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Abstract

The longest common subsequence (LCS) problem is a classical problem in
computer science. The semi-local LCS problem is a generalisation of the
LCS problem, arising naturally in the context of string comparison. In
this work, we present a number of algorithmic techniques related to the
semi-local LCS problem, and give a number of algorithmic applications of
these techniques. Summarising the presented results, we conclude that semi-
local string comparison turns out to be a useful algorithmic plug-in, which
unifies, and often improves on, a number of previous approaches to various
substring- and subsequence-related problems.
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Chapter 1

Introduction

1.1 Overview

The longest common subsequence (LCS) problem is a classical problem in
computer science. Given two strings a, b of lengths m, n respectively, the
LCS problem asks for the length of the longest string that is a subsequence
of both a and b. This length is called the strings’ LCS score. We refer the
reader to monographs [29, 45] for the background and further references.

The semi-local LCS problem is a generalisation of the LCS problem,
arising naturally in the context of string comparison. Given two strings a, b
as before, the semi-local LCS problem asks for the LCS score of each string
against all substrings of the other string, and of all prefixes of each string
against all suffixes of the other string. In this work, we survey a number of
algorithmic techniques related to the semi-local LCS problem, and present
some algorithmic applications of these techniques.

The rest of this chapter contains the necessary preliminaries. In Sec-
tion 1.2, we introduce basic terminology and notation. In Section 1.3, we
describe our main algorithmic tool: a special class of integer matrices, called
simple unit-Monge matrices, which are obtained as dominance counts of per-
mutation matrices, and can be represented implicitly by a range tree data
structure. In Section 1.4, we study the algebraic properties of simple unit-
Monge matrices, and in Section 1.5 we give an efficient algorithm for distance
multiplication in this matrix class.

In Chapter 2, we describe our main algorithmic techniques for the semi-
local LCS problem. In Section 2.1, we formally define the semi-local LCS
problem and related concepts. In Section 2.2, we introduce alignment dags
and highest-score matrices. Exploiting the algebraic framework of unit-
Monge matrices, in Section 2.3 we obtain an efficient algorithm for highest-
score matrix composition. In Section 2.4, we generalise our techniques from
LCS scores to arbitrary rational-weighted alignment scores and edit dis-
tances.
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In Chapter 3, we introduce a conceptually simple algorithm for the semi-
local LCS problem, called the seaweed algorithm, and show a number of its
applications. In Section 3.1, we describe the seaweed algorithm itself, and in
Sections 3.2 and 3.3, we apply it to solving the incremental and the common-
substring versions of the LCS and semi-local LCS problems. Our algorithms
match, improve on, or generalise existing algorithms for these problems.

In Chapter 4, we give a block version of the seaweed algorithm, which
is slightly faster than the plain seaweed algorithm, and gives rise to further
applications. In Section 4.1, we describe the block seaweed algorithm itself.
In the case of an unbounded alphabet, the running time of the block seaweed
algorithm matches the running time of the best known global LCS algorithm,
while improving on it in functionality. By direct application of the block
seaweed algorithm, in Section 4.2 we obtain an improved algorithm for the
cyclic LCS problem, and in Section 4.3 for the longest repeating subsequence
problem. In Section 4.4, we consider the approximate pattern matching
problem, and apply the block seaweed algorithm to obtain an algorithm for
this problem, matching the best known algorithm in running time.

In Chapter 5, we describe an extension of the seaweed algorithm that
allows efficient semi-local comparison of two input strings, one of which is
periodic. In Section 5.1, we describe the periodic seaweed algorithm itself.
By application of the periodic seaweed algorithm, in Section 5.2 we obtain
new algorithms for the tandem LCS problem and the tandem cyclic align-
ment problem, improving on existing algorithms in running time.

In Chapter 6, we consider the semi-local LCS problem restricted to per-
mutation strings of length n. In particular, Section 6.1 gives an algorithm
for the semi-local LCS problem on permutation strings. By direct applica-
tion of this algorithm, in Section 6.2 we obtain an improved algorithm for
the cyclic LCS problem on permutations. Further applications include im-
proved algorithms for the problem of longest pattern-avoiding subsequence,
given in Section 6.3, and for longest k-piece increasing and k-modal sub-
sequence, given in Section 6.4. In Section 6.5, we consider the maximum
clique problem in a circle graph represented by an interval model of size n.
By application our semi-local LCS algorithm on permutations, we obtain
new algorithms for this problem, both for general and sparse circle graphs,
achieving a substantial improvement on existing algorithms in running time.
In Section 6.6, we describe an application of these algorithms to the problem
of finding exact and approximate commonly structured patterns in linear
graphs.

In Chapter 7, we apply the semi-local LCS problem to compressed string
comparison. Our goal is to obtain efficient algorithms that work on com-
pressed strings without first decompressing them. In Section 7.1, we intro-
duce the grammar compression (GC) framework, that generalises the clas-
sical LZ78 and LZW methods. In Section 7.2, we give an efficient algorithm
for the three-way semi-local LCS problem on GC-strings. By application
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of this algorithm, in Section 7.3 we obtain an algorithm for subsequence
recognition in GC-strings, which improves on existing algorithms in running
time.

In Chapter 8, we consider applications of our techniques that aim to
reach beyond semi-local string comparison, with the ultimate goal of ef-
ficient fully-local comparison. In Section 8.1, we introduce the window-
substring and window-window LCS problems, and give an algorithm for
these problems. This algorithm provides a refinement for the standard dot
plot method, by allowing efficient window-window string comparison based
on the LCS score, rather than the less sensitive Hamming score. In Sec-
tion 8.2, we introduce the quasi-local LCS problem, which generalises the
semi-local, window-substring and window-window LCS problems, and give
an efficient algorithm for this problem. By application of this algorithm, in
Section 8.3 we obtain an algorithm for sparse spliced alignment under an ar-
bitrary rational edit distance metric, which improves on existing algorithms
for this problem.

Some results presented in this work appeared incrementally in the au-
thor’s publications [93, 94, 96, 95, 92]. The aim of this work is to consolidate
these results, unifying the terminology and notation. However, a number of
results have not been published before, and are original to this work.

Summarising the presented results, we conclude that semi-local string
comparison turns out to be a useful algorithmic plug-in, which unifies, and
often improves on, a number of previous approaches to various substring-
and subsequence-related problems.

1.2 Terminology and notation

In addition to integers {. . . ,−2,−1, 0, 1, 2, . . .}, we will use odd half-integers{
. . . ,−5

2 ,−3
2 ,−1

2 ,
1
2 ,

3
2 ,

5
2 , . . .

}
. For ease of reading, odd half-integer variables

will be indicated by hats (e.g. ı̂, ̂). Ordinary variable names (e.g. i, j, with
possible subscripts or superscripts), will normally indicate integer variables,
but can sometimes indicate a variable that may be either integer, or odd
half-integer.

We denote integer and odd half-integer intervals by

[i : j] = {i, i+ 1, . . . , j − 1, j}
〈i : j〉 =

{
i+ 1

2 , i+ 3
2 , . . . , j − 3

2 , j − 1
2

}
Note that in this notation, both an integer and an odd half-integer interval
is defined by integer endpoints. To denote infinite intervals of integers and
odd half-integers, we will use −∞ for i and +∞ for j where appropriate, so
e.g. [−∞ : +∞] denotes the set of all integers, and 〈−∞ : +∞〉 the set of all
odd half-integers. For finite intervals [i : j] and 〈i : j〉, we call the difference
j − i interval length.
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When dealing with pairs of numbers, we will often use geometrical lan-
guage and call such pairs points. When visualising points, we use the matrix
indexing convention: the first coordinate in a pair increases downwards, and
the second coordinate rightwards. We say that a point (i0, j0) dominates1

point (i, j), if i0 < i and j < j0. Visually, the dominated point is “below
and to the left” of the dominating point. We will write (i0, j0)� (i1, j1), if
i0 < i1 and j0 < j1 (note that such two points do not dominate one another).

We use standard terminology for dominance and other partial orders. In
particular, a set of elements forms a chain, if they are pairwise comparable,
and an antichain, if they pairwise incomparable. An element in a partially
ordered set is minimal, if it is not higher (in terms of the partial order) than
any other element in the set. All minimal points in a partially ordered set
form an antichain.

A function of an integer argument will be called unit-monotone increas-
ing (respectively, decreasing), if the difference between every pair of succes-
sive values is either 0 or 1 (respectively, 0 or −1).

We will make extensive use of finite and infinite matrices, with integer
(occasionally, rational or real) elements, and with integer or odd half-integer
indices. Unless indicated otherwise, all definitions below apply to both finite
and infinite matrices. Given finite or infinite index ranges I, J , a vector over
I is indexed by i ∈ I, and a matrix over I × J is indexed i ∈ I, j ∈ J . A
vector or matrix is nonnegative, if all its elements are nonnegative.

Sometimes we will consider matrices over non-consecutive index ranges.
To reduce the amount of notation, we will occasionally perform operations
on such matrices as if they were over consecutive intervals. This will have
the following meaning: we remap the ranges to consecutive intervals pre-
serving order, then we perform a matrix operation, and finally we remap
the intervals back to the original ranges.

We will use parenthesis notation for indexing matrices, e.g. A(i, j). We
will use straightforward notation for selecting subvectors and submatrices;
for example, given a matrix A over [−∞ : +∞]2, we denote by A[i0 : i1, j0 :
j1] the submatrix defined by the given intervals. A star ∗ will indicate that
for a particular index, its whole range is selected implicitly, e.g. A[∗, j0 :
j1] = A[−∞ : +∞, j0 : j1]. Given matrices A′ over I ′ × J ′ and A′′ over
I ′′ × J ′′, where (I ′ × I ′′) ∩ (J ′ × J ′′) = ∅, and the ranges I ′, J ′, I ′′, J ′′ are
not necessarily consecutive, we denote by A = A′ ./ A′′ the matrix over
(I ′ ∪ I ′′)× (J ′ ∪ J ′′), obtained by merging the matrices A′, A′′: we have

A(i, j) = (A′ ./ A′′)(i, j) =


A′(i, j) if i ∈ I ′, j ∈ J ′
A′′(i, j) if i ∈ I ′′, j ∈ J ′′
0 otherwise

1The standard definition of dominance requires i < i0 instead of i0 < i. Our definition
is more convenient in the context of string applications.
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We also extend this notation naturally to merging more than two matrices.
The matrices we consider (in particular, infinite matrices) can be im-

plicit, i.e. represented by a compact data structure that allows access to
every element in a specified (not necessarily constant) time.

Definition 1. Let D be a matrix over 〈i0 : i1〉 × 〈j0 : j1〉. Its distribution
matrix DΣ over [i0 : i1]× [j0 : j1] is defined by

DΣ(i, j) =
∑

ı̂>i,̂<j
D(̂ı, ̂)

for all i ∈ [i0 : i1], j ∈ [j0 : j1], ı̂ ∈ 〈i0 : i1〉, ̂ ∈ 〈j0 : j1〉.
Definition 2. Let A be a matrix over [i0 : i1]× [j0 : j1]. Its density matrix
A� over 〈i0 : i1〉 × 〈j0 : j1〉 is defined by

A�(̂ı, ̂) = A
(
ı̂+ 1

2 , ̂− 1
2

)
−A

(
ı̂− 1

2 , ̂− 1
2

)
−

A
(
ı̂ + 1

2 , ̂ + 1
2

)
+ A

(
ı̂ − 1

2 , ̂ + 1
2

)
for all ı̂ ∈ 〈i0 : i1〉, ̂ ∈ 〈j0 : j1〉.

The definitions of distribution and density matrices extend naturally to
matrices over an infinite index range, as long as the sum in Definition 1 is
always defined. This will be the case for all matrices considered in this work.
Note that for any matrix D as above, and for all ı̂, ̂, we have(

DΣ
)�(̂ı, ̂) = D(̂ı, ̂)

Also, for any matrix A as above, there exist vectors b over [i0 : i1] and c
over [j0 : j1], such that for all i, j, we have(

A�
)Σ(i, j) + b(i) + c(j) = A(i, j)

If j0, i1 are finite, then we have b(i) = A(i, j0), c(j) = A(i1, j). An important
special case is when b, c are both zero vectors.

Definition 3. Matrix A will be called simple, if
(
A�
)Σ = A.

The following classes of matrices play a fundamental role in optimisation
theory (see [20] for an extensive survey).

Definition 4. Matrix A is called totally monotone, if

A(i, j) > A(i, j′):A(i′, j) > A(i′, j′) for all i ≤ i′, j ≤ j′

Definition 5. Matrix A is called a Monge matrix, if

A(i, j) +A(i′, j′) ≤ A(i, j′) +A(i′, j) for all i ≤ i′, j ≤ j′

Equivalently, matrix A is a Monge matrix, if A� is nonnegative. Matrix A
is called an anti-Monge matrix, if −A is Monge.

It is easy to see that Monge matrices are a subclass of totally monotone
matrices. By Definition 5, a matrix is Monge, if and only if its density ma-
trix is nonnegative. This condition is equivalent to the canonical structure
theorem for Monge matrices, given by Burkard et al. [20].
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1.3 Permutation and unit-Monge matrices

A permutation matrix is a (finite or infinite) square zero-one matrix, con-
taining exactly one nonzero in every row and every column. Typically, per-
mutation matrices will be over odd half-integer intervals. A zero-one matrix
P over I × J is a permutation matrix, if and only if∑

̂
P (̂ı, ̂) = 1

∑
ı̂
P (̂ı, ̂) = 1

for all ı̂ ∈ I, ̂ ∈ J . An identity matrix is a (finite or infinite) permutation
matrix Id , such that Id (̂ı, ̂) = 1, iff ı̂ = ̂. Further, given an h ∈ [−∞ : +∞],
we define an infinite offset identity matrix as a permutation matrix Idh, such
that Idh(̂ı, ̂) = 1, iff ̂− ı̂ = h. We have Id0 = Id . Clearly, a finite or infinite
identity or offset identity matrix, can be represented implicitly in constant
space and with constant query time.

A permutation matrix P is superdiagonal , if P (̂ı, ̂) = 0 for all ı̂ < ̂.
Clearly, a finite permutation matrix is superdiagonal, if and only if it is an
identity matrix. However, the property of being superdiagonal is non-trivial
for infinite permutation matrices,

An infinite permutation matrix P over 〈−∞ : +∞〉2 has core 〈i0 : i1〉 ×
〈j0 : j1〉 and offset h, for given i0, i1, j0, j1, h ∈ [−∞ : +∞], if

i1 − i0 = j1 − j0
j0 − i0 = j1 − i1 = h

P (̂ı, ̂) = Id (̂ı− h, ̂) = Id (̂ı, ̂+ h)

for all ı̂ ∈ 〈−∞ : i0〉 ∪ 〈i1 : +∞〉, ̂ ∈ 〈−∞ : j0〉 ∪ 〈j1 : +∞〉. In particular,
an offset identity matrix Idh has empty core and offset h. Clearly, a permu-
tation matrix with a finite core can be represented implicitly in finite space
and with constant query time.

From now on, instead of “index pairs corresponding to nonzeros”, we
will write simply “nonzeros”, where this does not lead to confusion. We will
normally assume that a permutation matrix is given by an efficient data
structure that allows random access to the nonzeros both by rows and by
columns.

Given a permutation matrix P over I × J , and a set I ′ ⊆ I, we will
denote by P (I ′, ·) the permutation submatrix row-induced by I ′, i.e. the
permutation submatrix obtained by deleting from P all columns in I \ I ′,
and then deleting from the remaining submatrix all zero rows. A column-
induced permutation submatrix P (·, J ′) is defined analogously. Both these
operations can be implemented in linear time by a sweep of the nonzeros of
matrix P .

A subpermutation matrix is a (finite or infinite) zero-one matrix contain-
ing at most one nonzero in every row and every column.
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The following subclass of Monge matrices plays a crucial role in this
work.

Definition 6. A square matrix A is called a unit-Monge matrix, if A� is a
permutation matrix. Matrix A is called a unit-anti-Monge matrix, if −A is
unit-Monge.

By Definition 5, a unit-Monge (respectively, unit-anti-Monge) matrix
over any index range is Monge (respectively, anti-Monge).

Matrices that are both unit-Monge and simple will be our main tool for
the rest of this work. Note that such matrices are unit-monotone increasing
in rows, and unit-monotone decreasing in columns. Furthermore, a square
matrix A is simple unit-Monge, if and only if A = PΣ, where P is a per-
mutation matrix. The value A(i0, j0) = PΣ(i0, j0) is the number of (odd
half-integer) nonzeros that the (integer) point (i0, j0) dominates in matrix
P .

A permutation matrix P of size n can be regarded as an implicit rep-
resentation of the simple unit-Monge matrix PΣ. An individual element
of PΣ can be queried in time O(n) by a single sweep of the nonzeros of
P , counting those that are dominated. Thinking of the nonzeros of P as
odd half-integer points in the plane, this procedure is known as geometric
dominance counting.

Existing methods of computational geometry allow us to answer domi-
nance counting queries much more efficiently than by a direct linear sweep,
as long as a preprocessing of the point set is allowed.

Theorem 1. Given a permutation matrix P of size n, there exists a data
structure which

• has size O
(
n log n

)
;

• can be built in time O
(
n log n

)
;

• allows to query an individual element of the simple unit-Monge matrix
PΣ in time O

(
log2 n

)
;

Proof. The required structure is a two-dimensional range tree [16] (see also
[82]), built on the set of nonzeros in P . There are n nonzeros, hence the
total number of nodes in the tree is O

(
n log n

)
. A dominance counting query

on the set of nonzeros can be answered by accessing O
(
log2 n

)
of the tree

nodes.

Using recent results on dominance counting by JaJa et al. [53], the
bounds given by Theorem 1 can be improved to size O(n) and individual
query time O

( logn
log logn

)
. However, the underlying data structure of Theo-

rem 1 is simpler, requires a less powerful computation model, and is more
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likely to be practical. Therefore, we will be using Theorem 1 as our main
technique for implicit representation of simple unit-Monge matrices.

In addition to ordinary element queries described by Theorem 1, we will
also deal with incremental queries, which are given an element of an implicit
simple unit-Monge matrix, and return the value of an adjacent element.
This kind of query can be answered directly from the permutation matrix,
without any preprocessing.

Theorem 2. Given a permutation matrix P of size n, and the value PΣ(i, j),
i, j ∈ [0 : n], the values PΣ(i ± 1, j), PΣ(i, j ± 1), where they exist, can be
queried in time O(1).

Proof. Consider a query of the type PΣ(i + 1, j); other query types are
obtained by symmetry. Let ̂ ∈ 〈0 : n〉 be such that P (i + 1

2 , ̂) = 1; value
̂ can be obtained from the permutation representation of P in time O(1).
We have

PΣ(i+ 1, j) = PΣ(i, j)−
{

1 if ̂ < j

0 otherwise

Incremental queries described by Theorem 2 can be used to answer batch
queries, returning a set of elements in a row, column or diagonal of the
implicit simple unit-Monge matrix. In particular, all elements in a given
row, column or diagonal of matrix PΣ can be obtained by a sequence of
incremental queries in time O(n), and a subset of r consecutive elements in
time O

(
r + log2 n

)
.

1.4 Matrix distance multiplication and the sea-
weed monoid

We will make extensive use of the (min,+)-algebra on integer or real num-
bers, where the operators min and + play the role of addition and mul-
tiplication, respectively. This algebra is often called distance (or tropical)
algebra; for an extensive review of this and related topics, see e.g. Rote [85],
Gondran and Minoux [43]. Our techniques are based on matrix-vector and
matrix-matrix multiplication in the distance algebra.

Definition 7. Let A be a matrix over [i0 : i1]× [j0 : j1]. Let b, c be vectors
over [j0 : j1] and [i0 : i1] respectively. The distance product A � b = c is
defined by

c(i) = minj
(
A(i, j) + b(j)

)
for all i ∈ [i0 : i1], j ∈ [j0 : j1].
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Definition 8. Let A, B, C be matrices over [i0 : i1]× [j0 : j1], [j0 : j1]× [k0 :
k1], [i0 : i1] × [k0 : k1] respectively. The distance product A � B = C is
defined by

C(i, k) = minj
(
A(i, j) +B(j, k)

)
for all i ∈ [i0 : i1], j ∈ [j0 : j1], k ∈ [k0 : k1].

