Algorithmica (1993) 9: 615-628 A 4 . 1 .
g Algorithmica

© 1993 Springer-Verlag New York Inc.

Finding Least-Weight Subsequences with Fewer Processors

Tak Wah Lam' and Kwong-fai Chan'

Abstract. By restricting weight functions to satisfy the quadrangle inequality or the inverse quadrangle
inequality, significant progress has been made in developing efficient sequential algorithms for the
least-weight subsequence problem [10], [9], [12], [16]. However, not much i1s known on the
improvement of the naive parallel algorithm for the problem, which is fast but demands too many
processors (i.e., it takes O(log® n) time on a CREW PRAM with n?/log n processors). In this paper we
show that if the weight function satisfies the inverse quadrangle inequality, the problem can be solved
on a CREW PRAM in O(log” n log log n) time with n/log log n processors, or in O(log? n) time with
n log n processors. Notice that the processor-time complexity of our algorithm i1s much closer to the
almost linear-time complexity of the best-known sequential algorithm [12].

Key Words. Parallel algorithms, Dynamic programming, Monotone matrix.

1. Introduction. The least-weight subsequence problem was first defined by
Hirschberg and Larmore [10] as follows: Given an integer n and a real-valued
weight function w(i, j) which can be computed in constant time forall0 <i <j < n,
find a sequence of integers {o, &,,...,a,} such that 0 = o, <, <*** < o, = n
and) ; i< W(a;, o4 ;) is minimized. Such a sequence is called a least-weight
subsequence for [0, n].

The weight function 1s said to be concave if it satisfies the quadrangle inequality

[17], 1e., for all i, <i; <jo <j{, Wig,Jjo) + Wiy, ji) < Wlig,J1) + Wiy, jo)- The
weight function is said to be convex if it satisfies the inverse quadrangle inequality,
i'c'a for all iO < il <]O S-.il:v W(io,jo) T W(ilajl) = W(i05j1) + W(ilﬁjO)-

‘By imposing the concave property on the weight function, Hirschberg and
Larmore [10] improved the sequential-time complexity of finding the least-weight
subsequence from n? to nlog n. Later, Galil and Giancarlo [9] generalized this
result to both the concave case and the convex case. Though the quadrangle
inequality and its inverse look very similar, an algorithm working for the concave
case might not work in the convex case, and vice versa. In fact, a linear-time
algorithm for the concave least-weight subsequence problem was found by Wilber
[16] and an improved linear-time algorithm was found by Eppstein [6], yet the
best-known algorithm for the convex case, which was due to Klawe and Kleitman
[12], still requires O(na(n)) time, where a(n) 1s the inverse Ackermann’s function.

Let us switch to parallel algorithms. Using standard techniques for contracting
trees [14], [15], we can find the least-weight subsequence in O(log* n) time on a
CREW (concurrent read, exclusive write) PRAM with n>/log n processors. Details
are shown 1n Section 2. Recently Atallah, et al. [4] have shown that two concave

il i o i e el e o e gl -

! Department of Computer Scienée, University of Hong Kong, Pokfulam, Hong Kong.

Recetved November 6, 1990; revised May 10, 1991. Communicated by Takao Nishizeki.

616 ' ' Tak Wah Lam and Kwong-fai1 Chan

matrices can be multiplied in O(log n log log n) time on a CREW PRAM with
n*/log n processors. As the least-weight subsequence problem can be reduced to a
series of log n matrix multiplications, we immediately obtain a parallel algorithm

~using O(log® nlog log n) time and n*/log n processors for the concave case. This
algorithm can be adapted to the convex case, too.

Other than these results, little was previously known on the parallel complexity
of the problem when the weight function satisfies either the concave property or
the convex property. Due to the apparent sequential nature of the problem, a
brute-force approach may seem to be the only way to go, that is, a lot of processors
are required to perform redundant computation, and the total work becomes very
unfavorable. As far as we know, parallel solutions to other dynamic programming
problems, such as finding the optimal binary search tree, also have this kind of
defect. In this paper we show a new parallel algorithm for the convex least-weight
subsequence problem, which can be implemented in O(log” n log log n) time with
n/log log n processors, or in O(log* n) time with n log n processors.

The parallel computation model used in this paper is the CREW PRAM. A
PRAM basically consists of a large number of independent processors which
communicate through a global memory [8]. According to the restrictions on the
access of the global memory, PRAMs can be further classified. In the CREW
PRAM, more than one processor can simultaneously read the same global memory
cell, but ssmultaneous write into the same memory cell 1s not allowed. More details
of the model can be found in the survey by Karp and Ramachandran [11].

In the following, unless 1t 1s stated explicitly, we assume that the weight function
1S convex.

