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1. INTRODUCTION

This paper addresses the following problem. Suppose a communication channel is
to be set up between two points inside a simple polygon whose sides are opaque to
the transmission. The transmission originates at a point s, called source, and is to be
received at a point d, called destination. Clearly, a direct communication is
impossible unless the points s and d are in sight of each other inside the polygon.
Therefore, some repeaters (mirrors, for instance, if the transmission is optical in
pature) are to be installed inside the polygon to make the communication feasible.
What is the minimum number of repeaters required? With this motivation, a formal
statement of the problem can be given as follows. Let P be a simple polygon. Let s
and d be two designated points in P. Find a polygonal path between s and d that
is internal to P and has minimum number of vertices possible. If the path is given
by the set of vertices {s = xg, Xy,..., X, = d}, then each segment x;x,,, 0<ix<
k — 1, is called a link, and the entire path is said to consist of k links. The related
problem of finding the Euclidean minimum length path between two points internal
to a polygon was studied by Lee and Preparata [7]. The problem of minimum link
path was originally posed by Toussaint. In this paper, we present an O(n)! time
algorithm for computing a path with minimum number of links possible, where 7 is
the number of vertices of the polygon P. Our algorithm makes use of the recently
discovered linear time triangulation algorithm of Tarjan and Van Wyk [12], and
linear time edge-visibility algorithm due to Guibas et al. [5]. -

In Section 2, we introduce our key lemmas that lead to an efficient algorithm for a
minimum link path. An algorithm for finding a minimum link path is presented in
Section 3. This algorithm has worst-case time complexity of O(n?), which is

improved to O(n) in Section 4. Finally, Section 5 concludes with few remarks and
directions for further work on this problem.

2. PRELIMINARIES

We assume that the polygon P is given as a counterclockwise sequence of its
vertices. The symbol P is used to denote the boundary of the polygon as well as the
region of the plane enclosed by it. We begin by describing the notion of visibility
polygons. A visibility polygon can be viewed as the region in P that is lit from a
light source placed somewhere in P. The light source can be either a point or a line
segment (usually referred to as an edge). We use the symbol V' to denote the
boundary of the visibility polygon, from either a point source or an edge source. For

'El Gindy [4] has independently obtained an algorithm for this problem that runs in O(n log ») time.
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100 SUBHASH SURI
a point x € P, the visibility polygon from x, denoted by V(x), is the set of points in

P visible from x, i.e.,
V(x)={z€PxzNP=xz},

where xz denotes the line segment connecting x and z. For a line segment e inside
P, the visibility polygon from e, denoted by V{(e), is the set of points in P visible

from e, 1.€.,
V(e)={z€PAyc€est.zyNP =2z}

A chord is a line segment that lies entirely interior to P and has its endpoints on
the boundary. A chord ab divides P into two subpolygons, P, and P,, such that P,
and P, have their common intersection along ab only. More precisely, let a polygon
be represented as a counterclockwise sequence of its vertices. Let P =
(v1, Vs, - - -5 U,). Let a and b lie on the edges v;0;,, and Vv, | <, respectively.
The two subpolygons resulting from cutting P along ab are given as P, =
(b, V415 V125 v,a) and Py = (@, 011, Vis25--5 Ups b). Two line segments [
and /, are said to overlap if and only if their common Intersection is a non-degener-
ate line segment, i.e., is not a point. The following lemma characterizes the edges
that make up ¥(e). The proof is rather elementary and is omitted here.

“ey

Lemma 1. Let e be a line segment in P such that vertices of P together with the
endpoints of e are in general position. Each edge of V(e) either

(a) overlaps with an edge of P, or
(b) is a chord with a reflex vertex of P as one endpoint.

Let T be a triangulation of P, where a triangulation of a simple polygon is
defined as follows, in the manner of Mehlhorn [8]:

A triangulation of a vertex set {v1, ;- .-» v,) is a maximal set of nonintersecting straight
line segments between points in this set. A triangulation of polygon P is a triangulation of its
vertex set such that all the triangulating edges lie in P.

