JOURNAL OF ALGORITHMS 10, 518-—-—530_ (1989)

- On an EfflClent Dynamlc Programmlng Technlque
ot F. F. Yao

MICHELLE L WACHS*

Departmenr of Maz‘hematzcs Unwerszty of Mi lami, Coral Gables, Florzda 331 24
. Recelved August 1 1987 accepted May 25, 1988

- A very useful technique of F. F. Yao for providing efficient dynamic program-
- ming algorithms involves establishing the so called quadrangle inequalities on cost
- functions. A major application of this technique i1s in speeding up the classical
 dynamic programming algorithm for optimal binary search trees. We consider a
generalization of the classical problem, which arises from considering search strate-
gles on a sequent1a1 access file or tape. For this problem, Yao’s quadrangle
‘1nequalities are not strong enough to lead to a speedup of the dynamic pro-
‘gramming algorithm. Here, we extend the domain of efficient dynamic pro-
gramming by establishing strong quadrangle 1nequaht1es which do 1mp1y a
speedup 8 1989 Academlc Press, Inc ' '

1. INTRODUCTION

_ In [7], F. F. Yao mtroduces a very useful technmique for speeding up
- dynamic programming algorrthms (see also [8]). This technique involves
~establishing the so-called quadrangle inequalities on cost functions. One of
~ the major applications of Yao’s technique, deals with the classical dynamic
programming algorithm of Gilbert and Moore [1] for finding optimal
~ binary search trees. For this particular algorrthm the techmque produces a
~ speedup which was originally discovered by Knuth [4]. N
- In this paper we consider a generalization of the classical optimal brnary
- search tree problem Stronger quadrangle inequalities than those of Yao are
required to speed up the corresponding dynamic programming algorithm.
- We establish strong quadrangle inequalities and then apply them to speed-
ing up dynamic programming from O(n?) time to O(n?) time. o
‘ It is well known that a binary search tree can be used to represent a
comparison search procedure on a sorted frle of records W1th each node of

*Research partially supported by the National Science Foundation. _
518
10196- 6774/89 $3.00 o

) Copyright © 1989 by Academrc Press, Inc.
All rights of reproduction in any form reserved.

EFFICIENT DYNAMIC PROGRAMMING TECHNIQUE 519

- the tree corresponding to a record. Each node is assigned a probability that '

- 1ts correspondmg record 1S thc search argument The cost of a binary search '
“tree is the expected cost of comparrsons during the search procedure. The
- b1nary search tree problem asks for an optrmal binary search tree (a tree

whose cost 1S minimum). In the classical problem each comparison is
- assigned a cost of one (cf. [5]), while in our more general problem the cost

of a comparrson depends on the posrtron of the corresponding node in the

. tree. This 1S modeled on the srtuatron 1n ‘which the blnary search 1s bemg |

performed on a tape or sequent1al access file rather than a direct access file.
~ In order to make a comparison we must first reach the record at which the
- comparison is to be made. The amount of tlme that this takes contributes to
' the cost of the comparrson and depends on the locatlon of the record 1n thc i
_ Smcc an 1mportant component of a sequent1al acccss frle is a key 1ndex o
~ on which searches are performed, bmary search directly on a tape may not
“be very practical. However, it is of theoretical value that Yao’s technique is
~ extendable to problems of a more complex: nature. For other aspects of
- direct tape searching problems, see, e.g., [2, 3, 6, 9, 10. _ .
- In Section 2, we derive the dynamic programming recurrence relatrons .
~ for the cost function of the tape searching problem. In Section 3, we present
- our strong quadrangle inequalities, show that they are satisfied by the cost
function of Section 2, and then apply them to spccdtng up dynam1c B
programmmg for the tape scarchmg problem ‘

- 2. SEQUENTIAL ACCESS BINARY SEARCH

~ Any comparison ‘search procedure for a sorted file of n records
" Ry, R,,..., R, can be represented by a bmary tree of n internal nodes and
S n+1 leaves The ith internal node, i =1,. in symmetric order ‘
 (inorder), denoted by N, corresponds to R and the ith leaf, i = 0, .

