
ELSEVIER Theoretical Computer Science 180 (1997) 309-324

Theoretical
Computer Science

Correctness of constructing optimal
alphabetic trees revisited

Marek Karpinski a,*, Lawrence L. Larmore by’, Wojciech Rytter c,2

aDepartment of Computer Science, University of Bonn, 53117 Bonn, Germany
‘Department of Computer Science, University of Nevada, Las Vegas, NV 89154-4019, USA

‘Institute of Informatics, Warsaw University, 02-097 Warszawa, Poland

Received June 95; revised August 96
Communicated by D. Perrin

Abstract

Several new observations which lead to new correctness proofs of two known algorithms
(Hu-Tucker and Garsia-Wachs) for construction of optimal alphabetic trees are presented. A
generalized version of the Garsia-Wachs algorithm is given. Proof of this generalized version
works in a structured and illustrative way and clarifies the usually poorly understood behavior
of both the Hu-Tucker and Garsia-Wachs algorithms. The generalized version permits any non-
negative weights, as opposed to strictly positive weights required in the original Garsia-Wachs
algorithm. New local structural properties of optimal alphabetic trees are given. The concept of
well-shaped segment (a part of an optimal tree) is introduced. It is shown that some parts of
the optimal tree are known in advance to be well-shaped, and this implies correctness of the
algorithms rather easily. The crucial part of the correctness proof of the Garsia-Wachs algorithm,
namely the structural theorem, is identified. The correctness proof of the Hu-Tucker algorithm
consists of showing a very simple mutual simulation between this algorithm and the Garsia-
Wachs algorithm. For this proof, it is essential to use the generalized version of Garsia-Wachs
algorithm, in which an arbitrary locally minimal pair is processed, not necessarily the rightmost
minimal pair. Such a generalized version is also needed for parallel implementations. Another
result presented in this paper is the clarification of the problem of resolving ties (equalities
between weights of items) in the Hu-Tucker algorithm. This is related to the proof, by simulation,
of correctness of the Hu-Tucker algorithm. It is shown that the condition that there are no ties
may generally be assumed without harm and that, essentially, the Hu-Tucker algorithm avoids
ties automatically.

* Corresponding author. E-mail: marek@cs.uni-bonxde. This research was partially supported by DFG Grant
KA 67314-1, and by ESPRIT BR Grant 7097 and EC-US 030.
’ Partially supported by National Science Foundation grants CCR-9112067 and CCR-9503441.
2 Supported by the grant KBN 8TllC01208.

0304-3975197/%17.00 @ 1997-Elsevier Science B.V. All rights reserved
PII SO304-3975(96)00296-4

310 M. Karpinski et al. I Theoretical Computer Science 180 (1997) 309-324

1. Introduction

Recently, there has been a renewed interest in the problem of construction of optimal

alphabetic trees [6, l&12]. The Hu-Tucker (HT) algorithm [3] is a celebrated classical

algorithm for this problem, whose correctness is not widely understood. The Garsia-

Wachs (GW) algorithm [I], has a simpler but still very technical proof based on several

formal claims proved simultaneously by induction. Our proof of correctness of the HT

algorithm works by reducing to correctness of a general version of the GW algorithm

in which any locally minimal pair is processed, not necessarily the rightmost one. This

general version is also needed in our parallel implementations (see [111). A restricted

version of the GW algorithm (for rightmost minimal pairs) was considered in [Yj.

The aim of this paper is to provide proofs of correctness of both the HT and the GW

algorithms that are more structural than those in the original papers. The simplicity of

the description of both algorithms is misleading. The original correctness proofs are

very intricate. According to Knuth, “No simple proof is known, and it is quite possible

that no simple proof will ever be found!” [8, p. 4431. We provide several new facts

about the local structure of optimal alphabetic trees, introducing new local operations

on trees, and specify a mutual simulation between both algorithms.

Statement of the optimal alphabetic tree problem. Assume we have n weighted items,

where pi is the non-negative weight of the ith item. Write GI = p, . . . p..

The Garsia-Wachs algorithm permutes 01. We adopt the convention that the items

of cc have unique names, and that these names are preserved when items are moved.

When convenient to do so, we will assume that those names are the positions of items

in the list, namely integers in [l . . . n].

An alphabetic tree over a is an ordered binary tree T with n leaves, where the ith

leaf (in left-to-right order) corresponds to the ith item of a. Throughout this paper,

a binary tree must be full, i.e., each internal node must have exactly two sons. We

define the cost of any alphabetic tree T as follows:

cost(T) = 2 pileueZr(i),
i=l

where levelr is the level function of T, i.e., leueZr(i) is the level (or depth) of i in T,
defined to be the length of the path in T from the root to i. The optimal alphabetic

tree problem (OAT problem) is to find an alphabetic tree of minimum cost. Both the

GW and HT algorithms have two phases. The first phase constructs the level function

levelr of an optimal alphabetic tree T. The second phase constructs T from its level

function. a relatively trivial procedure that takes linear time. In fact, throughout the

rest of the paper, we ignore this second phase, and take the array of values of the

level function to be the output of any algorithm for the OAT problem.