It is straightforward to check that matrix distance multiplication is asso-
ciative. The set of all square matrices with elements in [0 :∞] over a given
index range forms a monoid with respect to distance multiplication. The
identity element in this monoid is the matrix

E(i, j) =

{
0 if i = j

+∞ otherwise

It is well-known that the set of all Monge matrices is closed under distance
multiplication. What is slightly more surprising, but crucial for our method,
is that the same is also true for the set of all simple unit-Monge matrices.

Lemma 1. Let A, B, C be matrices, such that A � B = C. If A, B are
Monge (respectively, simple unit-Monge), then C is also Monge (respectively,
simple unit-Monge).

Proof. First, let A, B be Monge matrices. Let i ≤ i′, k ≤ k′. By definition
of matrix distance multiplication, we have

C(i, k′) = minj∗
(
A(i, j∗) +B(j∗, k′)

)
C(i′, k) = minj∗

(
A(i′, j∗) +B(j∗, k)

)
Let j, j′ respectively be the values of j∗ on which these minima are attained.
Without loss of generality, suppose j ≤ j′. We have

C(i, k) + C(i′, k′) = (definition of �)

minj∗
(
A(i, j∗) +B(j∗, k)

)
+ minj∗

(
A(i′, j∗) +B(j∗, k′)

)
≤(

A(i, j) +B(j, k)
)

+
(
A(i′, j′) +B(j′, k′)

)
= (term rearrangement)(

A(i, j) +A(i′, j′)
)

+
(
B(j, k) +B(j′, k′)

)
≤ (A is Monge)(

A(i, j′) +A(i′, j)
)

+
(
B(j, k) +B(j′, k′)

)
= (term rearrangement)(

A(i, j′) +B(j′, k′)
)

+
(
A(i′, j) +B(j, k)

)
= (definition of j, j′)

C(i, k′) + C(i′, k)

The case j ≥ j′ is treated symmetrically by the Monge property of B.
Now, let A, B be simple unit-Monge matrices over [0 : n]. We have A =

PΣ
A , B = PΣ

B , where PA, PB are permutation matrices. Clearly, matrices
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C and C� are integer. It is also easy to check that matrix C is simple.
Furthermore, matrix C is Monge, and therefore C� is nonnegative. For any
i ∈ [0 : n], we have

C(i, 0) = minj
(
PΣ
A (i, j) + PΣ

B (j, 0)
)

= minj
(
PΣ
A (i, j) + 0

)
= 0

C(i, n) = minj
(
PΣ
A (i, j) + PΣ

B (j, n)
)

= minj
(
PΣ
A (i, j) + n− j

)
= n− i

since the minimum is attained respectively at j = 0 and j = n. Therefore,
for all i ∈ 〈0 : n〉, we have∑

k
C�(i, k) = (definition of �)∑

k

(
C(i+ 1

2 , k − 1
2)− C(i− 1

2 , k − 1
2)−

C(i+ 1
2 , k + 1

2) + C(i− 1
2 , k + 1

2)
)

= (term cancellation)

C(i+ 1
2 , 0)− C(i− 1

2 , 0)− C(i+ 1
2 , n) + C(i− 1

2 , n) =
0− 0− (n− i− 1

2) + (n− i+ 1
2) = 1

Symmetrically, for all k ∈ 〈0 : n〉, we have∑
i
C�(i, k) = 1

Taken together, the above properties imply that C� is a permutation matrix,
and therefore C is a simple unit-Monge matrix.

The proof is analogous (but more tedious) if A, B are simple unit-Monge
matrices over an infinite index range.

By Lemma 1, the sets of all square Monge matrices and of all simple
unit-Monge matrices over a given index range are both submonoids of the
distance multiplication monoid of general matrices. For Monge matrices, the
identity element is the matrix E above, and for simple unit-Monge matrices,
the identity element is the matrix

IdΣ(i, j) =

{
j − i if i ≤ j
0 otherwise

Lemma 1 gives us the basis for performing distance multiplication of
simple unit-Monge matrices implicitly, by taking the density permutation
matrices as input, and producing a density permutation matrix as output.
This is illustrated by Figure 1.1. Subfigure 1.1a shows a triple of 6 × 6
permutation matrices PA, PB, PC , with nonzeros indicated by green2 bullets,
such that PΣ

A � PΣ
B = PΣ

C .
Further understanding of the distance multiplication monoid of implicit

unit-Monge matrices can be gained by the following construction, which we
2For colour illustrations, the reader is referred to the online version of this work. If

colour is not available, all references to colour can be ignored.
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•
•
•

•
•

•
PA

•
•
•

•
•

•
PB

•
•

•
•

•
•
PC

(a) As matrices

PA

PB

PC

(b) As seaweeds

Figure 1.1: Matrix distance product PΣ
A = PΣ

B � PΣ
C

call the seaweed monoid . Given a permutation matrix P over I×J , represent
the indices in sets I and J by nodes on two parallel lines, respecting the order
of indices within each set. Represent every nonzero P (̂ı, ̂) = 1 by connecting
node ı̂ ∈ I with node ̂ ∈ J by a continuous strictly monotone line called a
seaweed . Unless P is the identity matrix Id , some of the seaweeds will have
to cross. However, no “unnecessary” crossings are allowed; that is, a given
pair of seaweeds may only cross at most once.

Consider the distance product PΣ
A � PΣ

B = PΣ
C , where PA, PB, PC are

permutation matrices over I × J , J ×K and I ×K, respectively. We rep-
resent the indices by nodes on three parallel lines, and the nonzeros of the
input matrices PA, PB by two sets of seaweeds connecting the corresponding
points. The seaweed representation of the output matrix PC can be obtained
as follows. Let us remove the nodes representing the index set J , at each
node ̂ joining together the two adjacent seaweeds, which represent nonzeros
PA(̂ı, ̂) = 1 and PB(̂, k̂) = 1 for some ı̂, k̂. We now have a configuration of
seaweeds between nodes representing I and nodes representing K. However,
some pairs of these seaweeds may cross twice. We now run through all the
seaweed crossings, respecting the top-to-bottom order of crossings within
each seaweed. For every crossing, we check whether the two seaweeds in-
volved in it already have a previous crossing above the current one. If this
is the case, then we undo the current crossing (that is, we cut the crossing
out of the configuration, replacing it by two non-crossing seaweed pieces).
After all the crossings have been processed, the resulting seaweed configura-
tion represents the output matrix PC . Subfigure 1.1b shows the sequence of
seaweed configurations, which corresponds to the implicit distance product

13



in Subfigure 1.1a.
The seaweed monoid construction can be formalised as a language ob-

tained from a free monoid over a set of generators, taken modulo a specific
set of relations on the generators. The seaweed monoid of size n is generated
by n elements id , g1, g2, . . . , gn−1. Generator id is the identity element.
Intuitively, it corresponds to a configuration where all the seaweeds are par-
allel; in matrix notation, it corresponds to the simple unit-Monge matrix
IdΣ. Each of the remaining generators gt corresponds to a configuration
where all the seaweeds are parallel, except a pair of neighbouring seaweeds
in positions t − 1

2 and t + 1
2 , which do cross. In matrix notation, a genera-

tor gt corresponds to a simple unit-Monge matrix PΣ
t , where an elementary

transposition matrix Pt is defined by the assignments

Pt ← Id
Pt〈t− 1 : t+ 1, t− 1 : t+ 1〉 ←

(
0 1
1 0

)
Concatenation of words in the generators corresponds to the composition of
corresponding seaweed configurations. The relations defining the seaweed
monoid consist of:

• idempotence relations g2
t = gt for all t ∈ [1 : n− 1];

• commutativity relations gtgu = gugt for all t, u ∈ [1 : n− 1], u− t ≥ 2;

• crossover relations gtgugt = gugtgu for all t, u ∈ [1 : n− 1], u− t = 1.

Intuitively, the idempotence relations describe the seaweeds’ main double
crossing property; the commutativity relations tell that a pair of independent
seaweed crossings can be taken in an arbitrary order (note that pairs of
crossing with |t− u| ≤ 1 are not independent, so not all pairs of generators
commute); and the crossover relations tell that for a given crossing of two
seaweeds, a third seaweed passing next to the crossing on the left can be
switched over to the right, and vice versa. We are now able to establish
a formal connection between distance multiplication of simple unit-Monge
matrices and the seaweed monoid.

Theorem 3. The distance multiplication monoid of n×n simple unit-Monge
matrices is isomorphic to the seaweed monoid of size n.

Proof. It is straightforward to check that any simple unit-Monge matrix PΣ

can be decomposed into a distance product of matrices PΣ
t for various values

of t; this can be visualised as drawing a seaweed configuration for P , and
decomposing it into individual seaweed crossings. Hence, matrices PΣ

t serve
as generators for the distance multiplication monoid of simple unit-Monge
matrices. By using the defining relations of the seaweed monoid, it is also
straightforward to check that multiplication in both monoids agrees on the
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generators. By associativity of multiplication, this implies that multiplica-
tion in monoids agrees on all the elements, therefore the two monoids are
isomorphic.

While we will not be using the seaweed monoid directly in our algorithms,
seaweeds will prove to be a useful exposition and visualisation tool for the
rest of this work.

1.5 Matrix distance multiplication algorithms

In this section, we show that distance multiplication of Monge and simple
unit-Monge matrices can be performed much more efficiently than a naive
implementation of the definitions. One of the ingredients in our method is
the classical algorithm by Aggarwal et al. [1] (see also [40]), which allows
efficient searching in totally monotone matrices.

Lemma 2 ([1]). Let A be an n× n implicit totally monotone matrix, where
each element can be queried in time q. Then the problem of finding the
minimum element in every row of A (the row minima problem) can be solved
in time O(qn).

Our method is based on efficient matrix distance multiplication, exploit-
ing the special properties of the matrices. We begin with matrix-vector mul-
tiplication. For generic, explicitly represented matrices, the fastest method
for matrix-vector distance multiplication of size n is by direct application of
Definition 7 in time O(n2). For implicit Monge matrices, the running time
can be substantially reduced.

Theorem 4. Let A be an n×n implicit Monge matrix, where each element
can be queried in time q. Let b, c be n-vectors, such that A� b = c. Given
vector b, vector c can be computed in time and memory O(qn).

Proof. Let A′ = A+ e · bT , so A′(i, j) = A(i, j) + b(j). It easy to check that
matrix A′ is a Monge matrix. Clearly, each element of A′ can be queried in
time q+O(1). The problem of computing the product A�b = c is equivalent
to the row minima problem in matrix A′, which can be solved in time (and
therefore also memory) O(qn) by Lemma 2.

Applying the above theorem to implicit unit-Monge matrices represented
by Theorem 1 with q = O(log2 n), we obtain an algorithm for matrix-vector
distance multiplication, running in time O(n log2 n). Using batch queries
based on Theorem 2, this running time can be improved by a factor of
O(log n) as follows.

Theorem 5. Let P be an n× n permutation matrix. Let b, c be n-vectors,
such that PΣ � b = c. Given the nonzeros of P and the full vector b, vector
c can be computed in time O(n log n) and memory O(n).

15



Proof. As in the proof of Theorem 4, we let A′ = A + e · bT , so A′(i, j) =
A(i, j) + b(j). We then use the standard algorithm of [1] for finding row
minima in a monotone (but not necessarily totally monotone) matrix. First,
we obtain all elements in row n/2 of matrix A′ by a row batch query based
on Theorem 2, and compute the minimum element in this row. We are now
faced with two subproblems of finding the row minima in the submatrix of A′

with i < n/2 (respectively, i > n/2). By using the monotonicity property
of matrix A′, each of the subproblems can be reduced to an instance of
the original problem of size n/2. Both the batch query and the problem
reduction run in time and memory O(n), therefore the total running time is
O(n+2·n/2+22 ·n/22 +. . .) = O(n log n) and the total memory is O(n).

We now consider matrix-matrix multiplication. For generic matrices, the
fastest known method for matrix distance multiplication of size n is a direct
application of Definition 8 in time O(n3). For Monge matrices, the running
time can be reduced as follows.

Theorem 6. Let A, B, C be n × n matrices, such that A is Monge, and
A � B = C. Given matrices A, B, matrix C can be computed in time and
memory O(n2).

Proof. The problem of computing the product A�B = C is equivalent to n
instances of the matrix-vector product A� b = c, where b (respectively, c) is
a column of B (respectively, C). Every one of these instances can be solved
in time O(n) by Theorem 4, so the overall running time (and therefore also
memory) is n ·O(n) = O(n2).

For explicitly represented Monge matrices, the running time in Theo-
rem 6 is clearly optimal. However, for implicit simple unit-Monge matrices,
the distance multiplication time can be reduced even further. In [93, 96], we
gave an algorithm running in time O(n1.5). We now show that still further
improvement is possible.

Theorem 7. Let PA, PB, PC be n × n permutation matrices, such that
PΣ
A � PΣ

B = PΣ
C . Given the nonzeros of PA, PB, the nonzeros of PC can be

computed in time O(n log n).

Proof. Without loss of generality, let PA, PB, PC be over 〈0 : n〉2. The
algorithm is defined by recursion on n.

Recursion base. If n = 1, the computation is trivial.

Recursive step. Assume without loss of generality that n > 1 is even. In-
formally, the idea is to split the range of index j in the definition of matrix
distance product (Definition 8) into two subranges of size n

2 . For each of
these subranges of j, we use the sparsity of the input permutation matrices
PA, PB to reduce the range of each of the indices i, k into two disjoint (but
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not necessarily contiguous) subsets of size n
2 . We then call the algorithm

recursively on the two resulting half-sized subproblems, and use the two
returned half-sized permutation matrices to reconstruct the output permu-
tation matrix PC , relying on the distribution matrices’ Monge properties.

We now describe the recursive step in more detail. Let

PA,lo = PA〈∗, 0 : n2 〉 PA,hi = PA〈∗, n2 : n〉
PB,lo = PB〈0 : n2 , ∗〉 PB,hi = PB〈n2 : n, ∗〉
PΣ
A,lo � PΣ

B,lo = PΣ
C,lo PΣ

A,hi � PΣ
B,hi = PΣ

C,hi

Both PC,lo , PC,hi are n× n subpermutation matrices. Matrix PC,lo (respec-
tively, PC,hi) can be obtained by deleting the zero rows and columns from
PA,lo , PB,lo (respectively, PA,hi , PB,hi), making a recursive call on the result-
ing half-sized problem, and then reinserting the zero rows and columns in
the product matrix returned by the recursive call. Observe that PC,lo +PC,hi
is an n× n permutation matrix. We now have

PΣ
C (i, k) = min

(
PΣ
B,hi(

n
2 , k) + PΣ

C,lo(i, k), PΣ
A,lo(i, n2 ) + PΣ

C,hi(i, k)
)

for all i, k ∈ [0 : n]. In order to compute the nonzeros of matrix PC efficiently,
consider the difference of arguments of “min” in the above expression:

δ(i, k) =
(
PΣ
B,hi(

n
2 , k) + PΣ

C,lo(i, k)
)
−
(
PΣ
A,lo(i, n2 ) + PΣ

C,hi(i, k)
)

=
(
PΣ
B,hi(

n
2 , k)− PΣ

C,hi(i, k)
)
−
(
PΣ
A,lo(i, n2 )− PΣ

C,lo(i, k)
)

=
∑

ı̂<i,k̂<k
PC,hi (̂ı, k̂)−

∑
ı̂>i,k̂>k

PC,lo (̂ı, k̂)

From this, it is clear that function δ is unit-monotone increasing in each of
its arguments.

The sign of function δ plays an important role in determining the posi-
tions of nonzeros in PC . More precisely, we have PC (̂ı, k̂) = 1, if and only if
one of the following (mutually exclusive) conditions holds:

PC,lo (̂ı, k̂) = 1 and δ(̂ı+ 1
2 , k̂ + 1

2) ≤ 0 (1.1)

PC,hi (̂ı, k̂) = 1 and δ(̂ı− 1
2 , k̂ − 1

2) ≥ 0 (1.2)

δ(̂ı− 1
2 , k̂ − 1

2) < 0 and δ(̂ı+ 1
2 , k̂ + 1

2) > 0 (1.3)

In order to perform the above checks efficiently, it is sufficient to find for
each d ∈ [−n + 1 : n − 1] a value r(d) ∈ [1 : 2n − 1], such that r(d) + d is
odd, and

δ(i, k) ≤ 0 if i+ k < r(k − i)
δ(i, k) ≥ 0 if i+ k > r(k − i)

for all i, k ∈ [0 : n] (note that the above list of two cases is exhaustive,
since r(k− i)− (i+ k) = r(k− i) + (k− i)− 2k must be odd, and therefore
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i+k 6= r(k−i)). Such a value r(d) is guaranteed to exist by the monotonicity
of function δ. Furthermore, values r(d) can be chosen so that |r(d̂ + 1

2) −
r(d̂ − 1

2)| = 1 for all d̂ ∈ 〈−n + 1 : n − 1〉. Informally, array r defines
a monotone rectilinear path, consisting of points

( r(d)−d
2 , r(d)+d

2

)
, from the

bottom-left to the top-right corner of 〈0 : n〉2.
By definition of array r, for each d we have

w−(d) = δ
( r(d)−d−1

2 , r(d)+d−1
2

)
∈ [−1, 0]

w+(d) = δ
( r(d)−d+1

2 , r(d)+d+1
2

)
∈ [0, 1]

We call the values w−(d), w+(d) witnesses for r(d).
Array r can be computed efficiently as follows. We loop from d = −n+1

to d = n − 1. For each d, we obtain the value r(d) along with its two
witnesses.

Initially, we have d = −n+1, r(−n+1) = n; the witnesses w−(−n+1) =
δ(n− 1, 0) and w+(−n+ 1) = δ(n, 1) can be easily computed in time O(1).

Now assume that for a current value of d, we have the value r(d), and
the witnesses w−(d), w+(d). Our next goal is to compute r(d + 1), along
with its two witnesses. Let

w∗ = δ
( r(d)−d−1

2 , r(d)+d+1
2

)
∈ [−1 : 1]

Value w∗ can be obtained from either w−(d) or w+(d) by Theorem 2 in time
O(1). We now let

r(d+ 1) = r(d) +

{
1 if w∗ ∈ [−1 : 0]
−1 if w∗ ∈ [0 : 1]

If w∗ = 0, then the choice between 1 and −1 is made arbitrarily. Following
this choice, we obtain the new witnesses as

w−(d+ 1) =

{
δ
( r(d)−d−3

2 , r(d)+d−1
2

)
if w∗ ∈ [−1 : 0]

w∗ if w∗ ∈ [0 : 1]

w+(d+ 1) =

{
w∗ if w∗ ∈ [−1 : 0]
δ
( r(d)−d+1

2 , r(d)+d+3
2

)
if w∗ ∈ [0 : 1]

In each case, the value for the new witness can be obtained from respectively
w−(d), w+(d) by Theorem 2 in time O(1). If w∗ = 0, then the choices are
made consistently with the arbitrary choice made in the definition of r(d+1).

The described loop runs until d = n − 1. At this point, we necessarily
have r(n − 1) = n, w−(n − 1) = δ(0, n − 1) and w+(n − 1) = δ(1, n). The
whole loop runs in time O(n).

Given arrays r, w−, w+, conditions (1.1)–(1.3) can now be expressed as
follows:

PC,lo (̂ı, k̂) = 1 and ı̂+ k̂ < r(k̂ − ı̂) (1.4)
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PC,hi (̂ı, k̂) = 1 and ı̂+ k̂ > r(k̂ − ı̂) (1.5)

ı̂+ k̂ = r(k̂ − ı̂) and w−(k̂ − ı̂) = −1 and w+(k̂ − ı̂) = 1 (1.6)

The nonzeros of PC satisfying one of the conditions (1.4), (1.5) can be found
in time O(n) by a linear sweep of nonzeros of matrices PC,lo and PC,hi . The
nonzeros of PC satisfying condition (1.6) can be found in time O(n) by a
linear sweep of the values r(d) for all d ∈ [−n + 1 : n − 1]. For each d, we
let ı̂ = r(d)+d

2 , k̂ = r(d)−d
2 , and substitute these values into (1.6). We have

now obtained all the nonzeros of matrix PC .

End of recursive step.

Time analysis. The recursion tree is a balanced binary tree of height log n.
In the root node, the computation runs in time O(n). In each subsequent
level, the number of nodes doubles, and the running time per node decreases
by a factor of 2. Therefore, the overall running time is O(n log n).