7

- denoted by L. corresponds to the interval between R, and R, 1. The oot

~ of the tree corresponds to the first record to be exammed in the search

~ strategy. The left and right subtrees of the root correspond to a splitting of
~ the file into two subfiles, one of which is to be searched if the search
argument does not correspond to the root. To locate a particular record X,

X 18 compared with the root of the tree. If X is less than the root then the

~ search continues with the left subtrec if X is the root then the search
~ terminates successfully, otherwise the search continues with the right sub-

~ tree. The search termmates successfully at an mternal node OT unsucccss-_ .
fullyataleaf B S - -
The traditional brnary search 1S represented by the almost complete _-.
~ binary tree (every level except possibly the last has the maximum number of

520 " MICHELLE L. WACHS

(a) (b) - (c)

FIGURE 2.1

nodes) and sequential search is represented by the liner binary tree. For
~example, if 4, B,C, D, E, F is the sorted file of records then Fig. 2.1a

~ represents the trad1trona1 binary search, Fig. 2.1b represents the sequential

~ search, and Fig. 2.1c represents an arbitrary search procedure. For the

search procedure of Fig. 2.1c, if the search argument is D, then the first
comparison is made with B, the next with E, then with C, and finally Wrth ‘

~ D. If the search argument is between B and C then the unsuccesstul search
~will consist of comparisons with B, E,and C. _

- If the search is successful then the number of comparrsons needed to

~locate a given record is equal to one more than the level of the correspond-
"~ ing node in the tree, where the 1eve1 is the number of ancestors of the node.

- Thus we need three comparisons to locate record A in the search procedure
of Frg 2. la one comparison 1in the search procedure of Fi ig. 2.1b, and two

comparrsons in the search procedure of Fig. 2.1c. If the search is unsuccess-— |

ful then the number of comparisons needed to determine the interval to '
~ which the record belongs is equal to the level of the correspondmg leaf.

Now suppose that the sorted file is stored on a tape, in which the rccords -
have varying lengths. Suppose also that the internal nodes of binary search

- trees hold only the tape locations of the correspondmg records and not the
- key values. Comparrsons are no longer the only operation that need be
. consrdered to assess the complexrty of the search procedure In order to

- make a comparison with a particular record the tape head must first move
~ from the last record at whrch a comparrson was made to the given record

~ For example, suppose we are using the search procedure of Fig. 2.1a to

o locate record C. The tape head starts at the left end of the tape and moves

through records 4, B, and C, to reach record D where the first comparison
~1s made. It then moves in reverse through record C to reach record B where
~ the next comparrson is made. Finally it moves forward to C where the last

comparison is made. Instead of mcrely counting comparisons as in the
~ classical bmary search problem we shall assign a cost to each comparlson |

EFFICIENT DYNAMIC PROGRAMMING TECHNIQUE 521

which reflects the cost of the tape head movement, and then add the costs
of the comparisons involved.

Just as 1n the classrcal binary search problem, we are given 2n + 1
probabrhtlcs P1 Par---» P, and qy, qy, - - -, q,, Where p; is the access proba-
bility of record R; and g, 1s the access probab1hty of the interval between
R; and R, ; 1.e, p; 1s the probability that R, is the search argument and

g, is the probabthty that the search is unsuccessful with the search argu-
 ment lying between R, and R, . In the classical binary search problem the
- goal is to find a search procedure or binary search tree whose expected
‘number of compansons is a minimum, while in the tape searchmg problem ‘

the goal 1s to find a bmary trce Whosc expected cost of comparlsons 1S a
minimum. " ' | ‘

- The probab1hty pD; 18 usually thought of as a werght attached to the
- internal node N, and the probab1hty g. as a weight attached to the leaf L.
- The record locatlons o, can be thought of as additional weights attached to

 the internal nodes. Thc expected cost of comparisons for a search procedure
can be determined directly from the corresponding weighted binary search

tree and can be referred to as the cost of the binary search tree W1th welghts o

/2y ...,pn, qo,...,qn, Oy ey O Thc cost 1S given by
Sofut T ow)+La ¥ yk), 2.1)
z‘:l - NkeM(N.) Nke.;zf(L.) R _