Construction of the optimal alphabetic tree. The alphabetic tree is constructed by

reducing the initial sequence of items to a shorter sequence in a manner similar to that

M. Karpinski et al. I Theoretical Computer Science 180 (1997) 309-324 311

of the Huffman algorithm, with one important difference. In the Huffman algorithm, the

minimum pair of items are combined, because it can be shown that they are siblings in

the optimal tree. If we could identify two adjacent items that are siblings in the optimal

alphabetic tree, we could combine them and then proceed recursively. Unfortunately,

there is no known way to identify such a pair. Even a minimal pair may not be siblings.

Consider the weight sequence (8 7 7 8). The second and the third items are not siblings

in any optimal alphabetic tree.

Instead, the HT and GW algorithms, as well as the algorithms of [6, 10-121, operate

by identifying a pair of items that have the same level in the optimal tree. These items

are then combined into a single “package”, reducing the number of items by one. The

details on how this process proceeds differ in different algorithms.

2. Correctness of the Garsia-Wachs algorithm

Define Two&m(i) = pi + pi+l, the ith two-sum, for 1 <i < n. A pair of adjacent

items (i, i + 1) is a locally minimal pair (or Imp for short) if

TwoSum(i - 1) 3 TwoSum if i > 1,

TwoSum < TwoSum(i + 1) if i<n - 2.

A locally minimal pair which is currently being processed is called the active pair.

The operator Move. If w is any item in a list rt of weighted items, define Right-

Pas(w) to be the predecessor of the nearest right larger neighbor of w. In this context,

“larger” means “greater than or equal to”. If w has no right larger neighbor, define

RightPos(w) to be the last item of 7-r. Let Move(w,z) be the operator that changes

7~ by moving w just to the right of RightPos(w). Note that if RightPos(w) = w, then

Move(w, rr) does nothing.

Similarly, if u, v are adjacent items in rr, define RightPos(u, v) to be the predecessor

of the nearest item to the right of v whose weight is at least weight(u) + weight(u). If

there is no such item, define RightPos(u,v) to be the last item of rc. Let Moue(u,v,n:)

be the operator that changes rc by moving u and v to just to the right of RightPos(u, v).

Forexample,ifrc=(l,..., n), and if RightPos(i,i+l) =j, then Moue(i,i+l,n) changes

71 to

Xi,j=(l,..., i- 1, i+2 ,..., j, i,i+ 1, j-t l,..., n).

Two binary trees T, and T, are said to be level equivalent (we write Tl E Tz) if TI,

and T2 have the same set of leaves (possibly in a different order) and levelr, = levelr,.

Theorem 2.1 (Correctness of the GW algorithm). Let (i, i + 1) be a locally minimal

pair and RightPos(i, i + 1) = j, and let T’ be a tree over the sequence ni,j, optimal

among all trees over ni,j in which i, i + 1 are siblings. Then there is an optimal

alphabetic tree T over the original sequence n = (1,. . . , n) such that T g T’.

312 M. Karpinski et al. I Theoretical Computer Science 180 (1997) 309-324

The significance of Theorem 2.1 is that level r/ may be computed by combining i

and i + 1 into a single node, v, and then applying the procedure recursively on the

resulting list of length (n - 1). Then ZeveZr(i) = Zevelr(i + 1) = leveZrt(v) + 1, while

levelr = levelrf on all other items.

The array level is global of size (2n - 1). Its indices are the names of the nodes,

i.e., the original IZ items and the (n - 1) nodes (“packages”) created during execution

of the algorithm. The algorithm works in quadratic time, if implemented in a naive

way. Using priority queues, it works in O(n logn) time. Correctness follows directly

from Theorem 2.1.

procedure GW(rc); {rt is a sequence of names of items}

{General version of the Garsia-Wachs algorithm}

if 7~ = (v) then

ZeveZ[v] = 0 else begin

(*) find any locally minimal pair (u, w) of rt

create a new item v whose weight is pU + pW;
replace u by the item v and delete w;

(#) Move(v, n);

GW(n);
leueZ[u] := level[w] := leuel[v] + 1;

end;

Denote by OPT(i) the set of all alphabetic trees over the leaf-sequence (1,. . . , n)

which are optimal among trees in which i and i + 1 are at the same level. Assume the

pair (i, i + 1) is locally minimal. Let OPT,,,,d (i) be the set of all alphabetic trees over

the leaf-sequence xi,j which are optimal among all trees in which leaves i and i + 1

are at the same level, where j = RightPos(i, i + 1).

