Theoretical Computer Science 95 (1992) 231-244 231
Elsevier

On the space complexity of some
algorithms for sequence comparison

Yuval Rabani

Department of Computer Science, Tel-Aviv University, Tel-Aviv, Israel

Zvi Galil*

Columbia University, Computer Science Department, New York, NY10027, USA, and Department
of Computer Science, Tel-Aviv University, Tel-Aviv, Israel

Communicated by M. Nivat
Received March 1989

Revised February 1990

Abstract

Rabani, Y. and Z. Galil, On the space complexity of some algorithms for sequence comparison,
Theoretical Computer Science 95 (1992) 231-244.

Recent algorithms for computing the modified edit distance given convex or concave gap cost
functions are shown to require Q(n?) space for certain input.

0. Introduction

(Galil and Giancarlo [ 1] described two algorithms for speeding up the computation
of

E[j]= min {D[k]+w(k,j)}, j=1,...,n, (1)

0<k<j—1
where w 1s a given weight function, D[0] 1s given and for every k=1, ...,n, D[k] 1s
easily computable from E[k]. These algorithms handle two special cases: the convex
case, where w satisfies the inverse quadrangle inequality

w(i, K)+w(j,D=w(jk)+w(,l) foralli<j<k<], (2)

and the concave case, where w satisfies the quadrangle inequality. The algorithms are
denoted as Algorithm A and Algorithm B, respectively. Miller and Myers [ 3] indepen-
dently described an algorithm, which is essentially the same as Algorithm A. Note that
the standard definitions of convex and concave are interchanged here, following Galil

*The work of the second author was supported in part by NSF Grants DCR-85-11713 and
CCR-86-05353.

0304-3975/92/$05.00 © 1992—Elsevier Science Publishers B.V. All rights reserved



232 Y. Rabani, Z. Galil

and Giancarlo [1]. In this paper, functions such as log(x) or \/x are termed convex
functions and, therefore, the derived weight functions such as w(i, j)=log(j—i) specify
a convex case. Similarly, functions such as x* are termed concave functions, and the
derived weight functions such as w(i, j)=(j—i)* specify a concave case.

These algorithms were shown useful for computing the modified edit distance. Given
two strings x=x4...X,, and y=y,...y, over alphabet 2, the modified edit distance is
defined as the minimal cost of an edit sequence that changes x into y. An edit sequence
consists of operations of the form delete(x; ...x;) of cost w'(i, j), insert(yy 4+ ¢...y;) of
cost w(k,l) and substitute(x;, y;) of cost s(x;,y;). ‘

In order to compute the modified edit distance, a dynamic programming equation of
the form

D[i,jl=min{D[i—1,j—1]+s(x;,y;), E[i,j ], F[i,j]},

E[i,j1= min {D[i,k]+w(k,j)}, (3)
0<k<j—1

Fli,j]= min {D[Lj]+w'(li)},
0<I<i—1

with 1nitial conditions D[0,0]=0, D[i,0]=w'(0,i), 1<i<m and DJ[O,j]=w(0, /),
1 <j<n 1s considered.

The computation of a row of E and a column of F are each equivalent to the
computation of (1). The speedup achieved for that computation yields a speedup in the
computation of (3) from the trivial O(n°) to O(n*logn) or even O(n?) for simple gap
cost functions. In practice, it 1s the space complexity and not the time complexity
which limits the maximum size of problems that can be solved on small machines [ 3].
The minimum cost edit sequence with affine gap costs has been shown by Hirschberg
[2] to be computable in O(n) space. Miller and Myers [ 3] demonstrated the imple-
mentation of Hirschberg’s method for the convex case. Unfortunately, this does not
mean that space 1s reduced to O(n). Hirschberg’s method enables us to reduce the
space required for the maintenance of the matrix D. However, the stack or queue
required to compute each row of E (each column of F) consumes on its own (n)
(€2(m)) space and m rows of E (n columns of F) need be computed simultaneously.
Therefore, a bound of C(mn) space can be expected of the application for computing
(3). Miller and Myers state that experimental evidence regarding their algorithm
implies that the amount of space required is usually linear. We shall hereby demon-
strate that the bound of Q(mn) 1s actually achieved for certain inputs in both the
convex and the concave cases. For the sake of simplicity we consider m=n.