The remainder of this paper 1s organized as follows. Section 2 describes a naive
parallel algorithm for this problem. Section 3 defines the maximal least-weight
subsequence, which 1s shown to have some nice properties to enable us to 1dentify
it 1in parallel easily. Section 4 depicts a straightforward algorithm implementing
the 1dea stated in Section 3. Finally, Section 5 further improves the processor
complexity of the algorithm by making use of a known result in monotone
matrix-searching [2], [3]. _ '

Before our discussion of the algorithms, let us look at the formal definition of
least-weight subsequences. We overload the set notation {a, a,, ..., a,,} to denote
a sequence of integers o, < o, < "<, . '

DEFINITION. For any 0 <i <j <n, a subsequence 1n the interval [i,j] 1s any
sequence of integers S = {oy, ®5, ..., ®, With o, =i and a,, =].

e Let w(S) denote the total weight of the subsequence S, i.e.,) <y« W, ;4).

e S is a least-weight subsequence (LWS) for [i,j] if w(S) = min{w(S)|S" is a
subsequence in [i, j]}. '

o Let ¢(i, /) denote the total weight of any LWS for [i, j]. Define e(i, i) = 0 for all
0<i<n. |

2. The Conventional Approach. Figure 1 shows a simple parallel algorithm.
solving the LWS problem without any restriction on the weight function. It
requires n>/log n processors and O(log” n) time. The algorithm consists of two

Finding Least-Weight Subsequences with Fewer Processors 617

For all 0 <i <j < n do in parallel
{if i = j then E[i,j] = 0 else E[i, j] = w(i, j); }

Stage 1—computing e(i, j)’s

Repeat [log n | times
for all i, j such that 0 <i,j<nandj—i> 1 do in parallel
(temp « min, <, < (E[i, K] + E[k, j1);
if temp < E[i, j] then
{ E[4, j] « temp;
K[i, j] « k, where temp = E[i, k] + E|k, j];
/* choose an arbitrary one if more than one such k exists */ } }

Stage 2—backward tracing

B[O, n] « 1;
Repeat [log n | times
for all i, j such that 0 <i <j < n do 1n parallel
if Bli,j] =1 then
{ SLK[i, j1] « 1;
B[i, K[i,j]] < 1; BLK[i, j],j] < 1;
B[i,j] < 0; /* to avoid concurrent write */ |

Fig. 1. Algorithm »/—a naive parallel algorithm for finding the LWS.

stages: stage 1 computes the value of e(i, j) for all i, j; stage 2 then constructs an
LWS for [0, n]. The result 1s eventually stored 1n an array S such that S[i] =1 1f
and only 1f i 1s an element of the LWS. Since any LWS for [0, n] ends with 0 and
n, we 1nitialize S[0], S[n] to 1 and S[i] to O for all other i’s.

In the algorithm an (n + 1) x (n + 1) matrix E is used to store all e(i, j)’s. Note
that, for any 0 <i <j < n, if e(i, j) 1s less than w(i, j), then e(i, j) can be expressed
as e(i, k) + e(k, j) for some k strictly between i and j. Thus, we initialize each E[i, j]
to w(i, j). In each iteration the current value of each E[i, j] 1s compared with that
of (E[i, k] + E[k,j]) for all k strictly between i and j. E[i,j] 1s always updated
with the smallest value. If there is an LWS for [i, j] consisting of at most 2' 4+ 1
elements, then E[i, j] will be equal to e(i, j) after the Ith iteration. In other words,
every E[i, j] will have received the value of e(i, j) after the [log n |th iteration.

An array K 1s used to keep the history of how the smallest value of each E[i, j]
1s obtained. Initially, each K[i, j] has the value i. Whenever E[i, j] 1s updated to
~ the value (E[i, k] + Elk, j]) for some k, the value k will be stored into K[j, j]. After
stage 1, the value 1n each E[i, j] should become e(i, j). We then retrieve the LWS
for [0, n] by tracing the array K 1in a backward manner.

3. The Maximal Least-Weight Subsequence. It is obvious that there may be more
than one distinct LWS in any particular interval [i, j]. Even if we can find an LWS
for the first half of the interval (1.e, [i, (i + j)/2]) and one for the other half (i.e.
[(i + j)/2,j]), 1t 1s not necessary that they can be combined to form an LWS for
the whole interval. In other words, to apply the approach of “divide and conquer”
to this problem, we need to find all LWSs for each half interval, and then examine
which pair can be combined to form a final solution. Of course, it requires a lot

618 Tak Wah Lam and Kwong-fai Chan

of processors 1n order to compute all LWSs for the subintervals efficiently. The
convex property of the weight function, however, guarantees the existence of a
particular LWS which can be found by the “divide and conquer™ approach with
much fewer processors. The details are as follows:

LEMMA 1. Forany O0<i<j<mn,let S, and S, be any two LWSs for [i,j], then
the union of S, and §, is also an LWS for [i,j].

PrOOF. See Appendix 1. _ ‘ L]

By applying Lemma 1 inductively, we can show that the union of all LWSs for
[i,j] is also an LWS, which 1s called the maximal LWS for [, j] and 1s denoted
by MS; ;. The essence of this paper is that the maximal LWS can be found
efficiently with a linear number of processors. Now let us look at some properties

of the maximal LWS.

Fact 2. For any 0<i<j<mn, let MS;;={0y,%,,...,%,}. Then, for any
1 <r <s < m, the maximal LWS for [«,, a] is exactly {o,, &, ,, ..., 0}.

Moreover, even for any pair k, [’with i < k <l <j,not necessarily chosen from
{otq, ..., A}, MS,, still contains all elements of MS; ; within the interval [k, [].
Figure 2 depicts this relationship. To be more specific, let us look at the following
lemma.

LEMMA 3. Given any 0 <i < j<n,let x be an element of the maximal LWS for
[i,j]. Then, for all k, Il withi <k <l <jand k < x <, x is also an element of the
maximal LWS for [k, [].

