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Abstract. Let G be a complete, weighted, undirected, bipartite graph with n red nodes, n′ blue
nodes, and symmetric cost function c(x, y). A maximum matching for G consists of min{n, n′} edges
from distinct red nodes to distinct blue nodes. Our objective is to find a minimum-cost maximum
matching, i.e., one for which the sum of the edge costs has minimal value. This is the weighted
bipartite matching problem or, as it is sometimes called, the assignment problem.

We report a new and very fast algorithm for an abstract special case of this problem. Our first
requirement is that the nodes of the graph are given as a “quasi-convex tour.” This means that they
are provided circularly ordered as x1, . . . , xN , where N = n+ n′, and that for any xi, xj , xk, x`, not
necessarily adjacent but in tour order, with xi, xj of one color and xk, x` of the opposite color, the
following inequality holds:

c(xi, x`) + c(xj , xk) ≤ c(xi, xk) + c(xj , x`).

If n = n′, our algorithm then finds a minimum-cost matching in O(N logN) time. Given an
additional condition of “weak analyticity,” the time complexity is reduced to O(N). In both cases
only linear space is required. In the special case where the circular ordering is a line-like ordering,
these results apply even if n 6= n′.

Our algorithm is conceptually elegant, straightforward to implement, and free of large hidden
constants. As such we expect that it may be of practical value in several problem areas.

Many natural graphs satisfy the quasi-convexity condition. These include graphs which lie on
a line or circle with the canonical tour ordering, and costs given by any concave-down function of
arclength — or graphs whose nodes lie on an arbitrary convex planar figure with costs provided by
Euclidean distance.

The weak-analyticity condition applies to points lying on a circle with costs given by Euclidean
distance, and we thus obtain the first linear-time algorithm for the minimum-cost matching problem
in this setting (and also where costs are given by the L1 or L∞ metrics).

Given two symbol strings over the same alphabet, we may imagine one to be red and the other blue
and use our algorithms to compute string distances. In this formulation, the strings are embedded in
the real line and multiple independent assignment problems are solved, one for each distinct alphabet
symbol.

While these examples are somewhat geometrical, it is important to remember that our conditions
are purely abstract; hence, our algorithms may find application to problems in which no direct
connection to geometry is evident.
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1. Introduction. The above abstract gives a short overview of the contents of
the paper, and we shall give an in-depth discussion of our definitions, results, and
algorithm below. However, we first give a quick review of prior related work on
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matching. We shall consider graphs G which have N nodes; the nodes are partitioned
into a set of n red nodes and n′ blue nodes with N = n + n′. G is balanced if it
has equal numbers of red and blue nodes. There is a symmetric cost function c(x, y),
which gives the cost of an edge from node x to node y, with x and y of distinct colors.
A matching is a set of edges with no endpoints in common that match all the nodes
of one color with the same number of nodes of the opposite color. The cost of a
matching is the sum of the costs of its edges. The problem of finding a minimal-cost
matching for a general bipartite graph is known to have an O(N3) time algorithm (see
Lawler [18] for this and other background on matching), and for graphs with nodes in
the plane with the Euclidean distance as cost function, there is a O(N2.5 logN) time
algorithm due to Vaidya [22].

The minimum-cost matching problem is substantially easier in the case where the
nodes are in line-like order or are circularly ordered. The simplest versions of line-
like/circular orderings are where the points lie on a line or lie on a curve homeomorphic
to a circle, and the cost c(x, y) of an edge between x and y is equal to the shortest
arclength distance between the nodes. The matching problem for this arclength cost
function has been studied by Karp and Li [14], Aggarwal et al. [1], Werman et al. [23],
and others, and is the “skis and skiers” problem of Lawler [18]. Karp and Li have given
linear time algorithms for this matching problem; Aggarwal et al. have generalized
the linear time algorithm to the transportation problem.

A more general version of the matching problem for graphs in line-like order has
been studied by Gilmore and Gomory [10] (see [18]). In this version, the cost of an
edge from a red node x forward to a blue node y is defined to equal

∫ y
x
f , and from a

blue node x forward to a red node y to equal
∫ y
x
g, for some functions f and g. This

matching problem has a linear time algorithm provided f + g ≥ 0.

Another version of the matching problem for line-like graphs is considered by Ag-
garwal et al. [1]; they use graphs which satisfy a “Monge” property which states that
the inequality (1.1) below holds except with the inequality sign’s direction reversed.
They give a linear time algorithm for the matching problem for (unbalanced) Monge
graphs.

In the prior work most closely related to this paper, Marcotte and Suri [20] con-
sider the matching problem for a circularly ordered, balanced tour in which the nodes
are the vertices of a convex polygon and the cost function is equal to Euclidean
distance. This matching problem is substantially more complicated than the compar-
atively simple “skis and skiers” type problems; nonetheless, Marcotte and Suri give an
O(N logN) time algorithm which solves this minimum-cost matching problem. For
the case where the nodes are the vertices of a simple polygon and the cost function is
equal to the shortest Euclidean distance inside the polygon, they give an O(N log2N)
time algorithm.

The main results of this paper apply to all of the above matching problems on
circularly ordered or line-like tours, with the sole exception of unbalanced, Monge
graphs. For the “skis and skiers” and the problems of Gilmore and Gomory, Theo-
rem 1.9 gives new linear time algorithms that find minimum-cost matchings which are
different than the traditional minimum-cost matchings (and our algorithms are more
complicated than is necessary for these simple problems). Our algorithms subsume
those of Marcotte and Suri and give some substantial improvements. First, with the
weak analyticity condition, we have linear time algorithms for many important cases,
whereas Marcotte and Suri’s algorithm takes O(N logN) time. Second, our assump-
tion of quasi convexity is considerably more general than their planar geometrical
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setting and allows diverse applications. Third, our algorithms are conceptually sim-
pler than the divide-and-conquer methods used by Marcotte and Suri, and we expect
that our algorithms are easier to implement.

All of our algorithms have been implemented as reported in [5]; a brief overview
of this implementation is given in section 3.4.

We list some sample applications of our algorithms in the examples numbered 1–8
below. One example of a matching problem solution is shown in Figure 1.1. For this
figure, a 74-node bipartite graph was chosen with nodes on the unit circle. For this
matching problem, the cost of an edge is equal to the Euclidean distance between its
endpoints. The edges shown form a minimum-cost matching.

Fig. 1.1. The minimum-cost matching for a 74-node graph on the circle with Euclidean distance
as the cost function.

Our quasi-convex property is equivalent to the “inverse quadrangle inequality”
used, for instance, by [8] but is weaker than the similar “inverse Monge property”
of [4]. In fact, we show below that any Monge matching problem may be trivially
transformed into a quasi-convex matching problem, but not vice-versa.

Dynamic programming problems based on cost functions which satisfy the (in-
verse) quadrangle inequality, and some closely related matrix-search problems, have
been studied by many authors including [2, 3, 4, 7, 8, 9, 12, 15, 16, 17, 19, 24, 25].
However, we have discovered no direct connection between our quasi-convex matching
problem and the problems solved by these authors.

The notion of a Monge array [13] is related to that of quasi convexity, but the
Monge condition is stronger (i.e., quasi convexity is strictly more general). Because of
the similarity between the definitions of both properties, we take the time to illustrate
this point in detail. To understand the Monge property in our bipartite setting,
imagine the cost function to be an array, and impose the restriction that its first
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argument select a red point and the second a blue point. The array is Monge provided
that for all i, j, k, ` satisfying 1 ≤ i < j ≤ n and 1 ≤ k < ` ≤ n′, we have

c(Ri, Bk) + c(Rj , B`) ≤ c(Ri, B`) + c(Rj , Bk).

Now given a graph with a Monge cost array, we convert it (in linear time) to a
quasi-convex tour by simply visiting the red vertices first, in Monge order, followed
by the blue vertices, in reverse Monge order. The quasi-convexity inequality is then
an immediate consequence of the Monge property and our reverse ordering of the
blue vertices. This reversal is necessary because the sense of the Monge inequality is
opposite that of quasi convexity.

However, not every quasi-convex tour can be rearranged to form a Monge array.
We will now exhibit such a quasi-convex tour. Its nodes lie along the real line, and
costs are given by the square root of internode distance; tour order is from left to right.
Given a subtour of the form RiRjBaBb, then it is easily shown that in any Monge
reordering, Ba ≺ Bb iff Rj ≺ Ri. Similarly, given a tour of the form RjBaBbRi,
Ba ≺ Bb iff Rj ≺ Ri. Our counterexample then consists of any tour having a sub-
tour of the form RBBRRBB. To understand why, we attach subscripts resulting in
RiBaBbRjRkBcBd and proceed to apply the two rules above to get the implications

Ba ≺ Bb =⇒ Ri ≺ Rj =⇒ Bd ≺ Bc =⇒ Rj ≺ Rk.

Also,

Ba ≺ Bb =⇒ Rk ≺ Rj ,

which is a contradiction. Symmetrically the same conclusion is reached if one begins
instead with Bb ≺ Ba, whence no Monge rearrangement exists.

We now give the definitions necessary to state the main results of this paper. We
think of the nodes of the graph G as being either a line-like or circular tour of the
graph; in the case of a circular tour, we think of the node x1 as following again after
xN .

Definition 1.1. A sequence of nodes xi1 , xi2 , . . . , xi` are in input order if and
only if i1 < i2 < · · · < i`. The nodes are defined to be in tour order if and only if
there exists a k such that the sequence xik , . . . , xi` , xi1 , . . . , xik−1

is in input order.
Definition 1.2. The nodes x1, . . . , xN form a quasi-convex tour if and only if,

whenever xi, xj , xk, x` are in tour order, with xi and xj of one color and xk and x`
of the other color, then

c(xi, x`)− c(xi, xk) ≤ c(xj , x`)− c(xj , xk).(1.1)

Reordering terms in (1.1) gives

c(xi, x`) + c(xj , xk) ≤ c(xi, xk) + c(xj , x`).

To give a geometric intuition to quasi convexity, note that when xi, xj , xk, x` are
the vertices of a quadrilateral, the inequality states that the sum of the lengths of
diagonals is greater than or equal to the sum of the lengths of two of the sides.

Definition 1.3. The tour x1, . . . , xN of G is line-like if and only if the following
holds: For all i < j < k, we have

c(xi, xj) ≤ c(xi, xk)
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if xi is of opposite color from xj and xk, and we have

c(xi, xk) ≥ c(xj , xk)

if xk is of opposite color from xi and xj.