Two sets of trees OPT and OPT’ are said to be ZeveZ-equivalent, written OPT Z

OPT’, if, for each tree TE OPT, there is a tree T’E OPT’ such that T’ 2 T, and vice

versa.

Theorem 2.2. Let (i, i + 1) be a locally minimal pair. Then
(1) OPT(i) E OPT,,,,d(i).

(2) OPT(i) contains an optimal alphabetic tree T.
(3) OPT,,,,d(i) contains a tree T’ with i, i + 1 as siblings.

Theorem 2.2 directly implies Theorem 2.1. Points (2) are (3) are simple. We prove

them in this section for completeness. Point (1) is rather subtle, for if we drop the

requirement that i, i + 1 are at the same level, then this point is false for some weight

sequences, e.g., (7 8 13 14 1).

Our main contribution is the discovery and a structural proof of Point (1).

Description of the shift operations. We introduce two useful local operations, Right-
Shif and LeftShift on trees. Both operations change the shape of an alphabetic tree

locally without changing the order of items (as leaves). We describe in detail only the

M. Karpinski et al. I Theoretical Computer Science 180 (1997) 309-324 313

operation LeftShift, as RightShift is similar. Assume ~1, ~2,. . . , vk are roots of disjoint

subtrees T,, T2,. . , Tk, for k 32, and the segments of leaves covered by these subtrees

are disjoint and cover (left to right) a segment of consecutive leaves. We call such a

sequence of nodes (vt,. . . , uk) a cut.

The operation LeftShzxt(v, , ~2,. . . , vk) works as follows. Two new nodes u and 1:

are created. The subtree rooted at vi becomes rooted at U. The subtree rooted at ~‘2

becomes rooted at v. The new nodes u,v become sons of vi,u becomes left son and

v becomes right son of vi. The subtree rooted at c,, for 2 < i < k, becomes rooted at

vi_,. Then the subtree rooted at rk becomes empty, the subtree rooted at the sibling

of vk becomes rooted at the actual father of uk. The node ak disappears, see Fig. 4.

Proof of point (2) of Theorem 2.2. Assume the levels of i and i + 1 are different in

some optimal tree T, hence they are not siblings in T. If levelr(i) < levelr(i+ 1) then

we can perform LeftShift(i, i + 1), obtaining a new tree T’. The level of i increases

by 1 and the level of i + 1 does not increase. On the other hand the level of i + 2

decreases at least by one. Hence (since pi+2 3 pi and pi+1 20) cost(T’) 6 cost(T),

i and i + 1 are siblings in T’ and their levels are equal, and thus T’ E OPT(i). If

[eve/r(i) > fevelr(i + 1) the proof is similar; use RightShift(i,i + 1).

Proof of point (3) of Theorem 2.2. Consider a tree T E OPT,,,,,d(i). If i, i + I are

not siblings then 1 < i < n - 1. After applying LeftShift(i, i + 1) they become siblings.

Both of them go down but item j + 1 goes one level up. Since pl + pi+, - p,+l < 0

the resulting tree T’ is still optimal.

3. The structural theorem

This section is devoted to the proof of Point (1) of Theorem 2.2

Proof of point (1) of correctness theorem (Informal overview). The crucial point is to

show that the certain parts of trees in OPT(i) and OPT,,,,,d(i) which are active with

respect to the pair (i, i+ 1) are “well-shaped” (in the sense defined below) and that this

guarantees that the pair (i, i + 1) can be moved to the other side of such a part without

affecting the level function. The point (1) of the correctness theorem is broken into

the proof of the movability lemma and that of the structural theorem. The movability

lemma is rather obvious. The structural theorem is proved by considering conditions of

well-shaped segments and several cases. The proofs are by contradictions: if a certain

condition is not satisfied for the optimal tree then using shift operations the tree is

transformed into a tree of a smaller cost. This contradicts the optimality of the original

tree. Point (1) of Theorem 2.2, and correctness of the GW algorithm, follow directly

from Theorem 3.2 and Lemma 3.1.

314 M. Karpinski et al. I Theoretical Computer Science 180 (1997) 309-324

6 7 thewindow ’ (_.______...______..__,

Fig. 1. Example trees T E OPT(i) and T’ E OPT,,,,d (i), where i = 3 and the sequence of weights is (80

12 10 11 13 3 4 5 9 8 7 25). Observe that the windows are well shaped.

Definition of well-shaped segment. Let LCAr(u, w) denote the lowest common ances-

tor of nodes u and w in T.

