
Equa t ion  (22) may  be proved by inspection of  (18), 
while (21) may  be demonst ra ted  by expanding the 
logar i thm in (17) into a Taylor  series and retaining 
only  the first two terms. Equat ions  (21) and (22) show 
that  as the number  o f  accesses becomes immaterial ,  
one should  use very small resident and overflow records 
to reduce the total  s torage volume. Substituting (21) 
and  (22) into eq. (13), we get 

V* ~ ,  R . s / a  + R . s .  (a --  1)/a = R . s ,  (23) 

which is the absolute minimal storage volume needed, 
wi thout  any  "ove rhead"  added  by the storage method.  

Appendix 

PROPERTY 1. F o r  all a > 1, 

p*(a) < q*(a). (A1) 

PROOF. Instead o f  (A1), we prove the equivalent 

exp (q* /s ) /exp  (p*/s) > 1. (A2) 

Let  us in t roduce the fol lowing no ta t ion :  

b = a + (a 2 -- 1) ~, c = 2(a --  1). (A3) 

Then  it is easily seen that  

q*/s = 2 / (b  -- 1), (A4) 
p* / s  = In (b/c) .  (A5) 

Substi tut ing (A4) and (A5) into (A2) a nd  expanding 
the numera to r  as a Tay lo r  series, retaining the first 
three terms, we get 

exp (q*/s) exp (2/(b -- 1)) 

exp (p*/s)  b /c  
> 1 -+- 2 / ( b - -  1) + 2/ (b  -- 1) 2 _ (b z + 1)c (A6) 

b/c  (b -- 1)2b 

F r o m  definition (A3), we get the fol lowing identi ty:  

(b --  1) 2 = b.c .  (A7) 

Subst i tut ing (A7) into (A6), we finally have 

exp (q*/s) > (b 2 + 1) .c  _ b 2 - I -1  > 1. 
exp (p*/s)  b 2. c b 2 
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Previously published algorithms for finding the 
longest common subsequence of two sequences of length 
n have had a best-case running time of O(n2). An 
algorithm for this problem is presented which has a 
running time of  O((r + n) log n),  where r is the total 
number of ordered pairs of  positions at which the two 
sequences match. Thus in the worst case the algorithm 
has a running time of O(n 2 log n).  However,  for those 
applications where most positions of one sequence 
match relatively few positions in the other sequence,  
a running time of O(n log n) can be expected. 
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Introduction 

Many algorithms [1, 4, 6] for finding the longest 
common subsequence of two sequences of length n 
have appeared in the literature. These algorithms all 
have a worst-case (as well as a best-case) running time 
of O(n~)2 

A more relevant parameter for this problem is r, the 
total number of matching pairs of positions within the 
sequences in question. We shall present an O(( r+n)  
log n) algorithm for the longest common subsequence 
problem. In the worst case this is of course O(n 2 log n). 
However, for a large number of applications, we can 
expect r to be close to n. In these situations our al- 
gorithm will exhibit an O(n log n) behavior. Typical of 
such applications are the following: 
(1) Finding the longest ascending subsequence of a 

permutation of the integers from 1 to n [3]. 
(2) Finding a maximum cardinality linearly ordered 

subset of some finite collection of vectors in 2-space 
[7]. 

(3) Finding the edit distance between two files in 
which the individual lines of the files are con- 
sidered to be atomic. The longest common subse- 
quence of these files, considered as sequences, 
represents that common "core"  which does not 
have to be changed if we desire to edit one file 
into the other. 

Thus in the general case our algorithm will not take 
much longer than the algorithms of [1, 4, 6], whereas in 
many common applications, our algorithm will per- 
form substantially better. 

Let A be a finite sequence of elements chosen from 
some alphabet. We denote the length of A by t A I. 
A[i] is the ith element of A and A[i'.j] denotes the se- 
quence A [i], A [i-k- 1 ], . . .  , A [j]. 

If  U and V are finite sequences, then U is said to be a 
subsequence of I r if there exists a monotonically in- 
creasing sequence of integers r l ,  r~, • • • , rw~ such that 
U[i] = V[r~]for 1 < i < I U I. U i s a c o m m o n s u b s e -  
quenceo f  A and B if U is a subsequence of both A and 
B. A longest common subsequence is a common subse- 
quence of greatest possible length. 