The proof of Theorem 7 is illustrated by Figure 1.2. Subfigure 1.2a shows
a pair of input 20×20 permutation matrices PA, PB, with nonzeros indicated
by green bullets. Subfigure 1.2b shows the partitioning of the implicit 20×20
matrix distance multiplication problem into two 10× 10 subproblems. The
nonzeros in the two subproblems are shown respectively by red stars and blue
circles. Subfigure 1.2c shows a recursive step. The boundaries separating
sets δ−1([−10 : −1]), δ−1({0}), δ−1([1 : 10]) are indicated by the red and
the blue line. Function r corresponds to an arbitrary monotone rectilinear
path within δ−1({0}), inclusive of the boundaries. In particular, either of the
boundaries itself can be taken to define r. The nonzeros in the output matrix
PC satisfying (1.4), (1.5), (1.6) are indicated respectively by red stars, blue
circles and green bullets; note that overall, there are 20 such nonzeros, and
that they define a permutation matrix.

Theorem 7 gives an efficient algorithm for distance multiplication of fi-
nite simple unit-Monge matrices. We now extend this algorithm to infinite
matrices. We consider two special cases:

• both PA, PB have a semi-infinite core (Lemma 3);

• one of PA, PB has a finite core (Lemma 4).

Lemma 3. Let i0, i1 ∈ [−∞ : +∞], n = i1 − i0 ≥ 0. Let PA, PB, PC be
permutation matrices over 〈−∞ : +∞〉2, such that

• PA has core 〈i0 : +∞〉2 and offset 0

• PB has core 〈−∞ : i1〉2 and offset 0

• PΣ
A � PΣ

B = PΣ
C
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PA

•• •• • •• • ••••• ••• •• ••
PB

• • ••• ••• • •• •• • •••• • •

(a) Input matrices PA, PB

PA,lo , PA,hi

??
?

? ?

??
?

?
?

◦◦ ◦
◦◦◦
◦◦◦◦

PB,lo , PB,hi
? ? ??? ??? ? ?◦ ◦◦ ◦ ◦◦◦◦ ◦ ◦

PC,lo + PC,hi

??
?

? ?

??
?
?

?

◦ ◦ ◦
◦◦◦

◦ ◦◦◦

(b) Subproblems P Σ
A,lo � P Σ

B,lo = P Σ
C,lo and P Σ

A,hi � P Σ
B,hi = P Σ

C,hi

PA,lo , PA,hi

??
?

? ?

??
?

?
?

◦◦ ◦
◦◦◦
◦◦◦◦

PB,lo , PB,hi
? ? ??? ??? ? ?◦ ◦◦ ◦ ◦◦◦◦ ◦ ◦

PC

??
?

?

??
?
?

••
•

•

•

◦
◦◦

◦ ◦◦◦

(c) Conversion of PC,lo and PC,hi into PC

Figure 1.2: Proof of Theorem 7: PΣ
A = PΣ

B � PΣ
C
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i0 i1

PA

PB

(a) Input matrices PA, PB

i0 i1

PC

(b) Output matrix PC

Figure 1.3: Statement of Lemma 3: PΣ
A � PΣ

B = PΣ
C

Given implicit representations of PA, PB with query time O(1), an im-
plicit representation of PC with query time O(1) can be computed in time
O(n log n).

Proof. Without loss of generality, let i0 = 0, i1 = n. Let

P̃A ← PA〈·, 0 : n〉 P̃B ← PB〈0 : n, ·〉 P̃Σ
A � P̃Σ

B = P̃Σ
C

PC ← PA〈·, n : +∞〉 ./ PB〈−∞ : 0, ·〉 ./ P̃C
All index operations are performed in time O(n). Implicit matrix distance
multiplication is performed in time O(n log n) by Theorem 7. The overall
running time is O(n log n).

The statement of Lemma 3 is illustrated by Figure 1.3. Three horizontal
lines represent respectively the index ranges of i, j, k. The nonzeros in PA,
PB, PC are shown by seaweeds; the thick seaweeds correspond to the nonze-
ros involved in the matrix distance multiplication, and the thin seaweeds to
the remaining nonzeros.

Lemma 4. Let i0, i1 ∈ [−∞ : +∞], n = i1 − i0 ≥ 0. Let PA, PB, PC be
permutation matrices over 〈−∞ : +∞〉2, such that

• PB has core 〈i0 : i1〉2 and offset 0

• PΣ
A � PΣ

B = PΣ
C

Given implicit representations of PA, PB with query time O(1), an im-
plicit representation of PC with query time O(1) can be computed in time
O(n log n).
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i0 i1

PA

PB

(a) Input matrices PA, PB

i0 i1

PC

(b) Output matrix PC

Figure 1.4: Statement of Lemma 4: PΣ
A � PΣ

B = PΣ
C

Proof. Without loss of generality, let i0 = 0, i1 = n. Let

P̃A ← PA〈·, 0 : n〉 P̃B ← PB〈0 : n, 0 : n〉 P̃Σ
A � P̃Σ

B = P̃Σ
C

PC ← PA〈·,−∞ : 0〉 ./ PA〈·, n : +∞〉 ./ P̃C

All index operations are performed in time O(n). Implicit matrix distance
multiplication is performed in time O(n log n) by Theorem 7. The overall
running time is O(n log n).

The statement of Lemma 4 is illustrated by Figure 1.4, using the same
conventions as Figure 1.3.

Lemma 5. Let P be a superdiagonal permutation matrix over 〈−∞ : +∞〉2,
with core size m + n and offset m. There exist superdiagonal permutation
matrices P0, . . . , Pbn/mc, each with core size 2m and offset m, such that
PΣ

0 � · · · � PΣ
dn/me = PΣ. Given the core nonzeros of P , the core nonzeros

of all of P0, . . . , Pdn/me can be computed in time O(n).

Proof. Without loss of generality, let P have core 〈−m : n〉 × 〈0 : m + n〉.
We define the decomposition recursively as follows.

Recursion base. If n ≤ m, the decomposition is trivial: P = P0.

Recursive step. We partition matrix P as

P = P 〈−∞ : m,−∞ : m〉 ./ P 〈−∞ : m,m : +∞〉 ./

22



−m
↓

0
↓

m
↓

n
↓

P

↑
0

↑
m

↑
n

↑
m+n

(a) Input matrix P

−m
↓

0
↓

m
↓

n
↓

P0

P+

↑
m

↑
2m

↑
m+n

↑
2m+n

(b) Decomposition matrices P Σ
0 , P Σ

+

Figure 1.5: Proof of Lemma 5: PΣ = PΣ
0 � PΣ

+

P 〈m : +∞,m : +∞〉

Since matrix P is superdiagonal, the submatix P 〈m : +∞,−∞ : m〉 does
not contain any nonzeros, and therefore it is not included in the above
decomposition.

We construct permutation matrices P0, P+ as shown in Figure 1.5. Intu-
itively, each core nonzero P (̂ı, ̂) within the submatrix P 〈−∞ : m,−∞ : m〉
is preserved as P0(̂ı, ̂); each core nonzero P (̂ı, ̂) within the submatrix
P 〈m : +∞,m : +∞〉 is preserved as P+(̂ı + m, ̂ + m). The remaining
core nonzeros are within the submatrix P 〈−∞ : m,m : +∞〉; each of these
nonzeros P (̂ı, ̂) is preserved as a pair of nonzeros P0(̂ı, t̂), P+(t̂, ̂+m); the
intermediate index t̂ ∈ 〈m : 2m〉 is chosen so that the resulting nonzeros
do not dominate one another in P0, and the dominance relations of P are
preserved in P+.

By construction, we have PΣ = PΣ
0 � PΣ

+ . The decomposition is then
applied recursively to matrix P+.

End of recursive step.

Time analysis. Each recursive step can be implemented in time and memory
O(m), therefore the full decomposition can be obtained in time O(m·n/m) =
O(n).

In Figure 1.5, the m×n rectangle corresponding to the core of P is split

23



into an m×m square corresponding to the core of P0, and an m× (n−m)
rectangle corresponding to the core of P+. The resulting rectangles are ar-
ranged vertically with a shift by m. The seaweeds that do not cross the
partition between the rectangles are preserved by the construction. The
seaweeds that do cross the partition line are also preserved, by passing them
through a parallelogram-shaped “buffer zone”. Note the latter class of sea-
weeds are all uncrossed in P0, and keep their original crossings from P in
P+.
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Chapter 2

Semi-local string comparison

2.1 Semi-local LCS

We will consider strings of characters taken from an alphabet. No a priori
assumptions are made on the size of the alphabet and on the model of com-
putation; we will make specific assumptions in different contexts (e.g. a fixed
finite alphabet with only equality comparisons, or an alphabet of integers
up to a given n with standard arithmetic operations, etc.) Two alphabet
characters α, β match, if α = β, and mismatch otherwise. We extend the
alphabet by a special wildcard character ‘?’, which by definition matches
all the other characters in the alphabet. We denote by v (respectively, ∼)
a string of wildcard characters extending infinitely to the left (respectively,
right).

It will be convenient to index strings by odd half-integer, rather than
integer indices, e.g. string a = α 1

2
α 3

2
. . . αm− 1

2
. We will index strings sim-

ilarly to matrices, writing e.g. a(̂ı) = αı̂, a〈i : j〉 = αi+ 1
2
. . . αj− 1

2
. String

concatenation will be denoted by juxtaposition.
Given a string, we distinguish between its contiguous substrings, and not

necessarily contiguous subsequences. Special cases of a substring are a prefix
and a suffix of a string. Given a string a of length m, we use the take/drop
notation of [98] for prefixes and suffixes of a:

a � k = a〈0 : k〉 a � k = a〈k : m〉
a � k = a〈m− k : m〉 a � k = a〈0 : m− k〉

Unless indicated otherwise, our algorithms will take as input a string a of
length m, and a string b of length n.

Definition 9. Given strings a, b, the longest common subsequence (LCS)
problem asks for the length of the longest string that is a subsequence of both
a and b. We will call this length the LCS score of strings a, b.
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A special case of the LCS problem is the subsequence recognition problem,
which, assuming m ≥ n, asks whether a contains b itself as a subsequence.
This problem has been considered e.g. by Aho et al. [2] as the “subsequence
matching problem”; they gave an algorithm running in time O(m). Algo-
rithms for the general LCS problem are more computationally intensive; we
will consider them in Sections 3.1, 4.1.

Definition 10. Given strings a, b, the semi-local LCS problem asks for the
LCS scores as follows:

• a against every substring of b (the string-substring LCS scores);

• every prefix of a against every suffix of b (the prefix-suffix LCS scores);

• symmetrically, the substring-string LCS scores and the suffix-prefix
LCS scores, defined as above but with the roles of a and b exchanged.

A traditional distinction, especially in computational biology, is between
global (full string against full string) and local (all substrings against all
substrings) comparison. Our problem lies in between, hence the term “semi-
local”. It turns out that this is a very natural and useful generalisation of
the LCS problem. Many string comparison algorithms output either a single
optimal comparison score across all local comparisons, or a number of local
comparison scores that are “sufficiently close” to the globally optimal. In
contrast with this approach, Definition 10 requires to output all the locally
optimal comparison scores.

The LCS problem is clearly a special case of the semi-local LCS problem.
Another special case is the local subsequence recognition problem, which asks
for the substrings in a containing b as a subsequence. We will consider
algorithms for the local subsequence recognition problem in Section 4.4,
and for the general semi-local LCS problem in Sections 3.1, 4.1.

In certain contexts, e.g. when m is much higher than n, we may not be
able to solve all four components of the semi-local LCS problem efficiently.
In such cases, we may wish to settle for its following asymmetric restriction.

Definition 11. Given strings a, b, the three-way semi-local LCS problem
asks for the string-substring, prefix-suffix and suffix-prefix LCS scores as in
Definition 10, but excludes the substring-string LCS scores.

When considering the three-way version of the semi-local LCS problem,
we will occasionally use the term full semi-local LCS for the standard four-
way version.

2.2 Alignment dags and highest-score matrices

It is well-known that an instance of the LCS problem can be represented by a
dag (directed acyclic graph) on a rectangular grid of nodes, where character
matches correspond to edges scoring 1, and mismatches to edges scoring 0.
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b
a

a

b
c

b
c

a

b a a b c a b c a b a c a

Figure 2.1: Alignment dag Ga,b and a highest-scoring path

Definition 12. An alignment dag is a weighted dag, defined on the set of
nodes vl,i, l ∈ [l0 : l1], i ∈ [i0, i1]. The edge and path weights are called
scores. For all l ∈ [l0 : l1], l̂ ∈ 〈l0 : l1〉, i ∈ [i0, i1], ı̂ ∈ 〈i0 : i1〉, the alignment
dag contains:

• the horizontal edge vl,̂ı− 1
2
→ vl,̂ı+ 1

2
and the vertical edge vl̂− 1

2
,i →

vl̂+ 1
2
,i, both with score 0;

• the diagonal edge vl̂− 1
2
,̂ı− 1

2
→ vl̂+ 1

2
,̂ı+ 1

2
with score either 0 or 1.

An alignment dag can be viewed as an (l1 − l0)× (i1 − i0) grid of cells.
An instance of the semi-local LCS problem on strings a, b corresponds to an
m× n alignment dag Ga,b; a cell indexed by l̂ ∈ 〈0 : m〉, ı̂ ∈ 〈0 : n〉 is called
a match cell, if a(l̂) = b(̂ı), and a mismatch cell otherwise. The diagonal
edges in match cells have score 1, and in mismatch cells score 0. Clearly, the
diagonal edges with score 0 do not affect maximum node-to-node scores, and
can therefore be ignored. Figure 2.1 shows the alignment dag corresponding
to strings a = “baabcbca”, b = “baabcabcabaca” (an example borrowed
from [7]).

Particular examples of an alignment dag are the full-mismatch dag and
the full-match dag, which consist entirely of mismatch or match cells, respec-
tively. The dag Ga,b is the full-mismatch dag when the strings a, b have no
characters in common, and is the full-match dag where both strings consist
of a single repeated character, or when one of the strings consists entirely
of wildcard characters.

Given an instance of the LCS problem on strings a, b, common string-
substring, suffix-prefix, prefix-suffix, and substring-string subsequences cor-
respond, respectively, to paths of the following form in the alignment dag
Ga,b:

v0,i  vm,i′ vl,0  vm,i′ v0,i  vl′,n vl,0  vl′,n (2.1)
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where l, l′ ∈ [0 : m], i, i′ ∈ [0 : n]. The length of each subsequence is equal
to the total score of its corresponding path.

The solution to the semi-local LCS problem is equivalent to finding the
highest path scores for each of the four path types (2.1). This is also equiva-
lent to finding the corresponding shortest distances in an undirected graph,
obtained from the alignment dag by assigning length 1 to vertical and hori-
zontal edges, assigning lengths 0 and 2 to diagonal edges in match and mis-
match cells respectively, and ignoring edge directions. Thus, the problem
is equivalent to the problem of finding distances between boundary nodes
and all nodes on a special case of a weighted undirected planar graph. This
problem has been previously studied by Schmidt [88] on real-weighted grid
dags, and by Klein [59] and Cabello and Chambers [21] on general real-
weighted undirected planar graphs. In contrast with these approaches, we
exploit both the special structure of the alignment dag, and the discreteness
of the weights.

The analysis of the four path types (2.1) can be reduced to a single type,
by extending one of the input strings with wildcards to infinity in both
directions. Accordingly, we need to consider an infinite alignment dag with
i0 = −∞, i1 = +∞.

Definition 13. Consider an m×∞ alignment dag Ga,vb∼. The correspond-
ing highest-score matrix1 is a matrix over [−∞ : +∞]2, defined by

Ha,vb∼(i, j) = max score(v0,i  vm,j)

where i, j ∈ [−∞ : +∞], and the maximum is taken across all paths between
the given endpoints. If i = j, we have Ha,vb∼(i, j) = 0. By convention, if
j < i, then we let Ha,vb∼(i, j) = j − i < 0.

In Figure 2.1, the highlighted path has score 5, and corresponds to the
value Ha,vb∼(4, 11) = 5, which is equal to the LCS score of string a against
substring b〈4 : 11〉 = “cabcaba”. Figure 2.2 shows a finite fragment of the
highest-score matrix Ha,vb∼, giving just the string-substring LCS scores; the
value Ha,vb∼(4, 11) = 5 is circled.

The solution for each of the four components (2.1) of the LCS problem
can now be obtained from the highest-score matrix Ha,vb∼ as follows:

max score(v0,j  vm,j′) = Ha,vb∼(j, j′)
max score(vi,0  vm,j′) = Ha,vb∼(−i, j′)− i
max score(v0,j  vi′,n) = Ha,vb∼(j,m+ n− i′)−m+ i′

max score(vi,0  vi′,n) = Ha,vb∼(−i,m+ n− i′)−m− i+ i′

1These matrices are called “DIST matrices” e.g. in [88, 27], and “score matrices” in
[94].We have chosen a different terminology to reflect better the score-maximising nature
of the matrix elements, and to avoid confusion with pairwise substitution score matrices
used in comparative genomics (see e.g. [54]).
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•

•

•

•

•
0 1 2 3 4 5 6 6 7 8 8 8 8 8

−1 0 1 2 3 4 5 5 6 7 7 7 7 7

−2−1 0 1 2 3 4 4 5 6 6 6 6 7

−3−2−1 0 1 2 3 3 4 5 5 6 6 7

−4−3−2−1 0 1 2 2 3 4 4 5 5 6

−5−4−3−2−1 0 1 2 3 4 4 5 5 6

−6−5−4−3−2−1 0 1 2 3 3 4 4 5

−7−6−5−4−3−2−1 0 1 2 2 3 3 4

−8−7−6−5−4−3−2−1 0 1 2 3 3 4

−9−8−7−6−5−4−3−2−1 0 1 2 3 4

−10−9−8−7−6−5−4−3−2−1 0 1 2 3

−11−10−9−8−7−6−5−4−3−2−1 0 1 2

−12−11−10−9−8−7−6−5−4−3−2−1 0 1

−13−12−11−10−9−8−7−6−5−4−3−2−1 0

5

Figure 2.2: A fragment of matrices Ha,vb∼ and Pa,vb∼

where i, i′ ∈ [0 : m], j, j′ ∈ [0 : n], and the maximum is taken across all
paths between the given endpoints.

Special properties of highest-score matrices have been extensively used in
algorithm design. These properties are captured by the following theorem.

Theorem 8. Consider an m ×∞ alignment dag Ga,vb∼ Its corresponding
highest-score matrix Ha,vb∼ is unit-anti-Monge. In particular, we have

Ha,vb∼(i, j) = j − i− PΣ
a,vb∼(i, j)

where Pa,vb∼ is a superdiagonal permutation matrix over 〈−∞ : +∞〉2.

Proof. Let i, j ∈ 〈−∞ : +∞〉. Any crossing pair of paths v0,i+ 1
2
 vm,j− 1

2

and v0,i− 1
2
 vm,j+ 1

2
can be rearranged into a non-crossing pair of paths

v0,i− 1
2
 vm,j− 1

2
and v0,i+ 1

2
 vm,j+ 1

2
of the same total score. Therefore,

we have H�a,vb∼(i, j) ≤ 0, hence matrix Ha,vb∼ is anti-Monge, and matrix
PΣ
a,vb∼ is Monge. Furthermore, we have

PΣ
a,vb∼(i− 1

2 ,m+ n)− PΣ
a,vb∼(i+ 1

2 ,m+ n) =

1−Ha,vb∼(i− 1
2 ,m+ n) +Ha,vb∼(i+ 1

2 ,m+ n) = 1−m+m = 1

and

PΣ
a,vb∼(−m, j + 1

2)− PΣ
a,vb∼(−m, j − 1

2) =

1−Ha,vb∼(−m, j + 1
2) +Ha,vb∼(−m, j − 1

2) = 1−m+m = 1

Together, the above properties imply that PΣ
a,vb∼ is a simple unit-Monge

matrix, so Pa,vb∼ is a permutation matrix.
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a

a

b
c

b
c

a

b a a b c a b c a b a c a
•

•

Figure 2.3: Alignment dag Ga,b and nonzeros of Pa,vb∼ as seaweeds

The key idea of our approach is to regard the highest-score matrix Ha,vb∼
as implicitly represented by the permutation matrix Pa,vb∼.

In Figure 2.2, the definition of implicit highest score matrix is illustrated
by an odd half-integer grid of edges. Red (respectively, blue) edge colouring
indicates that the two elements of matrix Ha,vb∼ separated by the edge differ
by 1 (respectively, that they are equal). The nonzeros of the permutation
matrix PA within the given finite section of the matrix are shown by green
bullets.