We say that a set S of leaves of T is h-isolated if

1. For any UES, levelT(u)> h.
2. For any UES and wgfS, Zevelr(LCA(u,w))dh.

We say that a segment [i.. .j] of consecutive items (leaves) is left well-shaped at level

h in T if {i,. .., j} is h-isolated and levelr(i) = ZeveZT(i + 1) = h + 1. We define right

well-shaped similarly (in this case ZeveZr(j - 1) = EeveZr(j) = h + 1).

The leaves in the segment [i.. .j] and all their ancestors at level at least h is called

the active window. Note that the active window is a forest.

The window is said to be well-shaped iff the sequence of its leaves is left or right

well-shaped. The introduction of windows is useful in visualizing local properties and

rearrangements, as these rearrangements occur inside such windows. Trees in OPT(i)

and OPT moved(i) are illustrated in Fig. 1 for i = 3 and for the weight sequence

(80 12 10 11 13 3 4 5 9 8 7 25).

The windows in trees T and T’ are indicated by dotted lines. A window is also

illustrated in Fig. 2.

Lemma 3.1 (Movability lemma). If the segment [i.. . j] is left well-shaped, then the
active pair of items (i, i+ 1) can be moved to the other side of the segment by locally
rearranging subtrees in the active window without changing the relative order of the
other items and without changing the level function of the tree.

Proof. The proof is straightforward. Let h = level(i) - 1. There are four cases, depend-

ing on whether i and i + 1 are siblings, and on whether LCA(j,j + 1) = h. Fig. 2

illustrates the proof in one case. We omit the details. 0

M. Karpinski et al. I Theoretical Computer Science 180 (1997) 309-324 315

&_/!@_&_~___-&
, . I i+l A B C D

i-l , i+2 E j :.
__________________________I J+l

__________j______/.
PAD /r

c D i i+l I
I

i-1 I i+2 E J ’ j+l _____________---__________I

Fig. 2. i,i + 1 can be moved to the other side of a well shaped window.

If 1) is a node in a given alphabetic tree then we write pD for the total weight of

the leaves of the subtree rooted at u.

Theorem 3.2 (Structural theorem). Assume (i, i + 1) is ay1 Imp, j = RightPos(i, i + 1),

TE OPT(i), and T’E OPT,,,,d(i). Then (i) the segment [i + 2,. . . ,j, i, i + l] is right

we&shaped in T’, and (ii) the segment [i.. . j] is left we&shaped in T.

Proof. We shall initially assume that all weights are positive. If j = i + 1, the theorem

is trivial. Thus, without loss of generality, j > i + 1.

Let h = /eve/r(i) - 1 = ZeueZr(i + 1) - 1 and h’ = leuelrf(i) - 1 = leuelrj(i + 1) - 1.

Claim A. For any u~[i+2...j] we have (1) leueZr(u)>,h and (2) leuelrf(u)>h’.

Proof. We show only the proof of point (l), as (2) has a very similar proof. The

proof is by contradiction. Suppose the claim is false. Let k be the leftmost item

such that leuelr(k) < h. Let T” E OPT(i) be the tree obtained from T by applying

RightShift(i, i + 1, VI,. . . , vr, k), where v,, . , v, are at level h and u, is at level h if i

and i + 1 are siblings in T, level h + 1 otherwise. If i and i + 1 are siblings in T, i

and i + 1 go up and only k goes down. Otherwise, i - 1 and i + 2 go up and only k

goes down (see Fig. 3). Since pk < pi + pi+1 < pi-1 + pi+2, T” has lower cost than

T, a contradiction. q

Claim B. Zf j < n, then levelr(LCAT(j, j + 1) <h.

Proof. The proof is by contradiction. Suppose the claim is false. Let w be the ancestor

of j and j + 1 at level h + 1. Let w, and w, be the sons of w.

Case 1: There exists a leaf k at level <h in the segment. Pick the rightmost such k.

Let T”E OPT(i) be the tree obtained from T by applying LefL!?hzft(k, v,, . . , v,, w,, w2),
where u,, . , v,. are nodes at level h+ 1. This case is illustrated in Fig. 4, where w, = 06.

Since j + 1 goes up and only k goes down, and pk < pj+l, T” has smaller weight

than T’, a contradiction.

316 M. Karpinski et al. / Theoretical Computer Science 180 (1997) 309-324

i-l ii2

RightShift(i,i+l,vl,v2,v3,k): i, i+2 go up, k goes down

Fig. 3. Graphical illustration of the proof that the leaves in the active segment are not above level h.

Otherwise we can rearrange the tree and increase the level of the “bad” node ~4. Then the level of the

active pair decreases and the cost is improved.

Fig. 4. Graphical illustration of Case 1 of the proof that LCA(j,j + 1) 2 h. If it is not the case then the tree

can be rearranged and the cost will be improved.