PrROOF. See Appendix 2. []

Perhaps the most interesting property i1s about the ease of constructing the
maximal LWS for a longer interval from two maximal L WSs of consecutive shorter
intervals.

THEOREM 4. For any i, k, j with 0 <i<k <j<mn, let MS; , = {0y, 05, ..., 0%, }
and MS, ;= {B, Ba,..., Bm,}- Then there exist 1 <h <m; and 1 <1< m, such
that MS; ; = {00y, %y, ..., %y Bis Biv1s---» B,y (s€€ Figure 3). '

ProoF. Let MS; i=1Y1Y2s---» Vm,- Let 7, be the largest element in MS; ; strictly
less than k. By Lemma 3, y,, y,, ..., and y, must be elements of M, ;. Given that
MS; , = {o, %y, ..., a,, }, We let a, denote the element in MS; , equal to y,.

\/

1 k [J

Fig. 2. The relationship between MS; ; and MS, ;. V is the element of the maximal LWS for [i,j] and
A 1s the element of the maximal LWS for [k, [].

Finding Least-Weight Subsequences with Fewer Processors 619

1 J

Fig. 3. MS,; ; i1s composed of MS; , and MS, ;. V is the element of the maximal LWS for [j, j], /A 1S
the element of the maximal LWS for [i, k], and A is the element of the maximal LWS for [k, j].

As vy, 4+, 18 the smallest element in MS; ; greater than or equal to k, by Lemma
3 again, we conclude that y, ., ..., y,,18 In MS, .. Let f§, be the element in MS, .
such that g, =7v,,,.

We can deduce from Fact 2 that {«y,...,o,} =MS;, ={y-..,7,}, and

By Byt = MSp i = {Vy+1>--->Vm,}- Therefore, {yi,7,,...,7.} is equal to
{051', X2y oeny Up, Bla ﬁl+1a”'aﬁm2}' | D

‘Basically, Theorem 4 states that, for any i < k <j, MS; ; is composed of the
first h elements of MS;, and the last (m, — | + 1) elements of MS, ;. Now the
question 1s how to locate o, and f,. MS; ; is the maximal LWS for [j,j], so
intuitively, we should find the largest h and the smallest I, which make the total

weight of the sequence {«ay, ..., o, B, ..., Bm,} be the minimum over all possible
choices of h and . Corollary 5 states formally the conditions for choosing h and /.

COROLLARY 5. Forany i, k,jwith0 <i<k<j<n,let MS; , = {o,a,,..., oc,’,,l}
and MS, i = {B1, B2, ---» Bum,}- Let h, 1 be integers, with1 <h <m;and1 <1< m,,
satisfying the following two conditions:

1.
W({ala Ay oony Ay, ﬁla ﬁl-l— 19 ¢ Bmz})

— min W({ah a29"'3ah’9 ﬁl” ﬁl'-l-la“'.aﬁmz})az
1<h<m,1<l's<sm '

2. Forall W, withh<h <myand 1 <l <L if W £horl #1 then
W({Otl, a5 - - * 9 Ay, Bl’a ﬂl’+19 SRR ﬂmz}) > W({ala Xayovey Ky ﬁla ﬁl+ 19 ¢ * > ﬂmz})*

Then MSi,j — {Otl, 0(2, c o ey Oth’, ﬂl, Bl+ 15 ° > Bmz}'

ProoF. Let S = {0y, 05, ..., % Bis Brs1s - ﬁmz}, where h, | are integers satisfy-
ing the conditions stated above. From Theorem 4, we know that there exist

1 <hy<m;and1 <l, < m,suchthat MS; ;= {oy, 05, ..., %, Bis B+ 1> > Bmy}-
According to the definition of maximal LWS, i1t 1s clear that

W(MSI’J) — mll’l W({O(l, 062, e ooy ah*, ﬁp, Bl"l' 19 * - > Bmz})'

1<h<m,1<l's<m

2 SlnCC MSa“ah, - {Otl, e o sy Oth:} and MSﬂl"ﬂmz — {ﬁp, c oo ﬁ'."Z}’ the Value Of W({Otl, ¢ o o ahf, ﬂlr, ¢« ooy ﬁ"'z})
can be computed by taking the sum of e(a,, o), w(ay:, B-), and e(B;., B,.,)

620 - Tak Wah Lam and Kwong-fai Chan

Referring to the first condition for choosing h and [, we see that w(S) = w(MS;)).
Thus, S 1s an LWS for [i,j], and S must be a subset of MS; ;. In other words,
hy, > h and [, < [. Due to the second condition for choosing h and [, if h, =;é h or
I, # I, we get w(MS, ;) > w(S), which 1s a contradiction. Therefore, h, and

l, =1, or, equ1valently, MS; ;= {0, %, ., 0 B Brots s Boybe 'l

4. A Simple Algorithm. Corollary 5 enables us to compute the maximal LWS
for [0, n] 1n a recursive manner, that 1s, first compute the maximal LWSs for two
shorter intervals [0, n/2] and [n/2, n], then combine their elements selectively.
Algorithm 4, as shown i1n Figure 4, 1s a straightforward implementation of this
idea. It takes O(log* n) time on a CREW PRAM with n?/log n processors. Although
the improvement of the processor complexity 1s not significant, it provides a
framework for building a better algorithm with linear processor complexity.