1. The convex case

Typical computations of the modified edit distance with convex weight functions use
gap cost functions of the form

w(i, j)=f " (Xis Xis 1) +f 2 (xjs Xj 1) +g(j—i), (4)



Some algorithms for sequence comparison 233

where g is a convex function. The functions /" and f* represent the cost of breaking
the links at the edges of the gap in the string x.

Three examples are given for input for the Galil-Giancarlo algorithm that require
Q(n?) space for the computation of (3). Example 1.1 assumes a substitution cost
function s which can have O(n) different values. Let [ be the size of the alphabet 2 over
which the input strings x and y are defined. Then s may have at most [* different
values. This implies that [ 1s unbounded, because for input of length n, an alphabet of
s1ze | = O(\ﬂz) 1s required. Example 1.2 assumes a function s with a constant number
of different values, but still uses an unbounded alphabet, because the expression for w’
contains a function f! with O(n) different values. Because /' may have at most [*
different values, an alphabet of size | = O(\ﬂz ) 1s needed. Example 1.3 uses a bounded
alphabet. However, the gap cost function w 1s not represented in the form (4) and,
therefore, the example may not apply 1n practice. Furthermore, 1n all examples w and
w’ are different functions, which may not be applicable in practice. All examples
assume that the matrix D is evaluated by columns. Some diflerent evaluation order
will yield a lower space bound.

1.1. An unbounded alphabet example
Assume a nonnegative weight function W that satisfies condition (2) and
Wi, k)y>W(j, k) foreveryi<j<k,
Wi, k)+W(j,D)>W(jk)+W(i,l) foreveryi<j<k<l (5)

Given such a function, we shall construct weight functions w and w’ satisfying
condition (2), so that applying Algorithm A for computing (3) requires Q(n*) space.

Definition 1.1. Let

| 7]
K=Y [W(k-1,n—k+1)—W(kn—k+1)]. (6)

We define s, w and w’ by

K (1, 7)=(1,1),
s(xi, y))=< W(j—Ln—j+1)=W(jn—j+1) 1<j<i<[3],

any positive value otherwise,
w(i,j)=W(,j)+K, (7)

w'(i, )= K.



234 Y. Rabani, Z. Galil

For actual demonstration of this example, one may consider the function W(i, j)=
log(j—i). It suffices to take K =n 1n this case.

Lemma 1.2. (1) For (i,j)#(0,0), D[i,j | = K; (1) For i#0and j#0, E|i,j |, F[i,j ] =2K.

Proof (by induction over i,j). For (i,0) and (0, j) we have
D[i,0]=w'(0,i)=K =K, D[O0,j]=w(0,j)=W(0,j)+ K>=K.

Assume that the lemma holds for each (i’, j'), where i'<i, j'<j or i'<i, j'<j. Now
D[i,j]=min{D[i—1,j—1]1+s(x;, y;), ELi, j J, F[i, j 1},

Dli—1,j—1]=K (i,j)#(,1),
K (i, j)=(1, 1).

On the other hand, we have for some j' <j, i’ <,

D[l“ lajml]_*_s(xiayj)?/{

E[i,j1=D[i,j'1+w(j’j) > K+K=2K,

F[i,i1=D[i,j]1+w (i, ,i)>K+K=2K. [

Lemma 1.3. For i,j such that 0<j<i<| 7 |,

J J
D[i,j]l=w'(0,i—j)+ Z S(xi—-j+kayk)=K+ Z S(xi~j+ka)’k)- (8)
k=1 k=1

Proof (by induction over j). For j=0 we have D[i,0]=w’(0,i) and, thus, the lemma
holds. For j>0, D[i,j]=min{D[i—1,j—1]+s(x;,y;), E[i,j ], F[i,j]}. We show that
the minimum 1s achieved by D[i—1,j—1]+s(x;, y;) and complete the prootf:

DIi—1,j—1]+s(x;,y;)

J—1

=K+ Y s(Xi—jii i) +5(xi,p;)

k=1

J
=K+ Z S(xi-—-j+ka Vi)
k=1

— K+ i (W(k—1,n—k+1)— Wk n—k+1)]

k=1

<K+K=2K<E[ij],F[ij] C

Lemma 1.4. Let E; denote the ith row of E. For i, j such that 1<j<i<| 5|, step j of
Algorithm A executed to compute E;, given input satisfying Definition 1.1, consists of

pushing the new entry ( j,n—j+ 1) onto the stack, without previous entries being popped
out of the stack.



Some algorithms for sequence comparison . 235

Proof. For 1<i<| %5 |, let E; be an arbitrary row of E. We prove by induction over
j that for 0<j<i, the stack for computing E; at the end of step j 1s

(klop___js htopzn_j+ 1)9 (]“1,”“]4-2), R (09n+1) (9)

and, thus, prove the lemma. For j=0, property (9) obviously holds because the
initialization of the stack in Algorithm A pushes (0,n+ 1). Assume that property (9)
holds for j— 1. The following inequalities, if maintained, ensure the required update of
the stack at step j:

DLi,j—=1]1+w(j—=Lj+1)>D[ijl+w(j,j+1),
Dli,j—1]+w(j—1Ln—j+1)<D[i,jl+w(jn—j+1) (10)

The first inequality means that j 1s a better candidate than j—1 for computing
E;[ j+1]. The second and third inequalities ensure that h(j—1,j)=n—j+ 1.

By (7) and (8) we have
D[i,jl-Dli,j—1]1=W(j—Ln—j+1)—W(jn—j+1) (11)

because

J J—1
Dli,jl|—=Dli,j—1]=K+ Z S(xi—j+k,yk)“|:K+ Z S(xi——j+k+19yk):|
k=1 k=1

j—1
:-:S(xi,yj)-l- Z [S(xi——j+kayk)“3(xi—j+k+1’yk)]
k=1

-“‘“S(xi,J/j)ﬁ W(ji—Ln—j+1)—W(jn—j+1).

As 1<j< |3 |, we have j—1<j<j+1<n—j<n—j+1. Using (5), (7), (8) and (11),
we demonstrate that inequalities (10) hold:

w(ij—Lj+1)—w(j,j+1)
=W(j—1j+1)—W(jj+1)
>W(j—1L,n—j+1)—W(jn—j+1)=Dli,j]—-Dli,j—1],
wij—1l,n—j+1)—w(jn—j+1)
W (=1, n—j+ D= W(jn—j+1)
=Dli,j]—Dli, j—1],
w(j—Ln—j)—w(j,n—j)
=W(j—Ln—j)—W(jn—j)
S W(j—1,n—j+1)—W(jn—j+1)=D[i,j]1—D[i, j—1]. 0



236 Y. Rabani, Z. Galil

Theorem 1.5. Algorithm A for computing (3) requires Q(n*) space for values of s, w and
w’ of Definition 1.1.

Proof. Straightforward from Lemma 1.4.

1.2. An example with constant possible costs for substitution

Definition 1.6. Let g(l), [=1,...,n be any nonnegative monotonically increasing
convex function. We define values for s, w and w’ as follows:

s(x;, y;)=s=g(2)—g(1),

w(i,j)=g(j—1i)+ 2ns, |
w (i, ) =f1({)=n—i)s+ Z [g(n—2k+2)—g(n—2k+1)]. (12)

k=1

We shall use below the following fact: for k>1, glk+1)—g(k)<s(=g(2)—g(1)). It
follows from the strict convexity of g.