Throughout  this paper A and B will be used to 
denote the sequences in question. For  ease of presenta- 
tion, we shall assume both sequences have the same 
length which will be denoted by n. The number of 
elements in the set {(i, j )  such that A[i] = B[j]} will 
be denoted by r. 

Preliminary Results 

1, T~,2 = 3, Ts,a = 6, T5.4 = 7, T5,5 = undefined. 
Each T~,k may thus be considered as a pointer 

which tells us how much of the B sequence is needed to 
produce a common subsequence of length k with the 
first i elements of A. 

Note that each row of the T array is strictly in- 
creasing; that is, 

LEMMA 1. If T i n ,  Ti.~ , "'" , T~,v are defined, then 
Ti,1 < T~,~ < . . .  < T i , v .  

PROOF. Consider the common subsequence of 
length k contained in All:i] and B[l:Ti,k]. Clearly 
B[T~,k] is the last member of this common subsequence 
or else T~.~ would not be minimal. Therefore All  :i] and 
B [ I : T ~ , k - 1 ]  contain a common subsequence of 
length k - 1, that is, Ti,k-1 <__ T~,k -- 1. [] 

This linear ordering is of paramount  importance in 
the efficient implementation of our algorithm. 

Suppose that we have computed T~,k for all values 
of k and wish to compute T~+1,k for all values of k. 
We first show T~+x,k must lie in a specific range of  values. 

LEMMA 2. Ti,k-1 < Ti+l,k _~ Ti,k. 
PROOF. If  A [1 :i] and B[1 :T~,k] have a common sub- 

sequence of length k, then certainly A[I:i-t-1] and 
B[l:Ti,k] do also. Thus Ti+Lk <__ Ti,k . 

By definition, A [ l : i+ l ] and B[I:T¢+I,k] have a 
common subsequence of length k. Deleting the last 
element from each of these sequences can remove at 
most one element from this common subsequence. 
thus A[I:i] and B[I:T~+Lk--1] have a common subse- 
quence of length k -- 1. Accordingly Ti,k_~ <__ T¢+~,k -- 1 
and Ti,k-1 < T~+L~ • [] 

The following rule suffices to compute T~+Lk from 
T~,k-1 and Ti.k. 

LEMMA 3. 

f smallest j such that A[iq- 1] = B[i] 
T~+Lk = ~ and Ti,k-1 < j <__ Ti,k 

ITi ,~ i f  no such j exists 

PROOF. 
Case 1. No  such j exists. By the minimality of 

T~+~,k, any common subsequence of the sequences 
A[I:i-t-1] and B[I:T~+~,k] must have B[T~+Lk] as its 
last element. Moreover, by Lemma 2 and the premise 
of this case, B[T~+L~] does not match A[iq-1]. There- 
for the same common subsequence of length k is also 
contained in A[I:i] and B[l:Ti+l,k]. Thus Ti,k ~ Ti+l,k 
and by Lemma 2, T~,~ must equal Ti+l,k • 

Case 2. There exists a min imal j  for which A[iA-1] 
= B[j] and T~,k-~ < j < Ti,~. Certainly A[l : iq- l ]  and 
B[l:j] contain a common subsequence of length k, 
namely the length k - 1  common subsequence of 

The key data structure needed by our algorithm is 
an array of "threshhold values" T~.~ defined by Ti,k = 
the smallest j such that A[I:i] and B[I~] contain a 
common subsequence of length k. For  example, given 
sequences A = abcbdda, B = badbabd we have T5,1 = 

1 An unpublished result of Michael Paterson shows how to 
construct an O(n~/log n) algorithm for the longest common sub- 
sequence problem for sequences over a finite alphabet, and an 
O((n ~ log log n)/log n) algorithm for sequences over an infinite 
ordered alphabet. All results of this paper apply to the case of the 
infinite ordered alphabet. 
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A[1 :i] and B[T~,k_I] with the pair A [ i +  1], B[j] "tacked" 
onto the end. Thus T~+l,k < j .  

Assume temporari ly that  T~+1,k < j .  Since Lemma 
2 guarantees that T~,k_t < T~+l,k we can conclude that  
the last element of  the length k common subsequence 
of A [ I : [ + I ]  and B[I:T~+I.k] does not match A [ i + I ] .  
Thus A[I:i] and B[I:T~+I,k] also contain a common 
subsequence of length k which implies that  T~,k < 
T~+~,k. By Lemma 2 then, T~,k = T~+l,k. However,  
by the above assumption and the premise of  this case, 
Ti+Lk < j _< Ti,k, implying that  Ti,k ~ Ti+t,k. This 
contradiction leads us to conclude that  the original 
assumption of T~+~.k < j is incorrect and hence we 
must  have T~+t,k = j .  [] 

We can now present an O(n 2 log n) algorithm for 
determining the length of  the longest common subse- 
quence. Subsequent refinements will enable us to not 
only improve the running time to O((r  + n) log n) but 
also recover the actual longest common subsequence. 