Case 2: There is no leaf at level <h in the segment. Consider the cut (i, i + 1,

v ,,..., v,,w,,w2) where v ,,..., v, are nodes at level h + 1. Let T”E OPT(i) be the tree

obtained from T by applying LeftShift(i, i + 1, u,, . . . , v,, w,, w,). Only i and i + 1 go

down, and j + 1 and all the leaves of w, go up. Since pi + pi+1 < pj+l < pW, + pj+l,

T” has smaller weight than T’, a contradiction. This case is illustrated in Fig. 5, where

w, = u6. This completes the proof of Claim B. 0

Claim C. Ifi> 1, then leueZr/LCAT/(i- l,i+2)Qh’.

Proof. The proof is by contradiction. Suppose the claim is false. This implies that

there is a node w which is the ancestor of i - 1 and i + 2 at level h’ + 1. Let w, and w,

be the sons of w. Let u be the parent of i and i + 1. Let k be the leftmost node in the

cut (i + 3,. . . j,u) which is at level h’. Let T”EOPT,,,,~(~) be the tree obtained from

T’ by applying RightShif(w,, wl, u,, . . . , u,,k), where v,, . . . , u, are nodes at level h’ + 1.

M. Karpinski et al. I Theoretical Computer Science 180 (I 997) 309-324 317

j+l

Fig. 5. Graphical illustration of Case 2 of the proof that KA(j,j + 1)>/I

Since i - 1 and i + 2 go up and only k goes down, and pk d p1 + p,+l < pi-1 + pl+2,

T” has smaller weight than T’, a contradiction. 0

By Claims A, B, and C, the corresponding segments are well shaped in T and T’.

This completes the proof in the case that all weights are positive.

We now consider, for completeness, the case where weights may be zero. If pi =

pi+1 = 0, then j = i + 1, and the result is trivial. If pi + pi+1 > 0, the proof is valid

except for one problem, namely that in the proof of Claim B, we must consider the

possibility that pw, = 0. Then r > 0, since otherwise pi+2 = 0, contradicting the fact

that (i, i + 1) is an Imp. Let k be the rightmost leaf of u,, and let T”E OPT(i) be the

tree obtained from T by applying LeftShif(k,w,,w,). Since only k and leaves of zero

weight go down, while j + 1 goes up, and since pk < p, + pi+] < pi+, , T” has smaller

weight than T’, a contradiction. 0

4. Correctness of the Hu-Tucker algorithm: A simulation

The main idea of the Hu-Tucker algorithm is similar to that of the GW algorithm:

combine two items which are very close and whose total weight is small. These items

form an active pair which is later combined. However, now, a single item u representing

the combined active pair is not moved. Instead, c becomes transparent. The original

items are opaque. The algorithm keeps a working sequence of names of items, together

with their types (opaque or transparent) and weights. A pair of items (u,w) is said to

be compatible if they are visible to each other, i.e., there is no opaque item between

u and w in the current working sequence 7-c. Denote by pas(u) the position of the item

u in the leaf-sequence (from left to right).

Definition of a minimal compatible pair. A pair (u, w) of compatible items is a mini-

mal compatible pair (mcp, for short) if the total weight of (u, w) is minimal. If there

318 M. Karpinski et al. I Theoretical Computer Science 180 (1997) 309-324

are several pairs (u,w) with the same minimal total weight, the pair @os(u),pos(w))

is defined to be the lexically smallest one. The last condition is called the tie-breaking

rule of the Hu-Tucker algorithm.

Description of the HT algorithm. The HT algorithm works in the almost same way

as the GW algorithm. Let rt be the working sequence, which is initially the original

list of items. In the statement (*) in GW, we replace locally minimal pair by minimal

compatible pair and the operation Move in the statement (#) by the statement “make

v transparent”.

Fix an input sequence of items of length n. Henceforth, in this section we assume

that there are no ties. This means that no two items in the working sequence rc ever

have the same weights. The case of ties will be handled in Section 5.

Denote by GW’ the deterministic version of the GW algorithm in which we choose

each time the globally minimal Imp, which we call the gmp. instead of an arbitrary Imp.

Observe that such a pair is not necessarily the rightmost locally minimal pair. This is

one of the reasons why we considered a non-deterministic version of the GW algorithm,

which chooses an arbitrary Imp, in Section 2. In case of ties, there is no reduction of

the HT algorithm to the GW’ algorithm, as the following very simple example shows.

If n = 3 and all items have equal weight, there are two possible alphabetic trees, both

optimal. The GW’ algorithm finds one, while the HT algorithm finds the other. At the

end of the paper we indicate how to deal with a non-deterministic version of the HT

algorithm.