Lemma 1.7. For each j such that 0<j<| 3z |, D[ Jj,j]=Js,

Proof (by induction over j). For j=0 the lemma obviously holds. Suppose that the
lemma holds for j—1. From (3) we have

D[]?]] =IIlIIl{D[]-—- 151_1] +S(xj’y1)aE[J9]]9F[19]]}

Now
DLj—Lj—1]+s(x;,y)=(j—1)s+s5=/s
On the other hand, we have
E{Lj,jI=DLj,j 1+w(j,j)=zw(j,j)=2ns>]s for some j' <},

FLj,j1=DLj,j1+w(j,j))2w'(j,j)=z(n—j)s=3]s>js for somej <.
' L]

Lemma 1.8. For i’,j such that 0<i'<j<| 3 |, D[i’,j]=]Js.

Proof (by induction over j). For j=1, i’ must be O and D[0, 1]=w(0, 1)=g(1)+ 2ns>
js. Assume that the lemma holds for j—1. It D[i",j ]=D[i"—1,j—1]4+s(x;,y;), then
we have

D[i,——l,j“*1]+S(Xif,yj),>f(j'—1)S+S=jS.
If D[i’',j]=DI[i,j ]+w(]',j) for some j'<j, then we have

DL, j 1+w(j', j)=Z2w(]',j)=2ns> s,



Some algorithms for sequence comparison 237

If D[i',j1=DI[i",j]1+w'(i",i’") for some i"<i’<j<| 5 |, then we have
D[i",j1+w (", i)y 2w (i",i")=(n—i")s=| 5 |s>]Js. L]
Lemma 1.9. For i,j such that 1<j<i<| 3 |,

D[i,j1=DLj,jl1+w'(}i) (13)

Proot (by induction over i). For i=2, j must be 1. There are four possibilities for
obtaining the value of D[2,1]:

D[2,1]1=D[1,1]4+w(1,2)=ns+g(n)—g(n—1),
D[2,1]1=D[0,1]+w(0,2)=w(0, 1)+ w’'(0, 2)
=3ns+g(1)>ns+g(n)—g(n—1),
D[2,11=D[2,07+w(0, 1)=w'(0,2)+w(0, 1)
=3ns+g(l)>ns+g(n)—gn—1),
D[2,1]1=D[1,0]+s=w (0, )+s=(n+1)s>ns+g(n)—g(n—1);

so, the lemma holds for i=2, j=1. Suppose that the lemma holds for each i’ <i. First
we prove that Fli,j]l=D]|j,j]+w'(J,i). We then show that F[i,j]|<E[i,j] and
Fli,jl<Dli—1,j—1]+s, by which we complete the proof.

Let i’, j#i'<i, be an arbitrary candidate for computing F[i,j]. If j<i’<i, then

D[lfaj] :D[]:J] +W,(]al,)a
and '
D{i',jl+w'(i',i))=DLj,jl1+w(ji")+w(@',i)=D[j,jl1+w(j,i)

It 0<i’<j<i, then by Definition 1.6 and Lemma 1.8 we have

J
Dli',j]=js=i's+ Z [g(n—2k+2)—gn—2k+1)],
k=i +1
and

D[i',j]l+w{(i',i)=ns+ i lgin—2k+2)—gmn—2k+1)]=D[j,jl+wi(]j,i)

by Lemma 1.7. Therefore, i"=j 1s the best candidate for computing F[i,j] and
Fli,j1=DLj,j1+w'(},i).
Now we show that F[i,j|<E[i,j] For some j <j

Eli,jl1=D[ij 1+w(j’J)

J
>w(j,j)=2ns=zns+ Y [gh—2k+2)—gn—2k+1)]=F[i,j].
k=1



238 Y. Rabani, Z. Galil

To complete the proof we show that F[i,j |<D[i—1,j—1]+s(x;,y;). We have
Dli—1,j—1]+s(x;, ;)

=D[j—1,j—1]+w(j—1,i—1)+s

--:(j——-l)s+(n—j+1)s—|-Ji lgin—2k+2)—gmn—2k+1)]+s

=js+(n—j)s+ }i lgin—2k+2)—gn—2k+1)]

+gmn—2j+1)—gn—2j+2)+s
=js+w(j,i)+tgn—2j+1)—gn—2j+2)+g(2)—g(l)
>js+w'(j,i)=F[ij]. L]

Lemma 1.10. Let E; denote the ith row of E. For i,j such that 1<j<i<| 73|, stepj
of Algorithm A executed to compute E;, given input satisfying Definition 1.6, consists

of pushing the new entry (j,n—j+ 1) onto the stack, without previous entries being
popped out of the stack.

