
SIAM J. DISC. MATH.
Vol. 8, No. 4, pp. 638-651, November 1995

1995 Society for Industrial and Applied Mathematics
011

UPPER AND LOWER BOUNDS ON CONSTRUCTING
ALPHABETIC BINARY TREES*

MARIA KLAWEt AND BRENDAN MUMEY:

Abstract. This paper studies the long-standing open question of whether optimal alphabetic
binary trees can be constructed in o(n lgn) time. We show that a class of techniques for finding
optimal alphabetic trees which includes all current methods yielding O(n lgn)-time algorithms are
at least as hard as sorting in whatever model of computation is used. We also give O(n)-time
algorithms for the case where all the input weights are within a constant factor of one another and
when they are exponentially separated.

Key words, alphabetic binary trees, data structures, algorithms

AMS subject classifications. 05C10, 05C35

1. Overview. The problem of finding optimal alphabetic binary trees can be
stated as follows: Given a sequence of n positive weights wl,..., wn, construct a
binary tree whose leaves have these weights, such that the tree is optimal with respect
to some cost function and also has the property that the weights on the leaves occur
in order as the tree is traversed from left to right. A tree that satisfies this last
requirement is said to be alphabetic. Although more general cost functions can be
considered (as is done in [4] and [7]), we concentrate here on the usual function,
namely wili, where li is the level of the ith leaf from the left in the tree. The first
O(n lg n)-time solution was given in Hu and Tucker [5] in 1971, following algorithms
with higher complexity in [3] and [6]. If we remove the restriction that the tree
must be alphabetic, then the problem becomes the well-known problem of building
Huffman trees, which is known to have O(n lg n)-time complexity in the comparison
model. Modifications of the Hu-Tucker algorithm also running in O(n lg n) time but
with simpler proofs are given in [2] and [4]. The only recent progress on this problem
has been made by Ramanan [8], who showed that it is possible to verify that a given
alphabetic tree on a sequence of weights is optimal in O(n) time when the weights in
the sequence are either within a constant factor or exponentially separated (notions
we define precisely later). However, it seems substantially more difficult to actually
construct the optimal tree in linear time in the constant factor case.

The next section summarizes current methods and introduces the concepts needed
to frame our results. In 3, we introduce a technique, region processing, which forms
the basis of our linear-time algorithms. We start with a fairly simple O(n)-time al-
gorithm for finding the optimal alphabetic tree when the weights are within a factor
of two. We also observe that the basic region-processing method solves the case
where the input weights are exponentially separated in O(n) time. We generalize
this technique in 4 to the case where all the weights are within a constant factor of
one another. The generalization depends on solving a new generalized selection prob-
lem, which may be of interest in its own right. In 5, we give reductions of sorting

Received by the editors September 1, 1993; accepted for publication (in revised form) October
12, 1994. This research was supported in part by the Natural Sciences and Engineering Council of
Canada.

Department of Computer Science, University of British Columbia, Vancouver, British Columbia
V6T 1Z2, Canada.

Department of Computer Science and Engineering, University of Washington, Seattle, Wash-
ington 98195.

638



BOUNDS ON CONSTRUCTING ALPHABETIC BINARY TREES 639

problems to Hu-Tucker-based algorithms and region-processing methods. This pro-
vides fl(n lg n)-time lower bounds for Hu-Tucker-based algorithms in the comparison
model and indicates that region-processing methods are unlikely to yield an o(n lg n)
algorithm.

2. Current methods. We give a brief description of the Hu-Tucker algorithm
to the extent necessary to explain our results. Complete descriptions and explanations
can be found in [5], [4], [7]. All Su-Tucker-based methods begin by building an
intermediate tree, called the lracp tree, whose leaves hold the given set of input weights,
though not necessarily in the correct order. The levels of the input weights in the
lmcp tree are recorded, and this information is used to build an alphabetic tree on the
input weights, with each input weight occurring at the same level as in the lmcp tree.
Constructing this alphabetic tree can easily be done in O(n) time, as shown in [5].
Since the cost function depends only on the levels of the leaf nodes, the cost of the
alphabetic tree is the same as the cost of the lmcp tree. Hu and Tucker proved that
the lmcp tree has optimal cost in a class of trees that contains all alphabetic trees,
and hence it follows that the alphabetic tree constructed is optimal. We are able to
prove that, in the comparison model, constructing the lmcp tree requires (n lgn)
time in the worst case, but since it suffices to know only the levels of the leaf weights
in the lmcp tree and not its full structure, we can improve on the performance of the
Hu-Tucker algorithm in a number of cases.

The Hu-Tucker algorithm maintains a worklist of weighted nodes in the lmcp
tree that have not yet been assigned their sibling and parent. The basic step in the
algorithm consists of selecting two nodes from the worklist to be paired off as siblings
in the lmcp tree, removing these nodes from the worklist, and inserting a new node
(their parent) in the position of the leftmost replaced node with weight equal to the
sum of the two removed nodes. Initially the worklist is the list of leaf nodes with the
weights wl,..., w, in order. Nodes in the worklist are designated either crossable or
noncrossable. Initially all nodes are noncrossable. When any two nodes are paired
off, the resulting parent node is designated crossable. Two nodes in the worklist are
compatible if they are adjacent, or if all the nodes which separate them are crossable.
The symbol v will refer to a node in the worklist and w(v) will refer to its weight.
The level of a node v in the tree is denoted by l(v). Define an order on the nodes in
the worklist by vx < Vy if w(vx) < w(vy) or if w(vx) W(Vy) and v is to the left
of vy in the list. A pair of compatible nodes (Va, Vb) is said to be a local minimum
compatible pair (lmcp) if and only if the following two conditions hold:

1. Vb <_ v for all nodes vx compatible with node va.
2. Va <_ Vy for all nodes Vy compatible with node Vb.

We note that the order relationship given captures the tie-breaking rules of [5] and

The lmcp tree is constructed by repeatedly combining lmcps from the worklist
until a single node remains which will be the root of the lmcp tree. This is usually
implemented by a stack-based algorithm that starts at the beginning of the worklist
and moves a pointer along the worklist until an lmcp is found. After removing the
nodes in the lmcp and inserting the new parent node, the pointer is moved back
one node and the search for lmcps resumes. To check whether an lmcp has been
found, the algorithm compares the smallest node x before the pointer node y that is
compatible with y with the smallest node z after y that is compatible with y. If x < z,
the algorithm concludes that x and y form an lmcp; otherwise, it moves the pointer
forward one node. The total number of pointer moves is O(n), since O(n) nodes are



640 M.. KLAWE AND B. MUMEY

placed in the worklist in total, and the number of backward moves is bounded by the
number of lmcps found, which is also O(n). Hu-Tucker methods take O(n lg n) time
because they maintain information on which node has the minimum weight in intervMs
of crossable nodes in order to find the nodes x and z. Updating this information when
an lmcp is found can take O(lg n) time. In general, the construction of the lmcp tree
is not unique, since the lmcps may be combined in different orders, but, as proved in
[5], the resulting tree is unique. Thus, for any node v in the worklist, we can define
the Imcp partner of v to be the node that is the sibling of v in the lmcp tree.

3. Region-based methods. We present a new approach for finding optimal
alphabetic binary trees based on partitioning nodes in the worklist in consecutive
runs. Define the category of weight w to be [lg (W/Wmin)J, where Wmin is the smallest
of the initial weights. A maximal-length sequence of nodes with the same category
is called a region. In our presentation, we assume that we explicitly compute the
category of each weight, since this simplifies the description and explanation of our
approach. However, it is possible to avoid the possibly nonunit cost of the lg operations
needed to determine the categories explicitly by modifying the lgorithm to treat the
category numbers of weights as unknowns that can be compared at unit cost. We
omit the details of this modification, as they are not crucial to the understanding of
the main algorithm.

By keeping a stack of regions and considering only regions whose adjacent regions
have higher category, we can restrict most of our attention to the pairings occurring
within these regions. We call this region processing. This is motivated by the situation
where all input weights are within a factor of two. If this is the case, it is easy to
determine the leaf levels in the lmcp tree using Theorem 3.1.

THEOREM 3.1. Given a sequence of n crossable nodes that are within a factor
of two, after the first [(n + 1)/2J lmcps have been found and combined, the new
sequence will consist of [n/2J nodes whose weights are again within a factor of two.
Furthermore, if we keep combining lmcps, the resulting lmcp tree will be balanced, with
the leaves differing in level by at most one. Specifically, the 2(n- 2 [lgnj smallest
weights will be at level [lg nj + 1 and the others will be at level [lg nJ.

Proof. We note that, since all the nodes are crossable, this reduces the problem
to building a Huffman tree, where the result is known. We present a new proof, which
provides insight to the actual behavior of the algorithm and motivates our results to
follow.

Let the initial sequence of nodes in the worklist be v,...,v and let c be a real
number such that c <_ w(v) < 2c for 1 to n. Whenever two nodes form an lmcp
and combine, the weight of the new node is greater than 2c, so it will not be involved
in another lmcp until there are less than two nodes smaller than 2c. When n is odd,
after (n- 1)/2 pairings have occurred, the worklist contains only one node of weight
less than 2c, namely the largest-weight node present in the original sequence. We
call this node the wallflower. The wallflower forms an lmcp with the smallest-weight
newly formed node. When n is even, the largest-weight node present in the original
sequence merges with another original node. Thus, regardless of whether n is odd
or even, the rightmost (there may be more than one) largest-weight node will merge
during the [(n / 1)/2Jth lmcp pairing. At this stage, the worklist will contain exactly
[n/2J nodes, none of which re original nodes, and their weights will be within a
factor of two, as we show below.

This is obvious if n is even, so suppose n is odd, and let v be the node with the
smallest weight, w(v) w(v)/ w(vy), among the first (n- 1)/2 newly formed nodes.



BOUNDS ON CONSTRUCTING ALPHABETIC BINARY TREES 641

Clearly, the rest of the first (n- 1)/2 newly formed nodes have weights less than
2w(v). Let vk be the wallflower. The next node formed is the parent of v and vk and
has weight w(vk)/ w(vi)/ w(vj). Now, since the original weight sequence was within
a factor of two, w(vk) < w(vi) + w(vj) w(v), so W(Vk) + W(Vi) + W(V) < 2W(V),
which completes the proof. One further observation that will be important is that the
weight of the parent of the wallflower is strictly greater than the weight of the other
(n- 1)/2 nodes in the current worklist.