Let G be the dual graph of this triangulation. G is obtained by assigning a vertex
to each face of T, and joining two vertices ¢; and ¢, if and only if the triangles ¢; and
¢, in the triangulated polygon share a common side. Thus, a triangle ¢, of T has its

cjorresponding node in the dual graph G labeled ¢,. The graph G obtained

triangles in T containing s and d, respectively. Let
t, to node ?,. Since G is a tree, this path is unique. Let the nodes in the path

the path X, , can be given as an ordered list of nodes { ¢,
The triangles , through ¢, indexed in this manner define a “forward”

throughout that G is rooted at #, = ¢,.

in this
way is a tree, whose nodes have a maximum degree of three. Let ¢, and t, be the

X, 4 be the path in G from node
X:,d
be indexed in increasing order according to their appearance along the path. Then
=ty by ey byt b = La):
direction of
visibility in P. Our computation of the visibility polygons will progress in this
direction. Let T , denote the ordered List of triangles {fy, t5, ..., I, }. We assume
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'O'ur interest in T; , is motivated due to the following reasons. We show that
minimum 1.1nk‘ pathin P from s to d intersects every triangle of T in the o ?i ot
i'ncrea‘smg indices. For each triangle ¢, € T; , we compute the rniﬁi?num nun:ber Oﬁ
11nlfs in a path from s to a point in ¢,. ‘Since d € t;, these computatio 5 (')11
ultlrpately lqad to the minimum number of links requi;ed betweenps a dnfl “g
storing certain boundaries of the visibility polygons computed in the pr nd e
will .also reconstruct the path from s to d with a minimum number oI; ](i)r(ii e
First we show that certain portions of P that are inessential for a minims' link
path betwgen s gnd d can be removed to simplify our discussion, and possﬂl)llm i
some efficiency in practice. Let x,, y;, and z, (resp. Xy Yy, and ,z ) be the vgrtgialn
of t; (resp. 1) such that y,z, (y,z,) is shared between t; and ¢ (refsp t,_; and tC )
Let P(x,y;) and P(x,z,) be the polygons not containing 4 th;t resuit fkr;in cutt'k).
P along X101 and x,z,, respectively. Similarly for polygons P(x,y,) and P o
The following lemma is quite straightforward. i) and POz

LEMMA 2. The polygon P with P(x
. , W), P(xy2,), P(x,y,), and P .
moved, is sufficient for computing a minimum link pa;h betwel;i%t;ks) and d (iazy) re

The proof of Lergma 2 is based on the fact that P is a simple polygon, and none
of the removed sections contains either s or d. We omit this simple proo,f
For the remainder of our discussion, we assume that our polygon P ‘has been

trimmed in the manner of ; :
o e 2 er of Lemma 2. The following corollary follows immediately

COROLLARY 1.  In the dual graph G, t, is a leaf.

hA chord al? is said to ir}tersect atriangle t; € Ty , if and only if (a, ) N 1, + @
:;11 ere t(az b) 1sf th}(:, open line segment from a to b and ¢, denotes the boundatry anci
¢ imterior of the triangle #,. For the remaining di i i
‘ . : g discussion, we will focus our
a}tlten(;lo? on only those chords that intersect at least one triangle of T, . Letebea
C . . N )
ord of P. Define ¢, ,,,. € T} , to be the highest indexed triangle intersected by e.

Let P, and P, be two subpol i
; : polygons that result from cutting P alo
without loss of generality that P, contains all the triangles ¢ ° e e Assume

The visibility polygon ¥(e) is computed inside P, only.
N ix:; <e kbel:) at Ii:hc}gdhof .P, and V'( e) the visibility polygon of e. Let LET .,
fro_m _L , be the highest indexed trlangl.e whose interior is (at least partially) visible
e. Let p, g, and r be the three vertices of ¢,. Assume that gr is shared bet
;and ¢,,,. An edge ab of V(e) is defined to be the window of e, w(e), if e