For simplicity, we assume that n 1s a power of 2. The backbone of Algorithm
A 1s a recursive procedure called maximal_Ilws which on parameters (i, t) computes
the maximal LWS for [i, i + n/2"]. The result is stored in the array next[i..i + n/2']
in such a way that if x belongs to the maximal LWS for [i, i + n/2"], then next[x]

points to the next element after x in the maximal LWS for [i, i + n/2'], otherwise
next|[x] 1s set to oo.

The main body of procedure maximal_lws consists of seven steps. Step 1 divides
the interval [i,i + n/2'] into two equal-size subintervals [i,i + n/2'"!'] and
[i + n/2'"1 i 4+ n/2"], and computes the maximal LWS for each subinterval recurs-

To find the maximal LWS for [0, n], we call the procedure maximal_Iws(0, 0).
Constant ¢, = | log(n/log n) |. '

Procedure maximal_Ilws(i, t)

Ift =t, then
Find the maximal LWS for [i, i + n/2'] sequentlally and then update next[i],
nextl[i + 1],..., next[i + n/2' — 1].

else (*t <t *)

. ke—i+n/2'" je—i+n/2,
call maximal_lws(i, t + 1), maximal_Ilws(k, t + 1) 1n parallel.

2. Foralli <o <k, if next[a'] # oo, then compute e(i, «’) which 1s the sum
of all w(x, next[x]), where i < x < a’ and next[x] < o'.

3. Forallk < ' <j, if next| '] # oo, then compute e(k,) Wthh 1s the sum
of all w(x, next[x]), where k < x < f’ and next[x] < f"

4. For all k < ' <j, if next['] # oo, then e(f', j) « e(k, j) — elk, f').

5. Foralli <o <k, if next[a'] # oo, compute mate(a’), that 1s the smallest
B’ in the range [k, j], which minimizes the value e(i, &) + w(a', f') + e(f', j).

6. Compute o, that 1s the largest o’ withi < &’ < k and next[a'] # oo, which
minimizes the value e(i, o) + w(a', mate(a)) + e(mate(a’), j).

1. B, next|a,] < mate(a,);
for all o, < x < B, next[x] « oo.

Fig. 4. Algorithm #—a CREW parallel algorithm solvmg the convex LWS problem 1n
O(log? n) time with n*/log n processors.

Finding Least-Weight Subsequences with Fewer Processors 621

ively 1n parallel. Then steps 2-6 compute the maximal LWS for [i,i + n/2']
according to the conditions stated 1n Corollary 5. Step 7 updates the array next.
We now analyze the processor and time bounds of Algorithm #. The depth of
recursion is clearly less than log n. At the first level of recursion, there is only one
instance of maximal_Ilws to be executed; in general, at the (¢t + 1)th level, there are
2" instances of maximal_Ilws to be executed 1n parallel, each of which works on an
interval of size n/2'. | ,

As shown in Figure 4, t, denotes the integer | log(n/log n) |. We now consider
the situation at the (¢t + 1)th level of recursion for any t < t,,. Each of the 2' parallel
instances of maximal_Ilws 1s going to execute steps 1-7 in Figure 4. Let m = n/2’,
1.€., the size of the interval worked by each instance. Both steps 2 and 3 are some
sort of parallel prefix computation [13] and can be implemented 1n O(log m) time
with m/log m processors [1], [11]. Other steps are simpler. Steps 4, 6, and 7 can
be done in O(log m) time with m/log m processors; step 5 requires m*/log m
processors though the time 1s still O(log m). Using Brent’s scheduling principle [5],
we can reduce the number of processors for all the steps except step 5 to m/log n
by assigning one processor to simulate O(log n/log m) processors. Similarly, the
processof requirement of step 5 can be reduced to at most m*/log n. The time
required for each step, however, becomes O(log n). Sum over all 2' instances of
maximal_lws, the total number of processors used is bounded above by 2'm*/log n,
which is actually (n?/2")/log n. In summary, Algorithm £ at any level of recursion,

except the last one, requires O(log n) time and at most n“/log n processors.
When the recursion reaches the last level, there are 2 instances of maximal Iws

to be executed 1n parallel, each for an interval of size n/2. For each instance of
maximal_lws, we simply assign one processor to find the corresponding maximal
LWS sequentially in a brute-force way [10], [16]. This takes O((n/2")*) time. As
to = | log(n/log n) |, so n/2" < 2 logn and 2" < n/(log n). Thus, the time needed is
O(log* n), and the processor requirement over all 2 instances is at most n/log n.

On the whole, Algorithm Z requires O(log* n) time and n*/log n processors.
Moreover, if we exclude step 5, n/log n processors are indeed sufficient for the rest
of the algorithm. _

To prove the correctness of Algorithm %4, we show by backward induction
on t that the procedure maximal_Ilws(i, i + n/2") stores the maximal LWS for
[i,i 4+ n/2'] in the array next correctly. The basis where t = ¢, 1s trivial.

Next, we turn to the induction step. By the induction hypothesis, the maximal
LWSs for [i,i + n/2'" '] and [i + n/2' "', i 4+ n/2'] are stored correctly in the array
next after step 1. Thus, the values of all e(x, y)’s computed from step 2 to step 4
match with their definitions exactly.