Let us call the pairings up to this point a phase of the algorithm and consider
how the phase affects the levels of the leaves in the lmcp tree. Obviously, the phase
contributes one to the level of each leaf in the lmcp tree if n is even. When n is
odd, this is true for all the leaves except for the two whose parent was paired with
the wallflower. These two, which we call the wallflower’s stepchildren, have had their
level increase by exactly two. Since the wallflower’s parent has the unique largest
weight in the worklist at the end of the phase, at the end of each later phase this
node’s ancestor always has the unique largest weight in the worklist. Thus each later
phase contributes exactly one to the level of the wallflower’s stepchildren. Applying
this argument to the stepchildren of wallflowers from later phases proves that the
level of any two leaves in the lmcp tree differs by at most one. Since the lmcp tree
has optimal cost, the smallest-weight original nodes must be at the bottom level, i.e.,
the largest-numbered level. Thus for some integer x, we have the 2x smallest-weight
original nodes on level lg nJ + 1 and the remaining n- 2x original nodes on level
lgnJ. We require x + n 2x 2 [lgnj so x n 2 [lgnj

Based on this theorem, it is easy to give a simple linear-time algorithm for finding
an optimal alphabetic binary tree on a sequence of input weights which differ at most
by a factor of two. (Garcia and Wachs also give a linear-time method for this case in
[2].) In point form, the algorithm for finding the levels of the leaves in the alphabetic
tree is:

1. Initialize the worklist to contain the original input sequence. Note that all
nodes are noncrossable.

2. Use a stack-based method to find lmcps and pair them off, removing each
pair of nodes from the worklist and placing the parent in a temporary list
but not in the worklist. These newly formed nodes can be left out of the
worklist because their weights are greater than any of the original weights, and
hence need not be considered in the search for lmcps. This process continues
until there are zero or one nodes left in the worklist, and as discussed in the
remarks on stack-based algorithms in 2, requires only. O(n) time because of
the absence of crossable nodes in the worklist. If a single node x remains
(n is odd and x is the wallflower), scan through the temporary list of newly
formed crossable nodes to find the smallest node y. Pair x with y and replace
y in the temporary list by its parent.

3. At this stage we have rn [n/2] crossable nodes in the temporary list.
Moreover, the new nodes are still within a factor of two, by the same argument
as in the proof of the preceding theorem.

4. We can now, by the preceding theorem, directly find the levels of every leaf
in the lmcp tree for the remaining m crossable nodes in O(n) time, using
a linear-time selection algorithm [1] to find the 2(m- 2[lgmJ)th weight in
the temporary list. This node and nodes with smaller weights have level
[lg rnJ + 1, and the remaining nodes are assigned level Llg mJ. Given this, it
is trivial to compute the levels of the nodes in the original input sequence in



642 M. KLAWE AND B.. MUMEY

an additional O(n) time.
5. With knowledge of the leaf levels, we can construct the optimal alphabetic

tree for the input sequence in O(n) time, using the technique in [5].

A similar technique can be applied to predict how nodes in a region R with
lowest category number combine to form nodes in a region with the next category
number. Notice that when the number of nodes in R is odd, its wallflower will pair
with the smallest-weight node in the set consisting of the lmcps formed out of R
and the compatible nodes from the two regions adjacent to R. When the gap in
category number between adjacent regions is large enough, this method yields faster
performance than the Hu-Tucker algorithm. The complete algorithm is described
in [7]. Its basic idea is to maintain a stack of the current regions in the worklist
and process the region at the top of the stack if its adjacent regions have greater
category. If not, the stack pointer is advanced. The cost of processing a region of
size r is O(r lg r). Since processing a region yields a new region of half the size, it is
easy to verify that this method has O(n lg n) running time. If the input weights {wi }
are exponentially separated, i.e., if there is a constant C such that for all integers
k, I{i: Llg wJ k}l < C, then it is also easy to verify that this method yields an
O(n)-time algorithm, since each region can be processed in constant time as the size
is bounded by 2C. The ideas in Theorem 3.1 can also be used to reduce the cost
of processing a region of size r to below O(r lg r) when the difference in category
numbers is great enough, which may be useful in implementations. Details are given
in [7].

4. The constant factor case. We now describe the linear-time algorithm for
weights within a constant factor, i.e., such that max{wi/wj} < a for some constant
a. As before, it suffices to determine the levels of the leaf nodes in the lmcp tree.
We use a region-based method to process the weights region by region in increasing
order by category number until we are left with a single region of crossable nodes.
We then apply Theorem 3.1 to determine the lmcp tree levels of the nodes in this
final region and work backwards to find the lmcp tree levels of the original weights.
In order to achieve the linear-time bound, when processing a region, we cannot afford
to determine which nodes pair together in lmcps or the weights of the lmcps formed.
Instead, we work with coarser information about the structure of the lmcp tree. An
interval of nodes in a region’s worklist is lmcp-closed if the lmcp partner of each node
in the interval is also in the interval. Our algorithm works by partitioning the region’s
worklist into lmcp-closed intervals and replacing each lmcp-closed interval by a node
group representing the lmcps formed out of that interval. From the definition of the
lmcp, it is easy to see that moving an interval of larger crossable nodes to the right
of an interval of smaller crossable nodes or pushing a larger crossable node to the
right of a smaller noncrossable node does not affect the construction of the lmcp tree.
Our algorithm uses such rearrangements of the worklist in finding the partition into
lmcp-closed intervals.

The worklist thus is now an ordered list of node groups in which each noncrossable
node appears as a singleton node group but intervals of crossable nodeswithin a region
may appear in groups of arbitrary size. A set of nodes in the worklist is realizable if it is
the union of a set of node groups in the worklist. The algorithm performs certain types
of selection operations on realizable sets of nodes in the worklist. For example, when
the worklist consists of crossable nodes whose weights are within a factor of two, the
algorithm determines the smallest k of these nodes in order to apply Theorem 3.1.