The working sequence of items in the HT algorithm consists of items of two types:

opaque and transparent. Call such sequences special sequences. The working sequence

produced by the GW’ algorithm makes no distinction between opaque and transparent

items. For each special sequence A define the sequence of items MoveTransparent
to be the sequence obtained by moving each transparent item w to the position im-

mediately to the left of the nearest right larger neighbor of w, or to the end of the

list if w has no right larger neighbor. If u is any item to the right of w before this

motion and to the left of w after this motion, we say that w “floats over” u. We move

transparent items one after another, starting with the rightmost transparent item.

Example Assume transparent elements are primed. Then

MoveTransparent(l8’ 20’ 14 12 17’ 26’ 13’ 16 19)

= (14 12 13 16 17 18 19 20 26).

The proof of correctness of the HT algorithm presented in this paper is by a simula-
tion of the HT algorithm by the GW’ algorithm. The working sequences of algorithms

are related through the function MoveTransparent, as stated in the simulation lemma,

below (see Fig. 6). This was also observed in [l]. For completeness we include our

proof of the lemma in the appendix.

M. Karpinski et al. I Theoretical Computer Science 180 (1997) 309-324 319

one step of HT
t

MergeTransparent

t

one step of GW’

@@m@@@ ml - 14 16 17 18 19 20 25 26

Fig. 6. The simulation of the HT algorithm by GW in one iteration. Transparent items are circled.

Lemma 4.1 (Simulation lemma). Let ?,i he the working sequence of items after the
ith iteration of the HT algorithm and let y, be the working sequence of items after

the ith iteration of the GW’ algorithm. For O<i <n - 1, let (u;, wi) be the globally
minimal pair in 7i in the sense of GW’ and let (u:, w!) be the mcp in Al. Then

yl = MoveTransparent(3.i) and (ui, wi) = (u:, w:)

for each 1 <i dn - 1 (see Fig. 6).

Correctness of the HT algorithm (in the case without ties) follows from the simula-

tion lemma since we already know that GW’ is correct (as a version of GW). In the

next section we show that the assumption that there are no ties can be dropped.

5. Resolving ties

The problem of ties is rather subtle. A tie appears if two items (original or created

by combining) have the same weight. Correctness of a tie-breaking rule means that the

computed level function is the level function of some optimal alphabetic tree over the

original sequence of items. There can be several globally minimal compatible pairs at

the same time in the HT algorithm. Recall that in such a situation the original version

of the HT algorithm applies the following tie-breaking rule (TBR):

(TBR) choose the mcp with lexically minimal pair of indices.

The fact that some tie-breaking rule is necessary is illustrated by the following exam-

ple. Consider five items with the same weight. The possible history of the computation

is

123454 12(34)5--t 1(25)(34)+(125)(34)+(12345).

The parenthesized sets are packages. The combine operations given above yield the

following levels for the items 1,2,3,4 and 5, respectively, 2,3,2,2,3. But, there is

no full binary tree over leaf-sequence (1,2,3,4,5) with such a level function, so the

algorithm is incorrect. We now prove that the rule TBR is correct. The proof also

shows that we can always assume that there are no ties by changing the arithmetic.

This does not affect the asymptotic complexity.

320 M. Karpinski et al. I Theoretical Computer Science 180 (1997) 309-324

Theorem 5.1. The tie-breaking rule TBR in the HT algorithm is correct.

Proof. In the HT algorithm the weights are non-negative reals and the minimality of

trees is with respect to the arithmetic of the reals. We show that the algorithm computes

a minimal tree with respect to a more complicated arithmetic in R2 without “knowing”

it. Let R2 be the additive ordered group of pairs of real numbers where the addition

is componentwise: (a, b) + (c, d) = (a + c, b + d), and the order is the lexical ordering

of pairs of real numbers:

(a,b)<(c,d) E ((a<c) or (a=c and b<d)).

Case 1: All weights are strictly positive. Let CL = (PI,. . . , pn) be the sequence of

weights (non-negative reals). Denote

de-tie(a) = (pi,. . , p;) = (~1, -2=+‘), (~2, -22n-2), . . . ,(p,, -2=+‘))

Observe that no integer can be expressed as two different sums of distinct powers of 2.

This proves the following.

Claim A. No ties are possible in the HT algorithm working in the arithmetic of R2
for the sequence of weights de-tie(a).

We know that HT is correct if there are no ties so it is correct when it works

for de-tie(u) in the arithmetic of R ‘. The tree computed for de-tie(a) is also an

optimal alphabetic tree for CI. In the arithmetic of R2 the zero element is (0,O).

Since pi >O, all elements of de-tie(a) are positive. Fix the sequence M. Denote by

rti and rci the working sequences of items after the ith iteration of HT applied, re-

spectively, to ~1 and de-tie(a). Denote also by (ui,wi) and (ui,w:) the corresponding

minimal compatible pairs. The claim below states that the history of the computa-

tion of the HT algorithm is the same in the usual arithmetic as in the arithmetic

of R=.