(a) ab is a chord of P,
(b) ab intersects ¢, and

emax+1 Lomax+2s e Lpe

(c) if ab intersects the boundar i
. . y of ¢, in a; and b,, then the interi
quadrilateral a,b,rq is not visible from e. ’ I I nierior of the

i Olrrrlltmt.ivel}/ the vs.findow, w(e), represents the farthest along 7, , that is visible
e e . P. Starting from t‘he source s, our algorithm will compﬁte the visibility
: ygons. only for the successive windows. The following lemma establishes that th
Wlndow is well defined for any chord of P. e

- LEMMA 3. Let e be a chord

) of P. Either there exi 1
destination lies in Vie). Xists an unique w(e), or the
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Fic. 1. Proof of Lemma 2.

Proof. 1f d € V(e), the claim follows immediately. Otherwise, we show the
unique existence of a chord that meets the requirements of w(e). The proof of
existence shows the existence of a chord that meets the conditions (a) and (b).
Condition (c) is taken care of by the uniqueness proof.

Existence of w(e). Let t, o € Ty be the highest indexed triangle intersected
by e. Clearly, e can see the entire triangle ?, .. Since d & V(e), e cannot see the
entire triangle #,. Let ¢, € T} ;,emax <i< k, be the highest indexed triangle of
T, . Whose interior is at least partially visible from e. Since e can see the interior of
t, but not of ¢;,,, V(e) must intersect ¢,. This intersection can take place only along
a chord. Moreover, this chord meets conditions (a) and (b) of w(e). It i = k, then it
follows from Corollary 1 that 7, is a leaf of G. Clearly two sides of z, are edges of P
and the intersection of V(e) with 7, must be along a chord, which meets the
conditions (a) and (b) of W(e). The proof of existence of w(e) is complete.

Uniqueness of w(e) (see Fig. 1). Let the three vertices of ¢, be p, g, and r. We
will present the argument for the case i < k only. The other case is very similar and
will not be discussed here. Assume without loss of generality that gr is the common
boundary of ¢, and ¢, ,. Since the interior of ¢,,, is not visible from e, no chord of
V(e) intersects gr. Let ¢; be a chord of V(e) that intersects pr and pg in a; and
b,, respectively. Similarly, let a, and b, correspond to chord c,. Since V(e) is a
simple polygon, ¢, and ¢, do not intersect. Note that there can be at most two such
chords. If a,b, lies in the quadrilateral a,b,rq, let ¢, be the window w(e), otherwise
let ¢, be the window. Since gr is not visible from e, interior of quadrilateral a,b,7q
in the former and quadrilateral a,b,rg in the latter case is not visible from e.
Otherwise, there must be another chord of V(e) that intersects the interior of the

said quadrilateral, but that is impossible. The proof of uniqueness is complete. O

Now we want to establish that there are no gaps in the visibility polygon V(e)

with respect to the set Tj ,, i.e., V(e) intersects all the triangles of T; , that lie |

between e and w(e).
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LEMMA 4. Let e be a chord and w(e) its wind

. i ow. Let t, ... be the highest i
{rzangle 0‘]; le'  intersected by e. Let t,, .. be the highestm ?;dexed triin;;e ZZ;i eI)fed
intersected by w(e). Lety € t, ... N\ w(e). Let x € e be a point that is visible froml)’zl:c

(a) The line segment xy intersects all triangles t, € T, ,, e max < i < w max
(b) Any other triangle of T that is intersected by xy is also intersected by e