BOUNDS ON CONSTRUCTING ALPHABETIC BINARY TREES 643

Since we will generally not have an explicit list of the weights of the nodes in the
realizable set on which we wish to perform selection, we will introduce the concept of
a coarse-selection system, namely a structure for (nonexplicitly) representing a set of
elements, together with a particular set of selection operations that can be performed
efficiently on the set. We will then show that each realizable set has a coarse-selection
system. Performing a selection operation on a realizable set may require that some
of the node groups in the realizable set be refined, in order that the result be in the
form of realizable sets. For example, suppose N is a realizable set of nodes in the
worklist. Determining the largest (smallest) node v in N requires replacing the node
group containing v by a node group list in which v is a singleton node group, unless
v is already a singleton. Similarly, determining the k smallest nodes in N requires a
node-group list in which the desired set is the union of a set of n0de-groups in the
refined list. Thus we will ensure that the selection operations we provide for realizable
sets determine the appropriate refinements. We now define coarse-selection systems.

DEFINITION 4.1. For any A >_ 1, we say a (multi) set S has a A coarse-selection
system if:

1. Va e [0, 1], in AIS time we can produce two disjoint sets S and S+, each
with A coarse-selection systems such that S S S+, Vx S and Vy
S+, x <_ y, and ISI [alSIJ. (We call this an a-partition of S.)

2. Vx >_ O, in AIS time, we can compute the rank of x in S, denoted by rs(x),
and produce two sets S<-x and S>, each with A coarse-selection systems such
that S<- {y S y <_ x} and S> {y S y > x}. (The rank of x in S
is the number of elements in S less than or equal to x.)

3. In AIS time we can compute ISI.
4. If ISI 1 we can determine the unique element of S explicitly in A time.

In addition, when interpreted in the context of node-group lists, we require that
the sets S, S+, S<, S> be realizable. Note that the definition of a coarse-selection
system implies that, given a A coarse-selection system for S, we can explicitly de-
termine the largest (smallest) element of S in 2AIS time. We use the term layer h
for the regions in the worklist with category number h and process the regions in the
worklist a layer at a time beginning with the smallest numbered layer. Processing
layer h consists of creating node-group lists representing the new nodes formed in
layer h / 1. Consider the question of creating a node-group list representing the new
nodes, T, formed from a single region R of r nodes. If r is even, because the regions
adjacent to R in the worklist have higher category numbers, R is lmcp-closed and the
node-group list for T is a single node group. If r is odd, then the only node of R
whose lmcp partner is not in R is its wallflower z. It is straightforward to prove that
z is the largest node in the subset {y R" y is crossable or y is noncrossable and is
in an odd-numbered position from an end of R}. Note that this subset is realizable
and that z can be identified by coarse selection. Thus we create a node group, gt,
representing the lmcps formed from the nodes on the left of z, and another one, g,
for those from the right, respectively. To determine the lmcp partner of z, we need
to know the smallest node v in gt g, which again is realizable. We complete the
processing of z by comparing v with the smallest compatible nodes on either side of
gt,g in the worklist (found using selection on realizable sets), and we replace z and
its partner by a singleton node group representing this lmcp. This singleton node
group may be in layer h + 2, in which case we place it as far to the right as possible
(in front of the first node to the right that is in layer h + 2 or higher). The remaining
challenge is to construct the coarse-selection systems for realizable sets, which is done



644 M. KLAWE AND B. MUMEY

by induction on layer number.
Our inductive hypothesis will be that, for any node-group list representing the

nodes in a region of layer h, and any set of nodes, A, that is realizable with respect
to that node-group list, there is a coarse-selection system for A. The base case is
covered by the usual linear-time selection algorithm, since all nodes in the bottom
layer are noncrossable. Thus the only possible node-group list for the bottom layer is
the standard list of single nodes, so all the weights of the nodes in the list are known
explicitly. A key tool is the construction of a coarse-selection system for the union of
sets with coarse-selection systems. This is provided by the following theorem.

THEOREM 4.2. Let A LJn__A, where the A .are disjoint and nonempty and
each A has a A coarse-selection system. Then A has a 36A coarse-selection system.

Proof. Let x be any value. We can compute the rank of x in A easily, since
n n <x A>x n nrA (x) i=l rA (x). Moreover, A<x Ui=1A- and t2= The time

cost for this is the cost of finding rA(x) plus the cost of constructing the A and

Ax. This is n=l AIA + =1 A]Ail 2AIAI"
For a [0, 1], we construct A and Aa+ as follows. For each i, compute A/,

A.+/, and m min A/. This can all be done in 2AIA time. We now compute
the median m of the multiset M t_J=lM, where M contains exactly IAI copies
of mi, by using a standard selection algorithm. This can be done in 61A time using
the selection algorithm of Blum et al. [1]. Now compute rA(m) as above, in AIA
time. If rA(m) LalAIJ, we are done, as we can take A A<-m and A+ A>’. If
not, we may assume rA (m) > LalAIJ, since a symmetric argument handles the other

+ and note that every element incase. Let J {i m >_ m}, let B A- [_JejA/
A- B is at least m. If IBI < LalAlJ, since rA(m) > LalAIJ, there must be at least

LalAIJ -IBI elements in A- B that equal m. Thus, it suffices to identify a subset D
of these elements, with ID] LalAIJ -IBI, and take A B LJ D. To find D, we first
find (A+/)<m for each/in J. Every element in LJiej(A+/)<m must equal m, and

thus it suffices to take D to be any subset of t2ej(A/)<-m of the appropriate size.