=0

wherc /(N) 1s the set of ancestors of node N and Y, 1S thc cost of a
comparison with record R,. This clearly reduces to the classical cost
function when v, = 1 for all k In the tape situation, vy, is a function of the

difference between «a . and a,,, where N, is the parent of N;. This is because

the previous comparison was madc W1th R, and SO the tape head must |
move from a, to ak _ N -
- To be morc precise, we assume thc sorted frlc of rccords is stored from
left to right along the tape. The key of each record is at the left end of the
record and has negligible length. We can think of this as a sorted list of
keys K,, K,,..., K, partitioning a tape into segments of varying length.
For convenience we assume there is a leader segment on the left end of the
tape and we introduce a header key K of value — oo on the left end of the
leader and a tail kcy K .. of value oo on the right end of the tape (see Fig.
~2.2). No comparisons will be made at these keys, but the search will begin
‘at one of these keys. For each i =0,1,...,n + 1, the location of K, 1s a

- To make a comparison the tape head moves forward (from left to right) "
or 1mn reverse (from right to left) from one key to another. Forward
-~ movement and reverse movement will be considered to be equivalent and
- will therefore contribute equally to the cost of a comparison. It is then

‘reasonable to assume that the cost of a comparison 1s a nonnegative

522 'MICHELLE L. WACHS

FIGURE 2.2

B mcreasmg linear function of the tape distance between the key at whrch the

- prevrous comparison was made and the key at which the current compari-
- son 1s being made. To this end we let u(i, j), 0 <i<j<n+1, be a

o nonncgattve 1ncreas1ng linear functron of the distance between the keys K
- and K
. u(ij)ma(a. -—-*a.) +b, (2)

_ for some ftxed constants a > 0 and b > O If N, 1S the parent of N, then Yy
- 1n (2.1) becomes u(p, k) when p < k and u(k p) when p > k. When N ‘
is the root, y, becomes u(0, k). - o _ - -
- Clearly all right subtrees of an optrmal tree are optimal for the prohlem
~ restricted to a segment of tape, and all left subtrees are optnnal for the dual
- problem in which the search begins at the right end of the tape segment

 rather than the left end. Hence dynannc programming gives a solution to

the tape searching problem. Every segment of tape that is searched will
- have a header key on the left of the segment and a tail key on the right of
the segment, and no comparisons will be made at these keys. The search of

~ the segment begins with the tape head at the header key for the orrgrnal

- problem and at the tail key for the dual problem. Let c(i, j) be the cost of
- an optimal binary search tree for the segment of tape from K; to K; with
header key K, and tail key K . Let d(i, j) be the cost of an optnnal tree for
the dual problern on the same segment of tape.

 To give the dynannc programming recurrence relations for the cost
~ function ¢(/, j) and its dual d(z]) we first let w(z Jj»r0<i<j < n+1,

o be defined as

W(’ J) = Pz+1 - +PJ 1 + g, + 9i+1 T +qj—-—-1' o (2-3)
The dynarnrc programrnrng recurrence relatrons can now be expressed as

R c(z]) = min [(z k)w(z]) + d(z k) + c(k])] fori<j-—1,

i<K<j _
C(l])"""0 fOI'i=j""" 1,
d(z J) = ml;ctn [u(k jIw(i, j) +d(i, k) -l—c(k Nl Cfori<j—1,
i<k<j
d(i, j) =0 forz-—]-—l

(24)

- EFFICIENT DYNAMIC PROGRAMMING TECHNIQUE 523

~ Indeed, k minimizes the above expression for ¢ or d if and only if N 1S

~ the root of an optrmal tree for the segment from «, to a .. The cost of the
~ left subtree is d(i, k), the cost of the right subtree is c(k]) and the cost of
~ the first comparison is yk which equals u(i, k) for ¢ and u(k, j) for d. We

can see from the recurrence relations that the straightforward dynamic

- programming algorrthm determines the minimizing k for both cost func-
tions ¢ and d and all I], and thereby constructs the optrrnal tree n trme

O(n3)

3. THE QUADRANGLE INEQUALITIEs -

_- A real-valued function 1, J) where 0 < i <j<n+1,1s said to satrsfy -
~ the quadran gle znequalztzes if

S) S) <SG)) i< i< <)

The functlon 11,]) 1S sa1d to be monotone (on the lattlce of 1nterva1s [z ']] ~
ordcred by 1nc1u51on) if B -

(])<f(l]) f01‘1<1 <J<]
‘ Another type of monotomcrty 1S on the - standard product order on

{0,1,...,n+ 1} X {0 L,...,n+ 1}. We shall say f(i, j) is standard-

monotone 1f

f(z])<f(z]) forz<zand]<]

 When u(z]) 1S 1dentlcally 1 ie,a=0and b=1in (2 2), thcn c=d
and (2.4) reduces to the recurrence relatlon for the classical cost function.