Proof. (&) Let p, ¢, and r be the vertices of #,__ . Assume that gr is shared
between £, ... apd tomaxe1- Clearly, gr Ne= @. LeixP be the sub qol o aie
results from cutting P along gr and contains e. Let P. bé the other s% ylgon o
y € t.max> the claim follows vacuously. Otherwise, siilce yeP ancll1 POE}’}%)OH- .
segment xy must intersect gr and ¢, ... Let xy intersect gr in x% Sincexx' Elt, the
;md y_ettwtmax, anctl e mtax <w n}llaxl; xy must cross a sequence of .triangles nan;é];x
» max P suc j i ’ ide.
This sequence, theréjfore, Wrén;l('esentstaa;attvljofri?na(tzem trtlcé)uigles Sl}afe “But, sinee Sld?-
a tree, this path is unique. Th ougt e et e S
' iq he sequence ¢, through ; must, therefore, coincid
with the sequence of triangles in T , indexed between e max a1,1d w max ’It followz

that xy intersects all the triangles of T} , i
. e indexed
claim is thus proved. 1,k between e max and w max. The

i

(b) It is sufficient to show that any triangle of T that is intersected b "1
alsq 1nter.sected by e. If x lies in any triangle of T, ,, ie, x €1t, ¢, € 12, . 12
ienrtr:rr;eft Sz i T mtaﬁ(, thg arglument presented in (a) can’b:e rep’eated t:)’ sﬂow tﬁzltct ?cralc’
nly the triangles of T; , indexed from i i
proceed as follows. Let p, ¢, and r be the vertices of t;lf Oughwlie?eaxr (i)sthselfmsg
betwee?n !omax @nd ¢, . . Let e intersect pg and pr aim;x ’and b qres ectiarfi
(see Fl‘g. 2). Let xx’ intersect pr at b,. Since the triangle Ala b:b 1i’s infe a?l,ety
V.(e), 1t cannot have holes. Hence, there are no vertices of ]."1 iln 2’Lhe int i (;
triangle Aa;b,b,. xx’, therefore, intersects exactly those triangles that e intor
sected by xa,. Since xa; is a segment of e, the claim follows Elg e e

F1G. 2. Proof of Lemma 3.
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5 e; < w(e;_1);

6. Compute V(e;);

7. until d € V(e,),

8. diyy < d;

9. for j =i down to 1 do

10. d; < apoint on e, that can see 4, ,;

11. output minimum link jpath ={s=d J:il’ d,d,.,=d)};
end {Algorithm A} b e i = s

COROLLARY 2. V(e) intersects every triangle t, € Ty ,, for emin < i < w max.

The following lemma establishes a property of w(e) that is crucial for an efficient
computation of a minimum link path.

LEMMA 5. Let e, e,,...,e; be a sequence of chords such that

(a) e, intersects t; = i,
(b) e;=w(e;1),2<J< i, and

¢) d g Ui V(e). : . .
© j=1 (e;) Correctness and Time Complexity of Algorithm A. The correctness of Algorithm

Let x be a point in U=} V(e,). Then any path in P from x o d intersecis e;. A can be easily established as follows. Let e, e,,...
p L=1V(e) y P f ' by Algorithm A such that 1 €2, - -+, € be the set of chords output
Proof. Consider the two subpolygons P, and P, that result from cutfing P
along the chord e;. Assume without loss of generality that x € P,. We first establish 1) e; = s,

that d € P,. All triangles £, € T} , 1 S % < €;min ~ 1, are completely contained in
P,, where e, ., is the lowest indexed triangle of T} , intersected by e;. In addition,
P, also partially contains all the triangles £, € T1 4, €;min < ¥ < € max> where e, ...
is the highest indexed triangle of T, intersected by e, P, intersects no other
triangle of T, , besides these. Hence, if de P; then k < €; -

Since e = w(e; 1) for 2 < j < i, Lemma 4 implies that Uj;llV(ej) intersects all
triangles 1, € Ty 4o 1 < 4 < ;- Let ey, 1 <u<i—1, be the first chord such
that V(e,) intersects ¢,. Since d & V(e,), d must lie in that part of ¢, that is hidden
from e, by a chord. Since k is the highest indexed triangle of Ty ,, this chord must
be w(e,). If u<(i—1)itis easily seen that d € V(e,,,), thus contradicting the
hypothesis on d. If u = (i —1),d clearly must lie on that side of w(e,) =¢; that
goes into P, after splitting P along e,. Therefore, d € P,.