The property of quasi convexity is defined independently of the starting point of
the tour; i.e., the nodes of the tour can be “rotated” without affecting quasi convexity.
Obviously, the definition of line-like tours is sensitive to the choice of starting point
of the tour.

Our main theorems give either O(N logN) or O(N) time algorithms for all of the
following examples, with the exception of example 7:

1. Let the nodes x1, . . . , xN be sequentially ordered points on a line (e.g., they
are real numbers indicating points on the x-axis), and let ||xj − xi|| be the Euclidean
distance from xi to xj . Let f be any concave-down function, so f ′′(x) ≤ 0 for all x.
If the cost function is defined by

c(xi, xj) = f(||xj − xi||),(1.2)

then x1, . . . , xN form a quasi-convex tour. Prior work for examples 1 and 2 gave linear
time matching algorithms only for the case where f(x) is a linear function [14, 1].

2. Now let the points x1, . . . , xN lie on a smooth curve C which is homeomorphic
to a circle, with the points listed in, say, counterclockwise order. And let ||xj − xi||
equal the shortest arclength along C from xi to xj . Again let f(x) be any concave
down function. With the cost function given by equation (1.2), the nodes x1, . . . , xN
form a quasi-convex tour.

3. Suppose x1, . . . , xN lie, in that order, on a circle. Let c(xi, xj) equal the
Euclidean distance from xi to xj . Since Euclidean distance is a concave-down function
of the circular arclength, this is a special case of example 2 and the nodes form a
quasi-convex tour. In this case, the weak analyticity condition always holds and Main
Theorem 1.9 gives an O(N) time algorithm. The best prior algorithm was O(N logN)
time [20].

4. More generally, if x1, . . . , xN are the vertices of a convex polygon listed in,
say, counterclockwise order, and if the cost function is equal to Euclidean distance,
then the nodes form a quasi-convex tour. The prior algorithm for this case was
O(N logN) time [20] and our algorithms are either O(N) or O(N logN) time de-
pending on whether the weak analyticity condition holds.

5. Some nonconvex polygons also have vertices which form a quasi-convex tour.
For example, in a polygon shaped as in Figure 1.2, the vertices A,B,C,D will form
a quasi-convex tour, provided the angle θ not too large. (This is why we use “quasi-
convex” instead of “convex” to describe tours which satisfy equation (1.1).)

6. Examples 4 and 5 are also quasi-convex under other distance metrics such as
the L1 and L∞ metrics.

7. Marcotte and Suri consider graphs where the nodes are the vertices of a
simple polygon and the cost function is equal to the length of the shortest connecting
path inside the polygon. The nodes of such a polygon form a quasi-convex tour.
The prior algorithm and the algorithm of this paper are O(N log2N) time for this
example, since the cost function requires O(logN) time to compute.

8. In string matching algorithms, the cost of shifting a character’s position is
specified as a function of the distance shifted. The authors have worked in the past
on string matching algorithms [26, 27] in which the cost function is a linear function



QUASI-CONVEX MATCHING 175

θA C

B

D

●●

●

●

Fig. 1.2. A quasi-convex polygon which is not geometrically convex.

of distance. These prior algorithms have been quite successfully used in commer-
cial applications, especially natural language search, and we expect that the use of a
concave-down distance function will significantly improve the matching quality. As
we discuss in section 5, the setting of example 1 above is precisely what is needed to
allow (near) linear time string matching algorithms with concave-down cost functions.
A number of authors, including [7, 8], have studied concave-down cost functions for
string matching; their string matching algorithms are based on least-edit-distance
and, in this regard, are quite different from ours. Least-edit-distance string matching
algorithms are widely used because they provide rich and flexible string comparison
functions; on the other hand, the best general algorithms for computing least-edit-
distance require O(N2) time (see [21]). Our string matching algorithms are not as
flexible but can be tailored to work well for many applications; they have the advan-
tage of being linear time computable.

Main Theorem 1.4.
(i) There is an O(N logN) time algorithm for the minimum-cost matching prob-

lem for line-like quasi-convex tours.
(ii) There is an O(N logN) time algorithm for the minimum-cost matching prob-

lem for balanced quasi-convex tours.
Remark. The running times of the algorithms are given in terms of the number N

of nodes, even though the input size may in some cases need to be Ω(N2) to fully
specify the values of the cost function. However, in all the examples above, the input
size is O(N) since the cost function is specified by the nodes’ positions on a line, on
a curve, or in the plane. In any event, our runtime analysis assumes that any value
c(xi, xj) of the cost function can be computed in constant time. If this is not the case,
then the runtimes are to be multiplied by the time needed to compute a value of the
cost function; this is the situation in example 7 above.

We next define a “weak analyticity” condition which will allow even faster algo-
rithms.

Definition 1.5. Suppose that xi and xj are red (blue) nodes, that δ ≥ 0, and
that there is a blue (respectively, red) node xk such that

c(xi, xk)− c(xj , xk) < δ.

The δ-crossover point of xi and xj is defined to be the first such xk, where “first”
means in tour order starting from xj and ending at xi. If no such xk exists, then the
δ-crossover point does not exist.

It is not hard to see that the property of quasi convexity implies that, if the
δ-crossover point xk exists, then c(xi, x`) − c(xj , x`) ≥ δ whenever xi, xj , x`, xk are
in tour order and c(xi, x`) − c(xj , x`) < δ whenever xi, xj , xk, x` are in tour order.
Thus binary search provides an O(logN) time procedure which, given xi, xj , and δ,
will determine if xk exists and, if so, which node is xk. This is the approach taken in
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the algorithms of Theorem 1.4 and is the source of the logN factor in the runtime.
However, in some cases, xk can be found in constant time and we define the following.

Definition 1.6. A quasi-convex tour satisfies the strong analyticity condition
provided there is a constant-time algorithm which can determine if the δ-crossover
point of xi and xj exists and, if so, can determine which node it is.

A quasi-convex tour satisfies the analyticity condition provided there is a constant-
time algorithm which can answer the following question (as a function of similarly
colored nodes xi, xj , xk in tour order and of ε, δ > 0, where the δ-crossover of xi and xj
is known to exist):

“Do xj and xk have an ε-crossover point which either equals or pre-
cedes in tour order the δ-crossover point of xi and xj?”

Even the analyticity condition is too strong to be satisfied in many situations, so
we also define a “weak analyticity condition” as follows.

Definition 1.7. Let x be a node and y and z be denotations of nodes. We write
y ≺x z to denote that either (i) y and z exist and are distinct and y precedes z in the
tour order beginning at x, or (ii) y exists and z does not.

A relative crossover procedure is a procedure Ω such that, given ε, δ, xi, xj, and
xk as input, and letting y be the δ-crossover of xi and xj, and z be the ε-crossover of
xj and xk, then

(i) If y ≺xj z, then Ω outputs “Yes.”
(ii) If z ≺xj y, then Ω outputs “No.”
(iii) Otherwise Ω may output either answer.

Note that Ω is not required to determine y and z. The difference between weak analyt-
icity and ordinary analyticity is that when condition (iii) holds, Ω may output either
answer.

Definition 1.8. The weak analyticity condition is said to hold provided there is
a constant-time relative crossover procedure.

Clearly the strong analyticity condition implies the analyticity condition, which
in turn implies the weak analyticity condition. In most applications, we do not have
the analyticity or strong analyticity conditions, but the weak analyticity condition
does hold in many natural situations. In particular, examples 1, 2, 3, and 4 do satisfy
the weak analyticity condition provided that the concave-down function is sufficiently
natural. Consider, for instance, example 1 with the concave-down function f(x) = x,
f(x) =

√
x, or f(x) = log x, etc. For example 1, the input nodes x1, . . . , xN are given

with a sequence of real numbers r1 ≤ r2 ≤ · · · ≤ rN which are the positions of the
nodes on the real line. Given nodes xi, xj and δ > 0, the first possible position for the
δ-crossover of xi and xj can be found by solving the equation f(y−ri) = δ+f(y−rj)
for y; since we assume that arithmetic operations take constant time, the solution
y can be found in constant time. Note that y is only the theoretical crossover point;
the actual crossover is the first node xk such that y ≤ rk. Unfortunately, even after y is
known, it will not be possible to determine xk in constant time unless some additional
information is given about the distribution of the nodes on the real line. Thus, the
analyticity condition and strong analyticity conditions do not hold in general for
example 1. The reason the analyticity condition does not hold is that, if the theoretical
ε-crossover point occurs after the theoretical δ-crossover point, then the analyticity
algorithm must output “No” if there is a node after the theoretical δ-crossover point
and before or at the theoretical ε-crossover point, and must output “Yes” otherwise
(because in the latter case the two actual crossover points coincide). Unfortunately,
there is no general way to decide this in constant time, so the analyticity condition
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is false. However, the weak analyticity condition does hold, since the function Ω may
operate by computing the theoretical δ-crossover of xi and xj and the theoretical
ε-crossover of xj and xk and outputting “Yes” if the former is less than the latter.

For similar reasons, example 3 satisfies the weak analyticity condition; in this
case, since the nodes lie on a circle and the cost function is Euclidean distance, the
theoretical crossover position is computed (in constant time) as the intersection of
a hyperbola and the circle. Likewise, the weak analyticity condition also holds for
example 2 if the concave-down function is sufficiently nice, and it holds for example 6,
where nodes lie on a circle under the L1 and L∞ metrics. Example 4, where the nodes
form the vertices of a convex polygon, does not seem to satisfy the weak analyticity
condition in general; however, some important special cases do. For example, if the
vertices of the convex polygon are known to lie on a polygon with a bounded number
of sides, on an oval, or on a branch of a hyperbola, then the weak analyticity condition
does hold.

The analyticity condition has been implicitly used by Hirschberg and Larmore [12]
who defined a Bridge function which is similar to our Ω function. They give a special
case in which Bridge is constant-time computable and thus the analyticity condition
holds. Later, Galil and Giancarlo [8] defined a “closest zero property” which is equiv-
alent to our strong analyticity condition.1 As we illustrated above, the analyticity
and strong analyticity conditions rarely hold. Thus it is interesting to note that the
algorithms of Hirschberg and Larmore and of Galil and Giancarlo will still work, with
only minor modifications, if only the weak analyticity condition holds.

Our second main theorem implies that these examples which satisfy the weak
analyticity condition have linear time algorithms for minimum-cost matching.

Main Theorem 1.9.

(i) There is an O(N) time algorithm for the minimum-cost matching problem
for line-like quasi-convex tours which satisfy the weak analyticity condition.