Algorithm 1 

element array ,411 :n], B[1 :n]; 
integer array THRESH[O:n]; 
integer i, j, k; 
THRESH[O] := 0; 
for i : = 1 step 1 until n do 

THRESH[i] := n + 1; 
for i := 1 step 1 until n do 

for j := n step -- 1 until 1 do 
if/110 = B[j] then 

begin 
find k such that THRESH[k--I] < j <_ THRESH[k]; 
THRESH[k] := j; 

end; 
print Largest k such that THRESH[k] ~ n + 1; 

The correctness of the algorithm follows f rom 
consideration of  the invariant relation " T H R E S H [ k ]  
= T~-L~ for all k "  which holds at the start of  each 
iteration on i, and the invariant relation " T H R E S H [ k ]  
= T~.~ for all k "  which holds at the end of each itera- 
tion on i. 

Since the T H R E S H  array is monotonically in- 
creasing (Lemma 1) we can utilize a binary search to 
implement the "find" operation in time O(log n). 
Thus Algori thm 1 may be implemented to run in 
O(n ~ log n) time. 

Finally, notice that  the direction of the loop on j 
is crucial. Suppose that for some value of i, A [i] matches 
several different B elements in a given "threshold" 
interval, say B[j~], . . .  , B[j~] with T H R E S H [ k - - 1 ]  = 
Ti- l .k- t  < j l  < "'" < j,,, <_ T ~-1,:~ = T H R E S H [ k ] .  
From Lemma 3, we see that  T~.k = j t  and that  
T H R E S H [ k ]  should be updated to this value. Since 
the inner loop of Algorithm 1 considers values of  j in 
decreasing order, each of the values j,~, jm-x, " "  , j l  
will cause T H R E S H [ k ]  to take on successively smaller 
values until it is set equal to the desired value of jx .  
I f  instead the loop on j ran upwards from 1 to n, then 
not only would T H R E S H [ k ]  be set to jx ,  but  
T H R E S H [ k + I ]  would be set to j 2 ,  T H R E S H [ k + 2 ]  

would be set to j8 and so forth. Since these latter as- 
signments are unwarranted, we see that  the loop on j 
must  run downwards. 

The  A l g o r i t h m  

A small amount  of  preprocessing will vastly im- 
prove the performance of Algori thm 1. The main 
source of inefficiency in this algorithm is the inner 
loop on j in which we repeatedly search for elements 
of  the B sequence which match A[i]. Linked list tech- 
niques obviate the need for this search. 

For  each position i we need a list of  corresponding 
j positions such that A[i] = B[j]. These lists must be 
kept in decreasing order in j .  All positions of the A 
sequence which contain the same element may be 
set up to use the same physical list of  matching j ' s ;  
for the sequences A = abcbdda, B = badbabd the de- 
sired lists are 

M A T C H L I S T [ I ]  = (5, 2) 
M A T C H L I S T [ 2 ]  = (6, 4, 1) 
M A T C H L I S T [ 3 ]  = ( ) 
M A T C H L I S T [ 4 ]  = M A T C H L I S T [ 2 ]  
M A T C H L I S T [ 5 ]  = (7, 3) 
M A T C H L I S T [ 6 ]  = M A T C H L I S T [ 5 ]  
M A T C H L I S T [ 7 ]  = M A T C H L I S T [ I ] .  

We can now display our final algorithm. 