Clearly, the common intersection of Py and P, lies only on e,. Since x € P, and
d € P,, any path from x to d must intersect e, This establishes the claim of the

lemma. O

Note that both s and d can be regarded as degenerate cases of a chord.

(2) e;=w(e;_1), 1 <j<k,
(3) d &€ V(ey)but d & V(e)) for j < k.

Then we claim that a minimum link path (ML i i
Assume for a contradiction that MIE)P: (s( = vll),) sz:twe:ﬂ;[ S=a2 ()i iZ ;C?Illlilrfier;fmhrll'ksk.
path sgch that / < k. Clearly, v, € V(e,), since v; = 5 = ¢,. Lemma 5 dictates tilnt
MLP intersects e,, and it follows that v, € V(e,). The vertices of MLP il
“:;iciwioof :}Xll%orlithrz z? can thus be matched one to one, which contradicts atrllle
a ption that / < k. It is ther i i i
ot 8 inimmum ik pach fromeioig Zs‘tabhshed that Algorithm A does indeed
.The time complexity analysis can be done in the following manner. Since
minimum link Path from s to d can have O(n) links, the repeat 1oo£> can b:
executed O(n) times. Computation of ¥(e,) is in fact computing visibility polygon
from an edge, and can be done in O(n) time using very recent results due toszi%)as
et al. [5]. The property d € V(e;) can be checked in time proportional to the size of
V(e,), whlch is O(n). That the actual construction of the path (lines 8-11) tak
only 0(;.1) time can be established as follows. We preprocess each visibilit la CS
V(e;) using the methods of Guibas er al. [5] so that given a point x on the }l;gI?nZlgon
of V(e ) apoint y € e, such that xy lies in ¥(e;) can be located in O(log ) wh::ry
n; is the size of V(e;) (see [5] for details). Hence, if the path has & links jﬂi,l I:e
tootalk cost of path reconstruction is O(X* (logn,)), where ¥ n, = n’ CT:a;l ;
A(iZs ,-B 1((lc;g n f))' = 0O(n). It follows., therefore, that the time compic;itgf of Algorithr};
o Hrlze ).bt is nojceW(_)rthy that 1f we spend O(n) time for computation of ¥{(e,)
D) tim,e ‘ 13311 co3nsslﬁler1ng th(;, entire polygon P, Algorithm A can actually takle
e : Fig. ows a polygon that forces the minimum link path to have n/2
img; c:fllzdfc:llo(;wng secgo'n we show hoW the time complexity of Algorithm A can be
Vo rnoo éi n?. This improvement in .the running time is achieved by computing
Sper;d o re Oe 01en.tly. Instead of spendlng O(n) time for computing each V(e,) we
oo dyb (II; ) time, where n; is the total number of triangles of T thaft are
Ao odt y t(g,.)s.2 Smcej X.n, = 0(n), even though the repeat loop of Algorithm
only O )e(il g (n)(tn?[ tllr:}es, the computation of all ¥(e;)’s together will require
4 detaﬂe& i,n P V<V)i r?g Sl:(l:tei.ogw technique for computing V(e;)’s in O(n,) time

3. ALGORITHM FOR MINIMUM LINK PATH

Our algorithm computes the visibility polygons for successive windows, starting
from s. Let s = e, be the first chord. Compute V(e,). If d € V(e;), we have a
one-link path, ie., s and d can be joined by a straight line inside P, and we can
stop. Otherwise, by Lemma 3, w(e,) exists. Also, Lemma 5 says that a path from s
to d intersects w(e,). Let e, = w(e,), and compute V(e,), and so on until we find a
window e, = w(e;_,) such that d € V(e;). The minimum link path from s to d can
then be found by constructing a sequence of point d,,,d;, d;_q,-.., dy where
d,,=dand d,1<j<iisa point on e; that can see d.;. Since, d; = s, the
path has i links. Thus, the algorithm for finding a minimum link path can be given
as follows:

ALGORITEM A. An algorithm for finding a minimum link path.