In steps 5 and 6, o, and B, (1.e., mate(e,)) are chosen to minimize the sum
e(i, ') + wla', f') + e(f’, i + 2') over all o’ and " which are elements in MS; ;,, 2+
and MS; 241 4020, TeSpectively, so they satisty the first condition in Corollary
5. Moreover, by the minimization of mate(o,) in step 5 together with the maximiza-
tion of o, 1n step 6, the second condition of Corollary 5 1s also satisfied. Thus, by
Corollary 5, we conclude that a, and f, are adjacent elements of the maximal
LWS for [i,i + n/2"]. The subarray next[i..i + n/2'], after being updated at step

7, exactly stores the maximal LWS for [i,i + n/2"]. This completes the induction
prootf.

622 ' Tak Wah Lam and Kwong-fai Chan

5. Reduction to Matrix-Searching. In this section we show how to reduce the
number of processors used 1n Algorithm # to linear. As mentioned 1n last section,
for any instance of procedure maximal_lws working on an interval of size m, all
the steps except step 5 can be done 1n O(log m) time with m/log m processors. To
improve the straightforward implementation of step 5, which requires O(m?*/log m)
processors, we give a reduction of step 5 to a searching problem on a totally
monotone matrix [2], [3] of size at most m x m. Aggarwal and Park [3] have
already shown how to solve such a matrix-searching problem on a CREW PRAM
in O(log m log log m) time with m/log log m processors. Our reduction thus implies
that step 5 can also be done 1n O(log m log log m) time with m/log log m processors.
Using the same analysis in Section 4, we can easily show that the processor
requirement of Algorithm # can be improved to n/log log n while the overall time
used becomes O(log* n log log n). |

There 1s an alternate CREW algorithm for the matrix-searching problem, which
takes O(log m) time but m log m processors [4]. Thus, Algorithm % can also be
implemented in O(log? n) time with n log n processors.

Before we give the reduction, let us review the matrix-searching problem. Let
T be an r x s matrix with real entries. Let o(i) be the smallest column index j such
that T(i,j) equals the minimum?® value in the ith row of T. The matrix T is
monotone if, for 1 <i;, <i, <r, d(i;) < o(i,). T 1s totally monotone if every 2 x 2
submatrix of T 1s monotone. The totally monotone matrix-searching problem is
that given an r x s totally monotone matrix, it has to compute all o(i)’s.

The subproblem in step 5 of Algorithm % is to compute mate(a’) for
each o' with next[a’'] # oco. Recall that mate(a’) 1s the smallest [, with
next] f’] # oo, which minimizes the sum e(i, ') + w(a',) + e(f’, j). Consider the
subarrays next[i..k — 1] and nextlk.j]. Let i=o;, <o, <" <a <k and
k=p, <p, << f, =j be the indices of those entries with value # oo in the
two subarrays. Define a matrix T of size r x s as follows: for all 1 < x <r and
1 <y<s, T(x,y)=-eloty, o1 1-5) + W, - B,) + eB,, B). Note that, for any
i <o < kwithnext[a'] # oo, a’1sequaltoa,,,_,forsomel < x < r, and mate(a')
1s exactly f5.). Thus, computing mate(a’)’s 1s equivalent to finding all o(i)’s of T

Next we prove that T i1s totally monotone:

LEMMA 6. For any i, k, j with 0 <i < k <j < n, let the maximal LWS for [i, k]
be {o,ay,...,0,,k} where i=a; <a, < - <a, <k, and let the maximal LWS

for [k,j] be {B+, B, ..., Bs} where k = B, < B, < -+ < B;, =j. Define a matrix T of
size r X s as follows: for any 1 < x <rand 1 <y <s,

T(xa y) — e(cxl, ar+1—-x) T w(ar+1-—-x9 ﬁy) + e(ﬁy’ ﬁs)

Then T is totally monotone.

3 In the literature the matrix-searching problem is concerned with finding the maximum entry on each
row of the matrix; yet existing algorithms can also be adpated to find the minimum instead of the
maximum.

Finding Least-Weight Subsequences with Fewer Processors 623

ProoF. Consider any 2 x 2 submatrix of T, say, on rows i,, i, and columns j,,
j,. Assume i, <i, and j, <j,. We will prove that if T(i,,j,) < T(i,,j,), then
TG,,ji,) < T(i,,j,), or, equivalently, the submatrix is monotone.

Obviously, o, -;, < o,41-;, < P; < P;,, so we can make use of the convex
property of w(i, j)'s to obtain the following inequality:

Wt 41— Bj) + W0t 1 =i Bi) S W04 q—i5 Bi) + W0t 41 -3 B):
If TG,,j, < T(i,,j,), then, by the definition of T, we have

e(ab Ky +1 -—il) + w(ar+1 — 11 ﬁjz) T e(ﬁjzs ﬁs)
< e(ay, 0‘;-+1—-i,) + w(ar-l-l—-ip Bj,) T e(ﬁj.s Bs).