(ii) There is an O(N) time algorithm for the minimum-cost matching problem
for balanced quasi-convex tours which satisfy the weak analyticity condition.

Remark. In order to achieve the linear time algorithms, it is necessary that nodes
of the graph be input in their tour order. This assumption is necessary, since without
it, it is possible to give a linear time reduction of sorting to the matching problem for
line-like tours.

Our main theorems also apply to minimum-cost matchings for some nonbipartite
quasi-convex tours. If a nonbipartite graph G has N nodes and cost function c, then
a matching for G is a set of b1

2Nc edges with all endpoints distinct. Part (i) of Main
Theorems 1.4 and 1.9 hold also for nonbipartite graphs which are line-like quasi-convex
tours. And part (ii) of Main Theorems 1.4 and 1.9 hold also for nonbipartite graphs
which are quasi-convex tours with an even number of nodes. The nonbipartite cases
are discussed in section 4; the algorithms are simple modifications of the algorithms
for the bipartite tours.

It is apparent that our algorithms can be parallelized, but we have not investigated
the precise runtime and processor count that is needed for a parallel implementation.
He [11] has given a PRAM implementation of Marcotte and Suri’s algorithm which
uses N processors and O(log2N) time and it is clear that our algorithm can be

1The definition of the “closest zero property” is misstated in [8]; it should be defined as saying
that it is possible to find the first r such that w(l, r)− w(k, r)− a ≤ 0 (note their w corresponds to
our cost function c, and a is a real). However, their algorithm explicitly uses the correct definition
of “closest zero property” (see their Fact 2).
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computed with the same number of processors with the same time bounds using He’s
methods.

Our algorithms apply to unbalanced tours only if they are line-like. This is because
in the line-like case the leveling process, described in the next section, induced by
choosing the first node as starting point, is guaranteed to decompose the problem into
alternating color subproblems, which may be independently solved and reassembled
to produce an overall solution. Now, some of these subproblems may be unbalanced,
but again using the line-like property, we are able to force balance by adding a dummy
node when necessary. These then are two different uses of the line-like property.

In balanced, unimodal tours2 such as the circle, the leveling concept of section 2
holds in a weaker form. However, we have been unable to extend our results to the
unbalanced unimodal case. As an example of the difficulty of this, consider the highly
eccentric ellipse of Figure 1.3; the bipartite tour containing its four nodes is unbalanced
and is neither line-like nor unimodal. Notice that no starting point induces a leveling
which places R2 and B1 at the same level, despite the fact that the minimum-cost
matching consists of an edge between them. The path to extending our methods to
such cases is therefore less clear.

R2

R3R1

B1

Fig. 1.3. A bipartite, unbalanced, unimodal tour for which no leveling process works.

2. Reductions and lemmas.

2.1. Reduction to tours of alternating colors. The first step to giving our
minimum-cost matching algorithms is to reduce to the special case of tours in which
the colors of the nodes alternate. In other words, we will be able to assume w.l.o.g.
that x1, x3, x5, . . ., are red and that x2, x4, x6, . . ., are blue.

Definition 2.1. Let xi and xj be nodes. We write [xi, xj ] to denote the sequence
of nodes obtained by starting with xi and advancing in tour order to xj. We write
(xi, xj ], [xi, xj), and (xi, xj) for this sequence minus the starting node, the ending
node, or both.

If x is a node, let d(x) denote the number of red nodes in [x1, x) minus the number
of blue nodes in [x1, x). The level of x, level(x), is equal to d(x) if x is blue and is
equal to d(x) + 1 if x is red. We write x ∼ y to mean that level(x) = level(y);
obviously, ∼ is an equivalence relation. It is easy to see that if y is the first node
after x in input order such that x ∼ y, then x and y are of opposite colors. Also,
if x ∼ y and x, y are in input order and are of opposite colors, then (x, y) contains
equal number of red and blue nodes. For balanced tours, the ∼-equivalence relation is
invariant under circular rotation of the nodes in the tour.

Given a matching on the nodes of a graph, we write xi ↔ xj to indicate the
presence of an edge between xi and xj in the matching. We say that xj immediately

2In unimodal tours, the cost function from any node rises and then falls as the tour is traversed.
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follows xi in tour order if j = i+ 1 or if i = N and j = 1. Two nodes xi and xj are
adjacent if and only if one of them immediately follows the other. An edge xi ↔ xj is
called a jumper if xi and xj are not adjacent. Two jumpers are said to cross if they
are of the form xi ↔ xk and xj ↔ x` with xi, xj , xk, x` in tour order.

Lemma 2.2. Let G be either a line-like quasi-convex tour or a balanced quasi-
convex tour. Then G has a minimum-cost matching in which every edge xi ↔ xj
satisfies xi ∼ xj. In other words, some minimum-cost matching for G can be obtained
as a union of minimum-cost matchings on the ∼-equivalence classes of G.

To prove Lemma 2.2 we use the following lemma.
Lemma 2.3. G has a minimum-cost matching in which no jumpers cross.
Sketch of proof. If a minimum-cost matching does have a pair of jumpers which

cross, the quasi-convexity property allows them to be “uncrossed” without increasing
the total cost. Repeatedly uncrossing jumpers will eventually yield a minimum-cost
matching with no crossing jumpers. (See Lemma 1 of [1] for a detailed proof of this.)

Lemma 2.2 is proved by noting that a minimum-cost matching with no crossing
jumpers must respect the ∼-equivalence classes. This is because, if a jumper xi ↔ xj
is in a crossing-free matching with i < j, then the nodes in the interval (xi, xj) must
be matched with each other and thus (xi, xj) must have equal numbers of red and
blue nodes. In the unbalanced, line-like case, this also depends on the fact that,
w.l.o.g., there is no jumper which crosses an unmatched node (this is an immediate
consequence of the line-like condition).

By Lemma 2.2, in order to find a minimum-cost matching, it suffices to extract
the ∼-equivalence classes and find minimum-cost matchings for each equivalence class
independently. It is an easy matter to extract the ∼-equivalence classes in linear time
by using straightforward counting. Each equivalence class consists of an alternating
color subtour; in the balanced case, there are an even number of nodes in each equiv-
alence class, and in the line-like condition case, there may be an even or odd number
of nodes. Thus, to give (near) linear time algorithms for finding matchings, it will
suffice to restrict our attention to tours in which the nodes are of alternating colors.

In view of Lemma 2.3, we may restrict our attention to matchings which contain
no crossing jumpers. Such a matching will be called crossing-free.

Finally, we can assume w.l.o.g. that the tour is balanced. To see why we can
assume this, suppose that x1, . . . , xN is an unbalanced, line-like tour of alternating
colors. This means that x1 and xN are the same color, say red. We can add a new
node xN+1 to the end of the tour, label it blue, and let c(xi, xN+1) = 0 for all red xi.
These N + 1 nodes no longer form a line-like tour; however, they do form a balanced
quasi-convex tour. Solving the matching problem for the N + 1 nodes immediately
gives a solution to the matching problem on the original N nodes.

2.2. Some important lemmas. Since we are now working only with balanced
quasi-convex tours of alternating colors, we shall often change the names of the nodes
to R1, B1, . . . , RM , BM ; so Ri and Bj refer to the ith red node and the jth blue node
in the tour, respectively. (So x2i−1 is the same as Ri and x2i is the same as Bi.) Note
that this means N = 2M . To simplify notation, we define

ci = c(Ri, Bi) and c′i = c(Bi, Ri+1).

A greedy matching is a matching which contains no jumpers, i.e., every node is
matched to an adjacent node. There are two greedy matchings, namely, the one
containing all edges Ri ↔ Bi and the one containing all edges Bi−1 ↔ Ri and the
edge BM ↔ R1. For xi and xj nodes of opposite color, a matching σ is said to
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be greedy on (xi, xj) provided it contains as a submatching the unique matching of
adjacent nodes contained in the interval (xi, xj). We similarly define the notion of σ
being greedy on a balanced interval I, where I is one of the intervals [xi, xj), [xi, xj ],
or (xi, xj ], but with the additional provisos that xi ↔ xi+1 is in σ in the first two
cases and that xj−1 ↔ xj is in σ in the second two cases.3

The notation [Ri, Bj ] has already been defined. In addition, the notation [i, j]
denotes the interval of integers i, i + 1, . . . , j if i < j, or the (circular) interval i, i +
1, . . . ,M, 1, 2, . . . , j if j < i ≤M . We also use the notations (i, j], [i, j), and (i, j) for
the intervals with one or both of the endpoints omitted.

Definition 2.4. Let Ri and Bj be nodes; we write Ri → Bj to denote a directed
edge going from Ri forward (in tour order) to Bj. That is, we think of Ri → Bj
jumping over the nodes Ri, Bi, Ri+1, . . . , Rj , Bj. We say that Ri → Bj is a candidate
(meaning, a candidate for a jumper), if

c(Ri, Bj) +
∑
`∈[i,j)

c′` <
∑
`∈[i,j]

c`.

The intuitive meaning of Ri → Bj being a candidate is that it would be of lower cost
to use the jumper Ri ↔ Bj, plus the greedy matching of adjacent nodes in (Ri, Bj),
in place of just the greedy matching of adjacent nodes in [Ri, Bj ].

A similar definition is used to define what it means for an edge Bi → Rj to be a
candidate; namely, Bi → Rj is a candidate if and only if

c(Bi, Rj) +
∑
`∈(i,j)

ci <
∑
`∈[i,j)

c′i.

Candidates always have endpoints of opposite colors and are directed. It is pos-
sible to have both Ri → Bj and Bj → Ri be (distinct) candidates or to have one or
neither of them candidates.

It is an easy observation that if there are no candidates, then the greedy assign-
ment(s) are minimum-cost matchings. To prove this, suppose σ is a minimum-cost
matching which contains a jumper; by Lemma 2.3, σ may be picked to contain no
crossing jumpers. Since there are no crossing jumpers, σ must contain a jumper
xi ↔ xj such that σ is greedy on (xi, xj) (namely, pick the jumper so as to minimize
the tour-order distance from xi to xj). Let σ′ be the matching which is the same
as σ except greedy on [xi, xj ]. Clearly σ′ has one fewer jumper than σ, and since
xi → xj is not a candidate, σ′ has cost no greater than σ. Iterating this construction
shows that at least one of the jumperless greedy matchings must be minimum-cost.
To show they are both minimum-cost, let σ0 and σ1 be the greedy matchings which
contain the edges x1 ↔ x2 and x1 ↔ xN , respectively. Then σ0 cannot have cost lower
than (respectively, higher than) the cost of σ1 since otherwise, x2 → x1 (x1 → xN ,
respectively) would be a candidate.