Proof. For 1<i<| 3|, let E; be an arbitrary row of E. As in Lemma 1.4, we shall

prove this lemma by showing that the stack for computing E; satisfies property (9) for
each 0 < j <.
Given (12) and (13) we obtain that

Dli,j1=Dli,j=1l=gn—=2j+2)—g(n—2j+1) (14)

since

=D[j,jl+w(ji)=DLj—=1j—-1]1=-w'(j—1,i)

=js+(n—j)s+ ZJ: lgin—2k+2)—gn—2k+1)]—(j—1)s—(n—j+1)s

i—1
— Z lgin—2k+2)—gn—2k+1)]=gn—2j+2)—g(n—2j+1).
k=1

Using (12), (13) and (14) we demonstrate the correctness of inequalities (10):
w(j—Lj+1)—w(j,j+1)

=g(2)—g()>gn—2j+2)—gn—2j+1)=DLi,j | -DLi,j—1],



Some algorithms for sequence comparison ‘ 239

w(ij—lL,n—j+1)—w(j,n—j+1)
=gn—2j+2)—gn—2j+1)
=D[i,j]=Dli,j—1],

w(j—Ln—=j)=w(jn—j)
=g(n—2j+1)—g(n—2j)
>gmhn—2j4+2)—gn—-2j4+1)=D[i,j]—D|i,j—1]. ]

Theorem 1.11. Algorithm A for computing (3) requires Q(n?) space for values of s,w and
w’ given in Definition 1.6.

Proof. Straightforward from Lemma 1.10. [

1.3. A bounded alphabet example

Claim 1.12. Let g(i) be any concave function. Then w(i, j)=g(i+]) satisfies the inverse
quadrange inequality (2).

Proof. Given i<j<k<lI, we have i+I<j+1l. Now (i+])—(i+k)=I—k=(j+1)—
(j+ k). Since g 1s concave, gli+1)—g(i+k)<g(j+1)—g(j+k) or w(i,l)—w(i, k)<
w(j,l)—w(]J, k), which proves the claim. |

Definition 1.13. Letg(/),/=1,...,2n—1 be any nonnegative monotonically decreasing
concave function. We define values for s,w and w’ by

s(x;, yj))=s=gmn)—gn+1)
w(i,j)=g(i+j)+2ns, (15)

w'(i, j )= ns.
Lemma 1.14. For j such that 0<j< |5 |, D[ j,j]1=]Js.

Proof (by induction over j). For j=0 the lemma obviously holds. Suppose that the
lemma holds for j—1. From (3) we have

D[]:J]:mln{D[]“ 19]“ 1]+S(xt>yj)nE[]9]]9F[]>J]}
Now
DLj—1,j—11+5(x;y;)=(j— Ds+s=js

On the other hand, we have
ELjjl=DLjj1+w(j,j)=zw(j,j)=2ns>js for some j <},
F[j,j1=DLj,j1+w (j,j)=w(j,j)=ns>js for somej'<j. [



240 Y. Rabani, Z. Galil
Lemma 1.15. For i’,j such that 0<i’'<j<| 35|, D[i’,j]>=Js.

Proof (by induction over j). For j=1, i’ must be O and D[0,1]=w(0, 1)=¢g(1)+2ns>
2ns>js. Assume that the lemma holds for j—1. lt D[i',j ]=D[i"—1,j—1]+4s(x;, y;),
then we have

D[i'"—1,j—1]+s(x;,y;))=(j—1)s+s=]s.
If D[i’,j]1=DI[i’,j ' ]+w(j,j) lor some j'<j, then we have
D[i',j J+w(j,j)=2w(j,j)=2ns>]s.