Combining the two inequalities and adding e(x, , + ; —;,) to both sides, we obtain

e(oy, 0‘r+1—i2) T W((xr+1—-i25 ﬁjz) T e(ﬁjza Bs)
< e(al’ ar+1—-i2) + W(ar+1“i2’ ﬁj|) + e(ﬁj]’ ﬁS)'

According to the definition of T,

T(i,, ;) = ey, o, 4 4 —-iz) T W(ar-l—l—-iz? ﬁjz) + e(ﬁjza)
and

T(iy,j,) = eloty, 0t q—y) + W0t 41—, Bi) + B, Bs)

Hence, T(i5,j,) < T(i3,Jjy)-]

- We are now ready to lay down the details for implementing step 5. Recall that
the underlying interval is of size m. By applying Anderson and Miller’s optimal
list-ranking algorithm [1] to the subarray next[i..k — 1], we can find out the
number of entries with value # oo (i.e., r), and then build an array &[1. .r] storing
the indices of these noninfinity entires (1.€., «,, ®,, ..., &). Similarly, we compute
the value of s and build an array fA[1..s] storing f,, B,, ..., B,. All the computation
mentioned so far can be done in O(log m) time by m/log m processors. Now any
element of T can be computed easily from the arrays & and f.

As the size of T can be as large as O(m?), we do not construct the whole matrix.
Instead, we start the matrix-searching algorithm as soon as the arrays & and f
are available. When the searching algorithm needs to access an entry in T, we
evaluate 1t according to the definition 1n Lemma 6. Note that 1t takes constant
time for a processor to evaluate any entry of T. Thus, the time and processor
required for step 5 are dominated by that of the matrix-searching algorithm.

6. Remarks. In the literature, sequential algorithms for the LWS problem usually
find out not only an LWS for the whole interval [0, n], but also an LWS for each
subinterval [0, i], where 0 < i < n. It 1s natural to ask whether the algorithm in

624 ‘ ~ Tak Wah Lam and Kwong-fai Chan

this paper can be extended to find the LWSs for all these subintervals without
increasing the time or processor complexity by more than a constant factor. It
turns out that this 1s possible but quite complicated. We need to use a rooted tree
instead of a linked list to represent the maximal LWSs within an interval, and need

a new version of Theorem 4 to enable us to relate the rooted tree of an interval
to that of 1ts subintervals.

As we have mentioned in the introduction, the best-known sequential algorithms
for the convex and the concave LWS problem use different approaches. It i1s not
surprising that the algorithm 1n this paper does not work when the weight function
1s concave. A new technique may be required to handle the concave case.

Appendix 1

LEMMA 1. Foranyi,jwithO <i<j<n,letS; and S, be any two LWSs for |1, j],
then the union of S, and S, (denoted by S, U S,) is also an LWS for [i,]].

To prove Lemma 1, we need the following weaker proposition.

PrROPOSITION 7. For any i, jwith 0 <i<j<mn,let S and S, be any two LWSs

for [i, j] with no common element except the two endpoints, i.e., S; NS, = {i, j}, then
S, uS, isalsoan LWS for [i,j].

PrROOF. We prove the proposition by induction on the size of S, which 1s denoted

by |S,| in the following.
For the basis where |S,| = 2, S; must be equal to {i,j}, so §; U S, is equal to

S, which is an LWS for [i,j].
Next, we turn to the induction step. Suppose the proposition holds for

1S,|=2,...,k— 1 for some arbitrary k > 2. Consider |S,| = k. Let

={ay,..., and S, ={f ..., B}

For the trivial case where [=2, S, = {i,j} and S, U S, = §;. Thus, §; U S, is an

LWS for [i,j]. For [> 2, we consider the case where «, < [, and the case where
o, > [, separately.

Case 1: o, < f,. Let a, = max{aeS,|a < f,}, then a; =, <a, < f, <a,,,
By the convex property of the w(i, j)’s, we obtain

w(ﬁh ﬁZ) T W(OC,., %y + 1) —>—:- W(OC,., ﬁZ) + W(O(D Xy + 1)'

Adding e(f,, B;) + e(ay, o) + e(o, 4 4, &) to both sides of the inequality, we get

[w(p,, ﬁz) + e(f,, B))] + Le(oy, o) + wlet,, o, 4 1) + el 14,)]
> [wloy, o4 1) + el 41,)] + [eloy, o) + wie,, B3) + e(fy, b))l

By the definition of §; and §,, the left-hand side of the above inequality 1s equal
to w(S,) + w(S,) =2 X e(i,j). Furthermore, according to the definition of the

Finding Least-Weight Subsequences with Fewer Processors 625

e(i,j),S, W(ala Xy + 1) T e(ar+ 1> OCk):v as Well as e(ala ar) T W((X,., ﬁz) T e(ﬁZ: ﬁl)a iS greater
than or equal to e(i, j)). We hence conclude that

e(i, j) = wloty, o6, 4 1) + (o, 4 1, o) = eloy, o) + wa,, p,) + e(p,, b)),

or, equivalently, {ay, 0, 41, € 42,...,0; and {oy, 0,,..., 0, B2, B3,..., B} are
LWSs for [i, j]. Since r > 2, the size of the subsequence {o;, o, 4 1, % 42, -5 %} 1S

at most k — 1. Therefore, by the induction hypothesis, the subsequence

{0y, 0 gy Bpigs vy O U {0y, gy 04y oy By Bifs

which 1s equal to S, U S,, 1s an LWS for [i,j].
Case 2: a3 > f,. Let f,=max{feS,|B < a,}, then a;, =, < B, <oy < B4
By the convex property of the w(i, j)'s, we obtain |

(1) w(ay, o0y) + W(Bs, Bt 1) = WPy, a3) + WSy, Psy 1)

Case 2.1: .., =j. Addinge(p,, p,) + e(x,, o) to both sides of inequality (1), we
get -