Definition 2.5. A candidate xi → xj is a minimal candidate if and only if there
is no other candidate xk → x` in its interior; that is to say, there is no candidate
xk → x` with [xk, x`] a proper subset of [xi, xj ].

Lemma 2.6. Consider a balanced quasi-convex tour of alternating colors.

3Note that, of the two greedy matchings for G, one is greedy on [x1, xN ] and the other is greedy
on [x2, x1].
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(i) Suppose Ra → Bb is a minimal candidate. Then every minimum-cost,
crossing-free matching is greedy on the interval (Ra, Bb). That is to say, every
minimum-cost, crossing-free matching contains the edges B`−1 ↔ R` for all ` ∈ (a, b].

(ii) Suppose Ba → Rb is a minimal candidate. Then every minimum-cost,
crossing-free matching is greedy on the interval (Ba, Rb). That is to say, every
minimum-cost, crossing-free matching contains the edges R` ↔ B` for all ` ∈ (a, b).

Note that Lemma 2.6 says only that the edges connecting adjacent nodes in the
interior of the minimal candidate are in every minimum-cost matching; it does not
say that the minimal candidate itself is a jumper in any minimum-cost matching. The
proof of Lemma 2.6 is fairly involved and we postpone it until section 2.3. Lemma 2.6
also holds for line-like tours with alternating colors for candidates x→ y with x, y in
input order.

Lemma 2.6 suggests an algorithm for finding a minimum-cost matching. Namely,
if there is a minimal candidate, greedily assign edges in its interior according to
Lemma 2.6. This induces a matching problem on the remaining unassigned nodes,
and it is clear that any minimum-cost matching on this smaller problem will lead to
a minimum-cost matching for the original problem. Iterating this, one can continue
removing nodes in the interiors of minimal candidates and reducing the problem size.
Eventually a matching problem with no candidates will be reached; in this case, it
suffices to greedily match the remaining nodes.

Unfortunately, this algorithm suggested by Lemma 2.6 is not linear time (yet);
thus we need to refine Lemma 2.6 somewhat with the following definition.

Definition 2.7. We define

Bnft[Ra, Bb] =


 ∑
i∈[a,b]

ci −
∑
i∈[a,b)

c′i


− c(Ra, Bb),

Bnft[Ba, Rb] =


 ∑
i∈[a,b)

c′i −
∑
i∈(a,b)

ci


− c(Ba, Rb),

and, for x and y the same color, Bnft[x, y] = −∞.

It is immediate that Bnft[x, y] > 0 if and only if x → y is a candidate; in fact,
Bnft[x, y] measures the benefit (i.e., the reduction in cost) of using x↔ y as a minimal
jumper instead of the greedy matching on [x, y].

The next lemma forms the basis for the correctness of the algorithm given in
section 3 for the serial transitive closure problem. The general idea is that the algo-
rithm will scan the nodes in tour order until at least one candidate is found and then,
according to Lemma 2.8, the algorithm will choose an interval (x`, xk) to greedily
match. Once the interval (`, k) has been greedily matched, the algorithm need only
solve the induced matching problem on the remaining nodes.

Lemma 2.8. Let G be a balanced quasi-convex tour matching problem. Let 1 <
k ≤ N and suppose Bnft[xi, xj ] ≤ 0 for all 1 ≤ i < j < k. Further suppose that

m
def
= max{Bnft[xi, xk] : i < k} > 0 and let `

def
= max{i < k : Bnft[xi, xk] = m}. Then

every minimum-cost, crossing-free matching is greedy on (x`, xk).

Proof. The proof is, in essence, an iteration of Lemma 2.6. We argue by
induction on k. Let G, k, m, and ` satisfy the hypothesis of the lemma. Let
s = max{i < k : Bnft[xi, xk] > 0}, so xs → xk is a minimal candidate. By Lemma 2.6,
any minimum-cost, crossing-free solution for G is greedy on the interval (xs, xk).



182 SAMUEL R. BUSS AND PETER N. YIANILOS

Hence, it will suffice to let G′ be the matching problem obtained from G by discard-
ing the nodes xs+1, . . . , xk−1 and prove that any minimum-cost, crossing-free solution
for G′ is greedy on (x`, xs]. If ` = s, there is nothing to prove, so we assume ` < s.
Note that xk is now the (s+ 1)st node in the G′ tour order. We use Bnft′ to denote
the Bnft function for G′.

We claim the following:
(i) If 1 ≤ i < j ≤ s, Bnft′[xi, xj ] = Bnft[xi, xj ].
(ii) If 1 ≤ i ≤ s, Bnft′[xi, xk] = Bnft[xi, xk]− Bnft[xs, xk].

Claim (i) is immediate from the definition of Bnft. The intuitive meaning of (ii) is that
the benefit of using the jumper xi ↔ xk is reduced by the benefit already obtained
from the jumper xs ↔ xk. We formally prove (ii) for the case that xi and xs are
red and xk is blue; the opposite colored case has a similar proof. Assume xi = Ra,
xs = Rb, and xk = Bc. Then

Bnft′[Ra, Bc] =
∑
`∈[a,b)

ci + c(Rb, Bc)−
∑
`∈[a,b)

c′i − c(Ra, Bc),

Bnft[Ra, Bc] =
∑
`∈[a,c]

ci −
∑
`∈[a,c)

c′i − c(Ra, Bc),

Bnft[Rb, Bc] =
∑
`∈[b,c]

ci −
∑
`∈[b,c)

c′i − c(Rb, Bc).

From these three equations claim (ii) follows immediately.
Now let m′ = max{Bnft′[xi, xk] : i < s}. By claim (ii), m′ = m − Bnft[xs, xk];

since ` < s, m′ > 0. Likewise, ` = max{i < s : Bnft′[xi, xk] = m′}. Thus, by
the induction hypothesis, any minimum-cost solution for G′ is greedy on (x`, xs] and
Lemma 2.8 is proved.

Definition 2.9. The ∆ function is defined by

∆[Ra, Rb] =
∑
`∈[a,b)

c` −
∑
`∈[a,b)

c′`,

∆[Ba, Bb] =
∑
`∈[a,b)

c′` −
∑
`∈(a,b]

c`.

Lemma 2.10.
(i) Bnft[Ra, Bc] > Bnft[Rb, Bc] if and only if c(Ra, Bc)−c(Rb, Bc) < ∆[Ra, Rb].
(ii) Bnft[Ba, Rc] > Bnft[Bb, Rc] if and only if c(Ba, Rc)−c(Bb, Rc) < ∆[Ba, Bb].

Lemma 2.10 follows immediately from the definitions.
Lemma 2.11. Let u, v, x, y be in tour order with nodes u and v of one color and

x and y of the other color. Then

Bnft[u, x] > Bnft[v, x] ⇒ Bnft[u, y] > Bnft[v, y].

Proof. By Lemma 2.10, Bnft[u, x] > Bnft[v, x] is equivalent to c(u, x)− c(v, x) <
∆[u, v], and Bnft[u, y] > Bnft[v, y] is equivalent to c(u, y) − c(v, y) < ∆[u, v]. Now,
by quasi convexity, c(u, x) − c(v, x) ≥ c(u, y) − c(v, y), which suffices to prove the
lemma.

Let Ra and Rb be distinct red nodes. The previous two lemmas show that if
there is any node Bc (with Ra, Rb, and Bc in tour order) such that Bnft[Ra, Bc] is
greater than Bnft[Rb, Bc], then the first such Bc is the ∆[Ra, Rb]-crossover point of
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Ra and Rb. We shall denote this first Bc, if it exists, by χ[Ra, Rb]; if it does not
exist, then χ[Ra, Rb] is said to be undefined. Similarly, χ[Ba, Bb] is defined to the
be the ∆[Ba, Bb]-crossover point of Ba and Bb, and, if defined, is the first Rc where
Bnft[Ba, Rc] is greater than Bnft[Bb, Rc].

We now assume that we have a procedure Ω(x, y, z), which, given nodes x, y, z in
tour order, returns “True” if χ[x, y] ≺y χ[y, z] and returns “False” if χ[y, z] ≺y χ[x, y].
(If neither condition holds, then Ω(x, y, z) may return an arbitrary truth value.) If
the weak analyticity condition holds, then Ω is constant-time computable. Without
this assumption, Ω is O(logN) time computable since Lemma 2.11 allows χ[−,−] to
be computable by binary search.

The general idea of the algorithm given in section 3 below is that it will scan the
nodes in tour order searching for candidates. Whenever a node is reached that is the
head of a candidate, the algorithm will take the candidate specified in Lemma 2.8 (the
one that was denoted x` → xk) and greedily match the nodes in its interior. The greed-
ily matched nodes are then dropped from consideration and the algorithm resumes
its search for a candidate. Suppose the u and v are two nodes already scanned in this
process that are being remembered as potential endpoints of candidates. Lemma 2.10
tells us that if a node x is found where Bnft[u, x] > Bnft[v, x], then at all succeeding
nodes y, Bnft[u, y] > Bnft[v, y]. By the criterion of Lemma 2.8, this means that after
the node x is found, there is no further reason to consider candidates that begin at
node v, since any candidate v → y would be subsumed by the better candidate u→ y.

To conclude this section we describe the algorithm in very general terms; in
section 3 we give the precise specification of the algorithm. The algorithm scans nodes
(starting with node x1, say) and maintains three lists. The first list, M, contains the
nodes in tour order which have been examined so far. The second list, L-1, contains
all the red nodes that need to be considered as potential endpoints of candidates (so
L-1 is guaranteed to contain all the nodes satisfying the criterion of Lemma 2.8).
The third list, L1, similarly contains all the blue nodes that need to be considered as
potential endpoints of candidates. At any point during the scan, the lists will be of
the form

M = x1, . . . , xr−1,

L-1 = Ra1 , . . . , Rap ,

L1 = Bb1 , . . . , Bbq ,

with L-1 and L1 subsequences of M. The following five conditions will be maintained
during execution:

(i) x1, . . . , xr−1 are the nodes scanned but not matched and are in tour order,
and there are no candidates xi → xj with 1 ≤ i < j < r.

(ii) xr−1 precedes χ[Rap−1
, Rap ] in tour order.

