis is based on the Riccati equation for linear sys-
tems. In [8], based on the work of Lyshevski [58], [59], an iterative 
ADP method is used to obtain an approximate solution of the cost 
function of the HJB equation using neural networks (NNs). A 
monotonic odd function is introduced to change the saturating 
actuators into a nonsaturating one. This in turn results in a nearly 
optimal constrained input state feedback controller suitable for sat-
urated actuators. Different from the iterative ADP scheme in [63], 
the iterative scheme in [8] adopt policy iteration which means 
that after each iteration the policy (or control) function is updated. 
The convergence and stability analysis can also be found in [8]. 

Vrabie et al. [88] proposed a new policy iteration technique to 
solve online the continuous-time LQR problem for a partially 
model-free system (internal dynamics unknown). They presented 
an online adaptive critic algorithm in which the actor performs 
continuous-time control, whereas the critic’s correction of the 
actor’s behavior is discrete in time until best performance is 
obtained. The critic evaluates the actor’s performance over a peri-
od of time and formulates it in a parameterized form. Policy 
update is a function of the critic’s evaluation of the actor. Conver-
gence of the proposed algorithm is established by proving equiva-
lence with an established algorithm [42]. Numerical results using 
the short period dynamics of an F-16 aircraft are presented. In 
[32], a novel linear parameter-varying (LPV) approach for design-
ing the ADP neural network controllers is presented. The control 
performance and the closed-loop stability of the LPV regime are 
formulated as a set of design equations that are linear with respect 
to matrix functions of NN parameters. 

Applications
As for industrial applications of ADP algorithms, focuses have 
been on missile systems [18], autopilot [31], [50], generators 
[67], power systems [62], [72], communication systems [55], 
biochemical processes [57] and so on. In [103], an improved 
reinforcement learning methods are proposed to perform navi-
gation in dynamic environments. The difficulties of the tradi-
tional reinforcement learning are presented in autonomous 
navigating and three effective solutions are proposed to over-
come these difficulties which are forgetting Q-learning, feature 
based Q-learning, and hierarchical Q-learning, respectively. 
Forgetting Q-learning is proposed to improve performance in 
a dynamic environment by maintaining possible navigation 
paths that would be considered unacceptable by traditional 
Q-learning. Hierarchical Q-learning is proposed as a method 
of subdividing the problem domain into a set of more manage-
able ones. Feature based Q-learning is proposed as a method of 
enhancing hierarchical Q-learning. In [27], an incoherent con-
trol scheme for accomplishing the state control of a class of 
quantum systems which have wavefunction-controllable sub-
spaces is proposed. This incoherent control scheme provides an 
alternative quantum engineering strategy for locally controlla-
ble quantum systems. In the scheme, the initial states can be 
unknown identical states, and the controlled system is not nec-
essarily initially controllable. 

Applications of adaptive critics in the continuous-time 
domain were mainly done by using discretization and well- 
established discrete-time results (e.g., [86]). Various schemes of 
continuous-time dynamic reinforcement learning were dis-
cussed in Campos and Lewis [20] and Rovithakis [74], where 
the derivative of Lyapunov function is approximated. 

Lu, Si and Xie [56] applied a direct heuristic dynamic pro-
gramming (direct HDP) to a large power system stability con-
trol problem. A direct HDP controller learns to cope with 
model deficiencies for nonlinearities and uncertainties on the 
basis of real system responses instead of a system model. Ray 
et al. [73] reported a comparison of adaptive critic-based and 
classical wide-area controllers for power systems. Liu et al. [53] 
demonstrated a good engine torque and exhaust air-fuel ratio 
(AFR) control with adaptive critic techniques for an engine 
application. The design was based on neural networks to auto-
matically learn the inherent dynamics and it advanced the 
development of a virtual powertrain to improve its perfor-
mance during the actual vehicle operations. 

Enns and Si [29] presented an article on model-free 
approach to helicopter control. Jagannathan [81] has extended 
stability proofs for systems with observers in the feedback 
loop and applied to spark engine EGR operation on the basis 
of reinforcement learning dual control [37]. Al-Tamimi, Abu-
Khalaf and Lewis [2] used HDP and DHP structures to solve 
problems formulated with game theoretic notions. Their for-
mulation leads to a forward-in-time reinforcement learning 
algorithm that converges to the Nash equilibrium of the cor-
responding zero-sum game and they have provided perfor-
mance comparisons with an F-16 autopilot problem. 
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Al-Tamimi et al. [6], [7] extended these results to a model-
free environment for linear systems for the control of a power 
system generator. In these papers, they presented online mod-
el-free adaptive critic schemes to solve optimal control prob-
lems in both discrete-time and continuous-time domains for 
linear systems with unknown dynamics. In the discrete-time 
case, the solution process leads to solving the underlying game 
algebraic Riccati equation (GARE) of the corresponding 
optimal control problem or zero-sum game. In the continu-
ous-time domain, the ADP scheme solves the underlying 
ARE of the optimal control problem. It is shown that contin-
uous-time ADP scheme is nothing but a quasi-Newton 
method to solve the ARE. Either in continuous-time domain 
or in discrete-time domain, the adaptive critic algorithms are 
easy to implement the fact that initial policies are not required 
to be stabilizing. For the model-based paper, the authors have 
proved the convergence of the presented algorithm. 

Concluding Remarks
In this article, we presented the variations on the structure of 
ADP schemes and stated the development on the iterative ADP 
algorithms, and at last we summarized industrial applications of 
ADP schemes. In the future, the study of ADP algorithms for 
nonlinear continuous-time systems without the requirement of 
initially stable policy is important. And also how to extend the 
ADP algorithms to time-variant and time-delay uncertain non-
linear systems with stability guarantee is another interesting 
topic. In addition, practical applications of ADP with significant 
economic impact are of great demand. 
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