Figure 2.3 shows an alternative graphical representation of the implicit
highest-score matrix, given directly on the alignment dag. Nonzeros of
Pa,vb∼ are represented by seaweeds, laid out as paths in the dual graph.
In particular, every nonzero Pa,vb∼(i, j) = 1, where i, j ∈ 〈0 : n〉, is repre-
sented by a seaweed originating between the nodes v0,i− 1

2
and v0,i+ 1

2
, and

terminating between the nodes vm,j− 1
2

and vm,j+ 1
2
. The remaining seaweeds,

originating or terminating at the sides of the dag, correspond to nonzeros
Pa,vb∼(i, j) = 1, where either i ∈ 〈−m : 0〉 or j ∈ 〈n : n + m〉 (or both).
In particular, every nonzero Pa,vb∼(i, j) = 1, where i ∈ 〈−m : 0〉 (respec-
tively, j ∈ 〈n : m + n〉) is represented by a seaweed originating between
the nodes v−i− 1

2
,0 and v−i+ 1

2
,0 (respectively, terminating between the nodes

vm+n−j− 1
2
,n and vm+n−j+ 1

2
,n). For the purposes of this section, the specific

layout of the seaweeds between their endpoints is not important. However,
this layout will become meaningful in the context of the algorithms described
in the next chapter.

In Figure 2.2, the nonzeros of Pa,vb∼ that are dominated by the entry
PΣ
a,vb∼(4, 11) = 2 correspond to the dots lying below and to the left of

the circled entry. In Figure 2.3, these dominated nonzeros correspond to
seaweeds fitting completely between the two vertical lines i = 4 and j = 11.
Note that in both cases, there are exactly two dominated nonzeros, and that
Ha,vb∼(4, 11) = 11− 4− 2 = 5.

Recall that outside the range of string b, the alignment graph contains
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only match cells. This property carries over to the corresponding permu-
tation matrix: it has core 〈−m,n〉 × 〈0,m + n〉 and offset m, and contains
m+ n core nonzeros. In Figure 2.3, these core nonzeros are represented by
the full set of m+ n = 8 + 13 = 21 seaweeds.

With minimal modification, the described method can also be applied
to the three-way, rather than full, semi-local LCS problem.

Definition 14. A three-way slice of matrix Ha,vb∼ is a pair of submatrices

Hxa,vb∼ =
(
Ha,vb∼[0 : +∞, ∗], Ha,vb∼[∗,−∞ : n]

)
Similarly, a three-way slice of matrix Pa,vb∼ is a pair of submatrices

P xa,vb∼ =
(
Pa,vb∼〈0 : +∞, ∗〉, Pa,vb∼〈∗,−∞ : n〉

)
The three-way slice Hxa,vb∼ is sufficient for obtaining the first three com-

ponents in (2.1), corresponding to the three-way semi-local LCS problem.
In its turn, Hxa,vb∼ can be represented implicitly by the three-way slice
P xa,vb∼. The number of core nonzeros within P xa,vb∼ is at least n and at
most min(m + n, 2n); note that for m ≥ n, this number is independent of
m.

Both the full implicit highest-score matrices and their three-way slices
can be processed into an efficient data structure of Theorem 1 for answering
individual element queries.

2.3 Highest-score matrix composition

We now describe how the techniques of previous sections can be applied
within the divide-and-conquer framework. Consider the semi-local LCS
problem for string a = a′a′′ against b, where strings a′, a′′, b are of length
m′, m′′, n respectively. Without loss of generality, we assume m′ ≥ m′′. The
alignment dag Ga,vb∼ consists of alignment subdags Ga′,vb∼, Ga′′,vb∼, shar-
ing a horizontal row of n nodes and n − 1 edges, which are simultaneously
at the bottom of Ga′,vb∼ and at the top of Ga′′,vb∼. We will say that dag
Ga,vb∼ is the composite of dags Ga′,vb∼ and Ga′′,vb∼.

Our goal is, given the respective highest-score matrices Ha′,vb∼, Ha′′,vb∼,
to compute matrix Ha,vb∼ efficiently. We call this procedure highest-score
matrix composition. Using the method of Section 2.2, matrices Ha′,vb∼,
Ha′′,vb∼, Ha,vb∼ can be represented implicitly by permutation matrices
Pa′,vb∼, Pa′′,vb∼, Pa,vb∼ over 〈−∞ : +∞〉, with respective core sizes m′+n,
m′′+n, m′+m′′+n and offsetsm′, m′′, m′+m′′, such that PΣ

a′,vb∼�PΣ
a′′,vb∼ =

PΣ
a,vb∼.

Figure 2.4 shows an example of highest-score matrix composition rep-
resented by implicit matrices. The nonzeros in the matrices are shown by
seaweeds; since in this case there is no explicit underlying alignment dag, the
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−m′−m′′
↓

−m′
↓

0
↓

n
↓

m′+n
↓

Pa′,vb∼

Pa′′,vb∼

↑
−m′′

↑
0

↑
n

↑
m′′+n

↑
m′+m′′+n

(a) Input matrices Pa′,vb∼, Pa′′,vb∼

−m′−m′′
↓

−m′
↓

0
↓

n
↓

m′+n
↓

Pa,vb∼

↑
−m′′

↑
0

↑
n

↑
m′′+n

↑
m′+m′′+n

(b) Output matrix Pa,vb∼

Figure 2.4: Highest-score matrix composition: PΣ
a′,vb∼ � PΣ

a′′,vb∼ = PΣ
a,vb∼

layout of every seaweed should be regarded as completely arbitrary (except
for disallowing double crossings).

Observe that if only a single row of the highest-score composition is
required, this can be easily computed by matrix-vector distance multipli-
cation. An equivalent procedure is given (using different terminology and
notation) in [66, 27, 57], based on techniques from [55, 14].

Theorem 9. Given the core elements of row i in matrix Ha′,vb∼, and the
core nonzeros of matrix Pa′′,vb∼, it is possible to compute the core elements
of row i in matrix Ha,vb∼ in time O(n log n) and memory O(n).

Proof. By Theorem 5.

We now give an efficient algorithm for full highest-score matrix compo-
sition.

Theorem 10. Given the core nonzeros of matrices Pa′,vb∼, Pa′′,vb∼, it is
possible to compute the core nonzeros of matrix Pa,vb∼ in time O

(
m′ +

n log min(m′′, n)
)
.
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Proof. By Lemma 5, we obtain a decomposition

PΣ
a′′,vb∼ = PΣ

0 � · · · � PΣ
bn/m′′c

where each of P0, . . . , Pbn/mc has core size 2m′′ and offset m′′. Then, we
compute

PΣ
a,vb∼ = PΣ

a′,vb∼ � PΣ
a′′,vb∼ = PΣ

a′,vb∼ � (PΣ
0 � · · · � PΣ

bn/m′′c) =(
(PΣ

a′,vb∼ � PΣ
0 )� · · ·

)
� PΣ

bn/m′′c

By Lemma 4, each of the above distance multiplications can be performed in
time O(m′′ logm′′), resulting in an implicit representation for matrix Pa,vb∼
with query time O(1). All the nonzeros of Pa,vb∼ can be queried from this
representation in time O(m′ + n). The overall running time is O

(
(n/m′′) ·

m′′ logm′′ + (m′ + n)
)

= O(m′ + n logm′′).

Similarly to the composition of full highest-score matrices, we can define
the composition of their three-way slices. In this case, the input and output
size is independent of values m′, m′′, and the computation can be performed
efficiently even when m′, m′′ are large (but even more efficiently, if m′′

happens to be small).

Corollary 1. Given the core nonzeros of the three-way slices

P xa′,vb∼ =
(
Pa′,vb∼〈0 : +∞, ∗〉, Pa′,vb∼〈∗,−∞ : n〉

)
P xa′′,vb∼ =

(
Pa′′,vb∼〈0 : +∞, ∗〉, Pa′′,vb∼〈∗,−∞ : n〉

)
it is possible to compute the core nonzeros of the three-way slice

P xa,vb∼ =
(
Pa,vb∼〈0 : +∞, ∗〉, Pa,vb∼〈∗,−∞ : n〉

)
and all the nonzeros of the submatrix

P qa,vb∼ = Pa,vb∼〈−m′ : +∞,−∞ : m′′ + n〉

in time O
(
n log min(m′′, n)

)
.

Proof. Observe that the number of core nonzeros within each of the three-
way slices is at most n. The computation runs as in Theorem 10 (although
the current corollary will be typically used when n < m′′, in which case
the decomposition by Lemma 5 becomes trivial). In the final stage of the
algorithm, at most 3n core nonzeros of Pa,vb∼ have to be queried, therefore
the overall running time is O

(
n log min(m′′, n)

)
.

The submatrix P qa,vb∼, obtained alongside the three-way slice P xa,vb∼ in
Corollary 1, contains at most n nonzeros. This submatrix will be called the
cross-way slice of Pa,vb∼. Notice that, while the definition of a three-way
slice P xa,vb∼ depends only on n, the definition of a cross-way slice P qa,vb∼ also
depends on m′, m′′, and therefore on a particular decomposition a = a′a′′.
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2.4 Weighted scores and edit distances

The concept of LCS score is generalised by that of weighted alignment score
(see e.g. [52]). An alignment of strings a, b is obtained by putting a subse-
quence of a into one-to-one correspondence with a (not necessarily identical)
subsequence of b, character by character and respecting the index order. The
corresponding pair of characters, one from a and the other from b, are said
to be aligned. A character not aligned with a character of another string is
said to be aligned with a gap in that string. Hence, four types of character
alignment arise, each of which is given a real weight :

• a pair of matching characters, with weight w=;

• a pair of mismatching characters, with weight w#;

• a gap against a character, with weight wa;

• a character against a gap, with weight w`.

Some of these weights may be negative. Aligning a matching pair of charac-
ters is considered to be better than aligning a mismatching pair of charac-
ters, which in its turn is not worse than aligning each of the two characters
against a gap. Therefore, we assume w= > w# ≥ wa + w`. In particular,
the LCS score corresponds to taking w= = 1, w# = wa = w` = 0.

Definition 15. The alignment score for strings a, b is the maximum total
weight of character alignments in an alignment of a and b.

Clearly, the alignment score corresponds to a shortest path in a gener-
alised alignment dag, where diagonal match, diagonal mismatch, horizontal
and vertical edges have weight w=, w#, wa, w`, respectively.

We show that without loss of generality, we can restrict ourselves to
alignment scores with w= = 1, wa = w` = 0. Indeed, given general weights,
we solve the alignment score problem with normalised weights

w∗= = 1 w∗# =
w# − wa − w`
w= − wa − w`

w∗a = w∗` = 0

Then the score w of any alignment with the original weights can be found
from the score w∗ of the corresponding alignment with normalised weights
as

w = w∗ · (w= − wa − w`) +m · w` + n · wa

In this work, we will mostly restrict ourselves to alignment scores that
satisfy the following rationality condition.

Definition 16. A set of alignment score weights will be called rational, if the
corresponding normalised weights (in particular, w∗#) are rational numbers.
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Given a rational set of normalised weights, the semi-local alignment score
problem on strings a, b can be reduced to the semi-local LCS problem
as follows. Let w# = µ

2ν < 1, where µ, ν are positive natural numbers.
We consider the subdivided alignment dag, defined on the set of nodes vl,i,
l ∈

{
0, 1

2ν ,
2
2ν , . . . ,m

}
, i ∈

{
0, 1

2ν ,
2
2ν , . . . , n

}
; the horizontal, vertical and

diagonal edges are defined analogously to the ordinary alignment dag. The
subdivided alignment dag can be viewed as an 2mν × 2nν grid of cells, in-
dexed by l̂0 + l̂1

2ν , ı̂0 + ı̂1
2ν , where l̂0 ∈ 〈0 : m〉, ı̂0 ∈ 〈0 : n〉, l̂1, ı̂1 ∈ 〈−ν : ν〉. A

cell contains a diagonal edge; this edge has score 1
ν , if either l̂1 = ı̂1 < µ− ν,

or both a(l̂0) = b(̂ı0) and l̂1 = ı̂1; the diagonal edge has score 0 otherwise. It
is easy to see that the alignment score between strings a and b corresponds
to the highest-scoring path in the subdivided alignment dag.

All the techniques of the previous sections clearly apply to the sub-
divided alignment dag, assuming that ν is a constant. In particular, we
can extend naturally Definitions 10 and 11 to define the semi-local and the
three-way semi-local alignment score problems. The output of the semi-local
alignment score problem corresponds to a conceptually infinite semi-local
alignment score matrix, which is an anti-Monge matrix that can be repre-
sented implicitly by a permutation matrix with core size (m+n)·ν. Given an
implicit semi-local alignment score matrix, individual semi-local alignment
scores can be queried in polylogarithmic time by Theorem 1.

Finally, we can adapt the same approach to comparing strings by means
of an edit distance metric. Here, we think of string a being transformed into
string b by a sequence of weighted character edits of one of three types:

• character insertion, with weight win ;

• character deletion, with weight wdel ;

• character substitution, with weight wsub .

Definition 17. The edit distance between strings a, b is the minimum total
weight of a sequence of character edits transforming a into b.

In particular, taking win = wdel = 1, wsub = 2 corresponds to the LCS
distance (also called the indel distance) [79, 10]; taking win = wdel = wsub =
1 corresponds to the Levenshtein distance (also called the indelsub distance)
[67]; taking win = 0, wdel ≥ wsub > 0 corresponds to the episode distance
[30].

The relationship between string alignment and string editing is straight-
forward: given a set of weights, the edit distance problem corresponds to
the alignment score problem with weights

w= = 0 w# = −wsub wa = −win w` = −wdel
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The resulting set of weights is rational, if wdel+win
wsub

is a rational number. In
this case, all the techniques of the previous sections apply also to semi-local
edit distances.
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Chapter 3

The seaweed method

3.1 The seaweed algorithm

A classical solution to the global LCS problem is given by the dynamic pro-
gramming algorithm, discovered independently by Needleman and Wunsch
(without an explicit analysis) [79], and by Wagner and Fischer [97]. This
algorithm assumes a character comparison model that only allows compari-
son outcomes “equal” and “unequal”, and the unit-cost RAM computation
model. The dynamic programming algorithm runs in time O(mn). In the
course of the computation, the LCS problem is solved for all prefixes of input
string a against all prefixes of input string b.

A naive algorithm for the semi-local LCS problem runs in time O
(
(m+

n)4
)
. Based on the ideas of Schmidt [88], Alves et al. [7] gave an algo-

rithm for the string-substring LCS problem that runs in time O(mn), which
therefore extends the functionality of the standard dynamic programming
algorithm, while matching its asymptotic running time. In the course of the
computation, the string-substring LCS problem is solved for all prefixes of
a against all prefixes of b.

We now give a simple algorithm for the semi-local LCS problem, which
further improves on the functionality of the above algorithms, while still
matching their model assumptions and asymptotic running time. We call
it the seaweed algorithm, since it has a simple interpretation in terms of
seaweeds introduced in Chapter 1.

Algorithm 1. Semi-local LCS: the seaweed algorithm.

Input: strings a, b of length m, n, respectively.

Output: implicit highest-score matrix Pa,vb∼, represented by core nonzeros.

Description. The output permutation matrix Pa,vb∼ has core 〈−m : n〉 ×
〈0 : m + n〉 and offset m. We will maintain a variable matrix P with the
same core and offset. Let initially P ← Idm. We sweep the cells of the
alignment dag in an arbitrary order compatible with the top-to-bottom and
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left-to-right partial order of the cells. For each cell, we perform an update
on matrix P . At the end of the sweep, we will have P = Pa,vb∼.

Consider a cell indexed by l̂ ∈ 〈0 : m〉, ı̂ ∈ 〈0 : n〉. We define the cell’s
parameters to be characters a(l̂), b(̂ı). Let i∗ = ı̂ + m − l̂. The update is
performed on a 2× 2 induced permutation submatrix of P as follows:

P 〈·, i∗ − 1 : i∗ + 1〉 ←{(
0 1
1 0

)
if a(l̂) 6= b(̂ı) and P 〈·, i∗ − 1 : i∗ + 1〉 =

(
1 0
0 1

)
unchanged otherwise

The current cell can be regarded as an automaton, performing the update
on the submatrix from an input state into the output state.

The sequence of updates on matrix P can be interpreted as the fol-
lowing sequence of updates on the alignment dag. We start with a trivial
full-match dag, which consists entirely of match cells. We then sweep the
cells in the order described above. In each step, we transform a match cell
into a mismatch cell, if the corresponding characters mismatch in the input
strings. By Theorem 8, the algorithm maintains the invariant “current state
of matrix P is the implicit highest-score matrix for the current state of the
alignment dag”. Therefore, at the end of the sweep, we have P = Pa,vb∼.

Cost analysis. For every cell, the 2×2 column-induced submatrix P 〈·, i∗−
1 : i∗ + 1〉 can be obtained from matrix P in time O(1). The cell update
also runs in time O(1). Therefore, the overall running time is O(mn).

The memory cost is dominated by storing the input and the linear rep-
resentation of the current matrix P . Therefore, the overall memory cost is
O(m+ n).

In the course of the computation by Algorithm 1, the semi-local LCS
problem is solved implicitly for all prefixes of a against all prefixes of b.
The algorithm can be interpreted in terms of seaweeds as follows. Each
seaweed is traced across the alignment dag in the top-to-bottom or left-to-
right direction. A seaweed runs in a straight line by default; however, its
direction may be affected by match cells, and by other seaweeds. Every
cell has two seaweeds passing through it, one entering across the top edge
and another across the left-hand edge. In a match cell, both seaweeds “bend
away” from each other, so the seaweed entering at the top exits on the right,
and the seaweed entering on the left exits at the bottom. In a mismatch
cell, the two seaweeds keep straight and cross each other, if and only if this
pair of seaweeds have not previously crossed; otherwise, they bend away as
in a match cell. Therefore, any given pair of seaweeds are only allowed to
cross at most once in the course of the computation. Notice that the same
property of crossing at most once also holds for any pair of highest-scoring
paths in the dag.
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Figure 3.1: A snapshot of Algorithm 1 (the seaweed algorithm)

Figure 3.1 shows a snapshot of Algorithm 1. The dag area that has
already been processed is shown by the dark border; the cell currently being
processed is shaded. Since the two seaweeds crossing in the current cell
have previously crossed, the current step will leave the implicit highest-
score matrix unchanged, so that the second crossing is not allowed. The
final layout of the seaweeds is the one given in Figure 2.3, which describes
the full sequence of states of the implicit highest-score matrix in Algorithm 1.

Recall that the dag cells in Algorithm 1 can be processed in any or-
der consistent with the left-to-right and top-to-bottom dependency partial
order. In particular, the cell processing order can be fixed so that the al-
gorithm will compute incrementally the implicit highest-score matrix for all
prefixes of string a against string b. By keeping the algorithm’s intermediate
data, we obtain a data structure that allows efficient LCS queries for every
prefix of a against every substring of b. As in the classical dynamic program-
ming approach, this data structure can be used to trace back (i.e. to obtain
character by character) the actual LCS corresponding to a prefix-substring
LCS query, in time proportional to the size of the output (i.e. the length
of the output subsequence). Alternatively, a technique similar to memory-
efficient dynamic programming by Hirschberg [47] can be applied to achieve
prefix-substring LCS traceback in the same asymptotic time, but in a linear
amount of memory.

Under the “equal/unequal” character comparison model, Algorithm 1
matches the lower bound on the (global) LCS problem by Aho et al. [3] (see
also a survey by Bergroth et al. [17] and references therein). Therefore, in
this model the algorithm is asymptotically optimal.

3.2 Incremental LCS and semi-local LCS

The incremental LCS problem was introduced by Landau et al. [64], and by
Kim and Park [58]. Given a fixed text string, the problem asks its LCS score
against a variable pattern string, which can be modified on-line by either
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appending or prepending a character. An extension, called fully-incremental
LCS problem, was introduced by Ishida et al. [51]. Here, both input strings
can be modified on-line in a similar fashion. In both versions of the problem,
the goal is to maintain a data structure that will store the LCS score for the
input strings, and will allow efficient on-line updates of this score.

Let a, b denote the current state of each input string, and m, n their
respective current size. Works [64, 58] give incremental LCS algorithms with
worst-case update time O(m), where input string a is kept fixed. Work [51]
extends this result to a fully-incremental LCS algorithm with worst-case
update time O(m) (respectively, O(n)) when input string a (respectively, b)
is kept fixed.