Such a subset can easily be obtained by taking each (A+/)<-m until adding another

set will result in more than Lc[AIJ -IB[. At this point, coarse selection can be used
on this (A+/)<m to obtain a subset that will bring the total number of elements to

exactly [a[AIJ -IBI. Thus, in this case, we will have obtained A and A+ in at most
(6 + 5A)[A time. If IBI >_ LalAIJ, we may take (A- B) C A+, since every element
in A- B is at least m. Note that -iej ]A >_ 1/2[A by the definition of M. Hence
A BI WeJ A+ > 1/4 IAI and so we reduce the problem to finding a fl-partition

/2
+ tJB In this case, wein B, where 3 asA We set A B and A+ U,ejA,1/2

reduce the problem to one at most 3/4 of the original size in (6 + 3A)IA time. Since
B is a union of sets with A coarse-selection systems, an easy inductive argument on
the size of A shows that we can produce A and A+ in (6 + 3A)IA < 36AIA1--3/4
time.

The fact that A<, A>x, A, and A+ each have 36A coarse-selection systems
again follows easily by induction on IAI since they are unions of sets with A coarse-
selection systems. FI

We are now ready to begin the inductive proof of the existence of coarse-selection
systems. We assume that, given any node-group list representing the nodes in a
region of layer h and a set of nodes that is realizable with respect to that node-group
list, the set has a A coarse-selection system. Given this assumption, we show how



BOUNDS ON CONSTRUCTING ALPHABETIC BINARY TREES 645

to construct a DA coarse-selection system for any set S of nodes in a region X of
layer h / 1 such that S is realizable with respect to a node-group list for X. The
value of D is a constant independent of h. By the definition of a node-group list, it
is clear that any node-group list for X inherently provides node-group lists for the
regions in layer h that contain the children of nodes in X. By the preceding theorem,
we may assume that there are no singleton node groups in the representation of S,
since otherwise we can use the usual linear-time selection algorithm for the set S* of
nodes in S occurring as singletons, and we can use the selection systems for S* and
S- S* to get a selection system for S. This assumption says that there is a set (Ri}
of disjoint lmcp-closed realizable intervals in layer h such that S is the lmcps formed
from V UiR. We first show how to find the smallest-weight node in S by proving
that, in O(AISI) time, we can reduce the problem to finding the smallest-weight node
in a realizable subset S’ of S, where IS’I <_ ISI/2. This reduction process may involve
refining some node-group lists for regions in layer h, and such refinements increase the
number of realizable sets. This is why our inductive assumption ensures the existence
of A coarse-selection systems for realizable sets, independent of which node-group
list is used in the definition of realizability. Finding the smallest node is a special
case of finding an s-partition, but the algorithm is slightly simpler. Moreover, since
it is a subroutine used in finding general s-partitions, presenting it first clarifies the
exposition.

The set V is realizable, so, in AIV time, we can find the 1/2-partitio.n V

V2 U V2. For each R, we write R- R V2 and R+ R N V2. We assume,
by reordering if necessary, that for each interval C of crossable nodes in R, we have
C N R- preceding C N R+.

We now describe an algorithm which we will run on R to partition its nodes into
three lmcp-closed sets, R R-- U R++ U R-+, according to whether the node and
its lmcp partner are in the same class in the partition R R- U R+. The set R--
is the set of nodes x such that both x and its lmcp partner, p(x), are in R-. The sets

R++ and R-+ are defined analogously. For each node x in R-+ (the set in which x
and p(x) are in different classes), the algorithm explicitly determines x and p(x) and
hence can create a singleton node group for the lmcp of x and p(x).

We use the terms -interval [+interval] to refer to a maximal interval of nodes
in R which lies entirely in R- [R+]. Obviously, R is an alternating sequence of
-intervals and +intervals. Also, -intervals and +intervals are realizable sets. We
first note that, if any two consecutive-intervals are separated by a +interval that
does not contain noncrossable nodes, we may push the +interval to the right of the
right-hand -interval without affecting the formation of lmcps. Thus, in linear time,
we can rearrange each R so that there is at least one noncrossable node in each
+interval, except for possibly one on the right end of R. If the number of nodes in
a-interval, I, is even, then for each x E I we have p(x) I. This follows from the
fact that S is realizable and that each node group of S represents the lmcps formed
out of a consecutive interval in layer h. Next, for each-interval, I, with an odd
number of nodes, we use the zk coarse-selection system to find its local wallflower,
i.e., the largest node in I which either is crossable or is noncrossable and in an odd-
numbered position relative to I. Note that each local wallflower x is now represented
by a singleton node group, and we know its weight. Let I be the set resulting from
removing the local wallflower from I, if it has one. It is not hard to prove that, for
each x I, we have p(x) I’, so we set R-- to be the union of the It. We now
remove the node groups representing the nodes in R-- from the node-group list of R.



646 M. KLAWE AND B. MUMEY

We will process the list of node groups that remain in O(AIRi]) time to determine the
lmcp partner of each local wallflower and define R-+ as the set of local wallflowers
(i.e., the nodes in R- which still remain in the list) together vith their lmcp partners.
R++ is Ri (R-- t2 R-+).