1. w(e,) < s; {Initialization}
2. i< 0
3. repeat
4. i—i+1;
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F1G. 3. A polygon that forces a minimum path of 7/2 links between s and d.

4. EFFICIENT COMPUTATION OF V(e;)’s

In this section, we substantiate our claim that the visibility polygon V(e;) can be
computed in O(n,), where n;, is the number of triangles of T that are intersected by
V(e,). The basic idea is as follows. Let e; be a chord of P for which we want to
compute V(e,). Let W(e,) be the window of e;. Let ¢,  be the lowest indexed
triangle intersected by e;. Let ¢,  be the highest indexed triangle intersected by
w(e,;). Lemma 4 implies that V(e;) intersects all triangles ¢, € T} ;, €, in < W, .
To be more precise, let y € w(e;) N ¢,  beapoint. Let x € ¢; be a point that is
visible from y. Lemma 4 proves that the segment xy intersects only those triangles
of T that are either intersected by e; or are triangles of T, , indexed between e; ...
and w, __ . Therefore, we can perform a binary search exclusively on the triangles of
T, , in the “forward” direction to locate #, . The binary search starts by
computing the visibility region from e; inside a small set of triangles and doubles
the number of triangles under consideration at each step. These notions are made
more precise in the following.

Consider the dual graph of the triangulation, G. Let x and y be two nodes in G.
There is a unique path in G from x to y. The union of triangles x and y along with
all the triangles that lie along the path from x to y describe a polygonal region in P.
We use this duality between length of a path in G and size of the corresponding
polygonal region in P to successively double the size of the polygonal region
considered for computing the visibility polygon from e,. By size of a polygonal
region P, we mean the number of vertices of P,.

Let e, be a chord of P for which we need to compute the visibility polygon V{(e;).
Let e, .. — € mm + 1 = my. Let m = my + m, be the total number of triangles of
T that are intersected by e;: First m, triangles are in Ty , indexed between e, y,
and e, and remaining m,, namely, {{, 5,..., ), } arein T — Ty ,. Let P, be

i max?*

the subpolygon that results from cutting P along e, and contains all the triangles

teimux+1’ R tk.
We start by computing the visibility region from e, inside P, N {z, U¢

€; min

computes V(e;). First we show that ,,
highest indexed triangle intersected b)}m;xv(e,.). Lemma 4

V&1, Nwle) and a point x € e, that is visi i
. ' max ) ; s visible from y, the line segmen
Intersects only those triangles of T that are either interse E angler

of T, , indexed b : ; .
ootk etween e, and w, __ . Since P/ .
indexed between e, imax i max considers all triangles of T,

+1
U---Ut, Ut U - Ut }. This region is trivially entirely visible from e;. At
next step 'we double the size of the polygonal region under consideration by
including m more triangles of T} , starting from ¢, ;. The visibility computation
is done all over again at each new step. In general, let P/ be the polygonal region
under consideration at the jth step. Let |P/| denote the number of triangles in P,
Let ¢; be the highest indexed triangle of T; , that is included in P/. The polygonal
region considered for the (j + Dth stepis P/ U {#; .1,...,¢; 4 ps}. We will call
this procedure of successively increasing the size of a polygonal region by a factor of
2, “doubling.” The doubling is discontinued if no point of the common diagonal of

(ViYhich are the triangles intersected by e, of the set T — T

Ck:):lt;:.rmlned. Next, if ¥(e,) intersects any triangle of t, €T — T, then the least

Fig I;l;)nTa;lgcestor 1;)f t,and £; in G must be indexed between e-’min and j_.. (see
- 4). This can be established in the following manner. We ca wit