(iii) For all 1 ≤ i ≤ p− 2, Ω(Rai , Rai+1
, Rai+2

) is false.
(iv) For all 1 ≤ i ≤ q − 2, Ω(Bbi , Bbi+1 , Bbi+2) is false.
(v) At any possible future node xk following xr−1 such that xk is the first

point where a candidate is discovered; if the x` which satisfies Lemma 2.8 is among
x1, . . . , xr−1 then it is already on the list L-1 or L1 (depending on which color it is).
When scanning the next node xr, the algorithm must do the following (we assume xr
is blue; similar actions are taken for red nodes):

(β) While p ≥ 2 and Bnft[Rap−1 , xr] > Bnft[Rap , xr], pop Rap from L-1 and
decrement p.
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(γ) If Bnft[Rap , xr] > 0, greedily match nodes in the interval (Rap , xr). The

matched nodes are discarded from the lists M, L-1, and L1 (the remaining
nodes are to be implicitly renumbered at this point).

(δ) While q ≥ 2 and Ω(Baq−1
, Baq , xr), pop Baq from L1 and decrement q.

Then push xr onto the end of L1 (and increment q).

Step (β) is justified by recalling that if xr is past χ[Rap−1 , Rap ], then Rap may be
removed from consideration as an endpoint of a candidate (by Lemma 2.8).

Step (δ) is justified as follows: suppose Ri = χ[Baq−1 , Baq ] equals or precedes
Rj = χ[Baq , xr] (using tour order, beginning at Baq ). Then at any future candidate
endpoint xk, either xk follows or equals Ri, in which case Bnft[Baq−1

, xk] is greater
than Bnft[Baq , xk], or xk precedes Rj , in which case, Bnft[xr, xk] is greater than
Bnft[Baq , xk]. Thus Baq will never be the starting endpoint of a candidate satisfying
the criteria of Lemma 2.8, and we may drop it from consideration.

To justify step (γ) we must show that the candidate Rap → xr satisfies the criteria
from Lemma 2.8; in view of the correctness of the rest of the algorithm, for this it
will suffice to show that Bnft[Rai , xr] ≤ Bnft[Rap , xr] for all 1 ≤ i < p. For this, note
that step (β) and condition (iii) above ensure that xr precedes χ[Rai , Rai+1

] for all
1 ≤ i < p. This, in turn, implies Bnft[Rai , xr] ≤ Bnft[Rai+1

, xr] for all i, which proves
the desired inequality.

After the algorithm has scanned all the nodes once, it will have found and pro-
cessed all candidates xi → xj where i < j. However, since the tour is circular, it is
necessary to process candidates xi → xj with i > j. At the end of the first scan,
the list M consists of all nodes x1, . . . , xn which have not been matched yet and
L-1 and L1 contain nodes Ra1

, . . . , Rap and Bb1 , . . . , Bbq , as usual. During the second
scan, the algorithm is searching for any candidates of the form Rai → Bj with j < ai
or of the form Bai → Rj with j ≤ ai (and only for such candidates). To process a
node during the second scan, the algorithm pops x1 off the left end of M, implicitly
renames x1 to xn and the rest of the nodes xi to xi−1, sets r = n, and does step (α)
(still assuming xr is blue):

(α) If xr equals Bb1 , then pop Bb1 from the list L1 and implicitly renumber L1,
decrementing q.

It then does steps (β)–(δ), except that in step (δ), the node xr is not added to the end
of L1. The reason for step (α) is that once a node Bbi is encountered on the second
scan, Bbi is no longer a possible starting endpoint for a candidate. The reason for not
adding xr to the end of L1 in step (δ) is that it cannot be the starting endpoint of a
candidate, because any such candidate would have already been found earlier.

The second scan will stop as soon as both L lists become empty. At this point
no candidates remain and a greedy matching may be used for the remaining nodes in
the M list.

The actual description of the algorithm with an efficient implementation is given
in section 3, and it is there proved that the algorithm is linear time with the weak
analyticity condition and O(N logN) time otherwise. Although we described steps
(α)–(δ) only for blue xr above, the algorithm in section 3 uses a toggle ψ to handle
both colors with the same code. Finally, one more important feature of the algorithm
is the way in which it computes the values of the Bnft function and of the ∆[x, y]
function; it uses intermediate values I[x] which are defined as follows.

Definition 2.12. The I[x] function is defined by

I[Ra] = ∆[R1, Ra],
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I[Ba] = I[Ra] + c(Ra, Ba).

Note that I[Ra+1] = I[Ba]− c(Ba, Ra+1).
It is immediate from the definitions that, if x, y are tour order (starting from x1),

then

∆[x, y] = I[y]− I[x] for x and y red,

∆[x, y] = I[x]− I[y] for x and y blue,

Bnft[x, y] = I[y]− I[x]− c(x, y) for x red, y blue,

Bnft[x, y] = I[x]− I[y]− c(x, y) for x blue, y red.

These equalities permit the values of ∆ and Bnft to be computed in constant
time from the values of I[−]. Also, it is important to note that only the relative I[−]
values are needed; in other words, it is OK if the I[−] values are shifted by a constant
additive constant, since we always use the difference between two I[−] values.

The I[−] function is not only easy to compute but also provides an intuitive
graphical means of understanding the above lemmas and algorithm description. For
example, in Figure 2.1, R1 → B3 is a (minimal) candidate whereas R1 → B1 and
R1 → B2 are not candidates. In Figure 2.2(a), the node B3 is the relative crossover,
χ[R1, R2], of R1 and R2; on the other hand, in Figure 2.2(b), the relative crossover
does not exist. Figure 2.3(a) shows an example where Ω(R1, R2, R3) is true and
Figure 2.3(b) shows an example where Ω(R1, R2, R3) is false.

R1 B1 R2 B2 R3 B3

I[     ]R1

I[     ]1B

I[     ]B2

I[     ]B3 +c(     ,x)R1I[     ]R1

Fig. 2.1. R1 → B3 is a candidate as I[R1] + c(R1, B3) < I[B3], which is equivalent to
Bnft[R1, B3] > 0.

2.3. Proof of Lemma 2.6. By symmetry it will suffice to prove part (i). Since
the lemma is trivial in case a = b, we assume a 6= b. Let σ be a crossing-free minimum-
cost matching; we must prove that σ is greedy on (Ra, Bb). By the crossing freeness
of σ and by the fact that Ra → Bb is a minimal candidate, σ does not contain any
jumper with both endpoints in [Ra, Rb], except possibly Ra ↔ Bb itself. If Ra ↔ Bb
is in σ, then the same reasoning shows that σ is greedy on (Ra, Bb); so we suppose
that Ra ↔ Bb is not in σ. Since we are dealing (w.l.o.g.) with balanced tours, we
may assume that b = N , by renumbering nodes if necessary.



186 SAMUEL R. BUSS AND PETER N. YIANILOS

R1 B1 R2 B2 R3 B3

I[     ]R1

+c(     ,x)R1I[     ]R1

I[     ]B2

I[     ]1B

I[     ]B3

+c(     ,x)RI[     ]R2 2

(a)

R1 B1 R2 B2 R3 B3

+c(     ,x)R1I[     ]R1
+c(     ,x)RI[     ]R2 2

(b)

Fig. 2.2. Illustrations of the relative crossover, χ[R1.R2], of R1 and R2. In (a), B3 is χ[R1, R2],
since it is the first node x to satisfy I[R2]+c(R2, x) > I[R1]+c(R1, x). In (b), the relative crossover
does not exist.

Claim (i). Ra ↔ Ba is not in σ.

Suppose, for a contradiction, that Ra ↔ Ba is in σ. Let v be the least value such
that Rv ↔ Bq is in σ for some q < a < v. Note that such a v, a < v ≤ N , must
exist since there are no jumpers in [Ra, BN ] and since σ is not greedy on [Ra, BN ]
(it cannot be greedy on [Ra, BN ], since Ra → BN is a candidate). By choice of v,
σ is greedy on [Ra, Rv). These edges in the matching σ are represented by edges
drawn above the line in Figure 2.4(a). Since Ra → BN is a minimal candidate,
Bnft[Ra, BN ] > Bnft[Rv, BN ], so Lemma 2.10 implies

∑
i∈[a,v)

ci −
∑
i∈[a,v)

c′i > c(Ra, BN )− c(Rv, BN ).
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R1 B1 R2 B2 R3 B3

(a)

R1 B1 R2 B2 R3 B3

(b)

Fig. 2.3. Ω(R1, R2, R3) is true in (a) and false in (b).

Since Ra, Rv, BN , and Bq are in tour order, quasi convexity implies

c(Ra, BN )− c(Rv, BN ) ≥ c(Ra, Bq)− c(Rv, Bq).

Combining these inequalities yields∑
i∈[a,v)

ci + c(Rv, Bq) >
∑
i∈[a,v)

c′i + c(Ra, Bq).(2.1)

Let σ′ be the matching obtained from σ by replacing the jumper Bq ↔ Rv and the
greedy matching on [Ra, Rv) with the edge Bq ↔ Ra and the greedy matching on
(Ra, Rv]. The new edges in σ′ are drawn below the line in Figure 2.4(a). By (2.1), σ′

has cost strictly less than the cost of σ, which is a contradiction.
Claim (ii). RN ↔ BN is not in σ.
Claim (ii) is proved by an argument similar to Claim (i). Alternatively, reverse

the colors and the tour order and Claim (ii) is a version of Claim (i).
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Bq

Bq

BRR BB R B v-1 vv-1 Nu u+1 u+1R Rar

(b)

BRR BR B R Ba a+1 v-1 va b+1 v-1 N

(a)

Fig. 2.4. Illustrations of Claims (i) and (iii) from the proof of Lemma 2.6. The edges above
the lines represent edges in the presumed minimum-cost matching σ; these are replaced by the edges
below the line in the lower-cost matching σ′.

Claim (iii). The matching σ is greedy on (Ra, Bb).
Suppose for a contradiction that σ is not greedy on (Ra, Bb). In view of Claims

(i) and (ii) and since σ has no jumpers in [Ra, BN ], this means that there exist u and v
such that u is the least value, such that σ contains Bu ↔ Rr with r < a ≤ u, and
v is the least value, such that σ contains Rv ↔ Bq with q < a ≤ v. Namely, let
u be the least value ≥ a such that Bu ↔ Ru+1 is not in σ and v be the least value
> u such that Rv ↔ Bv is not in σ. For these choices of u and v, it must be that
q < r < a ≤ u ≤ v ≤ N and that σ is greedy on [Ba, Ru] and [Ru+1, Bv−1]. These
edges in the matching σ are represented by edges drawn above the line in Figure 2.4(b).