In order to determine the lmcp partner of each local wallflower, we first identify,
for each end of a +interval, the smallest-weight node in the +interval compatible from
that end of the interval. For each +interval that contains at most one noncrossable
node, we also identify its smallest-weight crossable node, if one exists. This can be
done in O(A]RI) time using coarse-selection systems. We now use the standard
stack-based method described at the end of 2, where the worklist consists of the
local wallflowers surrounded by the identified neighboring nodes from the +intervals,
in order. The stack pointer is initially placed on the leftmost local wallflower. We
stop when all the local wallflowers have been paired off, i.e., when their lmcp partners
have been determined. It is straightforward to check that, upon removal of an lmcp
involving a local wallflower, x, the necessary information on the affected +intervals
can be updated in constant time, and this guarantees the.linear-time bound.

For j --, ++,-+, let VJ be the union of’the nodes in the Rj, and let Sj be
the nodes formed from Vj. We note that all the nodes in S-- are less than or equal
to the nodes in S++, though it is possible that there are nodes in S-+ that are smaller
than some in S-- and others in S-+ that are greater than some in S++. In addition,
we know that both IS--I and IS++I are less than ISI/2 since IS--] IS++I. We
also know all the nodes (and their weights) explicitly in V-+ and hence can find the
smallest node in S-+ in O(IS-+I) time. Thus, it suffices to find the smallest node
in S--, and taking S’ S-- completes the proof. The analogous technique works
to find the largest node in S or the rank of a node x and the sets S<x and S>x in
O(AISI) time. We will call the process of determining the sets S--, S-+, S++ sifting.

Now suppose we wish to find S and S+ for some a E [0, 1]. We assume a _< 1/2,
since the case a > 1/2 is analogous. Let max(a, 3/7). We repeat the sifting
process as before, except that we find the -partition V V- t2 V+. For each set R,
we now set R- R{ N V- and R+ R N V+ and define the sets Ry, Vj, Sy as before
for j= -,++.

Let -y IY--[/IYl IS--IllS I. For the sake of simplicity, we ignore floors and
ceilings for the moment. It is not hard to see that we have IY-+l- 2(- )IV and
IV++[ (’ + 1 2)[Y[. Thus IS-+[ 2(3 9’)[S] and IS++[ (- + 1 23)]S[.
Using the algorithm described above, we find, in O(AISI) time, the largest node s- in
S-- and the smallest node s+ in S++, respectively. Let S-+ $1 U $2 U $3, where
S1 contains the nodes in S-+ less than or equal to s- and $3 contains the nodes in
S-+ greater than or equal to s+. We can find these sets using the Blum et al. [1]
linear-time selection algorithm because the nodes (and their associated weights) in
S-+ are known explicitly.

Let A S--tA S,, 5 ]AI, and Z S-+. If [Z >_ alS[, we set p a]S[/]Z[, and
using the standard linear-time selection algorithm, we find a p-partition Z Z-t2Zp+.
We now prove that there is always one of the sets A, S- A, Zp+ whose nodes we can
remove from S, because we can assume that they are in one of the sets of the a-
partition. Moreover, we prove that the set we remove contains at least 1/Tth of the
nodes in S.

First, note that each node in S-A has weight at least as large as any node in A, so
if [A >_ alS[, then we place the nodes in S-A in S+ and reduce the problem to finding
the a([S[/[A[)-partition of A. Symmetrically, if [A[ _< a[S[, we place the nodes in A in



BOUNDS ON CONSTRUCTING ALPHABETIC BINARY TREES 647

Sj and reduce the problem to finding the (1 a)(ISI/(IS -IAI))-partition of S A.
A similar argument applies to removing the nodes in Zp+ when we have IZI >_ alSI,
and we reduce the problem to finding the a(ISI/(ISI- IZp+l))-partition of S- Zp+. We
now consider the sizes of the sets involved. If , <_//3, we have IZI >_ 41SI/3 >_ alSI
and [Zp+[ (2(3- 3’)- a)lS[ >- (- 2’)1S[ >_ [SI/3 >_ [SI/7, since >_ a and

>_ 3/7. Now suppose >_ /3. We have 3’ _> 1/7, so [A _> IS--[ >_ [S[/7 and
IS- A[ >_ IS++[ >_ [S--[. Thus, in all cases, there is a set of size at least [S[/7 that
can be removed, and we have reduced the problem to a realizable set of size at most
6[S[/7 in O(A[S[) time.

It is easy to use the above ideas to compute, in O(A[S[) time, the rank in S of
any node x, as well as find S< and S>. Moreover, computing IS[ is trivial from
the node-group list for S. Combining these observations yields a DA coarse-selection
system for any realizable set in layer h q- 1, where the constant D is independent
of h. It is interesting to note that the largest portion of D is a result of applying
Theorem 4.2 to merge the selection system for the singleton node groups with the
selection system for the larger node groups.

The arguments above yield an O(Dh) coarse-selection system for realizable sets
in layer h. By dividing all the original weights by the smallest weight, we may assume
that they lie between 1 and a, and hence we must process at most [lg a q- 1 layers
before reaching the point where the worklist contains only crossable nodes. At this
point the weights are within a factor of two, we have an O(Dg]S[) O(n) coarse-
selection system, and we can apply Theorem 3.1 to determine the levels of these nodes,
which we then use to determine the levels of the original weights.

5. Hardness results. We begin with a simple hardness result that shows that
constructing the intermediate lmcp tree produced by Hu-Tucker-based algorithms in
any model of computation is at least as difficult as sorting in that model. We also give
a more complicated reduction from sorting to any algorithm which computes enough
partial information about the lmcp tree. This partial information is something we
expect any region-based method must compute.