We now give an algorithm for the fully-incremental LCS problem, match-
ing the above algorithms in running time. Our algorithm is a straightforward
generalisation of Algorithm 1. Intuitively, the dynamic data structure con-
sists of the endpoints of all the seaweeds in the current state of the core
alignment dag. Prepending or appending a character to string a (respec-
tively, b) corresponds to adding a new row of cells along the top or bottom
(respectively, left or right) boundary of the core dag.

The same technique also extends to the case where the dynamic data
structure is required to support, in addition to the global LCS score, also
semi-local LCS queries. By Theorem 1, a data structure allowing efficient
semi-local LCS score queries can be maintained at an extra time O

(
(m +

n) log(m+ n)
)

per character update.
We now give another generalisation of incremental string comparison.

Consider a fixed text string of length n and a variable pattern string, which
can be modified on-line by either appending or prepending a block of charac-
ters from a pre-specified set of admissible blocks. The set of admissible blocks
is known in advance, and off-line preprocessing of this set is allowed. The
block-incremental LCS problem asks, as before, to maintain a data structure
that will store the LCS score for the text against the pattern, and will allow
efficient on-line updates of this score.

Consider an individual block update, and let l be the corresponding block
length. Such an update can be done naively as l single-character updates,
giving the block update time O(nl).

We now give an algorithm for the block-incremental LCS problem, that
improves on the naive algorithm in running time. The set of admissible
blocks is preprocessed off-line by computing the implicit highest-score matrix
for the text string against every admissible block. The preprocessing runs in
time O

(
n·L

)
, where L is the total length of the admissible blocks. Given the

implicit highest-score matrices, an individual block update can be performed
by Theorem 10 in time O(n log l).
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3.3 Common-substring LCS and semi-local LCS

The common-substring LCS problem was introduced by Landau et al. [66,
27]. Given a text string of length n and an unspecified number of pattern
strings, the problem asks for the LCS score of the text against each of the
patterns. The pattern strings may share a common substring of length l; we
assume l ≤ n. A pattern string may contain several copies of the common
substring; the locations of all the copies are known in advance. The goal is,
given the text, to preprocess the common substring so as to minimise the
LCS computation time for each occurrence of the common substring in the
patterns.

The problem can be solved naively by computing the LCS score for the
text against each of the patterns, ignoring the common-substring structure.
The resulting algorithm does no preprocessing, and runs in time O(nl) for
each occurrence of the common substring.

An improved algorithm is given in [66, 27]. This algorithm, following
some preprocessing in time O(nl), runs in time O(n) for each occurrence of
the common substring.

We now give an algorithm for the common-substring LCS problem, that
matches the above algorithm both in preprocessing and running time. We
preprocess the common substring in time O(nl), obtaining the implicit
highest-score matrix for the text against the common substring. For ev-
ery pattern string, row 0 of the implicit highest-score matrix can now be
computed incrementally by repeated application of Theorem 9. Each incre-
mental update takes time O(n) per occurrence of the common substring in
the pattern, and the same time O(n) per pattern character outside any such
occurrence.

We now consider the more general semi-local common-substring LCS
problem. As in the ordinary semi-local LCS problem, string-substring, substring-
string, prefix-suffix and suffix-prefix LCS score queries are now allowed be-
tween the text and each of the patterns.

Similarly to the global common-substring LCS problem, its semi-local
version can be solved naively by computing the implicit highest-score matrix
for the text against each of the patterns, ignoring the common-substring
structure. The resulting algorithm does no preprocessing, and runs in time
O(nl) for each occurrence of the common substring.

We now give an algorithm for the semi-local common-substring LCS
problem, improving on the naive algorithm in running time. As before,
we preprocess the common substring in time O(nl), obtaining the implicit
highest-score matrix for the text against the common substring. For ev-
ery pattern string, the implicit highest-score matrix can now be computed
incrementally, starting from an arbitrary occurrence of the common sub-
string. The resulting algorithm can be regarded as a special case of the
block-incremental LCS algorithm from Section 3.2. Each incremental up-
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date takes time O(n log l) per occurrence of the common substring in the
pattern, and O(n) per pattern character outside any such occurrence. Over-
all, the algorithm takes time O(n) for the first occurrence of the common
substring in a pattern, and time O(n log l) for each subsequent occurrence in
the same pattern. In particular, if the common substring only occurs in ev-
ery pattern string once, our algorithm improves on the algorithm of [66, 27]
in functionality, without any increase in the asymptotic running time.
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Chapter 4

The micro-block seaweed
method

4.1 The micro-block seaweed algorithm

In the previous chapter, we assumed the character comparison model that
only allows comparison outcomes “equal” and “unequal”. As mentioned in
Section 3.1, the LCS problem in this model has a lower bound of Ω(mn),
which is matched by both the standard dynamic programming algorithm,
and by the seaweed algorithm. Both these algorithms sweep the alignment
dag cell by cell, and perform in every cell a constant amount of work, as-
suming the unit-cost RAM computation model.

We now switch to a more powerful character comparison model, assum-
ing that the alphabet is a totally ordered set, and comparison outcomes are
“less than”, “equal” and “greater than”. In this model, we no longer need to
process every dag cell individually, so algorithms with running time o(mn)
become possible. This is true even if the computation model assumption
is weakened, so that character comparisons and arithmetic operations are
charged using the log-cost RAM model.

We assume without loss of generality that m ≤ n, and that m and n are
reasonably close, so m = Ω

( logn
log logn

)
. In such a setting, LCS computation

can be accelerated by the method originated by Arlazarov et al. [11], often
called the “four Russians method”. In this work, we call it the micro-
block method, adapting the terminology of Bille and Gørtz [18]. Using the
micro-block method, Masek and Paterson [73] gave an algorithm for the
(global) LCS problem running in time O

(
mn

logn

)
for a constant-size alphabet1,

and in time O
(mn(log logn)2

logn

)
for an unbounded-size alphabet (the latter was

observed in [81]).
1In the unit-cost RAM model, the algorithm of [73] can be accelerated by another

factor of O(log n) (see e.g. [100]) for a constant-size alphabet. This technique does not
seem to apply in the case of an unbounded-size alphabet.
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We now give an algorithm for semi-local LCS running in subquadratic
time, which achieves a slight improvement on Algorithm 1 in running time.
Our algorithm also matches the algorithm of [73] in running time for an
unbounded-size alphabet, while improving on it in functionality. In the case
of a constant-sized alphabet, the running time of our algorithm remains
unchanged, while the algorithm by Masek and Paterson is accelerated by a
factor of O

(
(log log n)2

)
.

Algorithm 2. Semi-local LCS: the micro-block seaweed algorithm.

Input, output: as in Algorithm 1; we let t = logn
4·log logn , where the loga-

rithms are base 2, and assume that t ≤ m ≤ n.

Description. Without loss of generality, we may assume that m = n; oth-
erwise, we can partition string b into dm/ne blocks of size at most m, and
process each block separately by the current algorithm. Also, without loss
of generality, we may assume that the alphabet size is at most 2n, and that
the characters are encoded by values in the range 〈−n : n〉. We call two
strings of equal length isomorphic, if one can obtained from the other by a
permutation of the alphabet.

As in Algorithm 1, we will maintain a variable matrix P with the same
core and offset as the output matrix Pa,vb∼. We let initially P ← Idm. The
main idea of the algorithm is to sweep the alignment dag in micro-blocks of
size t; this size is chosen so that running time can be saved by precomputing
all possible updates in advance, rather than performing every update as
it appears in the alignment dag. At the end of the sweep, we will have
P = Pa,vb∼.

The described idea by itself is sufficient to obtain a subquadratic algo-
rithm in the unit-cost RAM model. In this case, we can sweep the micro-
blocks of the alignment dag in an arbitrary order compatible with the top-
to-bottom and left-to-right partial order of the micro-blocks. However, in
order to perform the computation efficiently in the log-cost RAM model, we
must fix the order of the micro-blocks to be a specific recursive quadtree
order. The root of the recursion tree is the whole dag of size n, the chil-
dren of a block of size h are four subblocks of size h/2, and the leaves are
the micro-blocks of size t. For each micro-block, we perform an update on
matrix P .

Consider any block of cells of size h, indexed by 〈l, l+h〉×〈i, i+h〉, where
l ∈ [0 : m− h], i ∈ [0 : n− h]. We define the block’s parameter sequence as
the sequence of characters in the substrings a〈l : l+h〉, b〈i : i+h〉. Let i∗ =
i+m− l. The current block can be regarded as an automaton, performing
the update on the 2h× 2h column-induced permutation submatrix P 〈·, i∗−
h, i∗ + h〉 from an input state into the output state.

The elements of the parameter sequence are characters, encoded by val-
ues in the range 〈−n : n〉. The input and output states are described by the
row and column indices of the nonzeros; the natural range of such values
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is also 〈−n : n〉. However, in order to perform the computation efficiently
in the log-cost RAM model, these ranges have to be remapped to smaller
ranges in every level of the recursion. For a block of size h, the param-
eter sequence and the input and output states consist each of 2h values,
ranging over 〈−h : h〉. For each of the four block’s children of size h

2 , the
parameter sequence and the input and output states consist each of h values;
therefore, these values can be remapped bijectively to the range 〈−h

2 : h
2 〉,

preserving their linear order. Such a remapping can be easily performed in
O(h) operations.

We process a block of size h in the recursion tree as follows. First, we
form the parameter sequence and the input state for its top-left child block,
and remap their elements from range 〈−h : h〉 to range 〈−h

2 : h
2 〉. Then,

we call the algorithm recursively, obtaining the output state of the top-left
child block, and remap its elements from range 〈−h

2 : h
2 〉 back to range

〈−h : h〉. We repeat the same procedure (forming parameter sequences and
input states, remapping their elements to a reduced range, performing the
recursive call, remapping the output state back to the original range) on the
top-right and bottom-left child blocks, and then on the bottom-right child
block.

The base of the recursion is a micro-block of size t. In this case, the
update is performed on a 2t× 2t column-induced permutation submatrix of
P as follows:

P 〈·, i∗ − t : i∗ + t〉 ←
update

(
a〈l : l + t〉, b〈i : i+ t〉, P 〈·, i∗ − t : i∗ + t〉

)
The parameter sequence and the input state consist each of 2t values, ranging
over 〈−t : t〉. For each of the at most (2t)2t+2t = (2t)4t possible combinations
of the parameter and input values, the output values given by the function
update are precomputed in advance, using Algorithm 1.

Similarly to Algorithm 1, the sequence of updates on matrix P corre-
sponds to the following sequence of updates on the alignment dag. We start
with a trivial full-match dag. We then sweep the dag in micro-blocks of size
t, in the quadtree order described by the above recursion. In each step, we
transform a full-match micro-block into a micro-block defined by the input
strings. The algorithm maintains the invariant “current state of matrix P
is the implicit highest-score matrix for the current state of the alignment
dag”. Therefore, at the end of the sweep, we have P = Pa,vb∼.

Cost analysis. In the precomputation stage, there are at most (2t)4t prob-
lem instances, each of which runs in time O(t2 log t) in the log-cost RAM
model. Therefore, the running time of the precomputation is O

(
(2t)4t ·

t2 log t
)

= O
(
24t·log(2t) · t2 log t

)
= o

(
2

log n
log log n

·log logn · (log n)O(1)
)

= o(2logn ·
(log n)O(1)) = o(n · (log n)O(1)), which is clearly dominated by the main
computation stage.
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Figure 4.1: A snapshot of Algorithm 2 (the micro-block seaweed algorithm)

In the main computation stage, the running time of the recursion is domi-
nated by its base. There are mn

t2
micro-block update steps, each of which runs

in time O(t log t) in the log-cost RAM model. Therefore, the total running
time of the algorithm is mn

t2
·O(t log t) = O

(mn log t
t

)
= O

(mn(log logn)2

logn

)
.

Figure 4.1 shows a snapshot of Algorithm 2, using the same conventions
as Figure 3.1. For simplicity, this illustration ignores the recursive quadtree
micro-block ordering, and instead assumes an ordering similar to that of
Figure 3.1, yielding a subquadratic algorithm in the unit-cost RAM model
only. As in Algorithm 1, the final layout of the seaweeds is the one given in
Figure 2.3.

4.2 Cyclic LCS

Given strings a, b of length m, n respectively, the cyclic LCS problem asks
for the highest LCS score between a and all cyclic shifts of b (or, equivalently,
all cyclic shifts of a and all cyclic shifts of b).

Cyclic string comparison has been considered by Maes [70], Bunke and
Bühler [19], Landau et al. [64], Schmidt [88], Marzal and Barrachina [72].
Works [64, 88] give algorithms that solve the cyclic LCS problem in worst-
case time O(mn).

We now give a new algorithm for the cyclic LCS problem, improving
on the existing algorithms in running time. First, we call Algorithm 2 on
strings a and bb (a concatenation of string b with itself). Then, we perform n
string-substring LCS queries for a against every substring of bb of length n,
and take the maximum score among these queries. The overall running time
is dominated by the call to Algorithm 2, which runs in time O

(mn(log logn)2

logn

)
.
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4.3 Longest repeating subsequence

Given a string a of length n, the longest repeating subsequence problem
asks for the length of the longest subsequence of a that is a square, i.e. a
concatenation of two identical strings.

This problem has been considered under the name “longest tandem scat-
tered subsequence problem” by Kosowski [60], who gave an algorithm run-
ning in time O(n2).

We now give a new algorithm for the longest repeating subsequence
problem, improving on the existing algorithm in running time. First, we call
Algorithm 2 on string a against itself. Then, we perform n− 1 prefix-suffix
LCS queries for every possible non-trivial prefix-suffix decomposition of a,
and take the maximum score among these queries. The overall running time
is dominated by the call to Algorithm 2, which runs in time O

(n2(log logn)2

logn

)
.

4.4 Approximate pattern matching

Approximate pattern matching is a classical generalisation of both the align-
ment score (or, equivalently, edit distance) problem, and of ordinary pattern
matching. Given a text string t of length m and a pattern string p of length
n, the approximate pattern matching problem asks to find the substrings of
the text that are locally closest to the pattern, i.e. that have the locally
highest alignment score (or, equivalently, lowest edit distance) against the
pattern. The precise definition of “locally” may vary in different versions of
the problem. Some well-known types of approximate pattern matching are:

• the complete approximate matching problem, which assumes an align-
ment score with arbitrary weights, and asks for the highest-scoring
prefix in every suffix of the text (that is, the row maxima of the highest-
score matrix Hp,vt∼);

• the threshold approximate matching problem, which assumes an align-
ment score with arbitrary weights, and, given a threshold score h,
asks for all substrings of the text that have alignments score at least
h against the pattern;

• the minimal-window subsequence recognition problem, which asks for
all inclusion-minimal substrings in the text containing the pattern as
a substring (that is, the dominance-minimal global maxima of the
highest-score matrix Hp,vt∼, as long as the global maximum of m is
attained, and assuming the LCS alignment score).

• the fixed-window subsequence recognition problem, which, given a win-
dow length w, asks for all substrings of length w of the textAS con-
taining the pattern as a substring (that is, the global maxima of the
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highest-score matrix Hp,vt∼ on the diagonal j − i = w, as long as the
global maximum of m is attained, and assuming the LCS alignment
score).

A classical algorithm by Sellers [89], which is a modification of the stan-
dard dynamic programming algorithm, solves the complete approximate pat-
tern matching problem in time O(mn). Assuming a rational set of weights,
and keeping the model assumptions of Section 4.1, the micro-block method
gives an algorithm running in time O

(
mn

logn

)
for a constant-size alphabet, and

in time O
(mn(log logn)2

logn

)
for an unbounded-size alphabet. Various extensions

of the problem have been considered by Landau and Vishkin [65], Cormode
and Muthukrishnan [26] and many others (see e.g. a survey by Navarro [78]
and references therein).

The minimal-window and fixed-window subsequence recognition prob-
lems are considered by Das et al. [30] as “episode matching problems”. For
both problems, they give an algorithm with running in time O

(
mn

logn

)
for a

constant-size alphabet, which again can be modified to an algorithm running
in time O

(mn(log logn)2

logn

)
for an unbounded-size alphabet. A multi-pattern

version of the problems has been considered by Cégielski et al. [23].
We now give a new unified algorithm for the described three versions

of approximate pattern matching. Our algorithm matches the algorithms
based on [73] and on [30] in running time for an unbounded-size alphabet.

The new algorithm is as follows. First, we call Algorithm 2 on strings p, t
(in case of rational weights, via the subdivided alignment dag of Section 2.4),
obtaining the implicit highest-score matrix Pp,vt∼. By Theorem 1, we then
build a data structure that allows to query any element of the highest-
score matrix Hp,vt∼ in polylogarithmic time. Since matrix Hp,vt∼ is anti-
Monge, all the row maxima can now be found efficiently by the algorithm of
Lemma 2. The overall running time is dominated by the call to Algorithm 2,
which runs in time O

(mn(log logn)2

logn

)
.
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Chapter 5

Periodic string comparison

5.1 The periodic seaweed algorithm

In many string comparison applications, one or both of the input strings
may have periodic structure. In this chapter, we show how to exploit such
structure efficiently, using a variant of the seaweed method.

Consider the problem of comparing a finite string a of length m against
a string b, which is infinite in both directions and periodic: b = u±∞ =
. . . uuuu . . . The period string u is finite of length p.

Definition 18. Given strings a, u, the periodic string-substring LCS prob-
lem asks for the LCS score of a against every finite substring of b = u±∞.

Without loss of generality, we assume that every character of a occurs
in u at least once. Clearly, the length of the substring of b in Definition 18
can be restricted to be at most mp.

The definition of the alignment dag (Definition 12) extends naturally to
the periodic string-substring LCS problem. The alignment dag is itself pe-
riodic: the edges vl,̂ı− 1

2
+kp → vl,̂ı+ 1

2
+kp (respectively, vl̂− 1

2
,i+kp → vl̂+ 1

2
,i+kp,

vl̂− 1
2
,̂ı− 1

2
+kp → vl̂+ 1

2
,̂ı+ 1

2
+kp) have equal scores for all l ∈ [l0 : l1], l̂ ∈ 〈l0 : l1〉,

i ∈ [i0, i1], ı̂ ∈ 〈i0 : i1〉, k ∈ [−∞ : +∞]. Such an alignment dag can also
be regarded as a horizontal composition of an infinite sequence of period
subdags, each of which is isomorphic to the m× p alignment dag Ga,u.

Consider the highest-score matrix Ha,b and its implicit representation
Pa,b; note that, since string b is already infinite, it does not require any
extension by wildcards. Matrices Ha,b, Pa,b are again periodic: we have
Ha,b(i, j) = Ha,b(i + p, j + p) for all i, j ∈ [−∞ : ∞], and Pa,b(̂ı, ̂) =
Ha,b(̂ı + p, ̂ + p) for all ı̂, ̂ ∈ 〈−∞ : ∞〉. To represent such matrices,
it is sufficient to store the p nonzeros of the horizontal period submatrix
Pa,b〈0 : p, ∗〉, or, symmetrically, of the vertical period submatrix Pa,b〈∗, 0 : p〉.
The nonzero sets of the two period submatrices can be obtained from one
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another in time O(p); we will be using both of them simultaneously where
necessary.

The periodic string-substring LCS problem can be solved by a simple
extension of the seaweed algorithm (Algorithm 1). Following the periodic
structure of the highest-score matrix, the seaweed pattern is also periodic.
Hence, the seaweeds only need to be traced within a single period subdag,
with appropriate wraparound.

Algorithm 3. Periodic string-substring LCS: the periodic seaweed algo-
rithm.

Input: strings a, u of length m, p, respectively.

Output: implicit highest-score matrix Pa,b, represented by nonzeros of (say)
vertical period submatrix Pa,b〈∗, 0 : p〉, where b = u±∞.

Description. The output matrix is periodic with period p. We will main-
tain a variable matrix P with the same period. We let initially P ← Idm
(which is a periodic matrix). Then, we sweep the cells of the period subdag
as follows. In the outer loop, we run through the rows of cells top-to-bottom.
For the current row l̂ ∈ 〈0 : m〉, we start the inner loop at an arbitrary match
cell ı̂0 ∈ 〈0 : p〉, so we have a(l̂) = b(̂ı). Such a match cell is guaranteed to
exist by the assumption that every character of a occurs in u at least once.
Then, we sweep the cells from ı̂ = ı̂0 left-to-right, wrapping around from
ı̂ = p − 1

2 to ı̂ = 1
2 , and continuing the sweep left-to-right up to ı̂ = ı̂0 − 1.