Algorithm 2 

element array/111 :n], B[1 :n]; 
integer array THRESH[O:n]; 
list array MATCHLIST[1 :n]; 
pointer array LINK[1 :n]; 
pointer PTR; 
comment Step 1: build linked lists; 
for i := 1 step 1 until n do 

set M/1TCHLIST[i] :-- (jr ,j2, . . .  ,jp) such that 
jx >j2 > . . .  >j~andA[i] = B[jq] for I < q _< p; 

comment Step 2: initialize the THRESH array; 
THRESH[O] := 0; 
for i := 1 step 1 until n do 

THRESH[i] := n q- 1; 
LINK[O] := null; 
comment Step 3: compute successive THRESH values; 
for i := 1 step 1 until n do 

forj on M/1TCHLIST[i] do 
beg~ 

find k such that THRESH[k--I] < j <_ THRESH[k]; 
i f j  < THRESH[k] then 

begin 
THRESH[k] := j; 
LINK[k] := newnode ( i, A LINK[k--l]); 

end; 
end; 

comment Step 4: recover longest common subsequence in reverse 
order; 

k := largest k such that THRESH[k] ~ n -t- 1; 
PTR := LINK[k]; 
while PTR ~ null do 

begin 
print (i,j) pair pointed to by PTR; 
advance PTR; 

end; 
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The subroutine newnode invoked in step 3 is a 
subroutine which creates a list node whose fields con- 
tain the values of the arguments to newnode. These 
arguments are, respectively, an index of a position in 
the A sequence, an index of a position in the B se- 
quence, and a pointer to some other list node. The 
value returned by newnode is a pointer to the list 
node just created. 

THEOREM 1. Algorithm 2 finds and prints a longest 
common subsequence of the sequences d and B in time 
O((r + n) log n) and space O(r + n). 

PROOF. Step 1 can be implemented by sorting each 
sequence while keeping track of each element's original 
position. We may then merge the sorted sequences 
creating the MATCHLISTs as we go. This step takes 
a total of O(n log n) time and O(n) space. 

Step 2 clearly takes O(n) time. 
The two outer loops of step 3 should be considered 

as a single loop over all pairs (i, j )  such that A [i] = 
B[j] taken in order of decreasing j within increasing i. 
In other words, the outer loops of step 3 induce ex- 
actly r executions of the innermost statements of 
step 3. Since these innermost statements involve one 
binary search plus a few operations which require 
constant time, we conclude that the time requirement 
for step 3 is O(n + r log n). 

In this step we also implement a simple back- 
tracking device that will allow us to recover the longest 
common subsequence. We record each (i, j )  pair which 
causes an element of the THRESH array to change 
value. Thus whenever THRESH[k] is defined, LINK[k] 
points to the head of a list of (i, j )  pairs describing a 
common subsequence of length k. Since at most one 
list node is created per search, Step 3 wiU require the 
allocation of  at most O(r) list nodes. 

In step 4 we recover the actual longest common sub- 
sequence. Clearly this takes at most O(n) time. [] 

We note that certain input sequences such as 
A = "aabaabaab..." and B = "ababab.. ." cause 
Algorithm 2 to use O(r) space even if list nodes are 
reclaimed whenever they become inaccessible. See 
[4] for an algorithm which never uses more than O(n) 
space nor less than O(n ~) time. 

A Final Note  

The key operations in the implementation of our 
algorithm are the operations of inserting, deleting, and 
testing membership of elements in a set where all ele- 
ments are restricted to the first n integers. Peter van 
Emde Boas has shown that each such operation can 
he performed in O(log log n) time [2]. His data stuc- 
ture requires O(n log log n) time for initialization. 
Although the necessary algorithms are quite complex, 
we can use them to present the following theoretical 
result. 

THEOREM 2. (a) Algorithm 2 can be implemented 
to have a running time of O(r log log n + n log n) over an 
infinite alphabet. (b) Algorithm 2 can be implemented 
to have a running time of O((n + r) log log n) over a 
fixed finite alphabet. (c) The longest ascending subse- 
quence of a permutation oJ the first n integers may be 
Jound in O(n log log n) time. 

PROOF. The problem of part  (c) is, of  course, 
equivalent to finding the longest common subsc- 
quence of the given permutation and the sequence 
1, 2, • • • , n. All three parts of the theorem use basically 
the same algorithm although the implementation of  
some of the steps varies slightly. We shall present a 
common analysis. 

In all three cases we require O(n log log n) time to 
initialize van Emde Boas's data structures. Step 1 en- 
tails a sorting procedure to set up the MATCHLISTs. 
For  the infinite alphabet case, this sort can be done in 
O(n log n) time. In the other two cases, we can use a 
distribution sort to create the MATCHLISTs in O(n) 
time. Step 2 takes O(n) time, step 3 takes O(n + r 
log log n) time and step 4 takes O(n) time. Finally, 
for the permutation case note that each integer 
appears exactly once in each sequence and thus wc have 
r =  n. [] 
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