5.1. Finding the lmcp tree. We will need the following simple lemma, whose
proof we omit since it follows immediately from the observations made at the begin-
ning of the proof of Theorem 3.1.

LEMMA 5.1. Let xl,x2,...,Xn be distinct real numbers drawn from [2,4). Let
Yi 1/2x[i/2], for 1...2n. If (yl,... ,Y2n) is given as input to any lmcp-finding
algorithm, the set of the first n lmcps found, disregarding order, will be

{(Yl, Y2), (Y3, Y4),-’’, (Y2n--1, Y2n)}.

THEOREM 5.2. We can reduce sorting sequences of size n to finding the lmcp tree
in O(n) time.

Proof. Assume n is even. Let Xl,X2,... ,Xn be drawn from [2,4). Define the yi

as above and consider the behavior of some lmcp-combining algorithm on the input
sequence y,..., Y2n. According to Lemma 5.1, after n lmcps have been combined,
there will be n crossable nodes in the worklist with the weights x1,..., Xn. The only
lmcp in the list is the smallest pair of nodes in {Xl,... ,Xn} that combine to form a
new node with weight at least 4. The next lmcp will be the second smallest pair of
nodes from {xl,... ,Xn} and so on. Hence the next n/2 lmcps found sort {xl,... ,Xn}
by pairs. Moreover, the fully sorted order of the xi can be recovered from the lmcp tree
(independent of how it was constructed) by searching the tree depth first and always



648 M. KLAWE AND B. MUMEY

searching the least-weight subtree first, since the nodes corresponding to {x1,..., xn}
will be encountered in sorted order. This shows that sorting can be reduced to finding
the lmcp tree in O(n) time.

5.2. Region-based methods. In light of the linear-time algorithm for the con-
stant factor case, it is natural to look for an o(n lgn)-time method based on region
processing. As before, we would hope to avoid determining all the lmcps but still
determine the leaf levels in the lmcp tree. The wallflower is the difficult case to ham
dle because it seems necessary to know explicitly which node it pairs with (as this
increases the level of the leaves of this node by one). In particular, the wallflower may
pair with the lmcp formed from the two smallest nodes in its region, and so it seems
necessary that this information be easy to find for every region considered. We will
say that an alphabetic tree-finding algorithm is region based if, from the information
it computes, it is possible in O(n) time to determine, for the smallest two nodes at
each level, the set of leaves in the subtree of the lmcp tree rooted by each of these
nodes. Note that this information is easy to compute if regions in the worklist are
processed by increasing category order and the smallest two nodes are explicitly found
in every region processed. This is because the smallest two nodes at each level in the
lmcp tree are the smallest two nodes for some region, and we can easily keep track of
the eventual level of the pair of smallest nodes for every region and pick the smallest
pair at every level. The following theorem provides an gt(n lgn) loWer bound in all
models of computation for which an information-theoretic argument can be applied.

THEOREM 5.3. Any region-based algorithm for finding alphabetic trees can be
used, with O(n) additional work, to sort sequences possessing a particular structure.
Moreover, the number of distinct orderings among sequences with this structure is
2a(ng).

Proof. We show the existence of a sufficently large class of input sequences, such
that for any sequence in the class, a region-based algorithm determines the structure
of the lmcp tree. The proof is completed by showing that, for these sequences, the
sorted order can be determined from the lmcp tree in O(n) time.

The input sequences we consider consist of approximately regions, each con-
taining about r nodes and such that the category of a given region is one more
than the region on its left. We assume n k2 + 3k + 4, where k is a positive integer.
The first region will contain weights with values in [1,2), the next [2, 4), then [4, 8),
etc. Denote the jth value in the ith region by yi,j. The first region will have 4k / 4
weights; the remaining have 2(k- 1),2(k- 2),2(k- 3),... ,2 weights, respectively.
Note that 4k+4+2(k-1)+2(k-2)+...+2 k2+3k+4. Let Xl < X2 < < X2+
be real numbers in [2,4). The values for the {yi,j} will be determined from the {xi}.
As the proof depends on the crossability of nodes, the values come in pairs so that
the leaf nodes initially combine in pairs (this will be proved in Lemma 5.4).

Con.sider the following recursively generated binary tree built from the {xi}. If
internal nodes are assigned the sum of the weights of their children, then it has the
property that the left child of any node is always less than the right.

Figure 1 shows the tree built for k 3. The tree built for k 2 is the subtree
rooted at the left child of the root. The tree for k 4 has this tree as the left child
of its root, with the right child of the root consisting of an arm with leaf weights
X17 "-"""-- X24, X25 "-"""-" X28, X29 -- X30,X31,X32 from left to right.

The purpose of this tree is to assign values to the {yi,j }. Randomly distribute
consecutive pairs (y,y, yl,i+), j 1, 3,..., 4k / 3, among the 2k + 2 lowest terminal
leaves in this tree. For j 1,..., 4k + 4, let Yl,j be half the weight of the leaf that



BOUNDS ON CONSTRUCTING ALPHABETIC BINARY TREES 649

x9+x10+x11+x12
,/ ,

x5+x6 / x13+x14
,

x1 x2 x3 x4 x7 x8 Xl5Xl6

FIG. 1. Tree generated from {xi}.

it is associated with. Then assign values to consecutive pairs of the 2(k- 1){y2,j } by
distributing them among the next lowest terminal leaves and so on. This new tree
is called the ordering tree and is shown in Fig. 2. It records how the weights were
assigned, and also their, sorted order.