LO,SS of generality that Jmax < : : o that 1 iterseeied

Y ¥(e,). Let the lowest common ancestor of t,and z, in G bet,1 <v <k We
v = UV = .
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the jmax-th and (., + 1)-th triangles is visible from e;, in which case w, ___ must li
between. e, and j.,,. In addition, w, _ > Imay» for any 1< j; oltﬁgxrwise the
doubl}ng must have been stopped at the /th step. Hence we C(,)nclude that 'ef:
doubling stops at jth step, then e, ;. <w, . <j and V(e) intersect :
half the triangles of P/, [ rects at feast
Now we are ready to compute the actual visibility polyeon ;
this final corpputation is the following. The visibil}i,qrf) rgggion Zéfr;l)).ufil; ;:atsl?en f?];
step of doubling may be a proper subset of V(e;). This is due to the fact that all {he
triangles of .the'set T ~ T, , have been completely ignored. Therefore, the part of
V(e;) that lies in the triangles of T — T; ; has not yet been compute’d. However

t,. is correctly determined. In order to com
Wi maax ; i pute V(e,), therefore
computation considers the following triangles (&) » the final

(a) all triangles of P/, and

(b) all triangles ¢, such that in G the least
. common ancest i i
indexed between e, .. and j__ . or of fu with 4, i
Since G is rooted at r,, the le i
! at 1, ast common ancestor is well defined. The r
algorithm for computing ¥{(e,) can now be given as . ehined

ALGORITEM B. An algorithm for computing ¥(e;) efficiently.

Pl1 « unign of all the triangles that are intersected by e;
V" « region of P! visible from e,; i
AR
repeat

J<Jj+ L

Pl Pl"l U {|P/~!|new triangles of T} , )

V7 « region of P/ visible from e; ’

Ly < highest indexed triangle in P/;
unt'll V7N {common diagonal of t, andt, )= g&;
{Final computation of V{(e,)} ™ o ’

final j :
PN P‘f U {all .trlan.gle's t,€ T — T, , whose least common ancestor
w1th ! 1 G 1s indexed between e, .. and }
1. V(e,;) < region of P visible from e;; -

VPN AW

—_
e

end {Algorithm B}

Proof of Correctness of Algorithm B. We show that Algorithm B correctly
is correctly determined. Let t,  be the
proves that forlgy point

cted by e;, or are triangles

imn a0d Jjo.., where joo o> w, along with { through ¢/
. 2
k> Wimax 18 correctly

k.lett,eT— T3, be a triangle that is intersected
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5. CONCLUSIONS

We have considered the problem of finding a minimum link path between two
designated points inside a simple polygon. We first describe an algorithm that runs
in O(n*) time. Later, we improve the running time of this algorithm to O(n). Using
a similar approach we can also preprocess the polygon P in O(n) time and space to
obtain a data structure for minimum link path queries. This data structure can

(1) output the minimum number of links needed between a fixed source s and
an arbitrary destination d in Q(log n) time,

(2) construct the actual path from s to d in time O(log n + k), where k is the
number of links in the path.

The details of this preprocessing will be presented in [10].

The general problem of finding minimum link paths between two points in the
presence of polygonal obstacles seems more difficult. Recently Suri and O’Rourke
[9] showed that the boundary of an edge-visibility polygon in the presence of
polygonal holes may have Q(n*) vertices in the worst case. Similar worst-case lower
bounds may apply to the minimum link path problem when the holes are present.
Recently Toussaint [T] suggested a new measure of the shape complexity of a
simple polygon. Let d(x, y), the distance between x and y, be defined as the
minimum number of links in a polygonal path between x and y. This metric, called
the minimum link metric, suggests a new measure for the internal diameter of a
polygon. Define the link-diameter of a polygon P to be the largest distance between
two points of P in the minimum link metric. Our algorithm for minimum link path
between two points can be used to given an O(n?) algorithm for this problem.
However, Suri [10] has recently discovered a more efficient algorithm that has
running time of O(n log *n). He also presents a simpler approximation algorithm

with running time O(n log n), whose output is guaranteed to be within two of the
link-diameter.