For each cell, we perform an update on matrix P . At the end of the sweep,
we will have P = Pa,b.

Consider a cell indexed by l̂ ∈ 〈0 : m〉, ı̂ ∈ 〈0 : p〉. We define the cell’s
parameters to be characters a(l̂), b(̂ı). Let i∗ = ı̂+m− l. As in Algorithm 1,
the update is performed on a 2× 2 column-induced permutation submatrix
of P as follows:

P 〈·, i∗ − 1 : i∗ + 1〉 ←{(
0 1
1 0

)
if a(l̂) 6= b(̂ı) and P 〈·, i∗ − 1 : i∗ + 1〉 =

(
1 0
0 1

)
unchanged otherwise

Note that the first update in an inner loop is always trivial: we have a(l̂) =
b(̂ı0), therefore P remains unchanged.

The sequence of updates on matrix P can be interpreted as a sequence
of updates on the alignment dag, as described in Algorithm 1, but now
including the wraparound. Therefore, at the end of the sweep, we have
P = Pa,b.

Cost analysis. For every cell, the 2×2 column-induced submatrix P 〈·, i∗−
1 : i∗ + 1〉 can be obtained from the vertical period submatrix of P in time
O(1). The cell update also runs in time O(1). Therefore, the overall running
time is O(mp).
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Figure 5.1: A snapshot of Algorithm 3 (the periodic seaweed algorithm)

The memory cost is dominated by storing the input and the period
submatrix of the current matrix P . Therefore, the overall memory cost is
O(m+ p).

Figure 5.1 shows a snapshot of Algorithm 3, using the same conventions
as Figure 3.1.

Note that the cell updating order in Algorithm 3 is significantly more
restricted than in Algorithm 1, due to the extra data dependencies caused
by the wraparound. This seems to rule out the possibility of a micro-block
version of the algorithm.

5.2 Tandem alignment

The periodic LCS problem has many variations that can be solved by an
application of the periodic seaweed algorithm.

The first such variation is the tandem LCS problem. The problem asks
for the LCS score of a string a of length m against a tandem k-repeat string
b = uk of length n = kp. As before, we assume that every character of a
occurs in u at least once. We may assume that k ≤ m (since for k ≥ m, every
character of a can be matched to a different copy of u in b, and therefore
the LCS score between a and b is equal to m).

The tandem LCS problem can be solved naively by considering the LCS
problem directly on strings a and b, ignoring the periodic structure of string
b. The standard dynamic programming algorithm [79, 97] solves the problem
in time O(mn) = O(mkp). This running time can be slightly improved by
the micro-block precomputation method [73].

The tandem LCS problem can also be regarded as a special case of the
common-substring LCS problem [66, 27] (see also Section 3.3). Using this
technique, the problem can be solved in time O

(
m(k + p)

)
. The techniques

of Landau et al. [27, 63] give an algorithm for the tandem LCS problem,
parameterised by the LCS score of the input strings; however, the worst-case
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running time of this algorithm is still O
(
m(k+p)

)
. Landau [62] asked if the

running time for the tandem LCS problem can be improved to O
(
m(log k+

p)
)
.
We now give an algorithm that improves on the current algorithms in

time and functionality, and even exceeds Landau’s expectation. First, we
call Algorithm 3 on strings a and u. Then, we count the number of nonzeros
dominated by point (0, n), i.e. nonzeros in the submatrix Pa,b〈0 : +∞,−∞ :
n〉. Given the (say) horizontal period submatrix Pa,b〈0 : p, ∗〉, this can be
done by a sweep of its p nonzeros, counting every nonzero with appropriate
multiplicity. More precisely, every nonzero Pa,b(i, j) = 1, i ∈ 〈0 : p〉, j ∈
〈−∞ : ∞〉, is counted with multiplicity k − bj/pc, if j ∈ 〈0 : n〉, and is
skipped (counted with multiplicity 0) otherwise. The solution to the tandem
LCS problem is then obtained by Theorem 8. The overall running time is
dominated by the call to Algorithm 3, which runs in time O(mp).

Another set of variations on the periodic LCS problem was introduced
by Benson [15] as the tandem alignment problem. Instead of asking for all
string-substring LCS scores of a against b = u±∞, the tandem alignment
problem asks for a substring of b that is closest to a in terms of alignment
score (or edit distance), under different restrictions on the substring. In
particular:

• the pattern global, text global (PGTG) tandem alignment problem re-
stricts the substring of b to consist of a whole number of copies of u,
i.e. to be of the form uk = uu . . . u for an arbitrary integer k;

• the tandem cyclic alignment problem restricts the substring of b to be
of length kp for an arbitrary integer k (but it may not consist of a
whole number of copies of u);

• the pattern local, text global (PLTG) tandem alignment problem leaves
the substring of b unrestricted.

All three versions of the tandem alignment problem can be regarded as
special cases of the approximate pattern matching problem (see Section 4.4)
on strings a of length m and b′ = um of length n = kp (but with the roles of
the text and the pattern reversed). Therefore, the tandem LCS problem can
be solved naively by considering the approximate pattern matching problem
directly on strings a and b′, ignoring the periodic structure of string b′.
Given an arbitrary (real) set of alignment weights, the classical algorithm
by Sellers [89] solves the problem in time O(mn) = O(mkp). For a rational
set of weights, the running time can again be slightly improved by the micro-
block precomputation method (see Section 4.4).

The PGTG and PLTG tandem alignment problems can be solved more
efficiently by the technique of wraparound dynamic programming [76, 37]
(see also [15]) in time O(mp). For the tandem cyclic alignment problem,
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Benson [15] modified this technique to give an algorithm running in time
O(mp log p) and memory O(mp).

We now give a new algorithm for the tandem cyclic alignment prob-
lem, which improves on the existing algorithm in running time, assuming a
rational set of alignment weights. The running time of the new algorithm
matches the current algorithms for the PGTG and PLTG tandem alignment
problems.

Given input strings a, u, we first solve the periodic string-substring prob-
lem by calling Algorithm 3. This gives us a period submatrix of matrix Pa,b,
where b = u±∞. Then, for each k, 0 < k < m, we perform independently the
following procedure. We solve the tandem LCS problem for strings a and
uk by the method described earlier in this section, counting every nonzero
in the period submatrix Pa,b with an appropriate multiplicity. This gives us
the LCS score for a against uk for every k. We then update this score incre-
mentally, obtaining the LCS score for string a against a window of length p
in b, sliding through p successive positions. This is equivalent to querying
p successive elements in a diagonal of matrix Pa,b, which can be achieved
by 2p incremental dominance counting queries. By Theorem 2, every one of
these queries can be performed in time O(1).

The call to Algorithm 3 runs in time O(mp); its output is shared by the
tandem LCS computation for all k. For each k, the running time of the
remaining computation is O(p). Therefore, the combined running time for
all values of k is m · O(p) = O(mp). Overall, the algorithm runs in time
O(mp).
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Chapter 6

Permutation string
comparison

6.1 Semi-local LCS between permutations

An important special case of string comparison is where each of the input
strings a, b is a permutation string, i.e. a string that consists of all distinct
characters. Without loss of generality, we may assume that m = n, and
that both strings are permutations of a given totally ordered set of size n.
The semi-local LCS problem on permutations is equivalent to finding the
length of the longest increasing subsequence (LIS) in every substring of a
given permutation string. In the rest of this section, we give an efficient
algorithm for this problem.

For consistency with the notation in previous chapters, we will assume
that a permutation string of length n is indexed by odd half-integers 〈0 : n〉,
and is over the alphabet 〈0 : n〉, unless indicated otherwise. The identity
permutation string of length n is the string id =

(
1
2 ,

3
2 , . . . , n − 1

2

)
. Given

a string a, we denote by Σ(a) the set of characters appearing in a at least
once. For a set of characters S, we denote by a|S the filtered subsequence of
a, which consists only of those characters that belong to S.

Algorithm 4. Semi-local LCS between permutations.

Input: permutation strings a, b of length n over an alphabet of size n.

Output: implicit highest-score matrix Pa,vb∼, represented by core nonzeros.

Description. Recursion on n.

Recursion base. If n = 1, the computation is trivial.

Recursive step. Assume without loss of generality that n > 1 is even. We
partition the input string a into a concatenation a = a′a′′ of two strings of
length n

2 . Each of the strings a′, a′′ is a permutation string over n
2 characters.
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Figure 6.1: An execution of Algorithm 4

The implicit highest-score matrices Pa′,vb∼, Pa′′,vb∼ contain each 3n
2 core

nonzeros. Note that for all ı̂ ∈ 〈0 : n〉, we have Pa′,vb∼(̂ı, ı̂) = 1, whenever
b(̂ı) 6∈ Σ(a′). There are exactly n

2 such trivial core nonzeros in Pa′,vb∼. The
remaining n core nonzeros in Pa′,vb∼ can be obtained by solving recursively
the semi-local LCS problem on strings a′ and b′ = b|Σ(a′), both of which are
permutations strings over the character set Σ(a1) = Σ(b′) of size n

2 . Simi-
larly, there are exactly n

2 trivial core nonzeros in Pa′′,vb∼, and the remaining
n core nonzeros can be obtained by solving recursively the semi-local LCS
problem on strings a′′ and b′′ = b|Σ(a′′). Strings b′, b′′ can be computed easily
from strings a′, a′′, b, at the cost of sorting their character sets.

Finally, given matrices Pa′,vb∼, Pa′′,vb∼, matrix Pa,vb∼ is computed by a
call to the algorithm of Theorem 10, which calls the algorithm of Theorem 7
as a subroutine. Note that we now have two nested recursions: the current
recursion, and the recursion of Theorem 7.

End of recursive step.

Cost analysis. The recursion tree is a balanced binary tree of height log n.
In the root node, the running time is dominated by the call to the algorithm
of Theorem 10, and is therefore O(n log n). In each subsequent level of the
recursion tree, the number of nodes doubles, and the running time per node
is reduced by at least a factor of 2. Therefore, the running time per level is
O(n log n). The overall running time is log n ·O(n log n) = O(n log2 n).

Figure 6.1 shows an execution of Algorithm 4.
By keeping the algorithm’s intermediate data, we obtain a data structure

that allows efficient traceback of any semi-local LCS query on a pair of
permutations, in time proportional to the size of the output (i.e. the length
of the output subsequence). A related problem of tracing back LIS in every
substring of a fixed size in a permutation has been studied by Albert et al.
[6] and by Chen et al. [24]. In particular, work [24] gives an algorithm that
runs in time proportional to the size of the output (i.e. the combined lengths
of all the output subsequences). In the same work, the algorithm is also
generalised for tracing back the LIS in an arbitrary subset of n substrings,
possibly of different sizes. In both versions of the problem, the size of the
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output, and therefore the algorithm’s running time, can be as high as Θ(n2).
In contrast, Algorithm 4 allows efficient LIS traceback for any individual
substring.

6.2 Cyclic LCS between permutations

The cyclic LCS problem has been defined in Section 4.2. Given permutation
strings a, b of length n, the cyclic LCS problem on a, b is equivalent to the
LIS problem on a circular string.

This problem has been considered by Albert et al. [5], who gave a Monte
Carlo randomised algorithm, running in time O(n1.5 log n) with small error
probability.

We now give a new algorithm for cyclic LCS between permutations,
that improves on the above algorithm both in running time, and by being
deterministic. First, we call Algorithm 4, obtaining the implicit highest-
score matrix Pa,vb∼. Then, we run the algorithm of Theorem 10 on matrix
Pa,vb∼ against itself, obtaining the implicit highest-score matrix Paa,vb∼.
Finally, we perform n substring-string LCS queries for every substring of aa
of length n against string b. The overall running time is dominated by the
call to Algorithm 4, which runs in time O(n log2 n).

A version of the cyclic LCS problem between permutations, parame-
terised by the output LCS length l, has also been considered by Albert et
al. [5], who gave an algorithm running in time O(nl log n). This was im-
proved upon by Deorowicz [33], who gave an algorithm running in time
O
(
min(nl, n log n + l3 log n)

)
. Our algorithm described above improves on

the algorithm of [33], unless l = o
(
(n log n)1/3

)
.

6.3 Longest pattern-avoiding subsequences

Two given permutation strings a, b of equal length (but generally over dif-
ferent alphabets) are called isomorphic, if they have the same relative order
of characters, i.e. a(̂ı) < a(̂) iff b(̂ı) < b(̂) for all ı̂, ̂. Given a target
permutation string t of length n and a pattern permutation string p of fixed
length, the longest p-isomorphic subsequence problem, or simply the longest
p-subsequence problem, asks for the longest subsequence of t that is isomor-
phic to p. More generally, given a set of pattern permutation strings X, the
longest X-subsequence problem asks for the longest subsequence of t that is
isomorphic to any pattern string in p. For example, the LIS problem can
be interpreted as the longest X-subsequence problem, where X is a set of
identity permutation strings, one of each length m ∈ [1 : n].

Given a set of antipattern permutation strings Y , the longest Y -avoiding
subsequence problem asks for the longest subsequence of t that does not
contain a subsequence isomorphic to any string in Y . For example, the LIS
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problem on a permutation string can be interpreted as the longest {"21"}-
avoiding subsequence problem. For a detailed introduction into these prob-
lems and their connections, see the work by Albert et al. [4] and references
therein.

The LIS problem is the only nontrivial example of the longest Y -avoiding
subsequence problem with antipatterns of length 2. Albert et al. [4] gave the
full classification of the longest Y -avoiding subsequence problem for all sets
of antipatterns of length 3. There are 10 non-trivial sets of such antipat-
terns. For each of these sets, the algorithms given in [4] run in polynomial
time, ranging from O(n log n) to O(n5). Two particular antipattern sets
considered in [4] are (in that work’s original notation):

C3 = {"132", "213", "321"}
C4 = {"132", "213", "312"}

For both these antipattern sets, algorithms given in [4] run in timeO(n2 log n).
We now give new algorithms for the longest C3- and C4-avoiding subse-

quence problems, improving on the above algorithms in running time.
Permutations avoiding the antipattern set C3 are all cyclic rotations of

an increasing permutation string. The longest C3-avoiding subsequence in
the target string can be found by the algorithm described in Section 6.2,
running in time O(n log2 n).

Permutations avoiding the antipattern set C4 are all obtained from an
increasing permutation by reversing some suffix. The longest C4-avoiding
subsequence in the target string t can be found as follows. First, we call the
standard LIS algorithm on t, obtaining explicitly prefix-prefix LCS scores

lcs
(
t �(̂ı+ 1

2), id �(t(̂ı) + 1
2)
)

= lcs
(
t �(̂ı− 1

2), id �(t(̂ı)− 1
2)
)

+ 1

for all ı̂ ∈ 〈0 : n〉. Independently, we call Algorithm 4 on t against the
reverse identity permutation idR, and use Theorem 1 to process its output
into a data structure that allows efficient queries of all suffix-prefix LCS
scores lcs

(
t � k, idR � l

)
for all k, l ∈ [0 : n]. Finally, we obtain the solution

to the longest C4-avoiding subsequence problem as

maxı̂
(

lcs
(
t �(̂ı+ 1

2), id �(t(̂ı) + 1
2)
)

+ lcs
(
t �(̂ı+ 1

2), idR �(t(̂ı) + 1
2)
))

for all ı̂ ∈ 〈0 : n〉. The overall running time is dominated by the call to
Algorithm 4, which runs in time O(n log2 n).

6.4 Longest piecewise monotone subsequences

The classical LIS problem asks for the longest increasing (or, equivalently,
decreasing) subsequence in a permutation string. A natural generalisation
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is to ask for the longest subsequence that consists of a constant number
of monotone pieces. In particular, given a permutation string a of length
n, the longest k-piece increasing subsequence (respectively, longest k-modal
subsequence) problem asks for the longest subsequence in a that is a con-
catenation of at most k sequences, all of which are increasing (respectively,
alternate between increasing and decreasing). In the case of the longest
k-modal subsequence problem, we assume without loss of generality that k
is even. Both problems can be solved as an instance of the LCS problem,
comparing the input permutation string a against string idk, i.e. the con-
catenation of k copies of the identity permutation id (respectively, against
string (id idR)k/2, i.e. the concatenation of k alternating copies of id and its
reverse idR). The resulting alignment dag is of size n× kn, and contains kn
match cells. Using standard sparse LCS algorithms [50, 10], such an instance
of the LCS problem can be solved in time O(nk log n). Demange et al. [32]
gave a similar algorithm for the longest k-modal subsequence problem, also
running in time O(nk log n).

We now give a new algorithm for the longest k-piece increasing subse-
quence and the longest k-modal subsequence problems, improving on the
above algorithms in running time, unless k is very small.

Our algorithm is as follows. In the case of the longest k-piece increasing
subsequence problem, we run Algorithm 4, obtaining the implicit highest-
score matrix Pid ,a. Then, we extract the three-way slice P xid ,a, and run on it
the Corollary 1 algorithm log k times, obtaining the three-way slice P x

idk,a
.

In the case of the longest k-modal subsequence problem, we assume without
loss of generality that k is even. We run Algorithm 4 twice, obtaining the
implicit highest-score matrices Pid ,a and PidR,a, from which we obtain matrix
Pid idR,a by Theorem 10. Then, we extract the three-way slice P x

id idR,a
, and

run on it the Corollary 1 algorithm log k− 1 times, obtaining the three-way
slice P x

(id idR)k/2,a
. Finally, for both problems we use the resulting three-way

slice to query the (global) LCS score. The described algorithm runs in time
O(n log2 n) + log k · O(n log n) = O(n log2 n). This is an improvement on
both the sparse LCS approach and the algorithm of [32], as long as k ≥ log n.

6.5 Maximum clique in a circle graph

A circle graph [35, 42] is defined as the intersection graph of a set of chords
in a circle, i.e. the graph where each node represents a chord, and two nodes
are adjacent, whenever the corresponding chords intersect. We consider the
maximum clique problem on a circle graph. The problem is illustrated by
Figure 6.2, where Subfigure 6.2a shows in blue a set of chords defining a
circle graph, with one of the maximum cliques shown in bold.

The interval model of a circle graph is obtained by cutting the circle at
an arbitrary point and laying it out on a line, so that the chords become
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S

(a) The chord model (b) An interval model

Figure 6.2: A circle graph and its maximum clique

(closed) intervals. The original circle graph is isomorphic to the overlap
graph of its interval model, i.e. the graph where each node represents an
interval, and two nodes are adjacent, whenever the corresponding intervals
intersect but do not contain one another. In Subfigure 6.2a, the cut point is
shown by scissors. Subfigure 6.2b shows the corresponding interval model;
the dotted diagonal line contains the intervals, each defined by the diagonal
of blue a square. The squares corresponding to the maximum clique are
shown in bold.

It has long been known that the maximum clique problem in a circle
graph on n nodes is solvable in polynomial time [38]. A number of algorithms
have been proposed for this problem [86, 48, 74, 9]; the problem has also
been studied in the context of line arrangements in the hyperbolic plane
[56, 34]. Given an interval model of a circle graph, the running time of the
above algorithms is O(n2) in the worst case, i.e. when the input graph is
dense. In [94, 96], we gave an algorithm running in time O(n1.5).

We now give a new algorithm for the maximum clique problem in a circle
graph, improving on existing algorithms in running time. The algorithm is
based on the fast matrix distance multiplication procedure of Theorem 7.

Our algorithm takes as input the interval model of a circle graph G on
n nodes. Without loss of generality, we may assume that the set of interval
endpoints is 〈0 : 2n〉. The interval model is represented by a permutation
string a of size 2n, where for each left (respectively, right) interval endpoint
ı̂ ∈ 〈0 : 2n〉, a(̂ı) is the corresponding right (respectively, left) endpoint.
Note that for all ı̂ < ̂, an interval with left endpoint ı̂ does not contain an
interval with left endpoint ̂, if and only if a(̂ı) < a(̂). Various alternative
representations of interval models (e.g. the ones used in [86, 9]) can be
converted to this representation in linear time.

In the interval model, a clique corresponds to a set of pairwise intersect-
ing intervals, none of which contains another interval from the set. Recall
that intervals in the line satisfy the Helly property : if all intervals in a set
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intersect pairwise, then they all intersect at a common point. In our context,
we only need to consider integer indices as intersection points.