“ Yao’s fundamental result is that any cost function defined by this recur-

- rence relation satisfies the quadrangle inequalities whenever the increment

~ function w is monotone and satisfies the quadrangle inequalities. This is

used to establish the standard -monotonicity of the function k(i, j), 0 <i

< j < n + 1, defined to be the maximum k which minimizes the expression

‘in the recurrence relation. It follows readily from the standard-monotonic-
ity of k(i, j) that the time complcxrty of thc dynarruc prograrnnnng -
algorithm is reduced to O(n?). . -- ' ;
We shall now extend Yao’s results SO that they apply to the tape .
searching problem. Our proofs, though based on Yao’s, require some
- additional consrdcrauons First we need to strcngthen the quadranglc
-- 1nequaht1es * I ‘
. THEOREM 3 1 Let u(i, j) and w(i, j), 0 <i <j<n+1, be monotone
o functzons whzch satzsjﬁ} the quadrangle equolztzes I f u(z z) is a nonnegatzoe .

524 MICHELLE L. WACHS

constant for all i and w(i, j) = 0 for i <j then the functions c(i, j) and
d (z J) defmed by (2 4) satzsﬁ the strong quadrangle mequalztzes _

C(l J) + C(l J)"“‘ c(l J) - C(l J) B -

= (u(l l) - U(l l))(W(J i) - W(J J)) (3-1) ‘
d(z])—t—d(l J)“d(l)""d(l J) ‘
((J J>——u<J ,))(w(, z>----w(z)> <32>

fori <i'"<j<j.

- Remark. 1t is easy to see that the function u(i, j) defined in (2.2) is
- monotone and satisfies the quadrangle equahtles Since we also have that
u(i,i)=b 2= 0 for all i, u satisfies the hypothesis of Theorem 3.1. To say
the same for the functlon w(i, j) defined in (2.3), we must extend 1tS
- domain by assigning appropriate values to w(i, z) foralli =0,1,...,n + 1.
o It is easy to check thatif welet w(i, i) = —p,i=1,..., n,and w(z i) =0,
i =0, n+ 1, then w also satisfies the hypothesis of the theorem Therefore

the theorem holds for the tape searching cost function. Conversely, it can
be shown that increment functions u and w which satisfy the hypothesis of
~ Theorem 3.1 must have the form given in (2. 2) and (2 3) Ilowever we will
 not make use of this fact exphcltly in the proof. ‘

‘ Proof of Theorem 3.1. The proof is by induction on ;' — i. For i = i’ or
j=7',(3.1) and (3.2) hold tr1v1ally Hence (3. 1) and (3.2)hold for j/ —i=1.
We can now assume that i <i’ and j <j’. We shall also assume induc-
tively that both (3 1) and (3.2) hold for j* — i < m, m > 1, and prove only

(3.1) for j/ — i = m. The proof of (3.2) follows by symmetry. We shall
make use of the following notation in the proof: LHS and RHS denote the

left-hand side and right-hand side, respectlvely, of (3.1); induct(c; g, r, s,)
and induct(d; g, r, s, t) denote the 1nduct10n hypothesis for the respective
functions ¢ and d, at the values g <r <s < t; QE(f; g, r, s, t) means we

are applying the quadrangle equality on the functlon f at the values
q <r<s<t and flnally let ‘

o CA(I]) = u(z k)w(z]) + d(i, k) + c(k])
d (l J) = u(k w(i, J) + d(l k) + C(k J)

N - 3)

forz<k<] _ D _ B . .
~T'here are two cases to conS1der i =] — 1 and 1’ < J— 1

Case 1. Suppose i’] ~ 1. Let z be such that c(z]) = c (z])
There are two subcases.