- = - 1k gme: £
FiG6 4 FIOOf of correctness Of Algorlthm B. The pOlnt y =] tu’ where tu el T The se 1
XV intersects the lowest common cesto: of t, a dt Wthh 18 I,.

ancestor u n N !

i imilar and

that v < k; the other case 1s very simi
gd r be three vertices of t,, where qulS }s;hart;d
i d between t, and f,_;. Let P, be the
t, and .t and pq is share v . 1 be b
E\?{)v;z?;lgo; that ré}s:lllts from cutting }1: alonlg pr a;d i(;rtltz;mes ttu.blgeat : Oﬁm, the

. Tt should be clear that e; fies m 15- "

otI;ere Sl}izp: 1p?loglcr)lrt1 that is visible from y. The line segment xy n’;ulslt m;cetr}?:i:tv p: ;md,
g i i . < Jnaxo 1t tOLIOW maxe
iangle .. Hence, U < W; max- SIDCE Wimax < Jmax : ' 1
?ﬁ;eif;;t;;a;geréf&e established. Snilnce all such triangles are included in the final

ion. V(e,) is correctly computed. ‘ '
corﬂr"lg;ll;atcl‘zg;plegceiltii of Algorithm B. Now we must establish that Algorithm B

utes V(e;) in time O(n,), where n, is size of ¥(e;). First, it should be rﬁl;::er tttlll:;
it o ber of tlriangles of T intersected by V{(e;) equal n;, then at no step mox an
l2fnu':n' a;r 1(;3 are considered. In additional, at each stage of the compqtat;oilalue
nZ;nbrtlar c;gf triangles considered by the algorithm doubles from the previou :

The total cost of computing V(e;), for some constant ¢, 18

will present the argument assumin
will not be discussed. Let p, g, an
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A Vectorizer and Feature Extractor for
Document Recognition
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This paper has two parts. The first part (Sects. 1-5) describes a thining algorithm that
operates directly on the run length encoding of a bilevel image. Besides finding strokes that
approximate the dark regions of the image, the algorithm determines other features that are
useful for character recognition: arcs, holes, endpoints, etc. The second part (Sect. 6) describes
the use of the results of the thinning algorithm in a simple demonstration system for document
recognition. © 1986 Academic Press, Inc.

1. INTRODUCTION

The conversion of raster images into vector form is of interest in many applica-
_tions ranging from cartography to character recognition. A significant part of the
_ problem is the identification of linear or curved strokes from the binary data. Some
_ authors start with a pixel-based thinning algorithm [18, 7, 14, 10] and then identify
_ line or curve segments. Others extract the information by a decomposition technique
_[8, 3, 2]. Combinations of the two approaches as well as alternative techniques have
_ also been investigated [1, 5, 12, 15, 11].

This paper extends the results of [15] to achieve a vectorization algorithm that
operates directly on the run length encoding of a bilevel image. When applied on
pages of text, the algorithm is faster by a factor of about three than the hybrid
_algorithm of [15], and faster by at least an order of magnitude than the pixel-based
thinning algorithm of [14]. This speed-up is not surprising because the algorithm
forms large groups of pixels and then operates on them rather than the individual
pixels. If we have an N X N picture, then a pixel-based thinning algorithm has
complexity of at least N2, In contrast, the complexity of the current algorithm is
approximately. of the order of the number of run length code segments, except for
the initial cost of finding the run length encoding.! However, computational speed is
not the only criterion to judge a vectorization algorithm. The quality of the results is
also important. The raster images in question are usually the results of digitization
of documents that contain a mixture of text and graphics. The desired end result of
the processing is a list of vectors and character codes. Therefore, vectorization for
such applications must produce lines and curves that meet two objectives: (a) They
are close to the original lines and curves for the graphics part. (Or at least they are
similar to the lines that a human observer might draw in order to vectorize a blob.)
(b) They are useful as features for the recognition of characters for the text part.
Readers of the paper may judge for themselves whether we have achieved the first
objective by looking at the various examples. In order to facilitate recognition the

—

—

*Present address: Dept. of Electrical Engineering, SUNY, Stony Brook, NY 11794
' This is of order N? but with a low coefficient. Some digitizers have hardware producing that code so
the cost is hidden from the vectorization algorithm. .
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