Claim B. For each 0 <i <n, Zi = 7~: and (u,, wi) = (uj, w:).

We sketch the proof of Claim B. Refer to the second component of pi as the

tag weight, or simply the tag. Then the weight refers to pi. Claim B follows from

correctness of the following loop invariant, which holds for the list rc before and after

every iteration:

Loop invariant: If the weight of u is positive, then the tag of u is negative and is

less than the sum of the tags of any subset of items to the right of u in rc.

The relative order of two sums of tags over disjoint subsets of elements depends

only on the first elements of these subsets. This follows from the following simple

observation on base 2 representations of integers.

M. Karpinski et al. I Theoreticul Computer Science 180 (1997) 309-324 321

Remark 5.2. Assume that 0 <ai, bj d 1 for i E [1,. . . , n] and that the sets A = {i: a, # 0)

and B = {i: bi # 0) are disjoint, then

2 ai(-22”P’) < 2 b,(-22”Pi) H min(A) <min(B).
i=l

Hence, the rule TBR breaks ties in the same way in the usual arithmetic as it is done

automatically (without this rule) in the arithmetic of R2. The same pairs are combined

and ni+i =z.+,. This completes the proof of the claim.

Case 2: Some of the original weights are zero. If pi = 0 then in the operation of

“detying” we set pi = (0,2’-‘), otherwise (for items with positive weight) the “detying”

works as in Case 1.

Call a group of consecutive zero weighted items a zero chain. Each zero chain is

processed from left to right, since the tag weights increase from left to right in the

chain. This corresponds to the rule TBR. Afterwards zero weighted elements are com-

bined with positive items, and the situation is essentially the same as in Case 1. This

completes the proof. 0

6. Final remarks

We can consider a nondeterministic version HT’ of the Hu-Tucker algorithm. Define

the extended order << on the items in the sequence rc:

u < w iff (weight(u)< weight(w)) or (weight(u) = weighr(w)

and pas(u) <pas(w))

We say that a pair (u,w) of compatible items is a locally minimal compatible pair

(lmcp) if w < u for each item u compatible with u and u<<q for each item q compatible

with w. In other words u and w are the minimal compatible partners for each other.

The HT’ algorithm is the same as the HT algorithm, except that it combines any lmcp

of items.

Remark 6.1. The HT’ algorithm is correct.

Correctness is proved in a similar way as for the HT algorithm: simulate HT’ by

GW in the case without ties. The working sequences in both algorithms are again re-

lated through the function MoveTransparent due to the lack of ties. Then the function

MoveTrunsparent maps each working sequence in the algorithm HT’ into a correspond-

ing unique sequence for the GW algorithm. The pairs combined in HT’ correspond to

locally minimal pairs in GW. We remark that we can use a modified TBR in the GW

algorithm to eliminate ties. The rule TBR will refer now to the smallest position of an

original item contained in a given package. Hence we need only remember the smaller

position of combined items. Then we can assume, without loss of generality, that there

are no ties during execution of the GW algorithm.

322 M. Karpinski et al. I Theoretical Computer Science 180 (1997) 309-324

The method does not use infinitesimals; only additional comparisons between posi-

tions of items are involved. This is useful in many situations, see [lo, 111.

Appendix. Proof of the simulation lemma

The crucial point is to prove that the sequence of combined pairs is the same for

both algorithms. This reduces to the two claims below.

Claim A.1. Assume that y = MoveTransparent(Then if (u, w) is the globally min-
imal pair in y, the items u, w are visible to each other in 1.

Proof. Observe that if the item x is transparent in A and has “floated over” at least k

items when performing MoveTransparent then the left k neighbors of x in y have

smaller weight than x. The proof of the claim is by contradiction. Assume that U, w

are not visible to each other, i.e., there is an opaque item q between u and w in 1.

There are two cases.

Case 1: In A, w is before U. Then w is transparent because it “floats over” U, and

weight(u)< weight(w). Let q’ be the predecessor of u in y. If weight(q’)< weight(w),
then (u, w) is not minimal in 2, a contradiction. If q’ is transparent, then, since q’ does

not “float over” U, weight(q’) < weight(u) < weight(w), which implies that (u, w) is not

minimal in 2, a contradiction. Thus, weight(q’) > weight(w) and q’ is opaque.

Since w cannot “float over” q’, we know that q’ is to the left of w in y. We have

the situation

. ..q’...w...q...u...
MoveTransparent

=+
. . . q'uw

But q has no possible place in y, as it must remain to the left of u and to the right of

q’, a contradiction.