Consider a clique in G. Let k ∈ [1 : 2n − 1] be a common intersection
point of the intervals representing the clique, which is guaranteed to exist
by the Helly property. Since the intervals representing the clique cannot
contain one another, the sequence of their right endpoints is an increasing
subsequence of a. Let id be the identity permutation string of length 2n.
From the observations above, it follows that the clique corresponds to a
common subsequence of a prefix a � k and a suffix id � k. Therefore, the
maximum clique can be solved as an instance of the semi-local LCS problem.

Algorithm 5. Maximum clique in a circle graph.

Input: interval model of circle graph G, represented by permutation string
a of size 2n.

Output: maximum-size clique of G, represented by the set of (say) left
endpoints of the corresponding intervals.

Description.

First phase. We run Algorithm 4 on the input permutation string a against
the identity permutation string id , obtaining an implicit highest-score ma-
trix with 4n core nonzeros. We then build the data structure of Theorem 1
for querying semi-local LCS scores of a against id .

Second phase. For each k ∈ [1 : 2n − 1], we query the LCS score of prefix
a � k against suffix id � k. The maximum of the 2n returned values gives the
size of the maximum clique in G, and the corresponding value k gives a
common intersection point of the clique intervals.

Third phase. The intervals defining the maximum clique can now be ob-
tained by running a standard LIS algorithm on string (a � k)|Σ(id � k).

Cost analysis.

First phase. The running time of Algorithm 4 is O(n log2 n).

Second phase. By Theorem 1, the combined running time of all the prefix-
suffix queries is O(n log2 n), if the queries are performed independently. This
time can be reduced to O(n) by observing that the queries can be performed
as a single diagonal batch query.

Third phase. The LIS algorithm runs in time O(n log n).

Total. The overall running time is O(n log2 n).

Like many algorithmic problems, the problem of finding a maximum
clique in a circle graph admits various parameterised versions. Some relevant
parameters are:

• the size l of the maximum clique;
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• the thickness d of the interval model, i.e. the maximum number of
intervals containing a point, taken across all points in the line;

• the number e of graph edges.

For any interval model of a non-trivial circle graph, we have l ≤ d ≤ n ≤
e ≤ n2. Notice that, given a permutation representing an interval model, its
thickness can be found in time O(n log2 n) by building a range tree on the
corresponding set of planar points, and then performing O(n) dominance
counting queries.

Apostolico et al. [9] give algorithms for the parameterised version of the
maximum clique problem in a circle graph, running in time O(n log n+e) and
O(n log n+ nl log(n/l)). They also describe an algorithm for the maximum
independent set problem, parameterised by the interval model’s thickness.

We now give a new algorithm for the maximum clique problem in a circle
graph, parameterised by the thickness of the input interval model. Our
algorithm improves on the parameterised algorithms of [9] for most values
of the parameters. The algorithm is an extended version of Algorithm 5.

Algorithm 6. Maximum clique in a circle graph, parameterised by thick-
ness.

Input: interval model of circle graph G, represented by string a of size 2n.

Output: maximum-size clique of G, represented by the set of (say) left
endpoints of the corresponding intervals.

Parameter: thickness d, d ≤ n, of the input interval model.

Description.

First phase. We run Algorithm 4 on string a �(r + 1) against string id � rd,
independently for all r ∈ [0 : 2n/d− 1]. As will be shown in the algorithm’s
analysis, in each run we obtain an implicit highest-score matrix with at most
4d non-trivial core nonzeros. For every r, we then build the data structure
of Theorem 1 for querying semi-local LCS scores of a �(r+1) against id � rd.

Second phase. For each k ∈ [1 : 2n − 1], we query the LCS score of pre-
fix a � k =

(
a �(r + 1)d

)
� k against suffix id � k = (id � rd) �(k − rd), where

r = bk/dc. The maximum of the 2n returned values gives the size of the
maximum clique in G, and the corresponding value k gives a common inter-
section point of the clique intervals.

Third phase. The intervals defining the maximum clique can now be ob-
tained by running a standard LIS algorithm on string (a � k)|Σ(id � k).

Cost analysis.

First phase. We have a �(r + 1)d = (a � rd)
(
(a � rd) � d

)
. The alignment dag

of a � rd against id � rd contains at most d match cells, since every match
corresponds to an interval containing point rd, and there can be at most d
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such intervals by the definition of thickness. The alignment dag of (a � rd) � d
against id � rd also contains at most d match cells, since the length of the
string (a � rd) � d is d. The alignment dag of a �(r + 1)d against id � rd is
the composition of the above two alignment dags, and therefore contains at
most d+d = 2d matches. Therefore, the time for each run of Algorithm 4 is
O(d log2 d), and the overall running time of this phase is O(n/d · d log2 d) =
O(n log2 d).

Second phase. By Theorem 1, the combined running time of all the prefix-
suffix queries is O(n log2 d), if the queries are performed independently. This
time can be reduced to O(n/d · d) = O(n) by observing that the queries can
be performed as a single diagonal batch query.

Third phase. The alignment dag of a � k against id � k contains at most d
matches, since every such match corresponds to an interval containing point
k. Therefore, string (a � k)|Σ(id � k) has length at most d. The LIS algorithm
runs in time O(d log d).

Total. The resulting overall running time is O(n log2 d).

Algorithm 6 improves on the O(n log n+ e) algorithm of [9], unless e =
o(n log2 d) = O(n log2 n). It also improves on the O(n log n + nl log(n/l))
algorithm of [9], unless l = o

( log2 d
logn

)
= O(log n).

6.6 Maximum common pattern between linear graphs

The concept of a linear graph, introduced by Davydov and Batzoglou [31],
is similar to an interval model of a circle graph defined in Section 6.5. Fertin
et al. [36] considered the problem of finding the maximum common pattern
in a set of n linear graphs, each defined by at most m intervals. Com-
mon patterns are defined as ordered subsets of intervals that are isomorphic
with respect to interval disjointness, containment and overlapping. These
three interval properties are denoted respectively by symbols <, @ and G.
The structure of the common pattern may be restricted by only consider-
ing patterns where the intervals must pairwise satisfy a prescribed subset
of these properties. The resulting maximum common S-structured pattern
(S-MCSP) problem is parameterised by the nonempty set S ⊆ {<,@, G}
of prescribed properties. For example, the {G}-MCSP problem asks for the
maximum commonly-structured subset of pairwise overlapping intervals; for
n = 1 this is equivalent to finding the maximum clique of a circle graph,
and for general n is equivalent to finding the minimum-sized clique among
maximum cliques of the n input circle graphs. The {<,@}-MCSP prob-
lem asks for the maximum commonly-structured subset of intervals, no two
of which are overlapping; for n = 1 this is equivalent to finding the maxi-
mum independent set of a circle graph; however, for general n the maximum
commonly-structured independent set of the n input circle graphs may be
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significantly different from (and smaller than) each of the n individual maxi-
mum independent sets. The {<,@, G}-MCSP problem asks for the maximum
commonly-structured subset of intervals without any a priori restriction on
its structure.

Extending and generalising a number of previous results, paper [36] con-
siders the S-MCSP problem for each of seven nonempty subsets of {<,@, G}.
For some of these seven variants, the algorithms use as a subroutine the al-
gorithm of [94, 96] for the maximum clique problem in a circle graph. By
plugging in the more efficient Algorithm 5, we can obtain improved algo-
rithms for those variants of the S-MCSP problem, where finding the maxi-
mum clique in a circle graph is a bottleneck.

In particular, the {G}-MCSP problem is solved in [36] by finding the
maximum clique independently for n circle graphs, each corresponding to
one of the input linear graphs, in overall time O(nm1.5). By plugging in
Algorithm 5, the running time is improved to O(nm log2m).

The {<, G}-MCSP problem is shown in [36] to be NP-hard, and to admit
a polynomial-time h(k)-approximation, where h(k) =

∑
1≤i≤k 1/i; for the

rest of this section, k denotes the size of the solution. The approximation is
obtained by finding the maximum clique for nm logm different circle graphs,
in overall time O(nm2.5 log2m). By plugging in Algorithm 5, the running
time of the approximation algorithm is improved to O(nm2 log4m).

The {@, G}-MCSP problem is also shown in [36] to be NP-hard, and to
admit a polynomial-time k1/2-approximation. The approximation is ob-
tained by combining exact solutions for the {@}-MCSP and {G}-MCSP
problems on the same input sets. The exact solution for the {G}-MCSP
is the bottleneck; by plugging in the improved algorithm for this problem
described above, the running time of the approximation algorithm for the
{@, G}-MCSP problem is improved from O(nm1.5) to O(nm log2m).

Finally, paper [36] argues that the {<,@, G}-MCSP problem is NP-hard,
and gives several polynomial-time approximation algorithms. In particular,
it gives an O(k2/3)-approximation algorithm running in time O(nm1.5), and
an O

(
(k log k)1/2

)
-approximation algorithm running in time O(nm2.5 logm).

Again, the exact solution for the {G}-MCSP is the bottleneck; by plugging in
the improved algorithm, the running times of the approximation algorithms
improve respectively to O(nm log2m) and O(nm2 log4m).
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Chapter 7

Compressed string
comparison

7.1 Grammar-compressed strings

Algorithms on compressed strings is an area of steadily increasing impor-
tance in algorithm theory. Early examples of such algorithms were given
e.g. by Amir et al. [8] and by Rytter [87].

Let t be a string of length m (typically large). We call t a grammar-
compressed string (GC-string), when it is represented implicitly by a special
type of context-free grammar, called a straight-line program (SLP). An SLP
of length m̄, m̄ ≤ m, is a sequence of m̄ statements. A statement numbered
k, 1 ≤ k ≤ m̄, has one of the following forms:

tk = α where α is an alphabet character
tk = titj where 1 ≤ i, j < k

We identify every symbol tr with the string it represents; in particular, we
have t = tm̄. Note that, in general, the uncompressed text length m can be
exponential in the GC-text length m̄.

Grammar compression includes as a special case the well-known LZ78
and LZW compression schemes by Ziv, Lempel and Welch [102, 99]. Both
these schemes can be expressed by an SLP that consists of three sections:

• in the first section, all statements are of the form tk = α;

• in the second section, all statements are of the form tk = titj , where
statement j is from the first section;

• in the third section, all statements are of the form tk = tk−1tj , where
statement j is from the second section.
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It should also be noted that certain other compression methods, such as e.g.
LZ77 [101] and run-length compression, do not fit directly into the grammar
compression model.

Our goal is to design efficient algorithms on GC-strings. While we do not
allow text decompression (since, in the worst case, this could be extremely
inefficient), we will assume that standard arithmetic operations on integers
up to m can be performed in constant time. This assumption is necessary,
since most natural counting problems on GC-strings produce a numerical
output that may be as high as O(m). The same assumption on the com-
putation model is made implicitly in previous works, e.g. by Cégielski et al.
[22].

7.2 Three-way semi-local LCS on GC-strings

Recall that the LCS problem on a pair plain strings can be solved in time
O
(

mn
log(m+n)

)
, assuming m and n are reasonably close [73, 28]. The LCS

problem on a pair GC-strings has been considered by Lifshits and Lohrey
[69], and proven to be NP-hard.

Let us consider first the LCS problem on a pair of strings, one of which
is a GC-string and the other a plain string. Let string t (the text string)
of length m be represented by an SLP of length m̄, and let string p (the
pattern string) of length n be represented explicitly. We aim at algorithms
with running time and memory that are low-degree polynomial in m̄, n,
but are independent of m (which could be exponential in m̄). This rules
out any attempt at solving the semi-local LCS problem, since the resulting
implicit highest-score matrix requires memory O(m + n). However, we are
still able to consider the three-way semi-local LCS problem, excluding the
computation of LCS on substrings of t.

The described version of the LCS problem can be regarded as a special
case of the edit distance problem between a context-free language given by
a grammar of size m̄, and a string of size n. For this more general problem,
Myers [77] gave an algorithm running in time O(m̄n3 +m̄ log m̄ ·n2). In [92],
we gave an algorithm for the three-way semi-local LCS problem, running in
time O(m̄n1.5). Lifshits [68] asked whether the LCS problem can be solved
in time O(m̄n).

A new algorithm for the three-way semi-local LCS problem can be ob-
tained by plugging into our previous algorithm [92] the fast matrix distance
multiplication procedure of Theorem 7. The resulting algorithm improves on
existing algorithms in running time, and approaches an answer to Lifshits’
question within a logarithmic factor.

Algorithm 7. Three-way semi-local LCS .

Input: string t of length m, represented by an SLP of length m̄; string p of
length n, represented explicitly.
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Output: three-way slice P xt,vp∼.

Description. Recursion on the SLP representing t.

Recursion base. If m̄ = m = 1, then P xt,vp∼ = Pt,vp∼ can be computed by a
linear sweep of string p.

Recursive step. Let t = t′t′′ be the SLP statement defining string t. We call
the algorithm recursively to obtain three-way slices P xt′,vp∼, P xt′′,vp∼, and
then compute their composition P xt,vp∼ by Corollary 1.

End of recursive step.

Cost analysis. By Corollary 1, each three-way slice composition runs in
time O(n log n). There are m̄ recursive steps in total, therefore the whole
recursion runs in time O(m̄n log n).

Algorithm 7 provides, as a special case, an algorithm for the LCS problem
between a GC-string and a plain string, running in time O(m̄n log n); the
LCS score can easily be queried from the algorithm’s output by Theorem 8.
This running time should be contrasted with standard uncompressed LCS
algorithms, running in time O

(
mn

log(m+n)

)
[73, 28], and with the NP-hardness

of the LCS problem on two GC-strings [69].
Hermelin et al. [46] gave a more detailed analysis of this problem’s com-

plexity, by considering the weighted alignment problem on a pair of GC-
strings a, b of total compressed length r̄ = m̄ + n̄, parameterised by the
strings’ total plain length r = m + n. They gave an algorithm running in
time O(r̄1.34r1.34) for general weights, and in time O(r̄1.4r1.2) for rational
weights.

In the case of rational weights, the parameterised running time of weighted
GC-string alignment can be improved by the following straightforward algo-
rithm. First, we uncompress one of the input strings — say, string b. Then,
we run Algorithm 7 on the GC-string a against the plain version of string
b. The resulting running time is O(m̄n log n) = O(r̄r log r).

7.3 Subsequence recognition on GC-strings

The (global) subsequence recognition problem has been defined in Sec-
tion 2.1; it is a simple special case of the (global) LCS problem. In Sec-
tion 4.4, we considered local (minimal-window, fixed-window) subsequence
recognition problems; they are special cases of both the semi-local LCS prob-
lem, and the approximate matching problem. In this section, we consider
these problems in the context of a GC-compressed text.

Consider a text string t and a pattern string p. For brevity, a substring
of t containing p as a subsequence will be called p-matching. A p-matching
substring will be called minimally p-matching, if no its proper substring is
p-matching.
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Given a text string t and a pattern string p, the global subsequence
recognition problem asks whether the whole text t is p-matching. Global
subsequence recognition on a GC-text can be performed by the following
simple folklore algorithm. For convenience, we generalise the problem’s out-
put: instead of a Boolean value, the algorithm will return an integer.

Algorithm 8. Global subsequence recognition.

Input: string t of length m, represented by an SLP of length m̄; string p of
length n, represented explicitly.

Output: an integer k, giving the length of the longest prefix of p that is a
subsequence of t. String t contains p as a subsequence, iff k = n.

Description. Recursion on the SLP representing t.

Recursion base. If m̄ = m = 1, then the value k ∈ {0, 1} is determined by a
single character comparison.

Recursive step. Let t = t′t′′ be the SLP statement defining string t. Let k′

be the length of the longest prefix of p that is a subsequence of t′. Let k′′ be
the length of the longest prefix of P � k′ that is a subsequence of t′′. We call
the algorithm recursively to obtain k′ and k′′, and then return k = k′ + k′′.

End of recursive step.

Cost analysis. The running time of the algorithm is O(m̄k). The proof
is by induction. The running time of the recursive calls is respectively
O(m̄k′) and O(m̄k′′). The overall running time of the algorithm is O(m̄k′)+
O(m̄k′′) +O(1) = O(m̄k). In the worst case, this is O(m̄n).

We now consider local subsequence recognition. The minimum-window
subsequence recognition problem asks for the locations of all substrings of
t that are minimally p-matching. Clearly, the output size for this report-
ing version of the problem may be exponential in m̄; therefore, we will
parameterise the running time by the output size. We will also consider
the counting version of the problem, that only asks the overall number of
minimally p-matching substrings.

Alternative approaches to local subsequence recognition are given by
the fixed-window subsequence recognition problem, which asks for all the p-
matching substrings of a fixed length w, and the bounded minimal-window
subsequence recognition problem, which asks for all the minimally p-matching
substrings below a fixed length w.

The minimal-window, fixed-window and bounded minimal-window sub-
sequence recognition problems on a GC-text against an uncompressed pat-
tern have been considered by Cégielski et al. [22]. They gave algorithms that
run in timeO(m̄n2 log n+output) for the reporting version, andO(m̄n2 log n)
for the counting versions of the problem.
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We now show how the three-way semi-local LCS algorithm of Section 7.2
can be used to provide more efficient local subsequence recognition. Al-
though the definition of local subsequence recognition (Section 4.4) involves
the highest-score matrix Hp,vt∼, it will now be more convenient to switch
to the “dual” matrix Ht,vp∼ (more precisely, the three-way slice Hxt,vp∼,
represented implicitly by the three-way slice P xt,vp∼).

Algorithm 9. Local subsequence recognition.

Input: string t of length m, represented by an SLP of length m̄; string p of
length n, represented explicitly.

Output: positions, or count, of minimally p-matching substrings in t.

Description.

First phase. We build on Algorithm 7, extending every recursive step by
the reporting of minimally p-matching substrings that span the boundary
between symbols in the currently considered SLP statement.

Recursion base. If m̄ = m = 1, then the three-way slice P xt,vp∼ = Pt,vp∼
can be computed by a linear sweep of string p. No substring of t can be
p-matching (unless n = 1, in which case the whole problem is trivial).

Recursive step. Let t = t′t′′ be the SLP statement defining string t. We call
the algorithm recursively to obtain three-way slices P xt′,vp∼, P xt′′,vp∼, and
then compute both the three-way slice composition P xt,vp∼ and the cross-
way slice P qt,vp∼ by Corollary 1.

A substring t〈i : k〉 is p-matching, iff point (−i,m + n − k) does not
dominate any nonzeros in Pt,vp∼. Let us call the substring t〈i : k〉 spanning,
if i ∈ [0 : m′− 1], k ∈ [m′+ 1 : m], i.e. the substring consists of a non-empty
suffix of t′ and a non-empty prefix of t′′. For a spanning substring, any
nonzeros dominated by point (−i,m+ n− k) must belong to the cross-way
slice

P qt,vp∼ = Pt,vp∼〈−m′ : +∞,−∞ : m′′ + n〉

Recall that this slice has at most n nonzeros. Consider the antichain of all
dominance-minimal nonzeros in P qt,vp∼, and denote them by

(̂ı0, k̂0)� (̂ı1, k̂1)� · · · � (̂ıs−1, k̂s−1)

where s ≤ n. A spanning substring t〈i : k〉 is minimally p-matching, iff
(−i,m+ n− k) is one of the s− 1 points in the antichain

(̂ı0 + 1
2 , k̂1 − 1

2)� (̂ı1 + 1
2 , k̂2 − 1

2)� · · · � (̂ıs−2 + 1
2 , k̂s−1 − 1

2)

Since not all these points may correspond to spanning substrings of t, the
number of minimally p-matching spanning substrings is at most s−1 ≤ n−1.
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End of recursive step.

Second phase. For every SLP symbol, we now have the positions of its mini-
mally p-matching spanning substrings, which are at most n− 1. By another
recursion on the structure of the SLP, it is now straightforward to obtain
either the positions or the count of all minimally p-matching substrings in
string t.

Cost analysis.

First phase. As in Algorithm 7, each three-way slice composition runs in
time O(n log n). The antichain of dominance-minimal nonzeros in P qt,vp∼
can be found in time O(n). Hence, the running time of a recursive step
is O(n log n). There are m̄ recursive steps in total, therefore the whole
recursion runs in time O(m̄n log n).

Second phase. Given the output of the first phase, the positions of all p-
matching substrings in t can now be found in time O(m̄n + output); the
count of such substrings can be obtained in time O(m̄n).

Total. The overall running time is O(m̄n log n + output) for the reporting
version, and O(m̄n log n) for the counting version.