If D[i’,j]1=D[i",j]+w'(i",i’) for some i” <i'<j<|% |, then we have

D[i",j]+w (", i")=Zw(i",i")=ns>js. [
Lemma 1.16. For i,j such that 1<j<i<|z |, D[i,j]l=(n+j)s.

Proof (by induction over i). For i=2, j must be 1. There are four possibilities for
obtaining the value of D[2,1]:

D[2,1]1=D[1, 1]+ w'(1,2)=(n+1)s,
D[2,1]=D[0, 1]+ w'(0,2)=g(1)+ 3ns>(n+ 1)s,
D[2,1]1=D[2,0]4+w(0, 1)=3ns+g(1)>(n+1)s,
D[2,1]=D[1,0]+s=(n+ 1)s;

so, the lemma holds for i=2, j=1. Suppose that the lemma holds for each i’ <i and let
1<j<i<| 3| Then we have

Dli—1,j—1]+s(x;,y;))=(n+j—1)s+s=(n+j)s.

Therefore,
Eli,jl=Dli,j 1+w(j,j)=w(j,j)=2ns>n+j)s for some j <],
Fli,j]l=DIli',j]l+w'({,i) for some i’ <.

Ifi">j, then D[i’,j ]=(n+j)s; therefore, F[i,j]=®n+j)s. If i’ <j, then by Lemmas 11
and 12, D[i’,j]>=js and, therefore, Fli,j]=2js+ns=(n+j)s. L[]

Lemma 1.17. Let E; denote the ith row of E. For i,j such that 1 <j<i<| 3|, stepj of
Algorithm A executed to compute E;, given input satisfying Definition 1.13, consists of

pushing the new entry (j,n—j+ 1) onto the stack, without previous entries being popped
out of the stack.



Some algorithms for sequence comparison 241

Proof. For 1 <i<| 3 |,let E; be an arbitrary row of E. As in Lemma 1.4, we prove this
lemma by showing that the stack for computing E; satisfies property (9) for each
0<j<i. By Lemma 1.16, 1t follows that

D[i,j]1—DI[i,j—1]=s. (16)

Using (15) and (16)-we demonstrate the correctness of inequalities (10). Note that for
any 1<k<n—1, gln)—gn+1)<g(k)—g(k+ 1) because of the strict concavity of g:

wiji—Lj+1)—w(j,j+1)
=g(2j)—9(2j+1)>gn)—gn+1)
=DI[i,j1-DL[i,j—1],

w(ji—1Ln—j+1)—w(jn—j+1)
=g(m)—gmn+1)=D[i,j]1-D[ij—1].

w(j—1n—j)—w(jn—j)
=g(n—1)—gn)>gn)—gn+1)

—D[i,j1-D[i,j—1]. O

Theorem 1.18. Algorithm A for computing (3) requires Q(n*) space for values of s, w and
w’ of Definition 1.13.

Proof. Straightforward from Lemma 1.17. [

2. The concave case

Definition 2.1. Let g(l), [=1,...,n be any nonnegative monotonically increasing

concave function. Let L=g(| 3 |+1)—g(| 3 |) and K= 5 | L. We define values for
s,w and w’ by

S(x:, ;)= K (i,j)=(1,1),
> ) . otherwise,

w(i,j)=g(j—i)+K, (17)
wi(i,j)=K

For actual demonstration of this example, one may consider the function g(l)=1".
This gives L=2]| 5 |+ 1. In this case K can be taken to be n*.



242 Y. Rabani, Z. Galil

Lemma 2.2. (1) For (i,j)#(0,0), D]i,j | = K;
(i) For i#0 and j#0, E[i,j], F[i,j]1>2K.