EFFICIENT DYNAMIC PROGRAMMING TECHNIQUE 325

Case 1a z <] Note that thlS 18 equlvalent to z < i’. We have

c, (Z J)““C(l J)“‘“C(l J) [(l J)--O]
(IJ)""C() = e, J) o
z/t(l Z)((i, ') = w(i, J))+C(Z J)“‘C(Z J)‘“‘“C(l J)
u(i, z)(w(i, j) = w(i, J))+((z. 1)—u(l l))
<(w(j, j) = w(j, 7)) [mduct(c 2,1, j,)]
u(l 2)(w(j,) = w(J, J)) (u(z, 1)—u(l l))
Cx(w(j,) = w(i) [QE(w,l,J i il
= (u(i, 2) +u(z, i) — u(i, l))(W(J J) = w(J. J))
““((ll)+u(z Z)-“u(l l))(W(J i) = w(J, 7))
[QE(u I, 2, Z, z)] ‘

> RHS o [monotomc1ty of w and u(z z) > O] _

LHS

l\/

I\/

B

- Case 1b z> _] We now have

LHS>C(IJ)“C(IJ)"CU.H - ;
=i, z)w(i,) = u(i, z)w(i, J) + d(l Z) - d(l) - C(’ J)
>u(z z)w(z])-—u(l Z)W(l)""C(l J)“‘d(l J) -
+(ulj, z) —u(y, J))(W(l i) = w(i’,i')) [induct(d; i, i, j, Z)]

>u(z z)w(z])-—-u(z z)w(z)—-—-c(z])+d(z j)
e - - ‘ N [monotomclty of w ‘and ul.
 Let d(z]) = dk(z]) Th15 1mphes d(z i) —c(i, j) > k(z j) —
N Ck(l) = (u(k, j) = u(i,)w(i, j) = (u(i’, i) = u(i, i)w(i, j), since u

 is monotone and w(i, j) > 0. We substitute this 1nequal1ty into where we

left off in the above strlng of 1nequa11tles to get
-~ LHS > u(i, z)w(i, j') - u(z z)w(z J) - (u(z i) —u(i,i’))w(i, j)

> u(i, z)w(i, j') - u<z z>w<z i)+ (u(ir, i) = u(i,) wi, j)

[monotomctty of w and u(z , .,..,) >0]

((’ Z)“"“(l Z))W(l J)+((l l)——u(zz))w(z ” -
_ (u(z i’) — u(z z))(w(z 7)) ——w(z])) [QE(u,z,l]
=RHS [QE(w,l,JJJ)] _ ‘

Case 2 Now suppose i’ <] — 1. Let y and be such that

(i, j) =¢,(i",j) and C(l J) c (l J)

There are again two subcases.

_ o __ | MICHELLE C WACHS

Case 2a ‘ z <. We have P

LHS> c (z])--c (z]) +c (z]) —c (l])
D)~ i) + el) = ()
)) = w(i) + e) - C(y i)

i O) = W 0) i)) = ()
' +((Z y) - u(y y))(W(J J) - w(J, J))

- [mduot(c Z, y]])] ‘

((z z) - u(z y) + u(z y) — u(y y))(w(] j) — w(])
 [QEBw i i). QB(ws i s]

= (u (z y) ¥ u(z z) - u(z y) ~ u(y, y))(w(] i) = w(J, 1))

‘ ‘ [QE(u i, 2z, Z, y)] _

((z y) - u(z y))(W(] j) = w(J J)) [oonstant u(x. x)]