Since Ra → BN is a candidate,

∑
i∈[a,N ]

ci > c(Ra, BN ) +
∑

i∈[a,N)

c′i.

And since it is minimal, neither Ra → Bu nor Rv → BN are candidates; i.e.,

∑
i∈[a,u]

ci ≤ c(Ra, Bu) +
∑

i∈[a,u)

c′i,

∑
i∈[v,N ]

ci ≤ c(Rv, BN ) +
∑

i∈[v,N)

c′i.

Combining these three inequalities gives

∑
i∈(u,v)

ci + c(Ra, Bu) + c(Rv, BN ) >
∑
i∈[u,v)

c′i + c(Ra, BN ).(2.2)

Since Ra, Rv, BN , Bq and Rr, Ra, Bu, Bq are in tour order, quasi convexity implies the
two inequalities

c(Ra, Bq) + c(Rv, BN ) ≤ c(Ra, BN ) + c(Rv, Bq),
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c(Rr, Bq) + c(Ra, Bu) ≤ c(Rr, Bu) + c(Ra, Bq)

which combine to yield

c(Ra , BN )− c(Ra, Bu)− c(Rv, BN )(2.3)

≥ c(Rr, Bq)− c(Rr, Bu)− c(Rv, Bq).

Using (2.2) and (2.3) gives the inequality

∑
i∈(u,v)

ci + c(Rr, Bu) + c(Rv, Bq) >
∑
i∈[u,v)

c′i + c(Rr, Bq).

Let σ′ be the matching obtained from σ by replacing the jumpers Rr ↔ Bu, Rv ↔ Bq,
and the greedy matching on (Bu, Rv) with the edge Rr ↔ Bq and the greedy matching
on [Bu, Rv]. The new edges in σ′ are drawn below the line in Figure 2.4(b). The last
inequality above says that σ′ has cost strictly less than the cost of σ, which is a
contradiction.

3. The algorithm. In this section, we give the actual algorithm for the main
theorems. The correctness of the algorithm follows from the development in sec-
tion 2.2. With Kanzelberger and Robinson, we have developed efficient implementa-
tions in ANSI-C of all the algorithms described below [5].4

3.1. Preliminaries. As mentioned above, the algorithm maintains three lists
of nodes called deques (for “double ended queues,” since we will have to access both
ends of the lists). The three deques are the “main” deque M and two “left” deques
L1 and L-1. The latter two are called “left deques” since they contain possible left
endpoints for candidates. The deques will be updated by push-right operations which
add a new node to the right end, by pop-right operations which pop the rightmost
node off the deque, and by pop-left operations. However, push-left operations are
never required. Deque operations can be efficiently implemented by using contiguous
memory locations to store the deque elements and maintaining pointers to the left
and right endpoints; each deque operation can then be performed in constant time.
For our algorithm, it will suffice to reserve enough space for 2N deque elements (with
no possibility that a deque will grow leftward since push-left’s are not used).

SubscriptsR, L, andR−1 are used to select the rightmost item, leftmost item, and
the item preceding the rightmost, respectively. So L-1

L refers to the leftmost element
of L-1, MR−1 refers to the item just before the rightmost member of M, etc. Each
deque element is actually a pair, for example, MR = (X, I); the first entry X of the
pair is a node and the second entry I is a numerical value, namely I = I[X] as defined
in section 2.2. To simplify notation, we shall use the same notation for a deque element
as for the node which is its first component. Thus, ML also denotes the node which
is its first component. We write I[ML] to denote its second (numerical) component.
Similar conventions apply to the L±1 deques. To simplify our presentation of the
algorithm, we deal with boundary effects by augmenting the definition of primitive
operations as necessary. For example, accessing a nonexistent deque element will
return an undefined indicator ∅ and, in general, functions of undefined operands are
false or zero (in particular, the cost function c(−,−) and the I[−] functions return
zero if they have ∅ as an argument).

4These C implementations are also available electronically from the authors or can currently be
obtained by anonymous ftp from math.ucsd.edu or ftp.nj.nec.com
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Function Input() returns the next vertex from an imagined input tape, which
moves in the forward direction only and is assumed to hold a balanced alternating
color tour. When the tape’s end is reached, “undefined” is returned. Procedure
Output() is used to write an individual matching to an imagined output tape. They
are written as discovered but can easily be output in tour order (with only an extra
O(N) time computation).

To use the same code for red nodes and blue nodes, a variable ψ tracks vertex
color by toggling between −1 and 1. Our convention is that ψ = 1 corresponds to
blue and ψ = −1 to red.

3.2. Narrative description of the algorithm. Initialization consists of set-
ting the three deques to be empty and setting the color toggle ψ := −1.

The algorithm first reads nodes from the input and pushes them onto the right
end of the M deque, and then twice scans the nodes in tour order. During the two
scans, nodes are popped from the left end of M and then pushed onto its right end.5

In addition, while processing a node some nodes may be popped off the right end ofM
to be matched. It will always be the case that M contains a sequence of contiguous
nodes in tour order and that the node currently being scanned immediately follows
the (formerly) rightmost element of M.

The variable ψ will be maintained as a color toggle, so that ψ is equal to −1 if
the node currently being processed is red and to 1 if the current node is blue. The
algorithm used for pushing an element onto the right end of M follows.

Algorithm 3.1. This procedure pushes a vertex X onto the right of the M deque
and computes the corresponding I[X] value which is pushed along with X.

procedure Push Main (X )
I:= I [MR] + ψ · c(MR, X )
push-right (X,I ) onto M
return ()

Algorithm 3.1 merely computes the I[−] value for a node X and pushes the node
and its I[−] value on the right end of M . To justify the computation of the value
of I[X], note that if X is blue, then ψ = 1 and I[X] was defined to equal I[MR] −
c(MR, X); whereas, if X is red then φ = −1 and I[X] equals I[MR] + c(MR, X).
(Unless M is empty, in which case, I[X] = 0.)

Once the current node has been pushed onto the right end of M, the following
code implements step (β) from section 2.2:

while c(L-ψ
R−1,MR)− c(L-ψ

R ,MR) < ψ · (I[L-ψ
R ]− I[L-ψ

R−1])

pop-right L-ψ

To justify the correctness of the while condition, suppose that the currently
scanned node is red, so φ = −1. By Lemma 2.10, Bnft[L-ψ

R−1,MR] > Bnft[L-ψ
R ,MR] if

and only if c(L-ψ
R−1,MR)− c(L-ψ

R ,MR) < ∆[L-ψ
R−1,L

-ψ
R ]. Furthermore, ∆[L-ψ

R−1,L
-ψ
R ]

is equal to ψ · (I[L-ψ
R ]− I[L-ψ

R−1]) since L-ψ contains blue nodes and ψ = −1 (by the
equalities at the end of section 2.2). In this case, MR is past the crossover point of

L
-ψ
R−1 and L

-ψ
R , so L

-ψ
R may be discarded from consideration as a left endpoint of a

candidate. A similar calculation justifies the case when the current node is blue.

5For line-like tours, only the first scan is needed; however, we treat only the more general (circular)
case.
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To implement step (γ), the following code is used:

if c(MR,L
-ψ
R ) < ψ · (I[MR]− I[L-ψ

R ])
X := pop-right M
while MR 6= L

-ψ
R

Match Pair()
Push Main(X)

where Match Pair is defined below. The above if statement checks whether L
-ψ
R →

MR is a candidate; if so, the algorithm greedily assigns edges to nodes in the interior
of the candidate (where “greedily” means with respect to the nodes that have not
already been assigned). Before the greedy assignment is started, the rightmost entry
is popped from M and is saved as X to pushed back on the right end afterwards.
There are two reasons for this: first, this gets the current node X out of the way of
Match Pair’s operation, and second, and more importantly, when X is pushed back
onto M, the I[−] value for the current node is recomputed so as to be correct for the
reduced matching problem in which the greedily matched nodes are no longer present.
Match Pair is the following procedure:

procedure Match Pair()
Output (“MR−1 ↔MR”)
pop-right M
if MR = L

ψ
R

pop-right Lψ

pop-right M
return()

The procedure Match Pair assigns a jumper MR−1 ↔ MR and discards a matched
node from the deque Lψ if it appears there. Because of the while condition controlling
calls to Match Pair, it is not possible for a matched node to occur in L-ψ, so we do
not check for this condition.

To implement step (δ), the following code is used:

while Ω(LψR−1,L
ψ
R,MR) = “Yes”

pop-right Lψ

push-right MR onto Lψ (without popping MR)

That completes the description of how nodes are processed during the first scan.
As mentioned earlier, the last instruction (the push-right) is omitted from step (δ)
during the second scan. Other than this, the processing for steps (β)–(δ) is identical
in the two scans.

One potentially confusing aspect of the second scan is that the I[−] values are
no longer actually the correct I[−] values; for example, it is no longer the case that
I[ML] is necessarily equal to zero. Strictly speaking, the I[−] values all shift by an
additive constant when an entry is popped from the left end of M; however, it is not
necessary to implement this shift, since the algorithm only uses differences between
I[−] values. The end result is that nothing special needs to be done to the I values
when we pop-left M.

After both scans are completed, any remaining nodes may be greedily matched.
As discussed above, there are two possible greedy matchings and both have the
same (optimal) cost. Thus either one may be used; the algorithm below just calls



192 SAMUEL R. BUSS AND PETER N. YIANILOS

Match Pair repeatedly to assign one of these greedy matchings.
Algorithm 3.2. This is the matching algorithm for balanced quasi-convex tours.

All variables are global.