Yl,7 Yl,8Yl,13Yl,14Yl,llYl,12Yl,1 Yl,2 Yl,15Yl,16Yl,5 Yl,6 Yl,3 Yl,4 Yl,9 Yl,IO

FIG. 2. The ordering tree.

The input weight list is as follows, with regions distinguished by height.

Y3,1 Y3,2
Y2,1 Y2,2 Y2,3 Y2,4

Yl,I Yl,2 Yl,15 Yl,16

With an additional O(n) time, we can determine the smallest two nodes at each
level of the lmcp tree from the information computed by any region-based algorithm.
To finish the proof, we first need a lemma.

LEMMA 5.4. If the children in the lmcp tree are ordered according to weight, then
the lmcp tree is isomorphic to the ordering tree.

Proof. We may assume that we begin by combining all the lmcps in the lowest
(largest-level) region. From Lemma 5.1 we know that since the weights come in



650 M. KLAWE AND B. MUMEY

consecutive pairs of the same weight, these pairs will eventually form lmcps and
combine, in agreement with the ordering tree. At this stage, the lowest region in the
worklist consists of crossable nodes interspersed with some noncrossable ones, which
again come in pairs. It is easily seen from the ordering tree that there is always an
even number of crossable nodes smaller than the consecutive pairs of noncrossable
nodes in the lowest region. Thus, we know that these crossable nodes will pair off
first, and then the consecutive pairs of noncrossable leaf nodes will pair off as is shown
in the ordering tree. It is clear from the ordering tree that this process continues and
the lmcp tree, with every internal node’s children ordered by increasing weight, is
isomorphic to the ordering tree. Lemma 5.4 is proven, i’1

Consider the children of the root of the lmcp tree. By assumption, we know their
weights and which leaves each child roots. By the lemma, the smallest node roots
all the leaves on the left branch of the ordering tree, while the second smallest node
will root all the leaves on the right branch. In time proportional to the number of
leaves we find, we can traverse the right branch of our tree and find all the leaves
and hence weights {yi,j} that are on the right branch of the ordering tree. Since
there are only a constant number of leaves per level, we can afford to sort each level,
and hence we begin sorting each of the regions in the initial input list. We now use
this idea recursively on the subtree rooted at the smallest node of the root. This
lets us find all the leaves in the right branch of the left branch from the root in
the ordering tree. Again, we may sort the weights present at each level and append
them to the beginning of the sorted region lists created previously. This will take
time proportional to the number of nodes in this branch. By repeating this process,
we will completely determine every input weight’s location in the ordering tree, and,
from this information, we can produce sorted lists of the weights in each region in the
input. All this takes only O(n) time to do.

The input sequences that we consider are subject to the restriction that the first
4k 4-4 weights come before the next 2(k- 1), which come before the next 2(k- 2),
and so on. The total number of different orderings of these sequences is

(2k + 2)!(k- 1)!(k- 2)!..-(2)!
> ([k/el !)
> Lk/4J Lk/4J Lk/2J

Since k O(n1/2), this number is (n(n)) 2a(nlgn). Theorem 5.3 is proven. 13

6. Conclusions. In this paper, we have extended the ideas of Hu and Tucker
for constructing optimal alphabetic binary trees. In particular, we have used their
basic idea of lmcp-tree construction together with the new idea of region processing
to give O(n)-time algorithms to solve the cases where the input weights are within a
constant factor, or exponentially separated. The constant factor case makes use of a
new technique for doing generalized selection in O(n) time. We show that any natural
method employing either the idea of lmcpotree construction or the idea of region
processing may force us to sort a substantial amount of the input. The basic question
of whether there is a general o(n lg n)-time algorithm for finding optimal alphabetic
binary trees for this problem remains open. In fact, this question is open even for the
highly restricted case where no wallflowers are encountered in the construction of the
lmcp tree before the point where the worklist contains only crossable nodes.



BOUNDS ON CONSTRUCTING ALPHABETIC BINARY TREES 651

REFERENCES

[1] M. BLUM, R. W. FLOYD, V. e. PRATT, l. L. RIVEST, AND e. E. TARJAN, Time bounds for
selection, J. Comput. System Sci., 7 (1972), pp. 448-461.

[2] A. M. GARSIA AND M. L. WACHS, A new algorithm for minimum cost binary trees, SIAM J.
Comput., 6 (1977), pp. 622-642.

[3] E. N. GILBERT AND E. F. MOORE, Variable length encodings, Bell System Technical Journal, 38
(1959), pp. 933-968.

[4] T. C. Hu, D. J. KLEITMAN, AND J. K. TAMAKI, Binary trees optimum under various criteria,
SIAM J. Appl. Math., 37 (1979), pp. 246-256.

[5] T. C. Hu AND A. C. TUCKER, Optimal computer search trees and variable-length alphabetical
codes, SIAM J. Appl. Math., 21 (1971), pp. 514-532.

[6] D. E. KNUTH, Optimum binary search trees, Acta Inform., (1971), pp. 14-25.
[7] B. M. MUMEY, Some new results for constructing optimal alphabetic binary trees, Master’s

thesis, University of British Columbia, 1992.
[8] P. RAMANAN, Testing the optimality of alphabetic trees, Theoret. Comput. Sci., 93 (1992),

pp. 279-301.