” = RHS [QE(u 1,01 y)] ‘ -

Case 2b. : > y We now have -

LHS>C (i,) = e (7, 7) +C (l J) —C (l J)
=i, 2)wli,)~ u(it, 2w J)+u(l J’)W(l J) -
B - — u(z y) (l])+d(z z) —-—d(z z)—l—d(z y) -—-d(l V)
(i)w(i,) - ul(i 2w J) Ful@ p)w()
- y)W(l i)+ (u(y, Z) - u(y YN(w(i, i) = W(l o
R S [mduot(d i, 2 z)] .
= uli, 2)w(i, - (i 2wl) + uli w(is i)
A u(i, y)w(z]) [monotone wand w]
(u(z j) + u(z z) — u(z I))w(z J) - u(z z)w(z])
(i y)W(l) - ((l ")+ (i, y) = u(i i) wli, j)
- -- | I [QE(u 1,1, z) QE(u 1,010 }/)] -
---((ll)“u(l z))(w(z])—-w(z J)) i
- —I—u(z z)(w(z]) — w(l])) + u(z J’)(W(l J) - W(l J))
= (u(i,) - u(l l))(W(l J) - W(l J)) + (u(l Z) - “(l J’)) |
><(W(l J)"“W(l i) [QE(W i), Nl -
= (u) =,) (w(i,) - W(l J)) [monotone u and w]
“RHS , [QE(W i J J J)] D

EFFICIENT DYNAMIC PROGRAMMING TECHNIQUE 527

We have therefore proved that 3.1 and (by symmetry) (3 2) hold for all - =
l < i’ <] <] [___] -

_ The next theorem can be applied to the construction of the opt1rna1 tree
for the tape searching problem. First we need notation for the roots of
optimal left and right subtrees Let k (z]) and k (z]) 0 < i <] < n + 1
be the funotrons deftned by - - - o B

k (z]) = max{klc(z]) = u(z k)w(z]) + d(z k) + c(k])}
d(l J) = maX{kId(l J) = u(k J)W(l J) + d(l k) + C(k J)}

| where C and d are deftned by (2 4)

THEOREM 3 2 Let u(z]) and w(z]) 0 < i < J < n + 1 be monotone

“ functzons which satzsﬁ/ the quadrangle equalztzes If u(i, i) is a nonnegative

constant for all i and w(i, j) > 0 for i < then the functzons ki, j) and

d(z J) are standard—-monotone Moreover ‘the functzons k (z J) k d(P J) o

c(z]) and d (z]) can be computed in O(nz) tzme |

Proof We need only estabhsh the standard monotontotty of k (z]) '
~ since then the standard- monotonrotty of k (i, j) will follow by symmetry.
~ The time oomplexrty result follows frorn the standard monotontetty in
exaotly the same way as in [4 7. R o s
- First we prove k (i, j) < k(i, j + 1) Let k k (z J _|_ 1) and k’ o
k (l]) Suppose k < k. We olatm then that : R

.I ck(l J + 1) B Ck (z J + 1) B ck(z J) A Ck (z]) > O (3 4)

where ck is defmed by (3 3) To prove this olatm we use the fact that by N

~ Theorem 3.1, ¢ satisfies the strong quadraﬂgle 1ﬂ6quahtreg (bQI) Let LHS
denote the left hand srde of (3.4). We have

LHS = ((z k) — u(z k'))(w(z] -I— 1) — w(z]))
+c(k]+1) +c(k’ ‘)-—-—c(k’]+1) ——-—c(k])
((i, k) - u(i, k))(W(l J+1) - w(i, j))
s (u(k, k) = u(k', K))(w(j, j + 1) =w(j j)
[SQI(C k, k’ ' j J -t 1)]
= ((i, k) = u(i, k) (w(i, j+ 1) = w(i, e
+ (ulle, k) = u(k,) (w(j, j + 1) = w(J, J))

[constant u(x x)]
[QE(w,l,J J J+ 1) QE(u,l,k k, k)] ‘

5238 MICHELLE L. WACHS
It follows from (3 4) that

' c(z]+1)--ck(z]+1)-—ck(z]—I—l)-—-—ck(z]+1)
2z) i)
= alihg) =i i)
>O ‘

o Whlch 1rnphes that c(z] + 1) = C (z J+ 1) ThlS contrad1ots the rnax1- .
- mality of k. Hence k' < k. _
- We now show that k (i,])<k(z+1 7). Let k k(z+1 7) and
k' =k (z 7). Suppose k < k’. We claim that .

o Ck(l + 1:]) o Ck(l T+ 1?]) o Ck(l J) + Ck(l .]) > 0 (3 5) !
- ThlS ttme we apply the strong quadrangle 1nequaht1es on d (z]) to get