“Initialization”

M,L-1,L1 := ∅
ψ := -1

“Read Input into the M deque”

while [X := Input()] 6= ∅
Push Main (X)
ψ := −ψ

“The First Scan”

while Lψ is empty or ML 6= L
ψ
L

X := pop-left M
Process Node()

push-right MR onto Lψ

ψ := −ψ
“The Second Scan”

while L-1 and L1 are not both empty
X := pop-left M
if X = L

ψ
L

pop-left Lψ

Process Node()
ψ := −ψ

“Windup Processing”

while M is not empty
Match Pair()

Exit.
procedure Process Node()

Push Main(X)

while c(L-ψ
R−1,MR)− c(L-ψ

R ,MR) < (I[L-ψ
R ]− I[L-ψ

R−1]) · ψ
pop-right L-ψ

if c(MR,L
-ψ
R ) < ψ · (I[MR]− I[L-ψ

R ])
X := pop-right M
while MR 6= L

-ψ
R

Match Pair()
Push Main(X)

while Ω(LψR−1,L
ψ
R,MR)

pop-right Lψ

return

The complete matching algorithm is shown as Algorithm 3.2. When interpreting
Algorithm 3.2, it is necessary to recall our convention that any predicate of undefined
arguments is to be false. This situation can occur in the four while and if conditions
of Process Node. If L-ψ is empty, then L

-ψ
R is undefined and the two while conditions

and the first if condition are to be false. Similarly, if L-ψ has < 2 elements, then the
first while condition is to be false; and if Lψ has < 2 elements, then the final while
condition is to be false.
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The runtime of Algorithm 3.2 is either O(N) or O(N logN) depending on whether
the weak analyticity condition holds. To see this, note that the initialization and the
windup processing both take O(N) time. The loops for each of the two scans are
executed ≤ N times. Except for the while loops, each call to Process Node takes
constant time. The second while loop (which calls Match Pair) is executed more than
once only when edges are being output. If the first or third while loop is executed
more than once, then vertices are being popped from the L stacks. Since b 1

2Nc edges
are output and since O(N) vertices are pushed onto the L stacks, each of these while
loops are executed only O(N) times during the entire execution of the algorithm.
An iteration of the first or second while loop takes constant time, while an iteration
of the third while loop takes either constant time or O(logN) time, depending on
whether the weak analyticity property holds.

When the weak analyticity condition holds, the Ω predicate typically operates in
constant time by computing two theoretical relative crossovers and comparing their
positions. This happens, for example, when the tour consists of points lying on a circle,
with the cost function equal to Euclidean distance; section 3.3 outlines a constant-time
algorithm for this example. Without the weak analyticity condition, the Ω-predicate
runs in logarithmic time, by using a binary search of the M deque. This general (not
weakly analytic) case is handled by the generic Ω algorithm discussed in section 3.3.

There are a couple of improvements that can be made to the algorithm which will
increase execution speed by a constant factor. First, the calls to Match Pair made
during the “Windup Processing” do not need to check ifMR = L

ψ
R, since Lψ is empty

at this time. Second, if computing the cost function c(−,−) is more costly than simple
addition, then it is possible for Push Main() to use an alternative method during the
two scans to compute the cost c(MR, X) for nodes X which have just been popped
from the left of M (except for the first one popped from the left in the first scan).
Namely, the algorithm can save the old I[X] value for the node X as it is left-popped
off the dequeM. Then the cost function can be computed by computing the difference
between the I[−] value of X and the I[−] of the previous node left-popped from M.
This second improvement applies only to the first Push Main call in Process Node.

3.3. Algorithms for Ω. During the first scan, the procedure Ω is called (repeat-

edly) by Process Node to determine whether L
ψ
R should be popped before the current

node MR is pushed onto the right end of the Lψ deque. During the second scan, MR

is never pushed onto the Lψ deque; however, using the procedure Ω can allow the
Lψ deque to be more quickly emptied, thus speeding up the algorithm’s execution.
(However, the use of the Ω could be omitted during the second scan without affecting
the correctness of the algorithm.)

When Ω is called, L
ψ
R−1, L

ψ
R, and MR are distinct nodes, in tour order, and of

the same color. Let δ = (I[LψR−1] − I[LψR]) · ψ and ε = (I[LψR] − I[MR]) · ψ. Let Y

denote the δ-crossover point of L
ψ
R−1 and L

ψ
R, and let Z denote the ε-crossover point

of L
ψ
R and MR (note Y and/or Z may not exist). By definition, Y and Z are both

opposite in color from the other three nodes. The procedure Ω must return True if
Y exists and Z does not, must return False if Y does not exist, and, if both exist,
must return True if L

ψ
R, Y, Z are in tour order, must return True if L

ψ
R, Z, Y are in

tour order, and may return either value if Y = Z.

In this section, we discuss two algorithms for Ω. We first discuss a “generic”
algorithm that works for any cost function, regardless of whether the weak analyticity
condition holds. This generic Ω procedure is shown as Algorithm 3.3 below. The
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generic Ω executes a binary search for a node which is at or past one of the crossover
points but is not at or past the other. Obviously, if the crossover Y exists, then
it exists in the range (LψR,L

ψ
R−1), and if the crossover Z exists, it is in the range

(MR,L
ψ
R). Furthermore, Y cannot exist in the range (LψR,MR), since otherwise it

would have been popped when Y was reached (by the first while loop in an earlier call

to Match Pair). Hence, the binary search may be confined to the range (MR,L
ψ
R−1),

provided that True is returned in the event that the binary search is unsuccessful.
In Algorithm 3.3, a new notation Mk is used. This presumes that the M deque

is implemented as an array; the elements of M fill a contiguous block of the array
elements. When we write Mk, we mean the kth entry of the array. The L deques
can contain pointers to M deque entries; in fact, in our preferred implementation,
the L deque entries contain only an index for an M deque entry. Thus the value h
can be found in constant time for Algorithm 3.3.

The generic Ω algorithm shown in Algorithm 3.3 takes O(logN) time since it uses
a binary search.

Algorithm 3.3. This is the generic Ω algorithm which works with any tour,
regardless of weak analyticity. Past Xover A and Past Xover B are boolean-valued
variables.

procedure Ω(LψR−1,L
ψ
R,MR)

“Nodes L
ψ
R−1, L

ψ
R and MR are the same color.”

Let h be the index so that Mh−1 is L
ψ
R−1.

Let ` be the index so that M` is MR.

δ := (I[LψR−1]− I[LψR]) · ψ
ε := (I[LψR]− I[MR]) · ψ
“Do binary search of opposite color nodes from M` to Mh−2”

while h > `+ 1
k := `+ 2 b(h− `)/4c
Past Xover A:= (c(LψR−1,Mk)− c(LψR,Mk)) < δ

Past Xover B:= (c(LψR,Mk)− c(MR,Mk)) < ε
if Past Xover A

if Past Xover B
h := k

else
return(TRUE)

else
if Past Xover B

return(FALSE)
else

` := k + 2

return (TRUE)

Next we describe an example of a linear time algorithm for Ω where the weak an-
alyticity condition holds. For this example, we assume that the nodes of the quasicon-
vex tour lie on the unit circle in the xy plane, the cost function is equal to straight-line
Euclidean distance, and the tour proceeds in counterclockwise order around the circle.
The Ω algorithm either is given, or computes, the xy coordinates of the three nodes
L
ψ
R−1, L

ψ
R, and MR. It then uses a routine Circle Crossover to find the theoretical
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δ-crossover Y of L
ψ
R−1 and L

ψ
R and the theoretical ε-crossover of L

ψ
R and MR. If the

theoretical crossover Y exists, it will be in the interval [LψR,L
ψ
R−1], and if Z exists, Z

will be in the interval [MR,L
ψ
R]. When Y and Z both exist, the Ω procedure returns

True if L
ψ
R, Y, Z are in tour order or any two of these nodes are equal; otherwise the

procedure returns False.
Algorithm 3.4. This is the algorithm which computes the δ-theoretical crossover

point for two nodes lying on the unit circle with cost function equal to Euclidean
distance. The inputs are δ and two points (x1, y1) and (x2, y2) lying on the unit
circle. The procedure returns TRUE or FALSE to indicate whether the crossover
point exists; if it does exist, it sets (x3, y3) equal to the crossover point. There is a
possibility that roundoff errors will lead to spurious “FALSE” answers, so the values
of (x3, y3) are set even when FALSE is returned.

procedure Circle Crossover(x1,y1,x2,y2,δ)
a := δ/2
hip := (x1 · x2 + y1 · y2)/2
if hip > 0.5 “two checks to avoid roundoff errors”

hip := 0.5
else if hip < −0.5

hip := −0.5
csqr := .5− hip
c :=

√
csqr

d :=
√
.5 + hip

if −x2 · y1 + x1 · y2 < 0
d := −d

asqr := a · a
if asqr > csqr

if a < 0
x3 := x1

y3 := y1
else

x3 := x2

y3 := y2
return(FALSE)

u := −(1 + d)(1− (asqr/csqr))
if asqr = csqr

v := a
else

v := a
√

1 + (u2)/(csqr − asqr)
if hip > 0

α := (x1 + x2)/(2d)
β := (y1 + y2)/(2d)

else
α := (y2 − y1)/(2c)
β := (x1 − x2)/(2c)

x3 := (u+ d)α− vβ
y3 := vα+ (u+ d)β
return (TRUE)

Of course, the crucial implementation difficulty for the procedure Ω is the algo-
rithm for Circle Crossover; this is shown as Algorithm 3.4. Circle Crossover takes
two points (x1, y1) and (x2, y2) lying on the unit circle in the xy-plane and a real
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value δ. The theoretical δ-crossover point of (x1, y1) and (x2, y2) is found as an in-
tersection point of the unit circle and the hyperbola consisting of those points which
have distance from (x1, y1) equal to δ plus their distance from (x2, y2) (namely, the
intersection which is not between (x1, y1) and (x2, y2) in tour order). Letting the “half
inner product” hip equal (x1x2+y1y2)/2, the distance between the two points is equal

to 2c, where c =
√

1
2 − hip. And, the midpoint of the line segment between the two

points is distance
√

1
2 + hip from the origin. To conveniently express the equation

for the hyperbola, we set up uv-axes as a rigid translation of the xy-axes, positioned
so that the points (x1, y1) and (x2, y2) have uv-coordinates (0,−c) and (0, c), respec-

tively. This makes the origin have uv-coordinates (d, 0), where d = ±
√

1
2 + hip with

the sign being + if and only if the angle from (x1, y1) to (x2, y2) is ≤ 180 deg. In the
uv-plane, the hyperbola has equation

v2

a2
− u2

c2 − a2
= 1

where a = δ/2, and the unit circle has equation

(u+ d)2 + v2 = 1.

Eliminating v2 from these equations and solving for u, and then for v, shows that the
desired intersection point of the circle and the hyperbola has uv-coordinates

u = (1− d)

(
1− a2

c2

)
,

v = a

√
1 +

u2

c2 − a2
.

Given the uv-coordinates, it is an easy matter to find values α, β which allow the
corresponding xy-coordinates to be computed. Algorithm 3.4 show two equivalent
calculations of α, β; the algorithm chooses the one which avoids division by zero or
division by a number close to zero. Algorithm 3.4, as shown, also checks for some
error conditions that can arise from roundoff errors. In particular, it makes sure
that |hip| ≤ 1

2 , and that a2 < c2. Amazingly enough, we found, during extensive
testing with randomly generated tours of points on the unit circle, that roundoff error
occasionally caused these conditions to be violated, even for points on the unit circle
and for |a| < |c|.