Case 2: In A, u is before w. Then u is transparent because it “floats over” q. Since u

does not “float over” w, weight(u)<weight(w). Let q’ be the predecessor of u in y. If

weight(q’)< weight(w), then (u,w) is not minimal in A, a contradiction. If q’ is trans-

parent, then, since q’ does not “float over” U, weight(q’) < weight(u) < weight(w), which

implies that (u, w) is not minimal in 2, a contradiction. Thus weight(q’)> weight(w)
and q’ is opaque. Since u cannot “float over” q’, we know that q’ is to the left of u

in y. We have the situation

MoveTransparent
. . . q’ . . . u...q...w...

=+
. ..q’uw...

Now q must remain to the left of w and to the right of q’, a contradiction. This

completes the proof of Claim A.1. q

Claim A.2. If (u,w) is the minimal compatible pair in 1 then the items u, w are
adjacent in y.

M. Karpinski et al. I Theoretical Computer Science 180 (1997) 309-324 323

Proof. Assume there is an item q between u and w in y. Observe the possible scenario

of the operation MoveTransparent. The items are been processed (moved to right) in

right-to-left order. Assume u is before w in i,. First w is processed, then all items

between u and w. Finally u is processed. All elements between u and w in ;1 are of

larger weight than w (since (u,w) is the mcp) and they “float over” w. Immediately

after moving U, the items u and w become adjacent. Hence the item which is inserted

between u and w in y is to the left of u in i,. We have the following situation:

..q...u...w...
MoveTransparent

. .
=+

u...q...w...

If q is visible from u then q is a better partner for u than w since q stopped before

“floating over” w, i.e., (q,u) would be a smaller pair of compatible items. This contra-

dicts the fact that (u, w) is the mcp. Otherwise q is not visible from U. Let q’ be the

opaque item visible from u between q and U. (Such an item must exist.) Since q “floated

over” q’, we know that weight(q’) < weight(q). Furthermore, weight(q) <weight(w)

since q stopped before w. Thus q’ is a better partner for u than w, and q’ and u are

visible to each other. We have a contradiction since the pair (q’,u) is a better choice

of mcp than (u,w). This completes the proof of Claim A.2. 0

Assume that y = MoveTransparent(Claim A and Claim B imply that the minimal

pair combined in ‘/ is the same as the pair combined in 1,. We have

MoueTransparent(HT(i)) = GW’(;I) if 1/ = MoueTransparent(

where GW’ and HT denote here one iteration of the GW’ and HT algorithms, respec-

tively, on the working sequence of items. (This is shown for an example sequence in

Fig. 3.) The proof works by induction on the number of iterations. Let A,, yi, be the lists

after i iterations. Then & = yo is the initial sequence of items, and MoveTransparent

= yI implies MoveTransparent(i.i+1) = y,+~.

References

[I] A.M. Garsia and M.L. Wachs, A new algorithm for minimal binary search trees, SIAM J. Comput. 6

(1977) 622-642.

[2] T.C. Hu, A new proof of the T-C algorithm, SIAM J. Appl. Math. 25 (1973) 83-94.

[3] T.C. Hu and A.C. Tucker, Optimal computer search trees and variable length alphabetic codes, SIAM

J. Appl. Math. 21 (1971) 514-532.

[4] D.A. Huffman, A method for the constructing of minimum redundancy codes, Proc. IRE 40 (1952)
1098-I 101.

[5] J.H. Kingston, A new proof of the Garsia-Wachs algorithm, J. Algorithms 9 (1988) 129-136.

[6] M.M. Klawe and B. Mumey, Upper and lower bounds on constructing alphabetic binary trees, in: Proc

4th ACM-SIAM Symp. on Discrete Algorithms (1993) 185-193.

[7] D.E. Knuth, Optimum binary search trees, Acta Inform. 1 (1971) 14-25.

[8] D.E. Knuth, The Art of Computer Programming (Addison-Wesley, Reading, MA, 1973).

[9] L.L. Larmore and D.S. Hirschberg, A fast algorithm for optimal length-limited Huffman codes, J. ACM

37 (1990) 464-473.

324 M. Karpinski et al. I Theoretical Computer Science 180 (1997) 309-324

[lo] L.L. Larmore and T.M. Przytycka, The optimal alphabetic tree problem revisited, in: Proc. 2lst Internat.
Coil., ICALP’94, Jerusalem, Lecture Notes in Computer Science, Vol. 820 (Springer, Berlin, 1994)

251-262.

[l l] L.L. Larmore, T.M. Przytycka and W. Rytter, Parallel construction of optimal alphabetic trees, in: Proc.
5th ACM Symp. on Parallel Algorithms and Architectures (1993) 214-223.

[12] P. Ramanan, Testing the optimal@ of alphabetic trees, Theoret. Comput. Sci. 93 (1992) 279-301.

[131 F.F. Yao, Efficient dynamic programming using quadrangle inequalities, in: Proc. 12th ACM Symp.
on Theory of Computing (1980) 429-435.