LHS-—-—((z—l-l k)——u(z+1 k))

w1,)+ (u(is k) = (i k)) G, j)
+d(z+1 k)-l—d(z k)-—-—d(z—i—l k)-—d(z k)

= (u(i k) = u(i k) (w(i,) = w(i+ 1,)
o —t—d(z—l—l k)+d(z k)-—-d(z-t—l k)-—- d(i, k)
IR ' _ ‘ [QE(u,z,z+1kk)]
>d(z+1 k)+d(l k)——-d(z-l—l k)-—-—-d(z k)
N S - [monotone U andw] |
((k k)-—u(k k))(w(zz+1)-——-w(z—t—1z+1))
' N o [SQI(d,l,z-I- 1, k, k’)] .
>0 [monotone u andw], SR
We NOwW use (3 5) to Conolude that c(z—l— 1,]) = ¢, (z + 1 7), Wthh

\ oontradtots the maxnnahty of k. Hence k’ < k. It follows that k (z ;) is
~ standard- monotone as olatmed a - _ -

_ Unfortunately as noted above cost funct1ons to Wthh Theorems 3. 1 and
-- 3 2 apply are not really any more general than those of the tape searching

- problem. If u(i, j) is a constant function then these theorems reduce to

results weaker than Yao’s ongmal result. It is, however, posmble to prove

‘these results for more general, but somewhat artificial, cost functions, and
thereby obtain a result which is an actual generalization of Yao’s. The more

EFFICIENT DYNAMIC PROGRAMMING TECHNIQUE 529

general cost functions are

(i, j) = o(i,)+ min [ui,)w(i. J) + d(i, k) + (k.)]

I<k<j _
- R A A
C(l])"‘O _ . _ - _ l——]--l
d(i, j) = v(l j)+ 13122,[”(/‘ J)W(l J) +d(l k) + C(k Ik
_ - N R Y
d(z' j)=20 ‘ __ - . 1 =j—1.

With the requirements that v(i, j) is monotone and satisfies the quadrangle
inequalities, Theorems 3.1 and 3.2 hold for these cost functions. This is easy

to verify by making the obvious modifications to the above proofs of these

theorems. A closely related cost function for which these results also hold 1s
glven by

c(z, j)=uv(i,j)+ min |u(i, k)w(i, j) + c(i, k) + c(k, j)],

I<k<j _
_ o o i<y
c(i, j) =0, ‘ =)L

Again the necessary modifications to the proofs given here are clear.

ACKNOWLEDGMENT

This work 1s a natural offshoot of previous joint work with T. C. Hu on a related tape
- searching problem [3]. I thank T. C. Hu for his stimulation and motivation on this subject.

' REFERENCES

1. E. N. GILBERT AND E. F. MOORE Variable length encodings, Bell System Tech. J 38
(1959), 933-968.

- 2. A. J. Hu, Selection of the 0pt1mum umform part1t1on search Computzng 37 (1986) _
261-264. -

3 T. C. Hu aND M. L. WACHS Bmary search on a tape SIAM J. Comput 16 (1987),
573-590.

4. D. E. KNUTH, Optimum binary search trees, Acta Inform 1 (1971) 14 25

5. D. E. KNUTH, Sorting and searching, in “The Art of Computer Programmmg,” Vol. 3,
Addison-Wesley, Reading, MA, 1973. - '

6. W. E. SMITH, Various optimizers for smgle -state productlon Naval. Res Logist. Quart |
March (1956). ' -

7. F. F. YAao0, Efficient dynamic programmmg using quadrangle 1nequaht1es in “Proceedings, '
12th ACM Symposium on Theory of Computing, April 1980, pp. 429-435.

530 MICHELLE L. WACHS

8 F. F. Yao, Speed-up in dynamlc programmmg, SIAM J. Algebrazc Discrete Methods 3

- (1982), 532-540.
9. S. NISHIHARA AND H. NISHINO Bmary search rev131ted another advantage of Flbonacm _

- Search, IEEE Trans. Comput. C 36 (1987), 1132-1135.
- 10. S. HORNICK, S MapbpiLa, E. MUCKE, H. ROSENBERGER S SKIENA AND I. TOLLIS

_ Searchmg on a tape Umver31ty of Ilhn01s preprmt _