3.4. An ANSI-C implementation. An efficient and highly portable ANSI-C
implementation of our algorithms is described in [5], which includes complete source
code, test programs for several interesting cases, benchmark results, and software to
produce postscript graphical representations of the matchings found. To help ensure
the correctness of our implementation, a straightforward O(n3) dynamic program-
ming solution was also implemented, and the results compared for 4,000,000 pseudo-
randomly drawn problems. Figure 1.1 shows an example of a matching produced by
our software.

Benchmark results for a variety of RISC processors produced nearly identical
results when normalized by clock rate. So timing results in [5] are given in units of
RISC cycles. Graphs of up to 20, 000 nodes are included in this study.
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Recall that O(logN) time is a worst case bound for generic Ω. One interesting
experimental result is that over the range of graph sizes considered, for the specific
settings implemented in the test programs, and given the uniform pseudorandom
manner in which problem instances were generated, the generic Ω implementation
exhibits very nearly linear time performance. In other words, the experimentally
observed runtime of Ω was nearly constant. We suspect that this is primarily a
consequence of the uniform random distribution from which problems were drawn, and
that it should be possible to demonstrate expected time results better than O(logN)
for more structured settings.

The benchmarks included one line-like and two circular settings. Solving pseudo-
randomly drawn matching problems of size n required on average between 2,000 and
16,000 RISC cycles per node depending on the setting and on whether a constant-time
or generic Ω was employed. It is interesting to note that, in all cases, the constant-
time Ω performed better by a factor ranging from roughly 1.5 to slightly over 3. Thus,
for some problems, the linear time result of this paper may be of practical interest.

Despite our focus on efficiency, further code improvements and cost function eval-
uation by table lookup may contribute to significant performance improvement.

4. Nonbipartite, quasi-convex tours. In this section we show how the earlier
algorithms can be applied to nonbipartite, quasi-convex tours. The principal obser-
vation is that nonbipartite tours may be made bipartite by the simple construction
of making the nodes alternate in color. This is already observed by Marcotte and
Suri [20] in a more restrictive setting; we repeat the construction here for the sake of
completeness.

First, it is apparent that the proof of Lemma 2.3 still works in the nonbipartite
case, and thus any nonbipartite, quasi-convex tour has a minimum-cost matching in
which no jumpers cross. This fact implies the following two lemmas.

Lemma 4.1. Let x1, . . . , xN be a nonbipartite, quasi-convex tour with N even.
Then there exists a minimum-cost matching such that every edge in the tour is of the
form xi ↔ xj with i even and j odd.

Proof. It will suffice to show that any crossing-free matching has this property.
Suppose xi ↔ xj is a jumper in a crossing-free matching, with i < j. Since N is even,
the matching is complete in that every node is matched. The crossing-free property
thus implies that the nodes in (xi, xj) are matched with each other, so there are an
even number of such nodes, i.e., one of i and j is even and the other is odd.

Lemma 4.2. Let x1, . . . , xN be a nonbipartite line-like quasi-convex tour. Then
there exists a minimum-cost matching such that every edge in the tour is of the form
xi ↔ xj with i even and j odd.

Proof. If N is even then this lemma is just a special case of the former lemma. If
N is odd, then add an additional node xN+1 to the end of the tour, with c(xi, xN+1) =
0 for all i. The resulting tour is again quasi-convex and of even length; so the lemma
again follows immediately from the former lemma.

When Lemmas 4.1 and 4.2 apply, we may color the even nodes red and the odd
nodes blue and reduce the nonbipartite matching problem to a bipartite matching
problem. As an immediate corollary, we have that the two main theorems also apply
in the nonbipartite setting; namely, for nonbipartite, quasi-convex tours of even length
and for nonbipartite, line-like, quasi-convex tours, the matching problem can always
be solved in O(N logN) time and it can be solved in O(N) time if the weak analyticity
condition holds.

We do not know whether similar algorithms exist for the case of general (i.e.,
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nonline-like) quasi-convex tours of odd length. Similarly, we do not know any linear
or near-linear time algorithms for bipartite, quasi-convex tours which are neither
balanced nor line-like.

We conclude this section by mentioning a tantalizing connection between our
work and the work of Yao [25]. Yao gave a quadratic runtime algorithm for solving
the dynamic programming problem

d(i, j) = c(i, j) + min{d(i, k − 1) + d(k, j) : i < k ≤ j}

for line-like quasi-convex tours with cost function c (improving on the obvious cubic-
time algorithm). Our nonbipartite matching problem can be stated as a similar dy-
namic programming problem; namely, the minimum-cost, MC(i, j), of a complete
matching on the nodes in [xi, xj ] can be recursively defined to equal

min{c(i, k) +MC(i+ 1, k − 1) +MC(k + 1, j) : i < k ≤ j}.

(A similar dynamic programming algorithm can be given for the bipartite match-
ing problem.) The obvious naive algorithm for computing MC(−,−) is cubic-time;
however, our main results give (near)-linear time algorithms for line-like quasi-convex
tours. This raises the possibility that the dynamic programming problem considered
by Yao may also have a near-linear time solution.

5. Applications to string matching. As a final topic we briefly discuss the
application of our matching results to string comparison. A full treatment is beyond
the scope of this paper, but additional details and related algorithms may be found
in [6]. Given two symbol strings v = a1a2 · · · an and w = b1b2 · · · bn, our goal is to
measure a particular notion of distance between them. Intuitively, distance acts as
a measure of similarity; i.e., strings that are highly similar (highly dissimilar) are
to have a small (large) distance between them. The purpose of such formulations is
usually to approximate human similarity judgments within a pattern classification or
information retrieval system.

Suppose f(x) is a monotonely increasing, concave-down function with f(0) = 0.
Let symbols a1, . . . , an in v be a graph’s red nodes and b1, . . . , bn in w be its blue nodes,
and consider bipartite matchings of these 2n symbols. In the simplest formulation,
we define the cost of an edge ai ↔ bj as f(|j− i|) if ai and bj are the same symbol and
as f(n) if ai and bj are distinct symbols. The cost of matching unequal characters
can also be set to be any other fixed value instead of f(n). Our distance, σ(v, w),
between strings v and w is then the minimum cost of any such bipartite matching.

As an example, consider the two strings “delve” and “level” and let f(x) =
√
x.

Then the distance between these two strings is
√

5 +
√

0 +
√

2 +
√

1 +
√

1 ≈ 5.65.

As we have set up our problem above, the computation of σ(v, w) is not directly an
instance of the quasi-convex matching problem. However we can compute the σ func-
tion by considering each alphabet symbol α separately, and solving the quasi-convex
matching problem σα which results from restricting attention to occurrences of a sin-
gle alphabet symbol at a time. To make this clear, we introduce a special symbol “-”
which indicates the absence of an alphabet symbol. The value of σ(“delve,”“level”)
can be expressed as the sum

σd(“d----”,“-----”) + σe(“-e--e”,“-e-e-”)

+σl(“--l--”,“l---l”) + σv(“---v-”,“--v--”).
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To make the summed σα terms equal σ as originally defined, each σα is defined to be
the subproblem’s minimum matching cost plus f(n)/2 times the number of unmatched
symbols.

We will loosely refer to distance functions that result from this kind of formula-
tion as σ-distances. Assuming that f(x) satisfies the weak analyticity condition, it
is not too difficult to show that it is possible to compute σ(v, w) in linear time. If
the weak analyticity condition does not hold, then our results give an O(n logn) time
algorithm.

A novel feature of our σ-distances is that distinct alphabet symbols are treated
independently. This is in contrast to most prior work which has used “least edit dis-
tance” for string comparison (see [21] for a survey). As an illustration of the difference
between our distance measure and the “edit distance” approach, consider comparing
the word “abcde” with its mirror image “edcba.” Our approach recognizes some sim-
ilarity between these two forms, while the most standard “edit distance” approach
sees only that the two strings have “c” in common—in essence substituting the first
two and last two symbols of the string without noticing the additional occurrences of
the same symbols at the other end of the other string.

A special form of our σ-distance measure in which f(x) = x, and the optimal
matching is only approximated, was introduced earlier by the authors and shown to
have a simple linear time algorithm [26, 27]. Its relationship to σ-distances is described
in [6]. This earlier algorithm has been successfully used in commercial applications,
especially for spelling correction in word processing software, typewriters, and hand-
held dictionary devices (we estimate that over 15,000,000 such software/hardware
units have been sold by Proximity Technology, Franklin Electronic Publishers, and
their licensees). Other less prominent commercial applications include database field
search (e.g., looking up a name or address), and the analysis of multifield records
such as mailing addresses, in order to eliminate near-duplicates. In both of these
applications, the strict global left-right ordering imposed by O(n2) time “edit dis-
tance” methods can be problematic. On the other hand, very local left-right order
preservation seems to be an important part of similarity perception in humans. One
simple adaptation of our σ-distance methods which goes a long way toward capturing
this characteristic consists of extending the alphabet beyond single symbols to include
digraphs or multigraphs. The result is increased sensitivity to local permutation. An-
other effective alphabet extension technique involves the addition of feature symbols
to the alphabet to mark events such as likely phonetic transitions. We expect that the
use of general concave-down distance functions (as opposed to f(x) = x) will improve
the quality of the similarity judgments possible within the σ-distance framework.

The development above considers strings of equal length only. The unequal length
case is not a difficult generalization but considering it does highlight the issue of em-
bedding. By this we mean that it is implicit in our formulation that the two strings
are in a sense embedded into the real line. The particular, rather natural embedding
we’ve assumed so far maps ai and bi to value i on the real line, but others are possible.

A detailed comparison of our methods with “edit distance” approaches is beyond
the scope of this paper. But we must point out that the “edit distance” formulation
is in several senses richer than ours. First, the cost of matching different alphabet
members need not be fixed. Also, our distance formulation depends on a desig-
nated embedding while the “edit distance” method requires no such specification.
Finally, for some problems left-right order preservation may be desirable. On the
other hand, even the simplest “edit distance” approach is O(n2) compared with the
O(n) or O(n logn) complexity of our method. We therefore feel that additional work



200 SAMUEL R. BUSS AND PETER N. YIANILOS

is needed to better understand the applications of our approach—and perhaps extend
it.
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