[W(O(l, 062) + e(aZa OCk)] T [e(ﬁla ﬁs) + W(ﬁsa ﬁs+ 1)]
= [W(ﬂls ﬁs+ 1)] T [e(ﬁla ﬁs) T W(ﬁsa OCZ) T e(aza OCk):l"

Again, by the definition of S, and §,, the left-hand side of the above inequality
1s equal to w(S,) + w(S,) = 2 X e(i, j). By the definition of the e(i, j)’s, w(B,, B,).
as well as e(f,, B,) + w(f,, ocz) + e(a,, o), 18 greater than or equal to e(i, j). We
therefore conclude that

e(i, j) = e(py, ps) + w(Ps, az) + elay, o),

and {B,, >, ..., Bs, a5, a5, ..., a,}, whichisequal to S, U S,, isan LWS for [, j].

Case 2.2: BS+1 #J. Let OC,. — IIlaX{O(ESIIOC << ﬁS“I" 1}, then ﬁl — OCI < OC,. << ﬁs+1 <
o, . . By the convex property of the w(i, j)’s, we obtain

(2) w(fy, Bs+ 1). + w(ot,, oy 1) = W, Pgyq) + Wlag, o4).

After combining inequality (1) and inequality (2) together, and adding

e(ﬁla po) + e(Psi1s P1) + elaz, o) + e(a, 4 1, o)

to both sides of the resultant inequality, we have

[e(ﬁlﬂ ﬁs) + W(ﬁsa Bsh+ 1) T e(ﬁs+19 ﬁl)]
+ [wloy, ay) + eay, o) + wle,, o, 4 1) + e, 4, o)l
> [w(oy, O‘r+'1) + e(0t, 4 1, o)]

T [e(ﬁla ﬁs) + w(ﬁs’ sz) T e(a29 er) T W(ara ﬁs+ 1) T e([))s+ 1> ﬁl)]

626 | Tak Wah Lam and Kwong-fai Chan

Using the same argument as before, we see that the left-hand side of the above
inequality 1s equal to w(S,) + w(S,) = 2 X e(i, j), and w(a,, o, ,) + e(e, ; {,), as

Well as e(ﬁla ﬁs) T W(ﬁsa aZ) T e(a29 (xr) + w((xra ﬁs-l— 1) + e(ﬁs+ 1 Bl)a iS at least e(laj)
Thus, 5

e(i,j) = wlag, o, 4 q) + e, 4 1, %) _
= e(py, Ps) + WP, ay) + ela,, a,) + w(e,, By i) + e(Bs+ 1, Br)

In other words, both sequences

{a19ar+19 ar+29”'9ak} and {ﬂl? BZ?""?ﬁS? X2, X3y .00y Ky, s+19"'9ﬂl}

are LWSs for [, j]. Since r > 2, the size of the subsequence {a,, &, , 1, %, 45, ..., 0}
is at most k — 1. Therefore, by the induction hypothesis, |

{001y Oy t1s Xy eens O U {Brseees Bss Xaseves Oy Bsits---s Bi}s

which 1s equal to S, U §S,, 1s an LWS for [j, j].
This completes our induction step on all possible cases, and hence finishes the
proof for Proposition 7. ‘]

ProoF OF LEMMA 1. Let S, = {a, ®5,...,a,} and S, = {f, B,, ..., B,}. Suppose
S, and S, have t > 2 common elements denoted by {y,,7y,,...,7}. For all
l<k<tlety,=0a, =p,,where l <g,<rand 1 <bh, <s.

Note that e(i,j) = e(y, y,) + e(y,,y3) + - + e(y,— ¢, 7,), or, equivalently, an
LWS for [i,j] can be formed by taking the union of the LWSs for [y, 7,1,
[v2,73)s-.., and [y,-, 7). Consider any 1 <k <t, both subsequences {«,,

O, +15 -5 0§ and {By, By, +1>---» Py, ,} are LWSs for [y;, y.+1] and have no
common ¢lements except the endpoints y, and vy, ., ,. By Proposition 7,

{a'ak’ g+ 15+ aak+l} J {Bbk’ ﬁbk"" I> > ﬁka}
is an LWS for [y, Y.+,]. Thus, S; uUS,, which is exactly the union over all

1 <k <t of the subsequence {o,,, %, +1,--.5 %, .} Y {Boi> Boit1s---5 Py, }> 1S an
LWS for [i,j]. . []

Appendix 2

LEMMA 3. Given any 0 <'i <j < n, let x be an element of the maximal LWS for
[i,j]. Then, for all k, l withi <k <l <jand k < x <, x is also an element of the
maximal LWS for [k, [].

To prove Lemma 3, we first prove the following weaker proposition.

PROPOSITION 8. Givenany 0 <i <j < n, let x be an element of the maximal LW S
for [i,j]. Then, for all k, l withi <k < x <1<, elk, x) + e(x,) < w(k,).

Finding Least-Weight Subsequences with Fewer Processors . 627

vV V V V V V.V \ \/
k [

Fig. 5. The relative positions of the variables p, g, r, and s. V 1s the element of the maximal LWS
for [i,j].

ProOF. Recall that MS; ; denotes the maximal LWS for [i, j]. Let
p = max{a e MS; ;|a < k}, ¢ = min{a € MS, ;loa>k}, r — max{ o e MS; jla < 1},

and

s = min{a € MS; ;|a > I}.