An algorithm for the fixed-window subsequence recognition problem can
be obtained from Algorithm 9 as follows. Substrings t〈i : k〉 of length w
correspond to points on the diagonal (−i,m+n−k), k−i = w, of the highest-
score matrix Ht,vp∼. Therefore, given the antichain of all s ≤ n dominance-
minimal nonzeros in P qt,vp∼ computed by Algorithm 9, a spanning substring
t〈i : k〉, k−i = w, is p-matching, iff −i belongs to the union of s−1 (possibly
empty) intervals[

ı̂0 + 1
2 : k̂1 − 1

2 − w
]
∪
[
ı̂1 + 1

2 : k̂2 − 1
2 − w

]
∪ · · · ∪[
ı̂s−2 + 1

2 : k̂s−1 − 1
2 − w

]
An interval [i′ : k′] in the above expression is considered empty, if i′ > k′. In
every recursive step, the above union of intervals can be computed in time
O(n), and each element corresponding to a spanning substring of t can be
reported in constant time.

An algorithm for the bounded minimal-window subsequence recognition
problem can be obtained from Algorithm 9 by discarding in every recursive
step the minimally p-matching substrings of length exceeding w.

The overall running time of both the above modifications of Algorithm 9
is still O(m̄n log n + output) for the reporting version, and O(m̄n log n) for
the counting version.
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Chapter 8

Beyond semi-locality

8.1 Window-local LCS and alignment plots

So far, we have considered mostly global and semi-local string comparison.
Our aim now is to approach local string comparison — the type of string
comparison that is the most important for biological applications, but also
the most difficult. In this chapter, we consider a version of local string
comparison that is restricted to a fixed subset of prescribed substrings in one
of the input strings, comparing them to all substrings in the other string.

An important special case is where all the prescribed substrings have
equal length. Given a fixed parameter w, we call a substring of length w a
window in the corresponding string.

String comparison in windows has a long history. One of its early in-
stances is dot plots (also known as diagonal plots or dot matrices), intro-
duced by Gibbs and McIntyre [41] and by Maizel and Lenk [71]. In addition
to numerical scores, dot plots provide a convenient visualisation of string
comparison. In the context of dot plots, processing a pair of windows is
usually referred to as filtering. The standard filtering method compares ev-
ery window of string a against every window of string b in terms of their
Hamming score, i.e. the count of matching characters along the main diag-
onal of the windows’ Cartesian product. A Hamming-filtered dot plot can
be computed in time O(mn) by the algorithm of [71, 75]. This algorithm
has been implemented in several software packages (see e.g. [91, 84, 25]).
A faster suffix-tree based algorithm has been proposed and implemented
by Krumsiek et al. [61]. Enhancement of the dot plot approach have been
proposed by Huang and Zhang [49] and by Putonti et al. [83].

Numerous other methods of local string comparison have been proposed.
The Smith–Waterman–Gotoh algorithm [90, 44] allows one to obtain the
highest-scoring pair across all substring pairs in the input strings. It can also
be generalised to report all substring pairs scoring above a certain threshold.
A significant drawback of the Smith–Waterman–Gotoh algorithm is that it
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generally favours long, less precise substring alignments over short, more
precise ones (as noted e.g. by Arslan et al. [13]). The quality of the alignment
is also dependent on the scoring scheme: for example, for the LCS score,
the algorithm only provides the trivial global comparison, so the method
is generally only useful for weighted alignment scores with sufficiently high
penalties (negative score weights) for gaps.

In contrast with the Smith–Waterman–Gotoh algorithm, the dot plot
method gives the user more flexibility to select the biologically significant
substring alignments, by providing all the local scores between fixed-size
windows of the input strings. However, the Hamming scoring scheme used
by this method within each window pair is less sensitive than even the LCS
score, and especially than the weighted alignment score used by Smith–
Waterman–Gotoh. This tradeoff motivates us to combine the best features
of the two approaches in the following definition.

Definition 19. Given strings a, b, the window-window (respectively, window-
substring) LCS problem asks for the LCS score of for every window in a
against every window (respectively, substring) in b.

The window-window LCS problem can be seen as a refinement of the dot
plot method and a complement to the Smith–Waterman–Gotoh method.
As in the dot plot method, we compute all window-window comparison
scores between the input strings. However, instead of the Hamming score,
our method is based on the LCS score, and is therefore potentially more
sensitive. The method can be further extended to use weighted alignment
scores. By analogy with Hamming-filtered dot plots, we call the resulting
matrix of window-window alignment scores an alignment-filtered dot plot, or
simply an alignment plot. A similar method has been proposed recently for
detection of alignment-conserved regions in DNA [80].

Note that the solution of the window-substring LCS problem can be
represented in space O(mn log n) by giving the implicit three-way highest-
score matrix for each window of a against b. An individual window-substring
LCS score query can be performed on this data structure by Theorem 1
in time O(log2 n). The same data structure can be used to obtain the
explicit solution of the window-window LCS problem in time O(mn) by
performing a diagonal batch query on each of the implicit highest-score
matrices. Thus, we can treat both the window-substring and the window-
window LCS problems simultaneously.

A naive algorithm for the window-window LCS problem runs in time
O(mnw2), and for the window-substring LCS problem runs in timeO(mn3w).
This can be improved upon by running the seaweed algorithm (Algorithm 1)
independently for each window of string a against whole b. The resulting
algorithm runs in time O(mnw) for both problems. If window length w is
sufficiently large, the running time can be improved slightly by using the
micro-block seaweed algorithm (Algorithm 2).
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We now give an algorithm for the window-window and window-substring
LCS problems that provides a further substantial improvement on the above
approach, and matches the asymptotic running time of both the Hamming-
scored dot plot and the Smith–Waterman–Gotoh methods.

Algorithm 10. Window-window and window-substring LCS .

Input: strings a, b of length m, n, respectively; window length w.

Output: implicit highest-score matrix for every window of a against full b.

Description. For simplicity, we assume that m is a power of 2. We call a
substring of the form a〈r · 2s : (r + 1) · 2s〉, r, s ∈ [−∞ : +∞], a canonical
substring. In particular, both the whole string a, and every one of its in-
dividual characters, are canonical substrings. Every substring of a can be
decomposed into a concatenation of O(logm) canonical substrings.

In the following, by processing a substring a′ of a, we mean computing
the implicit highest-score matrix Pa′,vb∼.

First phase. We process all canonical substrings of a by recursion on m,
with one-character substrings at the base of the recursion.

Recursion base. For m = 1, matrix Pa,vb∼ is computed by a linear sweep of
string b.

Recursive step. For m > 1, we have a = a′a′′, where substrings a′, a′′ are
canonical. We call the first phase recursively on each of a′, a′′ against
b, obtaining highest-score matrices Pa′,vb∼, Pa′′,vb∼. Then, we obtain the
highest-score matrix Pa,vb∼ by Theorem 10.

End of recursive step.

Second phase. We represent each prescribed substring a〈i, j〉 by a prescribed
point (i+ 1

2 , j− 1
2) ∈ 〈0 : m〉2. We then partition the range [0 : m]2 recursively

into regular half-sized square blocks, as long as these blocks contain any
prescribed points. Given indices i0, j0 ∈ [0 : m] and block size h, a block
is defined by the range 〈i0 − h : i0〉 × 〈j0 : j0 + h〉. The blocks with no
prescribed points, as well as 1× 1 blocks containing a prescribed point, are
at the base of the recursion.

Throughout the recursion, we maintain the following invariant: either
j0 − i0 ≤ 0, or the substring a〈i0 : j0〉 has been processed, and we have the
implicit highest-score matrix Pa〈i0:j0〉,vb∼.

At the beginning of a recursive call, we establish whether the current
block contains any prescribed points. This check is easy to perform in con-
stant time: the current block contains a positive number of prescribed points,
iff j0 − i0 < w < j0 − i0 + 2h.

Recursion base. If the number of prescribed points in the current block is
zero, we do nothing and terminate the current recursive call.
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The current block now contains at least one prescribed point. If h = 1,
then it contains exactly one prescribed point (i0 − 1

2 , j0 + 1
2), which corre-

sponds to substring a〈i0 − 1 : j0 + 1〉. By the invariant, we already have
the implicit highest-score matrix Pa〈i0:j0〉,vb∼, Since the one-character sub-
strings a(i0 − 1

2), a(j0 + 1
2) are canonical, we also already have the matrices

Pa(i0− 1
2

),vb∼, Pa(j0+ 1
2

),vb∼. We can now obtain the matrix

Pa〈i0−1:j0+1〉,vb∼ = Pa(i0− 1
2

) a〈i0:j0〉 a(j0+ 1
2

),vb∼

by two applications of Theorem 10, each having m′ = j0 − i0, m′′ = 1.

Recursive step. We partition the current block into four h
2 × h

2 regular sub-
blocks. By the invariant, we already have the implicit highest-score ma-
trix Pa〈i0:j0〉,vb∼. Since the one-character substrings a〈i0 − h

2 : i0〉, a〈j0 :
j0 + h

2 〉 are canonical, we also already have the matrices P
a〈i0−h2 :i0〉,vb∼

,

P
a〈j0:j0+

h
2 〉,vb∼

. We can now obtain the matrices

Pa〈i0−h
2

:j0〉,vb∼ = Pa〈i0−h
2

:i0〉 a〈i0:j0〉,vb∼

Pa〈i0:j0+ h
2
〉,vb∼ = Pa〈i0:j0〉 a〈j0:j0+ h

2
〉,vb∼

Pa〈i0−h
2

:j0+ h
2
〉,vb∼ = Pa〈i0−h

2
:j0〉 a〈j0:j0+ h

2
〉,vb∼ = Pa〈i0−h

2
:i0〉 a〈i0:j0+ h

2
〉,vb∼

by three applications of Theorem 10, each having m′ = j0 − i0, m′′ = h.
We have now established the invariant for each of the four subblocks,

and make a recursive call on each of them.

End of recursive step.

Cost analysis.

First phase. The running time is dominated by the bottom level of the re-
cursion tree, and is therefore m/2 ·O(n) = O(nm).

Second phase. The recursion tree is an unbalanced tree of degree 4 and of
height logm. Consider a level corresponding to block size h. Since all the
prescribed points lie on a single diagonal, there can be at most 2m/h nodes at
the current level, each corresponding to a block containing a positive number
of prescribed points. The amount of work in every such node is O(n log h),
hence the amount of work per level is O(2m/h · n log h) = O(nm/h · log h).
The running time for the whole recursion tree is dominated by the bottom
level (h = 1), and is therefore O(nm).

Total. The running time for both the first and the second phase, and there-
fore the overall running time, is O(mn).

Memory. Storing the implicit highest-score matrices for all O(m) canonical
substrings requires memory O(mn). However, only the matrices for canon-
ical substrings of length at most w are actually required, and even these
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Figure 8.1: An execution of Algorithm 10

matrices need not be all stored simultaneously. By processing the canonical
substrings incrementally within a sliding window of length w, and discarding
the data after the window has passed, the memory cost can be reduced to
O(wn).

Note that the asymptotic running time of the algorithm O(mn) is inde-
pendent of the window length w.

Figure 8.1 shows an execution of the second stage of Algorithm 10 on a
string of length 16 with window size 7. The prescribed points are shown by
blue bullets, and the resulting block partitioning by black lines.

8.2 Quasi-local LCS

We now consider an arbitrary set of prescribed substrings in string a, and
denote their number by k, m ≤ k ≤ m2.

Definition 20. Given strings a, b, the quasi-local LCS problem asks for the
LCS score of every prescribed substring in a against every substring in b.

The quasi-local LCS problem includes as special cases semi-local, window-
window, window-substring and fully-local LCS problems, as well as length-
constrained local alignment considered by Arslan and Eğecioğlu [12]. Note
that the solution of the quasi-local LCS problem can be represented in space
O(kn) by giving the implicit highest-score matrix for each prescribed sub-
string of a against b. An individual quasi-local LCS score query can be
performed on this data structure in time O(log2 n).

A naive algorithm for the quasi-local LCS problem runs in timeO(mn3k).
This can be improved upon by running the seaweed algorithm (Algorithm 1)
independently for each prescribed substring a against whole b. The result-
ing algorithm runs in time O(mnk). If all the prescribed substrings are
sufficiently long, the running time can be improved slightly by using the
micro-block seaweed algorithm (Algorithm 2).

74



We now give an algorithm for the quasi-local LCS problem that provides
a further improvement on the above approach.

Algorithm 11. Quasi-local LCS .

Input: strings a, b of length m, n, respectively; a set of k endpoint index
pairs for the prescribed substrings in a.

Output: implicit highest-score matrix for every prescribed substring of a
against full b.

Description. The algorithm is based on principles similar to the ones of
Algorithm 10.

First phase. As in Algorithm 10.

Second phase. Similarly to Algorithm 10, we represent each prescribed sub-
string by a prescribed point. In order to establish efficiently the number of
prescribed points located in a given block, we build a range tree [16] on the
set of prescribed points, allowing efficient orthogonal range counting queries.

We then proceed by recursion as in Algorithm 10. At the beginning of a
recursive call, we query from the range tree the total number of prescribed
points in the current block. Otherwise, the second phase is the same as in
Algorithm 10.

Cost analysis.

First phase. As in Algorithm 10.

Second phase. The recursion tree is an unbalanced tree of degree 4 and of
height logm. Let us call a leaf of the recursion tree useful, if it corresponds
to a 1× 1 block containing a prescribed point, and useless if it corresponds
to an empty block. Overall, the tree has k useful leaves. Every internal (i.e.
non-leaf) node in the tree must have a useful leaf as a descendant, therefore
there are at most k internal nodes per level, hence O(k logm) nodes overall.
The amount of work per node in O(n logm), therefore the running time of
the whole recursion tree is O(k logm · n logm) = O(nk log2m).

For values of k close to the fully-local case k =
(
m
2

)
= O(m2), a sharper

analysis is possible. In this case, the running time of the whole recursion
tree is O(nm2).

Total. The overall running time is dominated by the second phase, and is
therefore O(nk log2m). For values of k close to

(
m
2

)
, the running time is

O(nm2).

Note that in the fully-local case, the same asymptotic time can be ob-
tained by running m independent instances of the seaweed algorithm (Al-
gorithm 1), each instance computing the implicit highest-score matrices in-
crementally for O(n) different substrings of a.

Figure 8.1 shows an execution of the second stage of Algorithm 11, using
the same conventions as Figure 8.1.
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Figure 8.2: An execution of Algorithm 11

8.3 Sparse spliced alignment

Assembling a gene from candidate exons is an important problem in compu-
tational biology. Several alternative approaches to this problem have been
developed over time. One of the most successful approaches is spliced align-
ment by Gelfand et al. [39] (see also [45]), which scores different candidate
exon chains within a DNA sequence by comparing them to a known related
gene sequence. In this method, the two sequences are modelled respectively
by strings a, b of lengths m, n; we assume that m = Θ(n). A subset of sub-
strings in string a are marked as candidate exons. The comparison between
sequences is made by string alignment. The algorithm for spliced alignment
given in [39] runs in time O(n3).

In general, the number of candidate exons k may be as high as O(n2).
The method of sparse spliced alignment makes a realistic assumption that,
prior to the assembly, the set of candidate exons undergoes some filtering,
after which only a small fraction of candidate exons remains. Kent et al.
[57] give an algorithm for sparse spliced alignment that, in the special case
k = O(n), runs in time O(n2.5). For higher values of k, the algorithm
provides a smooth transition in running time to the dense case k = O(n2),
where its running time O(n3) is asymptotically equal to the algorithm of
[39].

We now consider the problem of sparse spliced alignment. We keep the
notation and terminology of the previous sections; in particular, candidate
exons are represented by prescribed substrings of string a. We say that
substring a〈i′ : j′〉 precedes substring a〈i′′ : j′′〉, if j′ < i′′. A chain of
substrings is a chain in the partial order of substring precedence. We identify
every chain with the string obtained by concatenating all its component
substrings in the order of precedence.

Our sparse spliced alignment algorithm is based on the efficient method
of quasi-local string comparison developed in Section 8.2. This improves the
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running time of the bottleneck procedure from [57]. The algorithm also uses
a generalisation of the standard network alignment method, equivalent to
the one used by [57]. For simplicity, we describe our algorithm under LCS
score; using the technique of Section 2.4, the algorithm can be generalised
to an arbitrary rational-weighted score or edit distance metric.

Algorithm 12. Sparse spliced alignment .

Input: strings a, b of length m, n, respectively, where m = Θ(n); a set of
k endpoint index pairs for the prescribed substrings in a.

Output: the chain of prescribed substrings in a, giving the highest LCS
score against string b.

Description. The algorithm runs in two phases.

First phase. By running Algorithm 11, we compute the implicit highest-
score matrix for every prescribed substring of a against b.

Second phase. We represent the problem by a dag (directed acyclic graph)
on the set of nodes ui, where i ∈ [0 : m]. For each prescribed substring
a〈i : j〉, the dag contains the edge ui−1 → uj . Overall, the dag contains
k = O(n) edges.

The problem can now be solved by dynamic programming on the repre-
senting dag as follows. Let s(i, j) denote the highest LCS score for a chain
of prescribed substrings in prefix string a � i against prefix string b � j. With
each node ui, we associate the integer vector si, where si(j) = s(i, j). The
nodes are processed in increasing order of their indices. For the node u0,
vector s0 is initialised by all zeros. For a node uj , we consider every edge
ui−1 → uj , and compute the highest-score matrix-vector product between
vector si−1 and the highest-score matrix Ha〈i:j〉,vb∼ by the algorithm of
Theorem 5. Vector sj is now obtained by taking the elementwise maximum
between vector sj−1 and all the above highest-score matrix-vector products.

The solution score is given by the value sm(n) = s(m,n). The solution
chain of prescribed substrings can now be obtained by tracing the dynamic
programming sequence backwards from node um to node u0.

Cost analysis.

First phase. Algorithm 11 runs in time O(nk log2 n).

Second phase. For each of the k edges in the representing dag, the algorithm
of Theorem 5 runs in time O(n log n). Therefore, the total running time of
this phase is k ·O(n log n) = O(nk log n).

Total. The overall running time of the algorithm is dominated by the first
phase, and is therefore O(nk log2 n).

Similarly to Algorithm 11, a sharper analysis for k ≈
(
m
2

)
leads to a

smooth transition to the running time O(n3) in the dense case k =
(
m
2

)
,
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which is asymptotically equal to the running time of the dense spliced algo-
rithm of [39].
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Chapter 9

Conclusions

We have surveyed a number of existing and new algorithmic techniques and
applications related to semi-local string comparison. Our approach unifies
a substantial number of previously unrelated problems and techniques, and
in many cases allows us to match or improve existing algorithms. It is likely
that further development of this approach will give it even more scope and
power.

A number of questions related to the semi-local string comparison frame-
work remain open. In particular, it is not yet clear whether the framework
can be extended to arbitrary real costs, or to sequence alignment with non-
linear gap penalties.

In summary, semi-local string comparison turns out to be a useful algo-
rithmic plug-in, which unifies, and often improves on, a number of previous
approaches to various substring- and subsequence-related problems.
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[12] A. N. Arslan and Ö. Eğecioğlu. Approximation algorithms for local
alignment with length constraints. International Journal of Founda-
tions of Computer Science, 13(5):751–767, 2002.
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prescribed, 70

90


	Introduction
	Overview
	Terminology and notation
	Permutation and unit-Monge matrices
	Matrix distance multiplication and the seaweed monoid
	Matrix distance multiplication algorithms

	Semi-local string comparison
	Semi-local LCS
	Alignment dags and highest-score matrices
	Highest-score matrix composition
	Weighted scores and edit distances

	The seaweed method
	The seaweed algorithm
	Incremental LCS and semi-local LCS
	Common-substring LCS and semi-local LCS

	The micro-block seaweed method
	The micro-block seaweed algorithm
	Cyclic LCS
	Longest repeating subsequence
	Approximate pattern matching

	Periodic string comparison
	The periodic seaweed algorithm
	Tandem alignment

	Permutation string comparison
	Semi-local LCS between permutations
	Cyclic LCS between permutations
	Longest pattern-avoiding subsequences
	Longest piecewise monotone subsequences
	Maximum clique in a circle graph
	Maximum common pattern between linear graphs

	Compressed string comparison
	Grammar-compressed strings
	Three-way semi-local LCS on GC-strings
	Subsequence recognition on GC-strings

	Beyond semi-locality
	Window-local LCS and alignment plots
	Quasi-local LCS
	Sparse spliced alignment

	Conclusions
	Acknowledgement