Proof. (by induction over i,j). For (i,0) and (0,j) we have
D[i,0]=w'(0,i)=K>K,  D[0,j]1=w(0,j)=g(j)+K>K
Assume that the lemma holds for each (i’,j’), where i’ <i, j'<j or i"<i, j'<j. Now

D[l,]]'—:mln{D[l—* 19]“ 1] +S(xiayj)9 E[l,]],F[l,]]},

Dli—1j—1]=zK (ij)#(L,1),

D[i—-——-l,j—-l]-i-S(xi,ij)?/{K (i, j)=(1,1).

On the other hand, we have for some j' <j, i’ <i,
Eti,jl1=DLli,j 1+w(j,j)=2K+g(j—j )+ K=2K,

F[i,j]1=D[i’,j]+w(i,i)>K+K=2K. [

Lemma 2.3. For i,j such that 0<j<i<| 3 |,

J
D[l,]:I:W,(O,l“])‘l‘ Z S('xi—-j+kayk)=K+jL' (18)

k=1

Proof. By induction over j. For j=0 we have D[i,0]=w'(0,i) and, thus, the lemma
holds. For j>0, D[i,jl=min{D[i—1,j— 1]+s(x;,y;), E[i,j ], F[i,j]}. We show that
the minimum 1s achieved by D[i—1,j—1]+s(x;, y;) and complete the prootf:

Dli—1,j—1]+s(x;,y)=K+(j—1)L+L

n
=K+jL<K+ [EJL=2K\<\E[i,j],F[i,j]. []
Lemma 2.4. Let E,- denote the ith row of E. For i,j such that 1 <j<i<| %5 |, step j of
Algorithm B executed to compute E;, given input satisfying Definition 2.1, consists of
enqueueing the new entry (j,| 5 | +Jj), without previous entries being removed from the
queue, then modifying h¢oq to be j+ 1.

Proof. For 1<i< |5 | let E; be an arbitrary row of E. We prove the lemma by
induction over j. Suppose the lemma holds for j—1, so that the queue for computing
E; at stepj—11s

(kfront::oa hfront =] )9 (19 ng + 1) 9 e (J“ 19 |>f21_J +]_" 1) (19)



Some algorithms for sequence comparison 243

(obviously, this holds for j=1). The following inequalities, if maintained, ensure the
required update of the queue at step j:

D[i,0]+w(,j+1)<D|[i,j]+w(jj+1),
D[i,j——l]—l—w(j——l,l—gJ -I—j——l)<D[i,j]+w(j,LgJ-i—j——l), (20)

ot 1ew(j-1|2[11) 03 0w(i] 2] 1)

The first inequality means that O 1s a better candidate than j for computing
E;[ j+1]. The second inequality means that at the start of stage j, j—1 1s a better
candidate than j. The second and third inequalities ensure that h(j,j—1)=| 3 | +].

By (17) and (18) 1t follows that

Dli,j1-=Dli,j—11=L,
D[i,j]1—D[i,0]=jL. (21)

By (17), (18) and (21) we demonstrate the correctness of inequalities (20). Note that
for k<| 3|, glk)—g(k— 1)< L because of the strict concavity of g:

w0, j+ 1) —w(j,j+1D=g(j+1)—gQ)
=g(j+1)—g(j)+---+92)—g(l)<jL

gl o3

—L=D[i,j1-D[i,j—1]. [

Theorem 2.5. Algorithm B for computing (3) requires Q(n*) space for values of s, w and
w’ given in Definition 2.1.

Proof. Straightforward from Lemma 2.4.



244 Y. Rabani, Z. Galil

References

[1] Z. Galil and R. Giancarlo, Speeding up dynamic programming with applications to molecular biology,
Theoret. Comput. Sci. 64 (1989) 107-118.

[2] D.S. Hirschberg, A linear space algorithm for computing maximal common subsequences, Comm.
ACM 18 (1975) 341-343.

[3] W. Miller and E.W. Myers, Sequence comparison with concave weighting functions, Bull. Math. Biol.
50(2) (1988) 97-120.



	01.tif
	02.tif
	03.tif
	04.tif
	05.tif
	06.tif
	07.tif
	08.tif
	09.tif
	10.tif
	11.tif
	12.tif
	13.tif
	14.tif