Figure 5 shows the relative positions of the variables p, g, r, and s. By the convex
property of the w(i, j)’s, we have the following inequalities:

1. wk, q) + w(p, [) < w(p, q) + w(k,],
2. w(r,) + w(k, s) < wlk, l) + w(r, s),
3. w(k, l) + w(p, s) < w(p, I) + w(k, s).

Furthermore, by the definition of M S;

4. w(p, q) + e(qg, x) + e(x, r) + w(r, s) ‘s w(p, S).

Combining inequalities 1-4, it 1s easy to see that w(k, q) + e(q, x) + e(x, r) +
w(r, I) < w(k, l). Since e(k, x) < w(k, q) + e(q, x) and e(x, [) < e(x, r) + w(r, I), we can
finally conclude that e(k, x) + e(x,) < w(k,). _]

PrROOF OF LEMMA 3. Suppose the contrary that, for some i < k < | < j, there 1s
an x In MS; ; with kK < x <[, but not in MS, ;. Obviously, x must be strictly
between k and l. Assume MS, , = {f,,..., B.}- Let B, be the largest element in
MS, , smaller than x. Since f,, = I, r must be smaller than m, and hence f, ., is
strictly greater than x. By Proposition 8, e(B,, x) + e(x, B,+1) < w(B,, B,+1)

On the other hand, {f,, ..., B,,} 1s the maximal LWS for [k, [], so the 2-element
sequence {f,, B,,,} is the maximal LWS and hence the only LWS for [f,, B,]

This would mean that w(pg,, B,,,) <e(p,,y)+ ey, B,,,) for all . <y <pB ..
Thus, contradiction occurs and we prove Lemma 3.]

References

[1] R.J. Anderson and G. L. Miller, Deterministic Parallel List Ranking, Proceedings of AWOC
88, Lecture Notes in Computer Science, Vol. 319, Springer-Verlag, Berlin, 1988, pp. 81-90.

[2] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric Applications of a
Matrix-Searching Algorithm, Algorithmica, 2(2) (1987), 195-208.

3] A. Aggarwal and J. Park, Notes on Searching in Multidimensional Arrays, Proceedings of the
29th Annual IEEE Symposium on Foundations of Computer Science, 1988, pp. 497-512.

628

[4]

(5]
[6]
7]
[8]
9]
L10]
[11]

[12]

[13]
[14]
[15]
[16]
[17]

Tak Wah Lam and Kwong-fa1 Chan

M. J. Atallah, S. R. Kosaraju, L. L. Larmore, G. L. Miller, and and S.-H. Teng, Constructing
Tress 1n Parallel, Proceedings of the 1989 ACM Symposium on Parallel Algorithms and
Architectures, 1989, pp. 421-431.

R. P. Brent, The Parallel Evaluaticn of General Arithmetic Expressions, Journal of the
Association for Computing Machinery, 21 (1974), 201-208.

D. Eppstein, Sequence Comparison with Mlxed Convex and Concave Costs, Journal of
Algorithms, 11(1) (1990), 85-101.

D. Eppstein, Z. Galil, R. Giancarlo, and G. Italiano, Sparse Dynamic Programming, Proceedings
of the First ACM-SIAM Symposium on Discrete Algorithms, 1990, pp. 513-522.

S. Fortune and J. Wyllie, Parallelism in Random Access Machines, Proceedings of the Tenth
Annual ACM Symposium on Theory of Computing, 1978, pp. 114-118.

Z. Galil and R. Giancarlo, Speeding up Dynamic Programming with Applications to Molecular
Biology, Theoretical Computer Science, 64 (1989), 107-118.

D. S. leschberg and L. L. Larmore, The Least Weight Subsequence Problem SIAM Journal
on Computing, 16 (1987), 628-638.

R. Karp and V. Ramachandran, A Survey of Parallel Algorithms for Shared Memory Machines,
in Handbook of Theoretical Computer Science, Vol. A (J. van Leeuwen, ed.), North-Holland,
Amsterdam, 1990, pp. 869-941.

M. M. Klawe and D. J. Kleitman, An Almost Linear Algorithm for Generalized Matrix
Searching, SIAM Journal of Discrete Mathematics, 3(1), (1990), 81-97.

R. E. Ladner and M. J. Fischer, Parallel Prefix Computation, Journal of the Association for
Computing Machinery, 27(4) (1980), 831-838.

G. L. Miller and J. H. Reif, Parallel Tree Contraction and Its Applications, Proceedings of the
26th Annual IEEE Symposium on Foundations of Computer Science, 1985, pp. 496-503.

W. Rytter, Notes on Efficient Parallel Computations for Some Dynamic Programming,
Theoretical Computer Science, 39 (1988), 297-307.

R. Wilber, The Concave Least Weight Subsequence Problem Revisited, Journal of Algorithms,
9(3) (1988), 418—425.

F. F. Yao, Efficient Dynamic Programming Using Quadrangle Inequalities, Proceedings of the
12th ACM Symposium on Theory of Computing, 1980, pp. 429-435.

	01.tif
	02.tif
	03.tif
	04.tif
	05.tif
	06.tif
	07.tif
	08.tif
	09.tif
	10.tif
	11.tif
	12.tif
	13.tif
	14.tif

